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ON THE DEFINITION OF

TWO NATURAL CLASSES OF SCALAR PRODUCT∗

D. STEVEN MACKEY† , NILOUFER MACKEY∗, AND FRANÇOISE TISSEUR‡

Abstract. We identify two natural classes of scalar product, termed unitary and orthosymmet-
ric, which serve to unify assumptions for the existence of structured factorizations, iterations and
mappings. A variety of different characterizations of these scalar product classes is given.

Key words. Lie algebra, Jordan algebra, scalar product, bilinear form, sesquilinear form, or-
thosymmetric, adjoint, structured matrix, Hamiltonian, skew-Hamiltonian, Hermitian, complex sym-
metric, skew-symmetric, persymmetric, perskew-symmetric, perplectic, symplectic, pseudo-orthogonal.

1. Introduction. Matrices that are structured with respect to a scalar product
(see Table 1.1) arise in many important applications. Several useful properties, such
as the involutory property of the adjoint and the preservation of norm by adjoint,
do not hold in every scalar product space. In this note we consider a number of
such properties, and show that they cluster together into two groups of equivalent
properties, thereby delineating two natural classes of scalar products. We have found
that the identification of these classes, which we term orthosymmetric and unitary ,
has simplified the development of structured factorizations [6], iterations [1], [2] and
mappings [7], [8]. It also helps to clarify existing results in the literature. Note that all
the “classical” examples of scalar products listed in Table 1.1 are both orthosymmetric
and unitary, as will easily be seen from Theorems 1.6 and 1.8. This short note is a
more complete version of [6, App. A].

1.1. Preliminaries. We give a very brief summary of the required definitions
and notation. For more details, see Mackey, Mackey, and Tisseur [5].

Consider a scalar product on Kn, that is, a bilinear or sesquilinear form 〈·, ·〉
M

defined by any nonsingular matrix M : for x, y ∈ Kn,

〈x, y〉
M

=

{
xT My, for real or complex bilinear forms,
x∗My, for sesquilinear forms.

Here K = R or C and the superscript ∗ denotes conjugate transpose.
The adjoint of A with respect to the scalar product 〈·, ·〉

M
, denoted by A⋆, is

uniquely defined by the property 〈Ax, y〉
M

= 〈x,A⋆y〉
M

for all x, y ∈ Kn. It can be
shown that the adjoint is given explicitly by

A⋆ =

{
M−1AT M, for bilinear forms,
M−1A∗M, for sesquilinear forms.

(1.1)

Associated with 〈·, ·〉
M

is an automorphism group G, a Lie algebra L, and a Jordan
algebra J, defined by

G :=
{
G ∈ K

n×n : 〈Gx,Gy〉
M

= 〈x, y〉
M

∀x, y ∈ K
n
}

=
{
G ∈ K

n×n : G⋆ = G−1
}

,

L :=
{
L ∈ K

n×n : 〈Lx, y〉
M

= −〈x,Ly〉
M

∀x, y ∈ K
n
}

=
{
L ∈ K

n×n : L⋆ = −L
}

,

J :=
{
S ∈ K

n×n : 〈Sx, y〉
M

= 〈x, Sy〉
M

∀x, y ∈ K
n
}

=
{
S ∈ K

n×n : S⋆ = S
}

.
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Table 1.1
Structured matrices associated with some orthosymmetric scalar products.

R =

"

1
. .

.

1

#

, J =

»

0 In

−In 0

–

, Σp,q =

»

Ip 0
0 −Iq

–

with p + q = n.

Space M Automorphism Group Jordan Algebra Lie Algebra

G = {G : G⋆ = G−1} J = {S : S⋆ = S} L = {K : K⋆ = −K}

Bilinear forms

Rn I Real orthogonals Symmetrics Skew-symmetrics

Cn I Complex orthogonals Complex symmetrics Cplx skew-symmetrics

Rn Σp,q Pseudo-orthogonals Pseudosymmetrics Pseudoskew-symmetrics

Cn Σp,q Cplx pseudo-orthogonals Cplx pseudo-symm. Cplx pseudo-skew-symm.

Rn R Real perplectics Persymmetrics Perskew-symmetrics

R2n J Real symplectics Skew-Hamiltonians Hamiltonians

C2n J Complex symplectics Cplx J-skew-symm. Complex J-symmetrics

Sesquilinear forms

Cn I Unitaries Hermitian Skew-Hermitian

Cn Σp,q Pseudo-unitaries Pseudo-Hermitian Pseudoskew-Hermitian

C2n J Conjugate symplectics J-skew-Hermitian J-Hermitian

G is a multiplicative group, while L and J are linear subspaces. Table 1.1 shows a
sample of well-known structured matrices in G, L or J associated with some scalar
products.

To demonstrate the equivalence of various scalar product properties, we need a
flexible way to detect when a matrix A is a scalar multiple of the identity. It is well
known that when A commutes with all of Kn×n, then A = αI for some α ∈ K. There
are many other sets besides Kn×n, though, that suffice to give the same conclusion.

Definition 1.1. A set of matrices S ⊆ Kn×n will be called a CS-set for Kn×n if
the centralizer of S consists only of the scalar multiples1of I; that is,

BS = SB for all S ∈ S =⇒ B = αI for some α ∈ K.

The following lemma describes a number of useful examples2 of CS-sets for Rn×n

and Cn×n. For this lemma, we use D to denote an arbitrary diagonal matrix in
Kn×n with distinct diagonal entries, D+ for a diagonal matrix with distinct positive

diagonal entries, N =

[
0 1

0 1
· ·
· 1
0

]

is the n × n nilpotent Jordan block, C =

[
0 1

0 1
· ·
· 1

1 0

]

is the cyclic permutation matrix, E = [ 0 1
1 0 ] ⊕ In−2 and F =

[
0 −1
1 0

]
⊕ In−2.

Lemma 1.2. Suppose S ⊆ Kn×n. Then

1One may think of “CS” as standing for either “Commuting implies Scalar”, or “Centralizer
equals the Scalars”.

2Another important source of CS-sets for Cn×n is the classical “Schur’s Lemma” [4], [9] from
representation theory: any S ⊆ Cn×n for which there is no nontrivial S-invariant subspace in Cn is
a CS-set for Cn×n. Thus the matrices in any irreducible representation of a finite group will be a
CS-set.
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(a) S contains a CS-set ⇒ S is a CS-set.
(b) Let S denote {A : A ∈ S}. If S is a CS-set for Cn×n, then so is S.
(c) Any vector space basis for Kn×n, or algebra generating set for Kn×n, is a

CS-set for Kn×n. More generally, any set whose span (either in the vector
space sense or the algebra sense) contains a CS-set is a CS-set.

(d) Each of the finite sets {D,N}, {D, N + NT }, {D+ , 3I + N + NT } , and
{C,E, F} is a CS-set for Kn×n.

(e) Any open subset S ⊆ Kn×n is a CS-set. (Indeed any open subset of Rn×n is
a CS-set for Cn×n.)

(f) The sets of all unitary matrices, all Hermitian matrices, all Hermitian pos-
itive semidefinite matrices and all Hermitian positive definite matrices are
each CS-sets for Cn×n. The sets of all real orthogonal matrices and all real
symmetric matrices are CS-sets for Rn×n and for Cn×n.

Proof.
(a) This is an immediate consequence of Definition 1.1.
(b) BS = SB for all S ∈ S ⇒ BS = SB for all S ∈ S. But S is a CS-set, so

B = αI, or equivalently B = αI. Thus S is a CS-set.
(c) If B commutes with either a vector space basis or an algebra generating set

for Kn×n, then it commutes with all of Kn×n, and hence B = αI.
(d) Any matrix B that commutes with D must itself be a diagonal matrix, and

any diagonal B that commutes with N must have equal diagonal entries,
so that B = αI. Thus S = {D,N} is a CS-set. Similar arguments show
that {D, N + NT } and {D+ , 3I + N + NT } are also CS-sets. To see that
{C,E, F} is a CS-set, first observe that a matrix B commutes with C iff it is
a polynomial in C, i.e. iff B is a circulant matrix. But any circulant B that
commutes with E must be of the form B = αI + βK, where K is defined

by Kij =

{
0 if i = j
1 if i 6= j

. Finally, B = αI + βK commuting with F forces

β = 0, so B = αI, showing that {C,E, F} is a CS-set.
(e) This follows from (a) and (c), since any open subset of Kn×n contains a vector

space basis for Kn×n.
(f) This follows from (a) and (d), by observing that {D, N +NT } consists of two

real symmetric matrices, {D+ , 3I +N +NT } consists of two real symmetric
positive definite matrices, and {C,E, F} consists of three real orthogonal
matrices.

A second simple result that is needed to show the equivalence of various scalar
product properties is the following lemma.

Lemma 1.3. Let M ∈ Kn×n be a nonzero matrix. Then
1. MT = αM for some α ∈ K ⇔ MT = ±M .
2. M∗ = αM for some α ∈ K ⇔ M∗ = αM for some |α| = 1

⇔ M = βH for some Hermitian H and |β| = 1.
3. MM∗ = αI for some α ∈ K ⇔ M = βU for some unitary U and β > 0.

Proof. Since the proofs of the reverse implications (⇐) in 1, 2, and 3 are imme-
diate, we only include the proofs of the forward implications (⇒) in each case.

1. MT = αM ⇒ M = (MT )T = (αM)T = αMT = α2M ⇒ α2 = 1 ⇒ α = ±1 .

2. M∗ = αM ⇒ M = (M∗)∗ = (αM)∗ = αM∗ = |α|2M ⇒ |α|2 = 1 ⇒ |α| = 1 .
To see the second implication, let H =

√
αM , where

√
α is either of the two

square roots of α on the unit circle. It is easy to check that H is Hermitian,
and M = βH with β = (

√
α )−1 on the unit circle.
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3. MM∗ is positive semidefinite, so α ≥ 0; then M 6= 0 implies α > 0. It follows
that U = 1√

α
M is unitary, so M = βU with β =

√
α > 0.

This third result is needed for the proof of equivalence of norm preservation
conditions defining the class of unitary scalar products.

Lemma 1.4. Suppose ‖ · ‖ is any unitarily invariant norm on Kn×n (K = R or
C), and ‖diag(x, 1/x, 1, 1, . . . , 1)‖ = ‖In‖ for some x > 0. Then x = 1.

Proof. The proof proceeds by showing that along the one-parameter set of diag-
onal matrices

{
diag(x, 1/x, 1, . . . , 1) : x > 0

}
, the identity In is the unique matrix of

minimum norm, from which the lemma follows immediately. To facilitate the proof it
will be convenient to consider some other sets of diagonal matrices, in the equivalent
form of subsets of Rn.

• Let N =
{
(a1, a2, . . . , an) ∈ Rn : ai ≥ 0 and

∑n
i=1 ai ≥ n

}
; clearly N is a

closed, convex subset of the non-negative orthant in Rn.
• Let H =

{
(a1, a2, . . . , an) ∈ N :

∑n
i=1 ai = n

}
⊂ ∂N ; the set H is the

boundary face of N closest to the origin. Note that H is a compact, convex
subset of N .

• The matrices of interest correspond to the curve C :=
{
(x, 1/x, 1, . . . , 1) :

x > 0
}

inside N . Every point of C lies in the interior of N except for
(1, . . . , 1) ∈ H, since x + (1/x) > 2 for any x > 0 with x 6= 1.

For brevity we also introduce the notation ‖diag(a1, a2, . . . , an)‖ = f(a1, a2, . . . , an);
note that the unitary invariance of ‖ · ‖ implies that f is invariant under all permu-
tations of its arguments.

The multiplicative property of norms, i.e. f(µv) = µf(v) for µ > 0, implies that
for any point in the interior of N , e.g. all points of C except for (1, 1, . . . , 1), there
is a point in H with a strictly smaller f -value. If we can now show that (1, 1, . . . , 1)
attains the minimum f -value on H, then it follows that (1, . . . , 1) must be the unique
minimizer of f on C, and the proof will be complete.

Suppose w is any point in H, and consider the average z = 1
n!

(∑

P∈Sn

Pw
)

over
all permutations in the symmetric group Sn. Each coordinate of w gets permuted
into any fixed ith position by exactly (n − 1)! permutations in Sn, so this average z
is always

z =
1

n!

(
∑

P∈Sn

Pw

)

=
1

n!

( n∑

j=1

(n − 1)!wj , . . . ,

n∑

j=1

(n − 1)!wj

)

= (1, 1, . . . , 1) ,

since
∑n

j=1 wj = n for any w ∈ H.
Now let w ∈ H be any one of the minimizers of f on H; so f(w) = minv∈H f(v) =:

m. Then the permutation invariance of f implies that f(Pw) = m for every permu-
tation P ∈ Sn. Thus

f(1, 1, . . . , 1) = f

(

1

n!

∑

P∈Sn

Pw

)

=
1

n!
f

(
∑

P∈Sn

Pw

)

≤ 1

n!

∑

P∈Sn

f(Pw) =
1

n!
(n!m) = m,

and hence f(1, 1, . . . , 1) is equal to m, since m is the minimum value.
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1.2. Orthosymmetric scalar products. In Shaw [9], scalar products that en-
joy property (b) in Theorem 1.6 are called “orthosymmetric”. We adopt this name
in the following definition.

Definition 1.5 (Orthosymmetric Scalar Product). A scalar product is said to be
orthosymmetric if it satisfies any one (and hence all) of the seven equivalent properties
in Theorem 1.6.

Theorem 1.6. For a scalar product 〈·, ·〉
M

on Kn, the following are equivalent:
(a) Adjoint with respect to 〈·, ·〉

M
is involutory, that is, (A⋆)⋆ = A for all A ∈

Kn×n.
(a’) (A⋆)⋆ = A for all A in some CS-set for Kn×n.
(b) Vector orthogonality is a symmetric relation, that is,

〈x, y〉
M

= 0 ⇐⇒ 〈y, x〉
M

= 0 , for all x, y ∈ Kn.
(c) Kn×n = L ⊕ J.
(d) For bilinear forms, MT = ±M . For sesquilinear forms, M∗ = αM with

α ∈ C, |α| = 1; equivalently, M = βH with β ∈ C, |β| = 1 and Hermitian H.
(e) There exists some CS-set for Kn×n with the property that every matrix A in

this CS-set can be factored as A = WS with W ∈ G and S ∈ J .
(f) L and J are preserved by arbitrary ⋆-congruence; that is, for S = L or J and

P ∈ Kn×n, B ∈ S ⇒ PBP⋆ ∈ S.
Proof. Using (1.1) we have

(A⋆)⋆ =

{
(M−1MT )A(M−1MT )−1 for bilinear forms,
(M−1M∗)A(M−1M∗)−1 for sesquilinear forms.

(1.2)

Hence

(A⋆)⋆ = A ⇐⇒
{

(M−1MT )A = A(M−1MT ) for bilinear forms,
(M−1M∗)A = A(M−1M∗) for sesquilinear forms.

(1.3)

(a) ⇔ (a’) ⇔ (d)
(a) ⇒ (a’): Obvious.
(a’) ⇒ (d): Equation (1.3) holding for all A in some CS-set means that M−1MT =

αI (resp., M−1M∗ = αI). The desired conclusion now follows from Lemma 1.3.
(d) ⇒ (a): This follows from a straightforward substitution into (1.2).

(a) ⇔ (c)

(a) ⇒ (c): For any scalar product, L∩J = {0}; if B ∈ L∩J, then −B = B⋆ = B,
so B = 0. Now suppose that (a) holds and consider an arbitrary A ∈ Kn×n. Define
L = 1

2 (A−A⋆) and S = 1
2 (A+A⋆) so that A = L+S. From (A⋆)⋆ = A, we conclude

that L⋆ = −L, so that L ∈ L. Similarly one sees that S ∈ J. The decomposition
A = L + S shows that Kn×n = L + J and because L ∩ J = {0}, the sum is direct.

(c) ⇒ (a): A = L + S ⇒ A⋆ = L⋆ + S⋆ = −L + S ⇒ (A⋆)⋆ = (−L)⋆ + S⋆ =
L + S = A.

(b) ⇔ (d)
(b) ⇒ (d): Suppose 〈·, ·〉

M
is a bilinear form. Letting y = Mw, we have

xT y = 0 ⇔ xT Mw = 0
(b)⇐⇒ wT Mx = 0 ⇔ xT MT w = 0 ⇔ xT (MT M−1)y = 0.

A similar argument for sesquilinear forms shows that x∗y = 0 ⇔ x∗(M∗M−1)y = 0 .
Thus, property (b) implies that

〈x, y〉
I

= 0 ⇔ 〈x, y〉
B

= 0 , where B =

{
MT M−1 for bilinear forms,
M∗M−1 for sesquilinear forms.
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Using this relationship we can now probe the entries of B with various pairs x, y such
that 〈x, y〉

I
= 0 . Let x = ei and y = ej with i 6= j. Then Bij = 〈ei, ej〉B = 0, so B

must be a diagonal matrix. Next, let x = ei + ej and y = ei − ej with i 6= j. Then

0 = 〈ei + ej , ei − ej〉B = Bii + Bji − Bij − Bjj = Bii − Bjj ,

so Bii = Bjj for all i 6= j. Thus B = αI for some nonzero α ∈ K, and the desired
conclusion follows from Lemma 1.3.

(d) ⇒ (b): This direction is a straightforward verification. For bilinear forms,

〈x, y〉
M

= 0 ⇔ xT My = 0 ⇔ (xT My)T = 0 ⇔ ±(yT Mx) = 0 ⇔ 〈y, x〉
M

= 0

and for sesquilinear forms,

〈x, y〉
M

= 0 ⇔ x∗My = 0 ⇔ (x∗My)∗ = 0 ⇔ α(y∗Mx) = 0 ⇔ 〈y, x〉
M

= 0.

(e) ⇔ (a)
(e) ⇒ (a): For all A in our CS-set we have

(A⋆)⋆ = (S⋆W⋆)⋆ = (SW−1)⋆ = W−⋆S⋆ = (W−1)−1S = WS = A ,

and so (a’) holds. That (a’) implies (a) was shown earlier.
(a) ⇒ (e): The continuity of the eigenvalues of A⋆A implies that there is an open

neighborhood U of the identity in which A⋆A has no eigenvalues on R−. Thus by
[6, Thm. 6.2] every A in the CS-set U can be factored as A = WS with W ∈ G and
S ∈ J .

(a) ⇔ (f)

(a) ⇒ (f): Let B ∈ S, so that B⋆ = ±B. Then (PBP⋆)⋆ = (P⋆)⋆B⋆P⋆ =
±PBP⋆ , and so PBP⋆ ∈ S.

(f) ⇒ (a): Consider S = J and B = I ∈ J. Then (f) implies that PP⋆ ∈ J for
any P ∈ Kn×n, so PP⋆ = (PP⋆)⋆ = (P⋆)⋆P⋆. Since P⋆ is nonsingular for any
nonsingular P , we have P = (P⋆)⋆ for every nonsingular P . Thus by Lemma 1.2(e)
we have property (a’), which was previously shown to be equivalent to (a).

1.3. Unitary scalar products. Finally we prove the equivalence of a second
set of scalar product space properties. We adopt the name “unitary” for the scalar
products satisfying these properties because of (b) and (e) in Theorem 1.8.

Definition 1.7 (Unitary Scalar Product). A scalar product is said to be unitary
if it satisfies any one (and hence all) of the six equivalent properties in Theorem 1.8.

Theorem 1.8. For a scalar product 〈·, ·〉
M

on Kn, the following are equivalent:
(a) (A∗)⋆ = (A⋆)∗ for all A ∈ Kn×n.
(a’) (A∗)⋆ = (A⋆)∗ for all A in some CS-set for Kn×n.
(b) Adjoint preserves unitarity: U unitary ⇒ U⋆ is unitary.
(c) Adjoint preserves Hermitian structure: H Hermitian ⇒ H⋆ is Hermitian.
(d) Adjoint preserves Hermitian positive (semi)definite structure:

H Hermitian positive (semi)definite ⇒ H⋆ is Hermitian positive (semi)definite.
(e) M = βU for some unitary U and β > 0.
(f) For some unitarily invariant norm ‖ · ‖, ‖A⋆‖ = ‖A‖ for all A ∈ Kn×n.
(g) For every unitarily invariant norm ‖ · ‖, ‖A⋆‖ = ‖A‖ for all A ∈ Kn×n.
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Proof. From (1.1) it follows that

(A∗)⋆ =

{
M−1AM bilinear forms,
M−1AM, sesquilin. forms

and (A⋆)∗ =

{
M∗AM−∗, bilinear forms
M∗AM−∗ , sesquilin. forms.

Thus for any individual matrix A ∈ Kn×n we have

(A∗)⋆ = (A⋆)∗ ⇐⇒
{

A(MM∗) = (MM∗)A for bilinear forms
A(MM∗) = (MM∗)A for sesquilinear forms.

(1.4)

(a) ⇔ (a’)
(a) ⇒ (a’): This implication is trivial.
(a’) ⇒ (a): Suppose (A∗)⋆ = (A⋆)∗ holds for all A in some CS-set for Kn×n.

Then from (1.4) we conclude that MM∗ = αI, and hence that the two sides of (1.4)
hold for all A ∈ Kn×n.

(a) ⇔ (b)

(a) ⇒ (b): U∗ = U−1 ⇒ (U∗)⋆ = (U−1)⋆
(a)
=⇒(U⋆)∗ = (U⋆)−1 ⇒ U⋆ is unitary.

(b) ⇒ (a): Suppose U , and hence also U⋆, is unitary. Then we have (U⋆)∗ =
(U⋆)−1 = (U−1)⋆ = (U∗)⋆, showing that (A∗)⋆ = (A⋆)∗ for all unitary A. But from
Lemma 1.2 (f), the set of all unitaries is a CS-set for Kn×n, so (a’) holds, and hence
also (a).

(a) ⇔ (c)

(a) ⇒ (c): H∗ = H ⇒ (H∗)⋆ = H⋆ (a)
=⇒ (H⋆)∗ = H⋆ ⇒ H⋆ is Hermitian.

(c) ⇒ (a): Suppose H, and therefore also H⋆, is Hermitian. Then we have
(H⋆)∗ = H⋆ = (H∗)⋆, and so (A∗)⋆ = (A⋆)∗ for all Hermitian A. But from Lemma
1.2 (f), the set of all Hermitian matrices is a CS-set for Kn×n, so (a’) holds, and hence
also (a).

(a) ⇔ (d)
(a) ⇒ (d): Because (a) ⇒ (c), we just need to show that positive (semi)definiteness

is preserved by adjoint. But for H Hermitian, H⋆ and H are similar by definition of
the adjoint so the eigenvalues of H⋆ and H are the same.

(d) ⇒ (a): This argument is the same as that for (c) ⇒ (a), using the fact that
the set of all Hermitian positive (semi)definite matrices is a CS-set for Kn×n.

(a) ⇔ (e)

(a) ⇒ (e): Suppose (A∗)⋆ = (A⋆)∗ holds for all A ∈ Kn×n. Then we can
conclude from (1.4) that MM∗ = αI for some α ∈ K, and thus from Lemma 1.3 that
M = βU for some unitary U and β > 0.

(e) ⇒ (a): M = βU ⇒ MM∗ = (βU)(βU∗) = β2I. Then by (1.4) we have
(A∗)⋆ = (A⋆)∗ for all A.

(e) ⇒ (g) ⇒ (f) ⇒ (e)
(e) ⇒ (g) : Any unitarily invariant norm ‖·‖ is a function of the singular values [3,

p.209–210], so ‖AT ‖ = ‖A‖ = ‖A∗‖ for all A. From the formula for the adjoint in
(1.1), it follows that ‖A⋆‖ = ‖A‖ for all A.

(g) ⇒ (f): This direction holds a fortiori.
(f) ⇒ (e): Suppose 〈·, ·〉

M
is bilinear form; with only minor notational changes

the same argument works for sesquilinear forms. Let M = UΣV ∗ be an SVD for the

7



matrix M defining the scalar product. Then

‖A⋆‖ = ‖M−1AT M‖ = ‖V Σ−1U∗AT UΣV ∗‖ = ‖Σ−1 (U∗AT U)
︸ ︷︷ ︸

B

Σ‖. (1.5)

Since ‖A‖ = ‖AT ‖ = ‖U∗AT U‖ = ‖B‖, we see that if (f) holds, i.e. if ‖A⋆‖ = ‖A‖
for all A, then Σ has the property that

‖Σ−1BΣ‖ = ‖B‖ for all B ∈ K
n×n. (1.6)

Now we choose B to be various permutations in order to probe condition (1.6) and
see what constraints it imposes on Σ. Let Pjk (with j < k) denote the transposition
permutation that interchanges j and k. Then Σ−1Pjk Σ differs from the identity
In only in the 2 × 2 principal submatrix in the jth and kth rows and columns; in

this submatrix we have
[

0 1/µ
µ 0

]

with µ = σj/σk. The unitary invariance of the norm

together with ‖Σ−1Pjk Σ‖ = ‖Pjk‖ now implies that ‖diag(µ, 1/µ, 1, 1, . . . , 1)‖ = ‖I‖.
From Lemma 1.4 we can then conclude that µ = 1, so σj = σk. Since this holds for all
1 ≤ j < k ≤ n, we see that Σ must be σI for some σ > 0. Thus M = UΣV ∗ = σUV ∗

which completes the proof.
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