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1. Introduction

There is a longstanding conjecture, due to Gregory Cherlin and Boris Zilber, that all
simple groups of finite Morley rank are simple algebraic groups. Towards this end, the
development of the theory of groups of finite Morley rank has achieved a good theory of
Sylow 2-subgroups. It is now common practice to divide the Cherlin—Zilber conjecture
into different cases depending on the nature of the connected component of the Sylow
2-subgroup, known as the Sylé\2-subgroup.

We shall be working with groups whose Sylo®-subgroup is divisible, oodd type
groups. To date, the main theorem in the area of odd type groups is Borovik's trichotomy
theorem. The “trichotomy” here is a case division of the minimal counterexamples within
odd type.

More technically, Borovik's result represts a major success at transferring signalizer
functors and their applications from finite group theory to the finite Morley rank setting.
The major difference between the two settings is the absencesofvablesignalizer
functor theorem. This forced Borovik to work only wittilpotentsignalizer functors, and
the trichotomy theorem ends up depending on the assumption of tameness to assure that
the necessary signalizer functors are nilpotent.

The present paper shows that one may obtain a connected nilpotent signalizer functor
from any sufficiently non-trivial solvable signalizer functor. This result plugs seamlessly
into Borovik's work to eliminate the assumption of tameness from his trichotomy theorem.
In the meantime, a new approach to the trichotomy theorem has been developed by
Borovik [7], based on the “generic identification theorem” of Berkman and Borovik [5].
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Borovik uses his original signalizer functor arguments, and incorporates the result of the
present paper.

The paper is organized as follows. The first section will develop a limited characteristic
zero notion of unipotence to complement the uspralnipotence theory. The section on
centralizers and generation which follows will establish some background needed in the
rest of the paper. In Section 4 we prove our main result on signalizer functors, and in
Section 5 we discuss some applications. With Borovik’s kind permission, we include a
proof of the nilpotent signalizer functor theorem as an appendix. The results of Section 3
are based in part on a section of an unpublished version of [3].

2. Unipotence

We say a group of finite Morley rank @onnectedf it has no proper definable subgroup
of finite index. We also define the connected compognof a groupG of finite Morley
rank to be the intersection of all subgroups of finite index (see [6, §5.2]). We define the
Fitting subgroup F(G) of a groupG of finite Morley rank to be the maximal normal
nilpotent subgroup o6 (see [6, §7.2]). As it turns out, this naive notion of unipotence
is not sufficiently robust for many purposes. For example, it lacks an analog of Fact 2.3
below.

For p prime, we say that a subgroup of a connected solvable gidupf finite
Morley rank is p-unipotentif it is a definable connecteg-group of bounded exponent.
This definition works amazingly well when one does not need to worry about fields of
characteristic zero. This seatids dedicated to providing eharacteristic zero notion of
unipotence, with analogs of the following three facts aowiipotent groups:

Fact 2.1 (Fact 2.15 of [9] and Fact 2.36 of [2]l.et H be a connected solvable group of
finite Morley rank. Then there is a uniqgue maxinalnipotent subgrou@/,,(H) of H,
andU,(H) < F°(H).

Fact 2.2. The image of ap-unipotent group under a definable homomorphisnpis
unipotent.

Fact 2.3 (Lemma 1 of [4]).Let H be a connected solvable group of finite Morley rank with
U,(H) = 1. Then no definable section #f is p-unipotent.

The definition of the O-unipotent radicélg will be covered in Section 2.1. Next,
Section 2.2 contains analog$ Facts 2.2 and 2.3. In Section 2.3 we will show that our
new notion of O-unipotence, together with the usual notiop-afipotence, offers a kind
of completeness which had no analog in the petenipotence theory. Lastly, Section 2.4
will prove thatUyp is indeed contained in the Fittingilsgroup, finishing off our analog of
Fact 2.1.
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2.1. The characteristic zero notion

We seek here to define a characteristic zero notion of unipotence. Our approach will be
to identify special torsion-free “root groups.” The point is to pick up groups which appear
to play the role of additive groups, while @ding those that may act like pieces of the
multiplicative group of a field.

Let A be an abelian group of finite Morley rank. We say a p&itr A> < A of proper
subgroups isupplementaf A1 + A2 = A. We may callA, asupplemento A1 in A. We
will use the termindecomposabléd mean a definable connected abelian group without a
supplemental pair of proper definable subgroups.

Lemma 2.4. Every connected abelian group of finite Morley rank can be written as a finite
sum of indecomposable subgroups.

Proof. Induction on Morley rank. O

Lemma 2.5. Let A be an indecomposable group. Thanis divisible or A has bounded
exponent.

Proof. Immediate from Theorem 6.8 of [6].0

Lemma 2.6. Let A be an abelian group of finite Morley rank, and ldt and A, be
definable subgroups without definable supplememnt,ine., there is no definablg; < A
such thatA = A; + B;. ThenA; + A2 has no definable supplementdn

Proof. Immediate from definitions. O

The radical J(A) of a definable abelian group is defined to be the maximal proper
definable connected subgroup without a definable suppleni€na (exists and is unique
by Lemma 2.6 ford # 1). In particular, the radical (A) of an indecomposable groupis
its unique maximal proper definable connected subgroup.

We define theeduced rank(A) of a definable abelian group to be the Morley rank
of the quotientA/J (A), i.e.,7(A) =rk(A/J(A)). We define the 0-rank of any group of
finite Morley rank to be

r0(G) = max{f(A): A < G isindecomposable andl/J (A) is torsion-free}.
This gives us the necessary terminology to define 0-unipotence:

Definition 2.7. Let G be a group of finite Morley rank. We defilé(G) = Ug 7,)(G)
where

Uo,(G) =(A < G: Aisindecomposablé(A) =r, A/J(A) is torsion freé¢
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We shall usually preserve tti& . notation for those results where we wish to emphasize
the fact thatr need not be maximal. We say is a Up -group (alternatively (O, r)-
unipotenj or a Up-group (alternatively Gunipoten} if G is a group of finite Morley rank
andUp ,(G) = G or Up(G) = G, respectively.

Remark 2.8. Let G be a group of finite Morley rank. Thelip - (Uo - (G)) = Uo,(G) and
Uo,,(G) is connected. Als@/o(G) # 1 iff 7o(G) > 0.

We should mention that this is not the first notion of O-unipotence to be developed.
Altseimer and Berkman [1] have worked with various interesting notions. Our current
notion mixes well with the signalizer functor theory.

2.2. Homomorphisms

Since Uy is defined from indecomposable abelian groups, we first investigate how
indecomposable groups behave under homomorphisms.

Lemma 2.9 (Push-forward of indecomposablett A be an indecomposable abelian
subgroup of a groupG of finite Morley rank and letf:A — G be a definable
homomorphism. Therf(A) is indecomposable ang(J(A)) = J(f(A)). If f(A)#1
then the induced mag': A/J(A) — f(A)/J(f(A)) has finite kernel. Furthermore, if
A/J(A)is art-group(i.e., a group with no non-triviak -elementsthen £ (A)/J (f(A))

is a--group too.

Proof. The inverse image of a proper subgroup of the image is a proper subgroup, so the
image of an indecomposable is indecomposable. Suppos¢)kerA. Then ket f)° <
J(A) and f(J(A)) < f(A). Since the image of the connected gral@) is connected,
S (A) < J(f(A)).

SinceJ (f(A)) < f(A), C:= f~LJ(f(A)))° < J(A). Since f(C) has finite index in
J(f(A)), J(f(A)) = f(C) < f(J(A)). Thus f(J(A)) = J(f(A)) and the induced map
f :A/J(A)— f(A)/J(f(A)) hasfinite kernel. By Exercise 13b on page 72 of [6], a non-
trivial p-element off (A)/J (f(A)) lifts, via f to a non-trivialp-elementofd/J(A). O

Lemma 2.10 (Pull-back of indecomposabled)et f: G — H be a definable homomor-
phism between definable groups in a structure of finite Morley rankBL€tf (G) be an
indecomposable abelian subgroup such tBgt/ (B) contains an element of infinite or-
der. Thenf sends some indecomposable groug G onto B. Furthermore, ifB/J(B) is
torsion-free them /J (A) is torsion-free.

Proof. Fix b € B which has infinite order moduld (B). We used(b) to denote the
intersection of all definable subgroupsmfcontainingy. For some: we haveb” € d(b)°;
asb" ¢ J(B) we haved (b)° = B.

There is aru € G such thatf (a) = b. Thenb € f(d(a)) andB =d(b) < f(d(a)). As
f(d(a)°) has finite index inf (d(a)) = B and B is connected, we havg(d(a)°) = B. By
Lemma 2.4, there is a decompositid@)° = A1+ - - -+ A, of d(a)® into indecomposable



J. Burdges / Journal of Algebra 274 (2004) 215-229 219

groupsA;; hence there is an indecomposable grougt d(a)° such thatf(A) is not

contained in/ (B). Sincef (A) is also connected anBl is indecomposablef(A) = B.
SupposeB/J (B) is torsion-free andi /J (A) has an element of ordex. SinceA/J(A)

must have an element of infinite order and is indecomposable, it is divisible by Lemma 2.5.

ThusA/J(A) must have an element of ordg’t for everyn, contradicting the fact that the

kernel of the induced map/J(A) — B/J(B) is finite. O

We can restate the last two results in thglanguage as follows:

Lemma 2.11 (Push-forward and Pull-back)et f : G — H be a definable homomorphism
between two groups of finite Morley rank. Then

(1) (Push-forward f (Uo(G)) < Uo,-(H) is aUg -group.
(2) (Pull-back If Uo (H) < f(G) then f(Uo,r(G)) = Uo,r(H).

In particular, an extension of &g ,-group by alp -group is alp --group.

Proposition 2.12. Let H be a connected solvable group of finite Morley rank with
Uo(H) = 1. Then no definable section #f is torsion-free.

Proof. SupposeX is a definable torsion-free section Hf. Let A be an infinite definable
abelian subgroup oK, such asd(a) for somea € K*. We may assume thad is
indecomposable. By Lemma 2.1Ug 7(4)(H) # 1. Sincerg(H) > 7 (A) > 0, Up(H) #
1. O

2.3. Good tori

We call a non-trivial divisible abelian group of finite Morley rank atorus By Remark
1to Theorem 6.8 of [6]I" has no connected subgroups of bounded exponedt, €6) = 1
for any primep. We call a torusl’" agood torusif every definable connected subgroup of
T is the definable closure of its torsion. Obviously, a good tdfulsas no torsion-free
sections, s@/o(T) = 1.

Lemma 2.13. Every definable subgrou@ (not necessarily connectedf a good torus is
the definable closure of its torsion.

Proof. SinceG is abelianG = D @ B whereD < G is definable and divisible anBl < G
has bounded exponent by Exercise 7 on page 78 of [6]. Sint® connectedp is the
definable closure of its torsion. Singeis entirely torsionG is the definable closure of its
torsion. O

As a converse to our basic observations about tori and good tori, we find that some
notion of unipotence must be non-trivial for groups which are not good tori.

Lemma 2.14. Let G be a connected solvable non-nilpotent group of finite Morley rank.
ThenU,(G) # 1 for somep prime or0.
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Proof. By the proof of Corollary 9.10 from [6); has a section which is the additive group
of a field of characteristip for somep prime or zero. The result follows from Fact 2.3
(p > 0) or Proposition 2.12=0). O

Theorem 2.15. Let H be a connected solvable group of finite Morley rank. Suppose
U,(H)=1for all p prime or0. ThenH is a good torus.

Proof. By Lemma 2.14,H is nilpotent. LetG < H be definable and connected. By
Theorem 6.8 of [6],G = D % C whereD andC are definable characteristic subgroups
of G, D is divisible andC has bounded exponent. The Syfow-subgroupP of C is
definable and connected by Theorem 9.29 of [6PPsg U,(H) =1 andC = 1. LetT be
the torsion part of5. By Theorem 6.9 of [6]] is central inG andG =T & N for some
torsion-free divisible nilpotent subgrowp. SinceT is central G’ = N’ C N istorsion-free
and definable. Supposes G’ is non-trivial. SinceG’ is torsion-freed(a) is divisible and
hence connected. There is now a non-trivial indecomposable subgradipl/(a). Since

A C G’ is torsion-free and abelian ariéh(H) = 1, G’ # 1 contradicts Proposition 2.12.
ThusG is divisible abelian. By the structure of divisible abelian gropsf (T') is torsion-
free (or trivial). SoG # d(T) contradictd/o(H) = 1too. O

2.4. Nilpotence

We recall that, for any grougs, G¥t1 = [G*, G] with G° = G and G*+D =
[G®, GO1with GO = G. These are connectedif is a connected group of finite Morley
rank [6, Corollary 5.30].

Theorem 2.16. Let H be a connected solvable group of finite Morley rank. ThgH ) <
F(H).

Proof. Let A be an indecomposable abeliflg 7, x)-subgroup ofH, i.e.,7(A) = ro(H)
andA/J(A) is torsion-free. We will show that < F(H), and hencé/o(H) < F(H).

We observe that ®) gives a normal series whose quotie6t®) / G**D are connected
and abelian. LetV;}?_, be a maximal series fa whose quotient¥;/V;_1 are connected
and abelian. Sa < rk(H). Then the quotient¥;/V;_; are alsoA-minimal, i.e.,V;/V;_1
contains no proper definable infinitenormal subgroup.

Let K; be the kernel of the actioA — Aut(V;/V;_1) given by conjugation. Suppose
toward a contradiction that the action &f on V;/V;_1 is non-trivial for somei.
V;/Vi—1 is A/K;-minimal. The action ofA/K; is faithful. By the Zilber field theorem
[6, Theorem 9.1], there is a field interpretable inUg(H) such thatA/K; — k* and
Vi/Vi—1 = k4 and the natural action of* on k is our action. Sincek? < J(A),
K;J(A)/J(A)is finite. AsA/J(A) is torsion-free K; < J(A) andA/J(A) is a torsion-
free section ofk*. By Corollary 9 of [13], a field of characteristje > 0 has no definable
torsion-free sections, sb must have characteristic zero. Liete V; — V;_1. Sincek,
is torsion-freed(b)° is not contained inV;_1. Let B be an indecomposable definable
connected abelian subgroup @f»)° which is not contained irV;_1. By Corollary 3.3
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of [10], ¥ has no proper definable additive subgroup,B4B N V;_1) = V;/V;_1 is
minimal andJ (B) < V;_1. So rkky) = 7(B). By choice ofA, 7(B) < 7(A). Thus

rk(ks) <7(A) <rk(A/K;) <rk(k™) < rk(ks).

SoJ(A) = K; andk* = A/J(A) is torsion-free, a contradiction.

Hence A acts trivially onV;/V;_1 and [V;, A] C V;_1 for eachi = 1,...,n. This
meansA satisfies théeft n-Engel conditioni.e., for allx € H and alla € A, thenth left
commutatori- - - [x, al, - - -], a] is trivial [12, Definition 1.4.1]. By Lemma 1.4.1 of [12],
A<LH)LF(H). O

Theorem 2.16 is one of the main reasons for restricting our attention to indecomposable
subgroups with maximal reduced rank. In particular, we will often find that lemmas can be
proved using the relativizedo , notation, but that we must restrict to thig notation to get
our final results. For example, our homomorphism lemma alone provides us with the tools
necessary to show that the central series of a nilpdfgptgroup consists ob/g -groups,
but we will still need Theorem 2.16 to know that our groups are nilpotent in the first place.

Lemma 2.17. Let G be a nilpotenil/o,.-group. Then the derived subgroug$ and their
quotientsG* / G¥*1 are Up ,-groups for allk.

Proof. We may assume tha&*** is a Ug,,-group (or trivial) by downward induction
onk. By Lemma 2.11G/G’ is aUg -group. The bilinear may : G/ G’ x G*~1/G* —
G*/G**1 induced by (x, y) — [x, y] is surjective. By Lemma 2.11f(G/G’, g) <
G*/G**1is aUy,-group. Since these groups generé@fe G¥+1, the quotieniG*/ G*+1
is alp,-group too. By Lemma 2.11 (and inductio6y* is alo .-group. O

3. Centralizersand generation

This section develops the basic backgrounedessary for our main result. The results
of this section are based in part on an unpublished version of [3]. They were originally
intended to be used in the proof of Borovik’s nilpotent signalizer functor theorem for
characteristigp.

Fact 3.1 (Theorem 9.35 of [6]).Any two maximalr-subgroups, known as Halt-
subgroups, of a solvable group of finite Morley rank are conjugate.

Fact 3.2[3]. LetG = H x T be a group of finite Morley rank. Supposds a solvabler -
group of bounded exponent ail< H is a definable solvabl&-invariant +-subgroup.
Then

Cu(T)Q/Q=Cryo(T).
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Proof. Clearly, itis enoughto showth@ty,o(T) < Cu(T)Q/Q.LetL = Cyx (T modQ),
i.e.,L={he H: [h,t]e Qforallt € T}. Since[L, T] < Q, L normalizesQT. SinceQ
andT are solvableQT is solvable. Forany € L, T* < QT is a Hallw-subgroup ofoT
and7T* = T for somea € Q by Fact 3.1. Thusa~1 € N;(T). But N.(T) = C..(T), SO
x€QCL(T) < QCu(T). D

Fact 3.3 [3]. Let G = H x T be a group of finite Morley rank. Suppose tHatis a
solvabler -group of bounded exponent and ttatis a definable abeliar-group. Then
H=[H,TI®Cyx(T).

Proof. Since[H, T] is T-invariant and normal i/, Fact 3.2 yields
H=[H,TICy(T).

Supposer = [h1,t1]+ -+ - + [hy, t,] € Cy (T) for someh; € H andy; € T. An abelian
group of bounded exponent is locally finite and an extension of locally finite groups is
locally finite by Theorem 1.45 of [11], so the solvable grdujs locally finite; and hence
To=(t1, ..., ty) is finite. Consider the endomorphiskn= Z,ETot. Now

E(lh,s)=> (h=h") =) h'=> h'=0
teTy teTy teTy

for h € H ands € Tp. SOE(x) = 0. But E(x) = |Tp|x sincex € Cyx(T), sox =0. Thus
Cy(T)N[H, T]=0. O

Fact 3.4 [3]. Let G be a connected solvab}e"-group of finite Morley rank and leP be a
finite p-group of definable automorphisms@f ThenCg (P) is connected.

Proof. Let A be a non-trivial definable characteristic connected abelian subgroup of
G, sayG™ for somen. Inductively, we assume thalg,4(P) is connected, sdi :=
Cg(P mod A) is connected. By Fact 3.2 = ACg(P). Since H is connectedH =
ACS(P) sO
CG(P) =Cp(P)=Ca(P)C;(P).

By Fact3.3A =[A, P]®C4(P)soCa(P)is connected. Henaég; (P) is connected. O
Corollary 3.5. Let G be a solvablep-unipotent group of finite Morley rank and I&t

be a finiteg-group of definable automorphisms 6f for someg # p. ThenCg(P) is
p-unipotent.

There is a “characteristic zero” (recall Definition 2.7) analog to the forgoing.

Lemma 3.6. Let G be a nilpotent, r)-unipotentp-group of finite Morley rank and let
P be a finitep-group of definable automorphisms@f ThenCg (P) is (0O, r)-unipotent.
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Proof. Let A be a non-trivial definable characteristic abelia,.-subgroup oiG, sayG"
for somen (see Lemma 2.17). By Fact 3.8,=[A, P1® C4(P). By Lemma2.11C4(P)
is (0, r)-unipotent. Inductively, we assume th@g, 4 (P) is (0, r)-unipotent. By Fact 3.2,
Cg(P)/Ca(P)=Cg(P)A/A =Cg/a(P) s0Cg(P) is an extension of & --group by a
Uo.-group. By Lemma 2.11Cg (P) is aUp -group. O

The last two results of this section are not used until the proof of the nilpotent signalizer
functor theorem in the appendix. They are provided here to consolidate our facts about
centralizers.

Fact 3.7. Let H be a solvablep-group of finite Morley rank. LeE be a finite elementary
abelian p-group acting definably oi#. Then

H =(Cp(Eo): Eo< E,[E : Eol = p).

Proof. We may assumé& has rank at least 2. We proceed by induction on the rank and
degree ofH. Let A be a non-trivialE-invariant abelian normal subgroup &f such that

H /A has smaller rank or degree, sayF (H)) or its connected component. By induction,
H/A=(Cusa(Eo): Eo< E,|[E: Eol = p). By Fact 3.2,

H = A(Cy(EomodA): Eo< E,[E : Eol = p)
= A(CH(Eo): Eo < E,[E : Eol = p).

Thus we may assume that = A is abelianE-invariant and either infinite, or finite and
non-trivial. In either case, we may also assume thaiontains no proper non-triviai -
invariant subgroup with the same properties.

Let R be the subring of End/) generated by . First, supposed is connected. For
r € R*, kerr is E-invariant (sinceE is abelian), so ker is finite if H is connected and
trivial if H is finite. By Exercise 8 on page 78 of [6] H is connected (and by counting
otherwise),rH = H. ThusR is an integral domain. The image &f in R is therefore
cyclic. SinceE has rank at least 2, there is sorfig < E with [E: Eg] = p which acts
trivially on H,i.e.,H=Cg(Ep). O

Fact 3.8. Let G be a connected solvabje--group of finite Morley rank. LeE be a finite
elementary abeliap-group of rank at leas8 acting onG. Suppos€ (s) is nilpotent for
everys € E*. ThenG is nilpotent.

Proof. Let A be anE-minimal abelian normal subgroup 6f. By induction on Morley
rank, we assume thaf/A is nilpotent. SinceA < G, [G, A] < A is E-invariant, so
[G, A]= A or 1. By Theorem 9.8 of [6],G’, A] = 1. ConsiderH := A x (G/G’). Since
G is nilpotent if (G, A] = 1, it suffices to show thdtH, A] # A.

Let Eo < E have rank 2. Fow € Eg, let H, = Cy(v mod A). By Fact 3.7,H =
(Hy: v e Eg). SinceA < H, and H/A is abelian,H, is normal in H. By Exercise
8 on page 88 of [6] (exishce of Fittig subgroup),H is nilpotent if the H, are all
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nilpotent. This follows by induction whei#, < H, so we may assumél, = H. By
Fact 3.2,H = ACyg(v). By Fact 3.3,A = C4(v) ® [A, v]. If both factors are non-trivial
thenH/C4(v) andH/[A, v] are nilpotent, sdd — H/C4(v) x H/[A, v] is nilpotent. If
C4(v) = A thenH = C(v) is nilpotent by hypothesis, so we may assufixgv) = 1.

Let E1 < E be a rank 2 subgroup not containingBy the first half of the preceding
argument, we may suppose that there is @ E] centralizingH /A; henceEz = (u, v)
centralizesH/A. By the preceding argumenGa(x) = 1 for x € E5. By Fact 3.7,
A= (Ca(x): x € E3), acontradiction. O

4. Signalizer functors

The theory of signalizer functors plays an important role in the classification of the
finite simple groups, and was transfered to the context of groups of finite Morley rank by
Borovik. Signalizer functors are used in both the finite and finite Morley rank cases to
control O (C(i)) for i an involution (see Section 5).

Let G be a group of finite Morley rank, lgt be a prime, and lef < G be an elementary
abelianp-group. An E-signalizer functor orG is a family {6 (s)}scg+ of definablep'-
subgroups of5 satisfying:

(1) 6(s)8 =06(s8) foralls € E* andg € G.
(2) 0(s) N Cg(t) < O(¢r) foranys,t € E*.

We observe that the first condition implies th&t) is E-invariantand (s) <t Cg(s) for
eachs € E*. We should also note that the second condition is equivalent to

0(s)NCg(t) =6@)NCg(s)

foranys,t € E*.

As one would expect, we sa§ is a finite, connected solvable nilpotent (O, r)-
unipotent or p-unipotentsignalizer functor if the group8(s) are finite, connected,
solvable, nilpotent(0, »)-unipotent, orp-unipotent, respectively, for atle E*. Similarly,
we sayb is anon-finitesignalizer functor i (s) is infinite for somes € E*. By Fact 2.1 or
Theorem 2.16p-unipotent or 0-unipotent solvable signalizer functors are nilpotent; they
are also connected.

Lemma 4.1. Let G be a group of finite Morley rank and It < G be an elementary
abelian p-group. Letd be anE-signalizer functor orG, let r := maxcg« ro(0(¢)) be the
largest available reduced rank and $&t(-) :=6(-)°. Then

(0) 6° is a connected:-signalizer functor,
() 60:=Up,,(6(-)) is a0-unipotentE-signalizer functor,
(2) 6, :=U,(6(+)) is ag-unipotentE-signalizer functor for every prime.
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Proof. First, let R(H) be H°, Up,(H), or U,(H) for some primeg and letd(-) =
R(6(-)). For anys,t € E*, Cro(s))(t) = R(Creo(s) () by either Lemma 3.6 when
R=Up, orbyFact3.4wheR=U, orR = -°.

Sinced is an E-signalizer functor,

0(5) N Cg (1) = Crp(s)) (1) = R(Cros) @) < R(Cogs)(@)) < R(6(1) =6(2).
Since composition witlR also preserves the conjugacy condition, the result follows.
Our main result is the following:

Theorem 4.2. Let G be a group of finite Morley rank and I < G be an elementary
abelian p-group. Supposé& admits a non-finite solvablg-signalizer functo®. ThenG
admits a non-trivial connected nilpoteAtsignalizer functor, which is a normal subfunctor
of 6.

Proof. Sincef(s) is assumed infinite for somee 1(S), 6° is non-trivial. Forg prime
or 0,6, is a nilpotent signalizer functor by Lemma 4.1. So we may assynigtrivial for
all ¢ prime or 0. In particular,

r:=maxro(6(1)) =0
teE*

and Up(6(s)) is trivial for all s € E*. Now 6°(z) is nilpotent for alls € E* by
Theorem 2.15. O

5. Applications

We should begin by discussing Borovik’s “old” trichotomy theorem. Borovik’s theorem
is identical to Theorem 5.1 below, except that it requires the additional assumption of
tameness.

Theorem 5.1. Let G be a simpleK*-group of finite Morley rank and odd type. Then one
of the following statements is true

(1) n(G) L2
(2) G has a propeR-generated core.
(3) G satisfies tha3-conjecture and contains a classical involution.

We will not define the terms appearing above; the first two are notions of “smallness” for
groups, while the third represents a point of departure for the identification of the “generic”
algebraic group. TheB-conjecture” states tha? (C; (i)) = 1 for any involutioni € G.

In any case, Borovik makes use of tameness at only one point in his argument, in
connection with theB-conjecture. He shows thati) := O (Cg(i)) is a signalizer functor,
observes that under the tameness assumption it is nilpotent, and applies his nilpotent
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signalizer functor theorem, discussed further in the appendix, to prove tsatrivial
when clauses 1 and 2 do not apply.

As this part of Borovik’s argument can use any non-trivial nilpotent signalizer functor,
Theorem 4.2 can be used instead of the tameness assumption; hence Theorem 5.1 holds.
With the removal of the tameness assumption, one should also codsgenerate type
groups, or groups with a finite Sylow 2-subgroup. One can check that the following version
of Borovik’'s theorem applies in the degenerate case, wher&thenjecture leads to a
contradiction rather than an identification.

Theorem 5.2. Let G be a simpleK *-group of finite Morley rank and degenerate type. Then
eithern(G) < 2, or G has a propeR-generated core.

The reader familiar with finite group theory would expect us to eliminate tameness
by proving asolvablesignalizer functor theorem. This we do not do. However, we can
prove the following weak version, obtained by combining Theorem 4.2 and the nilpotent
signalizer functor theorem, Theorem A.2 below.

Theorem 5.3 (Weak solvable signalizer functor theorein@t G be a group of finite Morley
rank, letp be a prime, and leE < G be an elementary abelign-group of rank at leass.
Letd be a connected solvable non-finiesignalizer functor. The admits a non-trivial
complete(see DefinitionA.1 below) E-signalizer functor, which is a connected normal
nilpotent subfunctor of .

This theorem is weaker than a true solvab¢malizer functor theorem in two respects:
non-finiteness and the passage to the subfunctor. The assumption of non-finiteness does
not really concern us, as we are generally working with connected groups anyway. To see
that the passage to the subfunctor does not pose any problems, one must actually look at
such applications in detail (see [7]).

In closing, we need to mention that the rest of the odd type story has evolved further.
Berkman, Borovik, and Nesin have a new approach to the trichotomy theorem which
produces stronger results and avoids the classical involution discussion entirely. The results
of the present paper figure into the new version in a more or less identical fashion, however.
The full picture is explained in [7,8], with essential references to [5]. Borovik and Nesin
summarize the present state of affairs as follows:

Theorem 5.4 (Theorem 1 of [7])Let G be a simpleK*-group of finite Morley rank and
odd or degenerate type. The&his either a Chevalley group over an algebraically closed
field of characteristic£ 2, or has normaR-rank < 2, or has a prope2-generated core.
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Appendix A

This section contains a proof of Borovik’s nilpotent signalizer functor theorem [6] for
groups of finite Morley rank.

Definition A.1. Let G be a group of finite Morley rank and It < G be an elementary
abelianp-group. Letd be anE-signalizer functor. We define

0(E) =(0(s): s € E*)
and we sayl is completgas ank-signalizer functor) iv (E) is a p-group and
0(s) = Cy(g)(s)
foranys € E*.

We observe that the invariance condition in the definition of a signalizer functor implies
that 6(s) is E-invariant andf(s) <« Cg(s) for eachs € E*. For this proof it will be
convenient allow these two conditions to replace the full invariance condition in the
definition of a signalizer functor. This allows us to both generalize the result and simplify
the proof.

A special case of the following was proved in [6, Theorem B.30].

Theorem A.2. Let G be a group of finite Morley rank, let be a prime, and leE < G
be a finite elementary abeligm-group of rank at leasB. Let6 be a connected nilpotent
E-signalizer functor. The#f is complete and(E) is nilpotent.
Proof. Let G be a counterexample with minimal rank. Lét be the collection of all
definable connected solvablg-invariant p*-subgroupsQ of G such thatCgy(s) =
Q NO(s) for everys e E*. ForanyQ € ® and anys € E*, Co(s) < 6(s) is nilpotent.
By Fact 3.8,
Q is nilpotent for anyQ € ©.
The bulk of our argument will be directed at showing that

©® has a unique maximal eleme@t'. (%)

Before proving this, however, we show that the theorem follows from the existen@é. of
By Fact 3.7,

Q* =(Cp+(E0): Eo< E,[E: Eol=p)<(Cg+(s): s € E*)<(0(s): s € E*)=0(E).
For everys € E*, 6(s) is a connected nilpoter#-invariant p--subgroup ofCg (s), and

Cos)(t) =0(s)NO() foranyt e E*.
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Thuso(s) € ©. Since there must be some maximal elemert@afontaining (s) for every
s € E*, 0(E) < Q*; henced is complete, assuming).

We now prove(x). Suppose towards a contradiction thatR € ® are distinct and
maximal. We may assum® = (Q N R)° has maximal possible rank. By Fact 3.7,
Co(E1) # 1 and Cr(E2) # 1 for someEy, E; < E with [E:E;] < p. Since E has
rank at least 3, there is ane E1 N E> such thatCp(s) # 1 and Cg(s) # 1. By
Fact 3.4, these two groups are connected. Sthee € @, there is a maximaP € ®
containingCo(s), Cr(s) < 0(s). Thus rk(QNP)°) > rk(Cp(s)) > 0and rkK(PNR)°) >
rk(Cg(s)) > 0, sorkD) > 0.

Let H = Ng(D), Q1 = (H N Q)°, andRy = (H N R)°. Consider the quotientl =
H/D. By the usual normalizer condition [6, Lemma 6.3], and nilpotenc@pfand Ry,
01 andR; are both infinite. Sinc® is E-invariant,E = ED/D is an elementary abelian
p- subgroup ofH. Let 61(s) = (H N H(s))° and letd1(5) = 61(s)D/D. So Q1, Ry, and
61(-) are all nllpotentE -invariant groups. By Exercise 13b on page 72 of [6},, R1,
andfy(-) are p-groups. Lets, r € E*. SinceD <1 H, 01(5) = 61(s)/(1(s) N D) via the
isomorphisme D — x(61(s) N D). Sinced1(s) N D <1 61(s), Fact 3.2 yields,

Cy) (1) = Cos)/0259nD) (1) = Cay(5) (1) (61(5) N D)/ (61(s) N D).

The homomorphism (61(s) N D) — x D is the inverse to our first isomorphism on this
group, so

Cg,5)(7) = Coys)(1) D/ D.

By Fact 3.4,Cy,(5)(?) is connected, sy, () (1) < 61(2). Thus#; is a connected nilpotent
signalizer functor orH . Similarly,
Cg,(1)=Co,()D/D by Fact 3.2
= C‘él(t)D/D by Fact 3.4
<(HNCo®))’D/D=(HNQNO®))°D/D < Q1NO1(F).
ThusQ1, Ry are elements 0B, the collection of all connected solvabieinvariant p*-
subgroupg) of H such thaCé(E) = Q0 No1(s) for everys € E*.
ConsiderS € @1 such thatD1 < S. LetS < H be the preimage of. SinceD ands are

connecteds is connected. A$ andD are nilpotenipL-groups,S is a solvablep--group.
Letr € E*. SinceD < H, Fact 3.2 yields

C5(f) = Cs()D/D = Cs(1)/Cp (1)

via the isomorphismeD — xCp(z). Since Q,R € @, Cp(t) < Conr(t) < 6(t), SO
Cp(t)=DnNAH(t). Hence

C5(7)=SN61(i) = S/Cp(t) N61(1)/Cp(t) = (SNO(1))/Cp (1)
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via the same isomorphism. Thag (1) = SN H(r) andS € ©. SinceS > 01, (SN Q)° >
Q1> D andS = Q, so Q1 is maximal in®1. Similarly, R1 is also maximal in91. Since
rk(D) > 0, rk(H) < rk(G); henced; is complete and?; = R;. SinceD = (Q N R)°, this
is a contradiction. O
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