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SYMMETRIC LINEARIZATIONS FOR MATRIX POLYNOMIALS∗

NICHOLAS J. HIGHAM† , D. STEVEN MACKEY‡ , NILOUFER MACKEY§ , AND

FRANÇOISE TISSEUR¶

Abstract. A standard way of treating the polynomial eigenvalue problem P (λ)x = 0 is to
convert it into an equivalent matrix pencil—a process known as linearization. Two vector spaces of
pencils L1(P ) and L2(P ), and their intersection DL(P ), have recently been defined and studied by
Mackey, Mackey, Mehl, and Mehrmann. The aim of our work is to gain new insight into these spaces
and the extent to which their constituent pencils inherit structure from P . For arbitrary polynomials
we show that every pencil in DL(P ) is block symmetric and we obtain a convenient basis for DL(P )
built from block Hankel matrices. This basis is then exploited to prove that the first deg(P ) pencils
in a sequence constructed by Lancaster in the 1960s generate DL(P ). When P is symmetric, we
show that the symmetric pencils in L1(P ) comprise DL(P ), while for Hermitian P the Hermitian
pencils in L1(P ) form a proper subset of DL(P ) that we explicitly characterize. Almost all pencils in
each of these subsets are shown to be linearizations. In addition to obtaining new results, this work
provides a self-contained treatment of some of the key properties of DL(P ) together with some new,
more concise proofs.

Key words. matrix polynomial, matrix pencil, linearization, companion form, quadratic eigen-
value problem, vector space, block symmetry
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1. Introduction. The polynomial eigenvalue problem P (λ)x = 0, where

P (λ) =
k∑

i=0

λiAi, Ai ∈ Cn×n, Ak 6= 0,(1.1)

arises in many applications and is an active topic of study. The quadratic case (k = 2)
is the most important in practice [24], but higher degree polynomials also arise [5], [12],
[18], [23]. We continue the practice stemming from Lancaster [14] of developing theory
for general k where possible, in order to gain the most insight and understanding.

The standard way of solving the polynomial eigenvalue problem is to linearize
P (λ) into L(λ) = λX + Y ∈ Ckn×kn, solve the generalized eigenproblem L(λ)z = 0,
and recover eigenvectors of P from those of L. Formally, L is a linearization of P if
there exist unimodular E(λ) and F (λ) (that is, det(E(λ)) and det(F (λ)) are nonzero
constants) such that

E(λ)L(λ)F (λ) =

[
P (λ) 0

0 I(k−1)n

]
.

Hence det(L(λ)) agrees with det(P (λ)) up to a nonzero constant multiplier, so that
L and P have the same eigenvalues. The linearizations used in practice are almost
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invariably one of C1(λ) = λX1 +Y1 and C2(λ) = λX2 +Y2, called the first and second
companion forms [15, Sec. 14.1], respectively, where

X1 = X2 = diag(Ak, In, . . . , In),(1.2a)

Y1 =




Ak−1 Ak−2 . . . A0

−In 0 . . . 0
...

. . .
. . .

...
0 . . . −In 0


 , Y2 =




Ak−1 −In . . . 0

Ak−2 0
. . .

...
...

...
. . . −In

A0 0 . . . 0


 .(1.2b)

Yet many linearizations exist, and other than the convenience of their construction,
there is no apparent reason for preferring the companion forms. Indeed one obvious
disadvantage of the companion forms is their lack of preservation of certain structural
properties of P , most obviously symmetry.

Three recent papers have systematically addressed the task of broadening the
menu of available linearizations and providing criteria to guide the choice. Mackey,
Mackey, Mehl, and Mehrmann [17] construct two vector spaces of pencils generalizing
the companion forms and prove many interesting properties, including that almost
all of these pencils are linearizations. In [16], the same authors identify linearizations
within these vector spaces that respect palindromic and odd-even structures. Higham,
D. S. Mackey, and Tisseur [9] analyze the conditioning of some of the linearizations
introduced in [17], looking for a best conditioned linearization and comparing its
condition number with that of the original polynomial.

Before discussing our aims, we recall some definitions and results from [17]. Let
F denote C or R. With the notation

Λ = [λk−1, λk−2, . . . , 1]T ∈ Fk, where k = deg(P ),

define two vector spaces of kn × kn pencils L(λ) = λX + Y :

L1(P ) =
{

L(λ) : L(λ)(Λ ⊗ In) = v ⊗ P (λ), v ∈ Fk
}
,(1.3)

L2(P ) =
{

L(λ) : (ΛT ⊗ In)L(λ) = wT ⊗ P (λ), w ∈ Fk
}
.(1.4)

The vectors v and w are referred to as “right ansatz” and “left ansatz” vectors,
respectively. It is easily checked that for the companion forms in (1.2), C1(λ) ∈ L1(P )
and C2(λ) ∈ L2(P ) with v = e1 and w = e1, respectively, where ei denotes the ith
column of Ik. The dimensions of L1(P ) and L2(P ) are both k(k − 1)n2 + k [17,
Cor. 3.6]. For any regular P (that is, any P for which det(P (λ)) 6≡ 0), almost all
pencils in L1(P ) and L2(P ) are linearizations of P [17, Thm. 4.7].

A crucial property of L1 and L2 is that eigenvectors of P can be directly recovered
from eigenvectors of linearizations in L1 and L2. Specifically, for any pencil L ∈ L1(P )
with nonzero right ansatz vector v, x is a right eigenvector of P with eigenvalue λ

if and only if Λ ⊗ x (if λ is finite) or e1 ⊗ x (if λ = ∞) is a right eigenvector for L

with eigenvalue λ. Moreover, if this L ∈ L1(P ) is a linearization for P , then every

right eigenvector of L has one of these two Kronecker product forms; hence some
right eigenvector of P can be recovered from every right eigenvector of L. A similar
recovery property holds for left eigenvectors and pencils in L2(P ). For more details,
see [17, Thms. 3.8, 3.14, and 4.4].

The subspace

DL(P ) = L1(P ) ∩ L2(P )(1.5)
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of “double ansatz” pencils is of particular interest, because there is a simultaneous
correspondence via Kronecker products between left and right eigenvectors of P and
those of pencils in DL(P ). Two key facts are that L ∈ DL(P ) if and only if L

satisfies the conditions in (1.3) and (1.4) with w = v, and that every v ∈ Fk uniquely
determines X and Y such that L(λ) = λX + Y is in DL(P ) [17, Thm. 5.3]. Thus
DL(P ) is a k-dimensional space of pencils associated with P . Just as for L1(P ) and
L2(P ), almost all pencils in DL(P ) are linearizations [17, Thm. 6.8].

Our contributions are now summarized. We show in Section 3 that the set of
block symmetric pencils in L1(P ) is precisely DL(P ). That DL(P ) should comprise
only block symmetric pencils is perhaps surprising, as P is arbitrary. We show that
the pencils corresponding to v = ei, i = 1: k, form a basis for DL(P ) built from
block diagonal matrices with block Hankel blocks. This basis is used in Section 4
to prove that the first k = deg(P ) pencils in a sequence constructed by Lancaster
[13], [14], generate DL(P ). In Sections 5 and 6 we show that when P is symmetric
the set of symmetric pencils in L1(P ) is the same as DL(P ), while for Hermitian
P the Hermitian pencils in L1(P ) form a proper subset of DL(P ) corresponding to
real ansatz vectors. In Section 7 we summarize the known “almost all pencils are
linearizations” results and prove such a result for the Hermitian pencils in L1(P ).

Initially, our main motivation for this investigation was the problem of systemati-
cally generating symmetric linearizations for symmetric matrix polynomials. However,
the analysis has led, via the study of block symmetric pencils, to new derivations of
some of the general properties of DL(P ). Therefore this paper should be useful as a
self-contained introduction to DL(P ) with proofs that are conceptually clearer and
more concise than the original derivations in [17].

Finally, we motivate our interest in the preservation of symmetry. A matrix
polynomial that is real symmetric or Hermitian has a spectrum that is symmetric
with respect to the real axis, and the sets of left and right eigenvectors coincide.
These properties are preserved in a symmetric (Hermitian) linearization by virtue
of its structure—not just through the numerical entries of the pencil. A symmetry-
preserving pencil has the practical advantages that storage and computational cost
are reduced if a method that exploits symmetry is applied. The eigenvalues of a sym-
metric (Hermitian) pencil L(λ) = λX +Y can be computed, for small to medium size
problems, by first reducing the matrix pair (Y,X) to tridiagonal-diagonal form [22]
and then using the HR [4], [6] or LR [20] algorithms or the Ehrlich-Aberth iterations
[3]. For large problems, a symmetry-preserving pseudo-Lanczos algorithm of Parlett
and Chen [19], [2, Sec. 8.6], based on an indefinite inner product, can be used. For
a quadratic polynomial Q(λ) that is hyperbolic, or in particular overdamped, a lin-
earization that is a symmetric definite pencil can be identified [10, Thm. 3.6]; this
pencil is amenable to structure-preserving methods that exploit both the symmetry
and the definiteness [26] and guarantee real computed eigenvalues for Q(λ) not too
close to being non-hyperbolic.

2. Block symmetry and shifted sum. We begin with some notation and
results concerning block transpose and block symmetry. Our aim is to investigate
the existence and uniqueness of solutions in block symmetric matrices of the equation
X ⊞→Y = Z, where ⊞→ is a “shifted sum” operation and Z is a given arbitrary matrix.
For the purposes of this paper we only consider block matrices in which all the blocks
have the same size.

Definition 2.1 (Block transpose). Let A = (Aij) be a block k × ℓ matrix with

m × n blocks Aij. The block transpose of A is the block ℓ × k matrix AB with m × n
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blocks defined by (AB)ij = Aji.

Recall that all pencils in L1(P ) and L2(P ) are of size kn × kn, where k is the
degree of the n × n matrix polynomial P (λ). Throughout this paper we regard these
pencils as block k × k matrices with n × n blocks. The block transpose operation,
performed relative to this partitioning, establishes an intimate link between L1(P )
and L2(P ).

Theorem 2.2. For any matrix polynomial P (λ), the block transpose map

L1(P ) −→ L2(P )

L(λ) 7−→ L(λ)B

is a linear isomorphism between L1(P ) and L2(P ). In particular, if L(λ) ∈ L1(P )
has right ansatz vector v, then L(λ)B ∈ L2(P ) with left ansatz vector w = v.

Proof. It is straightforward to check that
(
L(λ)(Λ ⊗ In)

)B
= (Λ ⊗ In)BL(λ)B =

(ΛT ⊗In)L(λ)B and
(
v⊗P (λ)

)B
= vT ⊗P (λ). Hence if L(λ) ∈ L1(P ) with right ansatz

vector v, then block transposing the defining condition in (1.3) yields (ΛT⊗In)L(λ)B =
vT ⊗P (λ). Thus L(λ)B ∈ L2(P ) with left ansatz vector v, and so block transpose gives
a well-defined map from L1(P ) to L2(P ). Clearly this map is linear and the kernel
is just the zero pencil, since L(λ)B = 0 ⇒ L(λ) = 0. Since dim L1(P ) = dim L2(P ),
the proof is complete.

The companion forms give a nice illustration of Theorem 2.2. By inspection,

C2(λ) =
(
C1(λ)

)B
and, as noted earlier, C1(λ) ∈ L1(P ) with right ansatz vector

v = e1 while C2(λ) ∈ L2(P ) with left ansatz vector w = v = e1.
Given the notion of block transpose, it is natural to consider block symmetric

matrices, which will play a central role in our development. A block k × k matrix A

with m × n blocks is block symmetric if AB = A. For example, a block 2 × 2 block
symmetric matrix has the form

[
A11

A12

A12

A22

]
. Note that if each block Aij ∈ Fn×n in a

block symmetric matrix A is symmetric, then A is symmetric.
The column-shifted sum introduced in [17] is a simple operation on block matrices

that enables us both to easily construct pencils in L1(P ) and to conveniently test when
a given pencil is in L1(P ).

Definition 2.3 (Column-shifted sum). Let X and Y be block k × k matrices

with n × n blocks Xij and Yij. Then the column-shifted sum X ⊞→Y of X and Y is

X ⊞→Y :=




X11 . . . X1k 0
...

...
...

Xk1 . . . Xkk 0


 +




0 Y11 . . . Y1k
...

...
...

0 Yk1 . . . Ykk


 ∈ Fkn×k(n+1),

where the zero blocks are n × n.

The significance of this shifted sum operation is revealed by the following result
[17, Lem. 3.4], which shows how membership in L1(P ) is equivalent to a specific
Kronecker product form in the shifted sum.

Lemma 2.4. Let P (λ) =
∑k

i=0 λiAi be an n × n matrix polynomial of degree k,

and let L(λ) = λX + Y be a kn × kn pencil. Then for v ∈ Fk,

L(λ) ∈ L1(P ) with right ansatz vector v ⇐⇒ X ⊞→Y = v ⊗ [Ak Ak−1 . . . A0].

We now prove two technical lemmas concerning solutions of the shifted sum equa-
tions X ⊞→Y = Z and X ⊞→Y = 0. We show that the equation X ⊞→Y = Z with an
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arbitrary Z may always be solved with block symmetric X and Y , and that the only
block symmetric solution of X ⊞→Y = 0 is X = Y = 0.

First we define three special types of block symmetric matrix that play a central
role in all that follows. Let

Rℓ =

[
1

. .
.

1

]

ℓ×ℓ

and Nℓ =




0 1

0
. . .
. . . 1

0




ℓ×ℓ

. (Note that N1 = 0.)(2.1)

For an arbitrary n×n block M, we define three block Hankel, block symmetric, block
ℓ × ℓ matrices:

H
(0)
ℓ (M) :=

[
M

. .
.

M

]
= Rℓ ⊗ M,

H
(1)
ℓ (M) :=




M 0
. .

.
. .

.

M . .
.

0


 = (NℓRℓ) ⊗ M =




1 0
. .

.
. .

.

1 . .
.

0


 ⊗ M,

H
(−1)
ℓ (M) :=




0
. .

.
M

. .
.

. .
.

0 M


 = (RℓNℓ) ⊗ M =




0
. .

.
1

. .
.

. .
.

0 1


 ⊗ M.

The superscript (0), (1), or (−1) denotes that the blocks M are on, above, or below
the anti-diagonal, respectively. Note that all three of these block Hankel matrices are
symmetric if M is.

Lemma 2.5. Let Z be an arbitrary block k × (k + 1) matrix with n × n blocks.

Then there exist block symmetric block k×k matrices X and Y with n×n blocks such

that X ⊞→Y = Z.

Proof. Let Eℓ
ij ∈ Fℓ×(ℓ+1) denote the matrix that is everywhere zero except

for a 1 in the (i, j) entry. Our proof is based on the observation that for arbitrary
M,P ∈ Fn×n, the shifted sums

H
(0)
ℓ (M)⊞→(−H

(1)
ℓ (M)) =




0 . . . . . . 0 0
... . .

.
. .

. ...

0 0 . .
. ...

M 0 . . . . . . 0


 = Eℓ

ℓ1 ⊗ M,(2.2)

−H
(−1)
ℓ (P )⊞→H

(0)
ℓ (P ) =




0 . . . . . . 0 P... . .
.

0 0
... . .

.
. .

. ...
0 0 . . . . . . 0


 = Eℓ

1,ℓ+1 ⊗ P(2.3)

place M and P at the bottom left corner and top right corner of a block ℓ × (ℓ + 1)
matrix, respectively.

The shifted sum ⊞→ is compatible with ordinary sums, i.e.,

(∑
Xi

)
⊞→

(∑
Yi

)
=

∑
(Xi ⊞→Yi).
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Hence if we can show how to construct block symmetric X and Y that place an
arbitrary n × n block into an arbitrary (i, j) block-location in Z, then sums of such
examples will achieve the desired result for an arbitrary Z.

For indices i, j such that 1 ≤ i ≤ j ≤ k, let ℓ = j − i+1 and embed H
(0)
ℓ (M) and

−H
(1)
ℓ (M) as principal submatrices in block rows and block columns i through j of

block k × k zero matrices to get

X̂ij ⊞→Ŷij :=

i j

i

j




H
(0)
ℓ (M)




⊞→

i j

i

j




−H
(1)
ℓ (M)




(2.4)

=

i j+1

i

j


 H

(0)
ℓ (M)⊞→(−H

(1)
ℓ (M))




= Eji ⊗ M (i ≤ j).

Note that embedding H
(0)
ℓ (M) and −H

(1)
ℓ (M) as principal block-submatrices guar-

antees that X̃ij and Ỹij are block symmetric. Similarly, defining the block symmetric
matrices

X̃ij =

i j

i

j


 −H

(−1)
ℓ (P )


 , Ỹij =

i j

i

j


 H

(0)
ℓ (P )


 ,(2.5)

we have

X̃ij ⊞→Ỹij = Ei,j+1 ⊗ P (i ≤ j).(2.6)

Thus sums of these principally embedded versions of (2.2) and (2.3) can produce an
arbitrary block k × (k + 1) matrix Z as the column-shifted sum of block symmetric
X and Y .

Lemma 2.6. Suppose X and Y are both block symmetric block k × k matrices

with n × n blocks. Then X ⊞→Y = 0 ⇐⇒ X = Y = 0.
Proof. The proof is by induction on k. We focus on the nontrivial direction (⇒).

There are two base cases to be checked, k = 1 and k = 2. The k = 1 case is immediate.
Because X and Y are block symmetric, for k = 2 we have

X ⊞→Y =

[
X11 X12 0
X12 X22 0

]
+

[
0 Y11 Y12

0 Y12 Y22

]
=

[
X11 X12 + Y11 Y12

X12 X22 + Y12 Y22

]
.

Then X ⊞→Y = 0 clearly implies that X = Y = 0.
Now consider k > 2 and X and Y with their blocks “around the edges” grouped

together as indicated in the diagram:
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X ⊞→Y = (1a)

(3a)

(2a)

X̃ (4a) ⊞→ (4b)

(2b)

(3b)

Ỹ (1b) .

The only contribution to the first block column of X ⊞→Y comes from (1a), and
the only contribution to the last block column of X ⊞→Y comes from (1b). Thus
X ⊞→Y = 0 implies (1a) and (1b) are all zeros. (Note that this would be true for
general X and Y .) The block-symmetry of X and Y now implies that the blocks
in (2a) and (2b) are zero. The blocks of (2a) interact in the shifted sum with those
in (3b); the (2a) blocks being zero imply that all the (3b) blocks are zero. Similarly
the (2b) blocks all zero imply that all the (3a) blocks are zero. Finally, the block-
symmetry of X and Y can be invoked once again to see that all the (4a) and (4b)
blocks are zero. At this point we have that X ⊞→Y = 0 implies

X ⊞→Y =




0 . . . 0
... X̃

...
0 . . . 0


 ⊞→




0 . . . 0
... Ỹ

...
0 . . . 0


 =




0 . . . 0
... X̃ ⊞→Ỹ

...
0 . . . 0


 = 0.

Since X̃ ⊞→Ỹ = 0, the induction hypothesis implies X̃ = Ỹ = 0, and consequently
that X = Y = 0.

3. Block symmetric pencils and DL(P ) for general P . We now study the
subspace of block symmetric pencils in L1(P ), which turns out to be the same as the
space DL(P ). This way of characterizing DL(P ) leads to short proofs of some of its
properties, as well as the identification of a useful basis.

3.1. Block symmetric pencils in L1(P ). For a general polynomial P we can
use the results of Section 2 to analyze the subspace

B(P ) :=
{

λX + Y ∈ L1(P ) : XB = X, Y B = Y
}

(3.1)

of all block symmetric pencils in L1(P ). We will see in Section 7 that almost all of
these pencils are indeed linearizations for P .

Theorem 3.1. For any matrix polynomial P (λ) of degree k, dim B(P ) = k, and

for each vector v ∈ Fk there is a uniquely determined block symmetric pencil in B(P ).
Proof. Recalling that L1 is defined by (1.3), the theorem is proved if we can show

that the map

B(P )
M
−→ VP := { v ⊗ P (λ) : v ∈ Fk }(3.2)

L(λ) 7−→ L(λ) (Λ ⊗ In)

is a linear isomorphism.
First, recall from Lemma 2.4 that for any pencil λX + Y ∈ L1(P ),

(λX + Y )(Λ ⊗ In) = v ⊗ P (λ) ⇐⇒ X ⊞→Y = v ⊗ [Ak Ak−1 . . . A0 ].(3.3)
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Thus λX + Y is in kerM iff X ⊞→Y = 0. But X and Y are block symmetric, so by
Lemma 2.6 we see that kerM = {0}, and hence M is 1-1.

To see that M is onto, let v ⊗ P (λ) with v ∈ Fk be an arbitrary element of VP .
With Z = v ⊗ [Ak Ak−1 . . . A0], the construction of Lemma 2.5 shows that there
exist block symmetric X and Y such that X ⊞→Y = v ⊗ [Ak Ak−1 . . . A0]. Then by
(3.3) we have M(λX + Y ) = v ⊗ P (λ), showing that M is onto.

3.2. Double ansatz pencils. Our goal is now to show that DL(P ) := L1(P )∩
L2(P ) = B(P ). The inclusion DL(P ) ⊆ B(P ), which says that all pencils λX + Y in
DL(P ) are block symmetric, can be deduced immediately from the following formulae
for the blocks of X and Y in terms of the ansatz vector v [17, Thm. 5.3]:

Xij = vmax(i,j)Ak+1−min(i,j) +

min(i−1,j−1)∑

µ=1

(vj+i−µAk+1−µ − vµAk+1−j−i+µ),

Yij =

min(i,j)∑

µ=1

(vµAk−j−i+µ − vj+i+1−µAk+1−µ), i, j = 1: k.

However, the derivation of these formulas is long and tedious. We present a shorter
proof, based on first principles, of the stronger result DL(P ) = B(P ).

Lemma 3.2. For any matrix polynomial P (λ), B(P ) ⊆ DL(P ).
Proof. Let L(λ) ∈ B(P ) ⊂ L1(P ). From Theorem 2.2 we know that L(λ)B = L(λ)

is in L2(P ), and so L(λ) ∈ DL(P ).
Now we consider the special case of DL(P )-pencils with v = 0, showing that

in this case w = 0 is forced and the pencil is unique. Note that the definition of
DL(P ) does not require that X and Y are block symmetric, so we cannot appeal to
Lemma 2.6 here.

Lemma 3.3. Suppose L(λ) = λX +Y ∈ DL(P ) has right ansatz vector v and left

ansatz vector w. Then v = 0 implies that w must also be 0, and that X = Y = 0.
Proof. We first show that the ℓth block-column of X and the ℓth coordinate of

w is zero for ℓ = 1: k, by an induction on ℓ .
Suppose that ℓ = 1. From Lemma 2.4 we know that X ⊞→Y = v⊗[Ak Ak−1 . . . A0].

Since v = 0 we have X ⊞→Y = 0, and hence the first block-column of X is zero.
Now from Theorem 2.2, L(λ) being in L2(P ) with left ansatz vector w implies that
L(λ)B ∈ L1(P ) with right ansatz vector w, which can be written in terms of the
shifted sum as

XB
⊞→Y B = w ⊗ [Ak Ak−1 . . . A0].(3.4)

The (1, 1)-block of the right-hand side of (3.4) is w1Ak, while on the left-hand side
the (1, 1)-block of XB

⊞→Y B is the same as the (1, 1)-block of X. Hence w1Ak = 0.
But the leading coefficient Ak of P (λ) is nonzero by assumption, so w1 = 0.

Now suppose that the ℓth block-column of X is zero and that wℓ = 0. Then
by (3.4) the ℓth block-row of XB

⊞→Y B is zero. Since the ℓth block-row of XB is
zero, the ℓth block-row of Y B, or, equivalently, the ℓth block-column of Y , must also
be zero. Combining this with X ⊞→Y = 0 implies that the (ℓ + 1)th block-column of
X is zero. Now equating the (ℓ +1, 1)-blocks of both sides of (3.4) gives wℓ+1Ak = 0,
and hence wℓ+1 = 0. This concludes the induction, and shows that X = 0 and w = 0.

Finally, X = 0 and X ⊞→Y = 0 implies Y = 0, completing the proof.
We can now characterize DL(P ) and give a precise description of all right/left

ansatz vector pairs (v, w) that can be realized by some DL(P )-pencil.
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Theorem 3.4. For a matrix polynomial P (λ) of degree k, suppose L(λ) ∈ DL(P )
with right ansatz vector v and left ansatz vector w. Then v = w and L(λ) ∈ B(P ).
Thus DL(P ) = B(P ), dim DL(P ) = k, and for each v ∈ Fk there is a uniquely

determined pencil in DL(P ).
Proof. Let L(λ) ∈ B(P ) be the unique block symmetric pencil from Theorem 3.1

with v as its right ansatz vector. From Theorem 2.2 we know that L(λ)B = L(λ)
is in L2(P ) with left ansatz vector v, and so L(λ) ∈ DL(P ) with v as both its right

and left ansatz vector. Thus the pencil L̃(λ) := L(λ) − L(λ) is in DL(P ) with right
ansatz vector 0 and left ansatz vector w− v. Lemma 3.3 then implies that v = w and
L̃(λ) = λ ·0+0. Thus L(λ) ≡ L(λ) ∈ B(P ), so DL(P ) ⊆ B(P ). In view of Lemma 3.2
we can conclude that DL(P ) = B(P ). The rest of the theorem follows immediately
from Theorem 3.1.

The equality DL(P ) = B(P ) can be thought of as saying that the pencils in DL(P )
are doubly structured: they have block symmetry as well as the eigenvector recovery
properties that were the original motivation for their definition.

3.3. The standard basis for B(P ). The isomorphism established in the proof
of Theorem 3.1 immediately suggests the possibility that the basis for B(P ) corre-
sponding (via the map M in (3.2)) to the standard basis {e1, . . . , ek} for Fk may be
especially simple and useful. In this section we derive a general formula for these
“standard basis pencils” in B(P ) as a corollary of the shifted sum construction used
in the proof of Lemma 2.5. These pencils are of course also a basis for DL(P ), since
DL(P ) = B(P ).

In light of Lemma 2.4, then, our goal is to construct for each 1 ≤ m ≤ k a block
symmetric pencil λXm + Ym such that

Xm ⊞→Ym = em ⊗ [Ak Ak−1 . . . A0 ].(3.5)

This is most easily done in two steps. First we show how to achieve the first m block-
columns in the desired shifted sum, i.e., how to get em ⊗ [Ak . . . Ak−m+1 0 . . . 0 ].
Then the last k−m + 1 block-columns em ⊗ [ 0 . . . 0 Ak−m . . . A1 A0 ] are produced
by a related but slightly different construction. We use the following notation for
principal block submatrices, adapted from [11]: for a block k× k matrix X and index
set α ⊆ {1, 2, . . . , k}, X(α) will denote the principal block submatrix lying in the
block rows and block columns with indices in α.

To get the first m block-columns in the desired shifted sum we repeatedly use
the construction in (2.4) to build block k × k matrices X̂m and Ŷm , embedding once

in each of the principal block submatrices X̂m(αi) and Ŷm(αi) for the index sets
αi = {i, i + 1, . . . ,m}, i = 1:m. Accumulating these embedded submatrices, we
obtain

X̂m =

m


Ak
. .

.
Ak−1

. .
.

. .
. ...

. .
.

. .
. ...

Ak Ak−1 . . . . . . Ak−m+1

0

0 0




m ,
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Ŷm = −

m



Ak 0
. .

.
Ak−1 0

. .
.

. .
. ...

...
Ak Ak−1 . . .Ak−m+2 0
0 . . . . . . 0 0

0

0 0




m ,

with the property that X̂m ⊞→Ŷm = em ⊗ [Ak . . . Ak−m+1 0 . . . 0 ] .
To obtain the last k − m + 1 columns we use the construction outlined in (2.5)

and (2.6) k − m + 1 times to build block k × k matrices X̃m and Ỹm , embedding

once in each of the principal block submatrices X̃m(βj) and Ỹm(βj) for the index sets
βj = {m,m + 1, . . . , j}, j = m: k, which yields

X̃m = −

m k


0 0

0

0 0 . . . . . . 0
0 Ak−m−1

. . . A1 A0...
... . .

.
. .

.
... A1 . .

.

0 A0




m

k

,

Ỹm =

m k


0 0

0

Ak−m . . . . . . A1 A0... . .
.
A0... . .

.
. .

.

A1 . .
.

A0




m

k

,

satisfying X̃m ⊞→Ỹm = em ⊗ [ 0 . . . 0 Ak−m . . . A1 A0 ] . With Xm := X̂m + X̃m and

Ym := Ŷm + Ỹm we have Xm ⊞→Ym = em ⊗ [Ak Ak−1 . . . A1 A0 ] , so λXm + Ym is
the mth standard basis pencil for B(P ).

A more concise way to express the mth standard basis pencil uses the following
block Hankel matrices. Let Lj(P (λ)) denote the lower block-anti-triangular, block
Hankel, block j × j matrix

Lj(P (λ)) :=




Ak

. .
.

Ak−1

. .
.

. .
. ...

Ak Ak−1 . . . Ak−j+1


(3.6)

formed from the first j matrix coefficients Ak, Ak−1, . . . , Ak−j+1 of P (λ). Similarly,
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Table 3.1
Block symmetric standard basis for the quadratic P (λ) = λ2A + λB + C.

v L(λ) ∈ B(P )
»

1
0

–

λ

»

A 0

0 −C

–

+

»

B C

C 0

–

»

0
1

–

λ

»

0 A

A B

–

+

»

−A 0

0 C

–

Table 3.2
Block symmetric standard basis for the cubic P (λ) = λ3A + λ2B + λC + D.

v L(λ) ∈ DL(P )
2

4

1
0
0

3

5 λ

2

4

A 0 0

0 −C −D

0 −D 0

3

5 +

2

4

B C D

C D 0
D 0 0

3

5

2

4

0
1
0

3

5 λ

2

4

0 A 0
A B 0

0 0 −D

3

5 +

2

4

−A 0 0

0 C D

0 D 0

3

5

2

4

0
0
1

3

5 λ

2

4

0 0 A

0 A B

A B C

3

5 +

2

4

0 −A 0
−A −B 0

0 0 D

3

5

let Uj(P (λ)) denote the upper block-anti-triangular, block Hankel, block j × j matrix

Uj(P (λ)) :=




Aj−1 . . .A1 A0
... . .

.
. .

.

A1 . .
.

A0


(3.7)

formed from the last j matrix coefficients Aj−1, Aj−2, . . . , A1, A0 of P (λ). Then the
block symmetric matrices Xm and Ym in the mth standard basis pencil (m = 1: k)
can be neatly expressed as a direct sum of block Hankel matrices:

Xm = Xm(P (λ)) =

[
Lm(P (λ)) 0

0 −Uk−m(P (λ))

]
,(3.8a)

Ym = Ym(P (λ)) =

[
−Lm−1(P (λ)) 0

0 Uk−m+1(P (λ))

]
.(3.8b)

(Lj and Uj are taken to be void when j = 0.) From (3.8) it now becomes obvious
that the coefficient matrices in successive standard basis pencils are closely related:

Ym(P (λ)) = −Xm−1(P (λ)), m = 1: k.(3.9)

Thus we have the following explicit formula for the standard basis pencils in B(P ).
Theorem 3.5. Let P (λ) be a matrix polynomial of degree k. Then for m = 1: k

the block symmetric pencil in B(P ) with ansatz vector em is λXm −Xm−1, where Xm

is given by (3.8a).
The standard basis pencils in B(P ) for general polynomials of degree 2 and 3

are listed in Tables 3.1 and 3.2, where the partitioning from (3.8) is shown in each
case. As an immediate consequence we have, for the important case of quadratics
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P (λ) = λ2A + λB + C, the following description of all block symmetric pencils in
L1(P ),

B(P ) =

{
L(λ) = λ

[
v1A v2A

v2A v2B − v1C

]
+

[
v1B − v2A v1C

v1C v2C

]
: v ∈ C2

}
.

4. Other constructions of block symmetric linearizations. Several other
methods for constructing block symmetric linearizations of matrix polynomials have
appeared previously in the literature.

Antoniou and Vologiannidis [1] have recently found new companion-like lineariza-
tions for general matrix polynomials P by generalizing Fiedler’s results [7] on a factor-
ization of the companion matrix of a scalar polynomial and certain of its permutations.
From this finite family of 1

6 (2 + deg P )! pencils, all of which are linearizations, they
identify one distinguished pencil that is Hermitian whenever P is Hermitian. But this
example has structure even for general P : it is block symmetric. Indeed, it provides
a simple example of a block symmetric linearization for P (λ) that is not in B(P ). In
the case of a cubic polynomial P (λ) = λ3A + λ2B + λC + D, the pencil is

L(λ) = λ




A 0 0
0 0 I

0 I C


 +




B −I 0
−I 0 0
0 0 D


 .(4.1)

Using the column-shifted sum it easy to see that L(λ) is not in L1(P ), and hence not
in B(P ).

Contrasting with the “permuted factors” approach of [1], [7] and the additive
construction used in this paper, is a third “multiplicative” method for generating
block symmetric linearizations described by Lancaster in [13], [14]. In [13] only scalar
polynomials p(λ) = akλk + · · · + a1λ + a0 are considered; the starting point is the
companion matrix of p(λ),

C =




−a−1
k

1
. . .

1







ak−1 ak−2 . . . a0

1 0 . . . 0
. . .

. . .
...

0 1 0


(4.2)

and the associated pencil λI −C. Lancaster’s idea is to seek a nonsingular symmetric
matrix B such that BC is symmetric, thus providing a symmetric linearization B(λI−
C) = λB −BC for p(λ). That such a B can always be found follows from a standard
result in matrix theory [11, Cor. 4.4.11]. Lancaster shows further that B and BC

symmetric implies BCj is symmetric for all j ≥ 1; thus BCj−1(λI −C) = λBCj−1 −
BCj is a symmetric pencil for any j ≥ 1, and for j ≥ 2 it is a linearization of p(λ)
if a0 6= 0. This strategy is realized in [13] with the particular choice of symmetric
(Hankel) matrix

B =




ak

. .
.
ak−1

. .
.

. .
. ...

ak ak−1 . . . a1


 ,(4.3)

which is nonsingular since ak 6= 0, and it is observed that this particular B gives
symmetric pencils λBCj−1 − BCj with an especially simple form for 1 ≤ j ≤ k,
though apparently with a much more complicated form for j > k.
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It is easy to see that these symmetric pencils, constructed for scalar polynomi-
als p(λ), can be immediately extended to block symmetric pencils for general ma-
trix polynomials P (λ) simply by formally replacing the scalar coefficients of p(λ) in
B,BC,BC2, . . . by the matrix coefficients of P (λ). This has been done in [14, Sect.
4.2] and [8]. Garvey et al. [8] go even further with these block symmetric pencils,
using them as a foundation for defining a new class of isospectral transformations on
matrix polynomials.

Since Lancaster’s construction of pencils is so different from ours there is no
reason to expect any connection between his pencils and the pencils in DL(P ). The
next result shows, rather surprisingly, that the first k pencils in Lancaster’s sequence
generate DL(P ).

Theorem 4.1. For any matrix polynomial P (λ) of degree k, the pencil λBCk−m−
BCk−m+1 from Lancaster’s construction, with B and C defined by the block matrix

analogue of (4.2) and (4.3), is identical to λXm−Xm−1, the mth standard basis pencil

for DL(P ), for m = 1: k.

Proof. We have to show that Xm = BCk−m, m = 0: k, where Xm is given by
(3.8a). For notational simplicity we will carry out the proof for a scalar polynomial;
the same proof applies to a matrix polynomial with only minor changes in notation.
The m = k case, Xk(p(λ)) = Lk(p(λ)) = B, is immediate from equations (3.6), (3.8),
and (4.3). The rest follow inductively (downward) from the relation Xm−1(p(λ)) =
Xm(p(λ)) · C, which we now proceed to show holds for m = 1: k.

To see that XmC = Xm−1, or equivalently that

[
Lm(p(λ)) 0

0 −Uk−m(p(λ))

]
C =

[
Lm−1(p(λ)) 0

0 −Uk−m+1(p(λ))

]

holds for 1 ≤ m ≤ k, it will be convenient to rewrite the companion matrix (4.2) in
the form

C = NT
k − a−1

k




ak−1 ak−2 . . . a0

0 0 . . . 0
...

...
...

0 0 . . . 0


 = NT

k − a−1
k e1 [ ak−1 ak−2 . . . a0 ] ,

where Nk is defined in (2.1). Then

Xm(p(λ))C = Xm(p(λ))NT
k − a−1

k Xm(p(λ)) e1 [ ak−1 ak−2 . . . a0 ]

=

[
Lm(p(λ)) 0

0 −Uk−m(p(λ))

]
NT

k − em [ ak−1 ak−2 . . . a0 ] .

In the first term, postmultiplication by NT
k has the effect of shifting the columns to

the left by one (and losing the first column), thus giving

Xm(p(λ))C =


Lm−1(p(λ)) 0 0
ak−1 . . . ak−m+1 0 0

0 −Uk−m(p(λ)) 0


 −




0 0 0
ak−1 . . . ak−m+1 ak−m . . . a1 a0

0 0 0




=




Lm−1(p(λ)) 0 0
0 −ak−m . . . − a1 −a0

0 −Uk−m(p(λ)) 0



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=

[
Lm−1(p(λ)) 0

0 − Uk−m+1(p(λ))

]
= Xm−1(p(λ)).

This completes the inductive step of the proof.

5. Symmetric pencils in L1(P ) for symmetric P . We now return to the
problem that originally motivated the investigation in this paper, that of system-
atically finding large sets of symmetric linearizations for symmetric polynomials,
P (λ) = P (λ)T . Our strategy is first to characterize the set

S(P ) :=
{

λX + Y ∈ L1(P ) : XT = X, Y T = Y
}

(5.1)

of all symmetric pencils in L1(P ) when P is symmetric, and then later in Section 7
to show that almost all of these symmetric pencils are indeed linearizations for P .

We begin with a result for symmetric polynomials reminiscent of Theorem 2.2,
but using transpose rather than block transpose.

Lemma 5.1. Suppose P (λ) is a symmetric matrix polynomial and L(λ) ∈ L1(P )
with right ansatz vector v. Then LT (λ) ∈ L2(P ) with left ansatz vector w = v.

Similarly, L(λ) ∈ L2(P ) with left ansatz vector v implies that LT (λ) ∈ L1(P ) with

right ansatz vector v.

Proof. Suppose L(λ) ∈ L1(P ) with right ansatz vector v. Then

(
L(λ)(Λ ⊗ I)

)T
=

(
v ⊗ P (λ)

)T
=⇒ (ΛT ⊗ I)LT (λ) = vT ⊗ P (λ).

Thus LT (λ) ∈ L2(P ) with left ansatz vector v. The proof of the second statement is
analogous.

We characterize the space S(P ) in the next result by relating it to the previously
developed space DL(P ), which we already know equals B(P ).

Theorem 5.2. For any symmetric polynomial P (λ), S(P ) = DL(P ).
Proof. Suppose L(λ) ∈ S(P ) ⊆ L1(P ) with right ansatz vector v. Then by

Lemma 5.1 we know that LT (λ) = L(λ) is in L2(P ) with left ansatz vector v, and so
L(λ) ∈ DL(P ). Thus S(P ) ⊆ DL(P ).

By Lemma 5.1, L(λ) ∈ DL(P ) with right/left ansatz vector v implies that LT (λ) ∈
DL(P ) with left/right ansatz vector v. But by Theorem 3.4 pencils in DL(P ) are
uniquely determined by their ansatz vector, so L(λ) ≡ LT (λ), and hence DL(P ) ⊆
S(P ). Therefore DL(P ) = S(P ).

Once again one may refer to Tables 3.1 and 3.2 for examples of what are in effect
triply-structured pencils whenever P is symmetric. Recall, however, that there are
symmetric linearizations for P that are not in S(P ): L in (4.1) is not in S(P ), but is
a symmetric linearization for any symmetric cubic P .

6. Hermitian pencils in L1(P ) for Hermitian P . For a Hermitian matrix
polynomial P (λ) of degree k, that is, P (λ)∗ = P (λ), let

H(P ) :=
{

λX + Y ∈ L1(P ) : X∗ = X, Y ∗ = Y
}

(6.1)

denote the set of all Hermitian pencils in L1(P ). A priori the right ansatz vector
v of a pencil in H(P ) might be any vector in Ck, since P is a complex polynomial.
However, the next result shows that any such v must in fact be real.

Lemma 6.1. Suppose P (λ) is a Hermitian polynomial and L(λ) ∈ H(P ) with

right ansatz vector v. Then v ∈ Rk and L(λ) ∈ DL(P ), so H(P ) ( DL(P ).
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Proof. Since L(λ) ∈ L1(P ), we have L(λ)(Λ ⊗ I) = v ⊗ P (λ). Then, since P and
L are Hermitian,

(
L(λ)(Λ ⊗ I)

)∗
=

(
v ⊗ P (λ)

)∗
=⇒ (Λ

T
⊗ I)L(λ) = vT ⊗ P (λ).

This last equation holds for all λ, so we may replace λ by λ to get (ΛT ⊗ I)L(λ) =
vT ⊗P (λ), so that L(λ) ∈ L2(P ) with left ansatz vector w = v. Thus L(λ) ∈ DL(P ).
But by Theorem 3.4 the right and left ansatz vectors of any DL(P )-pencil must be
equal. So v = v, which means v ∈ Rk. Since DL(P ) includes pencils corresponding
to nonreal v, H(P ) ( DL(P ).

Recall the map DL(P )
M
−→ VP from (3.2), which we know from Theorems 3.1

and 3.4 to be an isomorphism. Lemma 6.1 implies that M can be restricted to the
subspace H(P ), giving a 1-1 map into the “real” part of VP , i.e. into the subspace
RP :=

{
v ⊗ P (λ) : v ∈ Rk

}
( VP . The characterization of H(P ) is then completed

in the next result by showing that H(P )
M
−→ RP is actually an isomorphism.

Theorem 6.2. For any Hermitian polynomial P (λ), H(P ) is the subset of all

pencils in DL(P ) with a real ansatz vector. In other words, for each vector v ∈ Rk

there is a unique Hermitian pencil H(λ) ∈ H(P ).

Proof. We need to show that the map H(P )
M
−→ RP is an isomorphism, and

from the remarks preceding the theorem all that remains is to show that the map M
is onto. By arguments analogous to the ones used in Lemma 5.1 and Theorem 5.2,
it is straightforward to show that for Hermitian P , L(λ) ∈ DL(P ) with right/left
ansatz vector v implies that L∗(λ) ∈ DL(P ) with left/right ansatz vector v. Now if
for an arbitrary v ∈ Rk we let H(λ) be the unique pencil in DL(P ) with right/left
ansatz vector v, then H∗(λ) is also in DL(P ) with exactly the same ansatz vector v.
The uniqueness of DL(P )-pencils then implies that we must have H(λ) ≡ H∗(λ), i.e.,
H(λ) ∈ H(P ), thus showing that the map M is onto.

7. Almost all pencils in B(P ), DL(P ), S(P ), and H(P ) are linearizations.

The remaining fundamental issue is the question of which pencils in the subspaces
B(P ), DL(P ), S(P ), and H(P ) are actually linearizations for P when P is regular.
Some answers to this question are already known. First, a pencil L in L1(P ) or L2(P )
is a linearization precisely when L is a regular pencil [17, Thm. 4.3]. Second, for each
of L1(P ), L2(P ), and DL(P ) it is known that almost all pencils are linearizations,
where “almost all” means all except for a closed, nowhere dense set of measure zero
[17, Thms. 4.7, 6.8]. Because of Theorems 3.4 and 5.2, the same conclusion follows
immediately for B(P ), and for S(P ) when P is symmetric. However, for H(P ) the
possible ansatz vectors lie in Rk, a closed, nowhere dense set of measure zero in Ck

(the ansatz vector set of DL(P ) when P is Hermitian), so we cannot immediately
deduce an “almost all” result for H(P ). Some further analysis is therefore needed.

To a vector v = [v1, v2, . . . , vk]T ∈ Fk associate the scalar polynomial

p(x; v) = v1x
k−1 + v2x

k−2 + · · · + vk−1x + vk,

referred to as the “v-polynomial” of the vector v. We adopt the convention that
p(x; v) has a root at ∞ whenever v1 = 0. The following result provides a condition
that L ∈ DL(P ) be a linearization of P .

Theorem 7.1 (Eigenvalue Exclusion Theorem [17, Thm. 6.7]). Suppose that

P (λ) is a regular matrix polynomial and L(λ) ∈ DL(P ) with ansatz vector v. Then

L(λ) is a linearization for P (λ) if and only if no root of the v-polynomial p(x; v) is

an eigenvalue of P (λ).
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With the aid of this result we can establish the desired genericity statement.
Theorem 7.2 (Linearizations are generic in H(P )). Let P (λ) be a regular Her-

mitian matrix polynomial. For almost all v ∈ Rk the corresponding pencil in H(P ) is

a linearization.

Proof. Recall that the resultant res(f, g) of two polynomials f(x) and g(x) is a
polynomial in the coefficients of f and g with the property that res(f, g) = 0 if and
only if f(x) and g(x) have a common (finite) root [21, p. 248], [25]. Now consider
r = res

(
p(x; v),det P (x)

)
, which, because P is Hermitian and fixed, can be viewed

as a real polynomial r(v1, v2, . . . , vk) in the components of v ∈ Rk. The zero set
Z(r) =

{
v ∈ Rk : r(v1, v2, . . . , vk) = 0

}
, then, is exactly the set of all v ∈ Rk

for which some finite root of p(x; v) is an eigenvalue of P (λ). Recall that by our
convention the v-polynomial p(x; v) has ∞ as a root exactly for v ∈ Rk lying in the
hyperplane v1 = 0. Thus by Theorem 7.1 the set of vectors v ∈ Rk for which the
corresponding pencil L(λ) ∈ H(P ) ⊂ DL(P ) is not a linearization of P (λ) is either
the proper (real) algebraic set Z(r), or the union of two proper (real) algebraic sets,
Z(r) and the hyperplane v1 = 0. But the union of any finite number of proper (real)
algebraic sets is always a closed, nowhere dense set of measure zero in Rk.

8. Conclusions. We have revisited DL(P ), the space of double ansatz pencils
introduced in [17], proving that it is the same as the set of block-symmetric pencils in
the right ansatz space L1(P ). Our alternative characterization of DL(P ) shows that
even unstructured matrix polynomials admit linearizations that are symmetric at the
block level, while simultaneously possessing the DL(P ) property of revealing both left
and right eigenvectors of P .

Our analysis shows how to find all the symmetric pencils in L1(P ) for a symmetric
matrix polynomial P : these are precisely the pencils in DL(P ). For Hermitian P , the
Hermitian pencils in L1(P ) correspond to the double ansatz pencils that have a real
ansatz vector. Almost all pencils in each of these vector spaces have been shown to
be linearizations.
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