New relations in the algebra of the Baxter Q-operators

Belavin, A. A. and Odesskii, A. V. and Usmanov, R. A.

2002

MIMS EPrint: 2007.32

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
            School of Mathematics
                            The University of Manchester
                            Manchester, M13 9PL, UK
```


NEW RELATIONS IN THE ALGEBRA OF THE BAXTER Q-OPERATORS

A. A. Belavin, ${ }^{1}$ A. V. Odesskii, ${ }^{1}$ and R. A. Usmanov ${ }^{1}$

Abstract

We consider irreducible cyclic representations of the algebra of monodromy matrices corresponding to the R-matrix of the six-vertex model. At roots of unity, the Baxter Q-operator can be represented as a trace of a tensor product of L-operators corresponding to one of these cyclic representations, and this operator satisfies the $T Q$ equation. We find a new algebraic structure generated by these L-operators and consequently by the Q-operators.

1. Introduction

Baxter [1] introduced the Q-operator and used it to solve the eight-vertex model. The Q-operators form a family that commutes with a family of the transfer matrices $T(u)$ provided the $T Q$ equation is satisfied. The latter equation relates the two families to each other and is a key for solving the model.

The expressions for the chiral Potts model Boltzmann weights that are solutions of the star-triangle relation were found in [2] (also see [3], [4]). The R-matrix S of the model can be represented as a product of four such Boltzmann weights.

The algebraic structure of the Q-operators in the particular case of the six-vertex model and its relation to the R-matrix of the chiral Potts model was revealed by Bazhanov and Stroganov [5]. At the N th root of unity (N is prime), they found the N-dimensional cyclic representation \mathcal{L} of the Yang-Baxter algebra related to the R-matrix of the usual six-vertex model. The trace over the N-dimensional quantum space of a tensor product of L-operators has the properties of the Q-operator. In particular, it satisfies the $T Q$ equation. Tarasov [6] described irreducible cyclic representations of the algebra of monodromy matrices corresponding to the R-matrix of the six-vertex model at roots of unity.

The Q-operator recently returned to the center of attention. It was shown $[7]-[10]$ that for some models in statistical physics, the Q-operator is a quantum analogue of the Bäcklund transformation. In [5], the R-matrix S of the chiral Potts model was derived as an operator that intertwines tensor products of two cyclic representations of the algebra of monodromy matrices being multiplied first in one order and then in the reverse order.

The four factors generating the R-matrix S of the chiral Potts model are actually intertwiners that provide for special cases of some elementary isomorphisms of cyclic representations of the algebra of the L-operators and their tensor products. In this paper, we clarify the conditions under which two cyclic representations are equivalent and find the corresponding intertwiner. We also solve the same problem for two tensor products of a pair of cyclic representations. The obtained intertwiners generalize the well-known vertex weights of the chiral Potts model and satisfy a modification of the star-triangle equations.

The plan of the paper is as follows. In Sec. 2, we introduce the notion of cyclic representations of the algebra of L-operators. In Sec. 3, we discuss different versions of cyclic representations. In Sec. 4, we derive the $T Q$ equation. In Sec. 5 , we discuss some special cases of elementary isomorphisms acting on cyclic

[^0]Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol. 130, No. 3, pp. 383-413, March, 2002. Original article submitted October 9, 2001.
representations of the algebra of monodromy matrices. In Sec. 6, we find these isomorphisms in the general case. We show that the intertwiners of these elementary isomorphisms satisfy a generalized star-triangle equation of the chiral Potts model. In Sec. 7 , we present some relations in the algebra of Q-operators. In Sec. 8, we discuss perspectives for possible future investigations. In the appendices, we prove some formulas used in the paper.

2. Cyclic representations of the Yang-Baxter algebra

Following [6], we define the R-matrix

$$
R(u)=\left(\begin{array}{cccc}
1-u \omega & 0 & 0 & 0 \tag{1}\\
0 & \omega(1-u) & u(1-\omega) & 0 \\
0 & 1-\omega & 1-u & 0 \\
0 & 0 & 0 & 1-u \omega
\end{array}\right)
$$

It is related to the algebra $U_{\mathrm{q}}\left(s l_{2}\right)[11]-[13]$ and can be obtained from the R-matrix of the standard six-vertex model by a simple transformation (see Sec. 3). For brevity, we let $\mathcal{M}=\operatorname{End} \mathbb{C}^{2}$, and then $R(u)=\mathcal{M} \otimes \mathcal{M}$.

The algebra of monodromy matrices \mathcal{A} is generated by $A(u), B(u), C(u), D(u), H$, and H^{-1} subject to the relations

$$
\begin{align*}
& R(u)^{\frac{1}{L}(u v)^{2} L(v)=\stackrel{2}{L}(v) \stackrel{1}{L}(u v) R(u),} \\
& {[\widehat{\omega} \otimes H, L(u)]=0, \quad H H^{-1}=H^{-1} H=1,} \tag{2}\\
& L(u)=\left(\begin{array}{ll}
A(u) & B(u) \\
C(u) & D(u)
\end{array}\right) \in \mathcal{M} \otimes \mathcal{A}, \quad \widehat{\omega}=\operatorname{diag}(1, \omega) .
\end{align*}
$$

The indices 1 and 2 over L label the two-dimensional space in which the corresponding L-operator is multiplied by the R-matrix. Both L-operators act in the same quantum space.

As shown in [6], the algebra \mathcal{A} admits the coproduct Δ,

$$
\begin{aligned}
& \Delta(L(u))=L_{1}(u) L_{2}(u) \in \mathcal{M} \otimes \mathcal{A} \otimes \mathcal{A} \\
& \Delta(H)=H \otimes H
\end{aligned}
$$

The subscripts 1 and 2 here label the quantum spaces in which the corresponding L-operators act. The L-operators considered as two-dimensional matrices (each matrix element is an operator in one of the two quantum spaces) are multiplied according to the standard matrix multiplication rule. A tensor product of some representations of the algebra \mathcal{A} is therefore a representation of \mathcal{A} itself.

We now define the quantum determinant

$$
\begin{equation*}
\operatorname{det}_{q} L(u)=D(u) A\left(u \omega^{-1}\right)-C(u) B\left(u \omega^{-1}\right) \tag{3}
\end{equation*}
$$

It can be verified that $H^{-1} \operatorname{det}_{q} L(u)$ is a central element of the algebra \mathcal{A}. Hereafter, we set $\omega^{N}=1$. As shown in [6], the center of the algebra \mathcal{A} is enhanced in this case because the operators

$$
\langle\mathcal{O}\rangle(u)=\prod_{k=0}^{N-1} \mathcal{O}\left(u \omega^{k}\right), \quad \mathcal{O}=A, B, C, D
$$

become central, and we can define the matrix of central elements,

$$
\langle L\rangle=\left(\begin{array}{ll}
\langle A\rangle & \langle B\rangle \\
\langle C\rangle & \langle D\rangle
\end{array}\right)
$$

It can be shown [6] that $L=L_{1} L_{2}$ satisfies the equation

$$
\Delta(\langle L\rangle)=\left\langle L_{1}\right\rangle\left\langle L_{2}\right\rangle, \quad\left\langle\operatorname{det}_{q} L\right\rangle=\operatorname{det}\langle L\rangle
$$

The N-dimensional [cyclic] representation π of the algebra \mathcal{A} is defined by [6]

$$
\begin{align*}
& L\left(u, p_{1}, p_{2}\right)=\left(\begin{array}{cc}
c_{1} c_{2} Z-b_{1} b_{2} u & -u\left(b_{1} d_{2}-c_{1} a_{2} Z\right) X \\
X^{-1}\left(d_{1} b_{2}-a_{1} c_{2} Z\right) & d_{1} d_{2}-a_{1} a_{2} \omega u Z
\end{array}\right) \tag{4}\\
& H_{\pi}=h Z, \quad p_{i}=\left(a_{i}, b_{i}, c_{i}, d_{i}\right), \quad i=1,2
\end{align*}
$$

The action of the operators X and Z on the standard basis in \mathbb{C}^{N} is

$$
Z|k\rangle=\omega^{k}|k\rangle, \quad X|k\rangle=|k+1\rangle, \quad k=0, \ldots, N-1, \quad|N\rangle \equiv|0\rangle
$$

We also have

$$
\left\langle L\left(p_{1}, p_{2}\right)\right\rangle(v)=\left(\begin{array}{cc}
c_{1}^{N} c_{2}^{N}-b_{1}^{N} b_{2}^{N} v & -v\left(b_{1}^{N} d_{2}^{N}-c_{1}^{N} a_{2}^{N}\right) \\
d_{1}^{N} b_{2}^{N}-a_{1}^{N} c_{2}^{N} & d_{1}^{N} d_{2}^{N}-a_{1}^{N} a_{2}^{N} v
\end{array}\right)
$$

Although formulas (4) contain eight parameters (in addition to the spectral parameter), the N-dimensional representation depends only on six of them because the substitution

$$
\begin{array}{ll}
a_{1} \rightarrow \lambda a_{1}, & a_{2} \rightarrow \lambda^{-1} a_{2}, \\
c_{1} \rightarrow \lambda c_{1}, & c_{2} \rightarrow \lambda^{-1} c_{2}, \\
b_{1} \rightarrow b_{1}, & b_{2} \rightarrow b_{2}, \quad d_{1} \rightarrow d_{1}, \quad d_{2} \rightarrow d_{2},
\end{array}
$$

where λ is an arbitrary number, does not change the operator $L\left(u, p_{1}, p_{2}\right)$. The same is true for the substitution

$$
\begin{array}{ll}
b_{1} \rightarrow \lambda b_{1}, & b_{2} \rightarrow \lambda^{-1} b_{2}, \\
d_{1} \rightarrow \lambda d_{1}, & d_{2} \rightarrow \lambda^{-1} d_{2}, \\
a_{1} \rightarrow a_{1}, & a_{2} \rightarrow a_{2}, \quad c_{1} \rightarrow c_{1}, \quad c_{2} \rightarrow c_{2} .
\end{array}
$$

Moreover, the projective equivalence class of the L-operators depends on only four parameters because

$$
L\left(\lambda p_{1}, p_{2}\right)=\lambda L\left(p_{1}, p_{2}\right), \quad L\left(p_{1}, \mu p_{2}\right)=\mu L\left(p_{1}, p_{2}\right)
$$

where λ and μ are arbitrary numbers.

The two representations $L_{1}\left(u, p_{1}, p_{2}\right) L_{2}\left(u, p_{3}, p_{4}\right)$ and $L_{2}\left(u, p_{3}, p_{4}\right) L_{1}\left(u, p_{1}, p_{2}\right)$ are equivalent if and only if $p_{i}, i=1,2,3,4$, can be chosen such that they satisfy the conditions

$$
\begin{equation*}
\frac{a_{i}^{N} \pm b_{i}^{N}}{c_{i}^{N} \pm d_{i}^{N}}=\lambda_{ \pm} \tag{5}
\end{equation*}
$$

where the $\lambda_{ \pm}$are independent of i (see Appendix B). The intertwiner given by the equation

$$
\begin{equation*}
\mathbf{S}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) L_{1}\left(u, p_{1}, p_{2}\right) L_{2}\left(u, p_{3}, p_{4}\right)=L_{1}\left(u, p_{3}, p_{4}\right) L_{2}\left(u, p_{1}, p_{2}\right) \mathbf{S}\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \tag{6}
\end{equation*}
$$

can be explicitly expressed through the Boltzmann weights $W_{p q}$ and $\bar{W}_{p q}$ of the chiral Potts model:

$$
\begin{align*}
& \mathbf{S}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\mathbf{P} F\left(p_{1}, p_{4} ; X_{1} X_{2}^{-1}\right) G\left(p_{1}, p_{3} ; Z_{1}\right) G\left(p_{2}, p_{4} ; Z_{2}\right) F\left(p_{2}, p_{3} ; X_{1} X_{2}^{-1}\right) \\
& G\left(p, q ; \omega^{k}\right)=W_{p q}(k), \quad F\left(p, q ; \omega^{k}\right)=\sum_{l=1}^{N} \omega^{k l} \bar{W}_{p q}(l) \tag{7}
\end{align*}
$$

where \mathbf{P} is the standard permutation operator interchanging the spaces 1 and 2 .

3. Cyclic representations of the Yang-Baxter algebra in the Bazhanov-Stroganov form

Together with the L-operators introduced in the previous section, we can consider their version related to another choice of the R-matrix. We now consider the standard R-matrix of the ice model,

$$
R_{\mathrm{ice}}(x)=\left[\begin{array}{cccc}
x \omega_{1}-x^{-1} \omega_{1}^{-1} & 0 & 0 & 0 \tag{8}\\
0 & x-x^{-1} & \omega_{1}-\omega_{1}^{-1} & 0 \\
0 & \omega_{1}-\omega_{1}^{-1} & x-x^{-1} & 0 \\
0 & 0 & 0 & x \omega_{1}-x^{-1} \omega_{1}^{-1}
\end{array}\right]
$$

and the corresponding relations in the Yang-Baxter algebra,

$$
\begin{equation*}
R_{\text {ice }}(x) \stackrel{1}{L}_{\text {ice }}(x y) \stackrel{2}{L}_{\text {ice }}(y)=\stackrel{2}{L}_{\text {ice }}(y) \stackrel{1}{L}_{\text {ice }}(x y) R_{\text {ice }}(x) \tag{9}
\end{equation*}
$$

The N-dimensional representation of algebra (9) can be written as

$$
L_{\mathrm{ice}}\left(y, p_{1}, p_{2}\right)=\left(\begin{array}{cc}
y^{-1} c_{1} c_{2} Z_{1}-b_{1} b_{2} y Z_{1}^{-1} & -\left(b_{1} d_{2} Z_{1}^{-1}-c_{1} a_{2} Z_{1}\right) X \\
\omega_{1} X^{-1}\left(d_{1} b_{2} Z_{1}^{-1}-a_{1} c_{2} Z_{1}\right) & y^{-1} d_{1} d_{2} Z_{1}^{-1}-a_{1} a_{2} \omega_{1}^{2} y Z_{1}
\end{array}\right)
$$

where the operators Z_{1} and X satisfy the relations

$$
Z_{1}^{N}=1, \quad X^{N}=1, \quad Z_{1} X=\omega_{1} X Z_{1}
$$

Substituting

$$
\begin{aligned}
& R_{12} \rightarrow C_{1}^{-1}(x y) C_{2}^{-1}(y) R_{12} C_{2}(y) C_{1}(x y) \\
& L_{1}(x y) \rightarrow C_{1}^{-1}(x y) L_{1}(x y) C_{1}(x y), \quad L_{2}(y) \rightarrow C_{2}^{-1}(y) L_{2}(y) C_{2}(y)
\end{aligned}
$$

where

$$
C(y)=\left(\begin{array}{ll}
1 & 0 \\
0 & y
\end{array}\right)
$$

and the subscript of the matrix C indicates the space in which this matrix acts, we find that the equation $R L L=L L R$ remains valid. We then have

$$
\mathcal{R}(x)=\left(\begin{array}{cccc}
x \omega_{1}-x^{-1} \omega_{1}^{-1} & 0 & 0 & 0 \tag{10}\\
0 & x-x^{-1} & x\left(\omega_{1}-\omega_{1}^{-1}\right) & 0 \\
0 & x^{-1}\left(\omega_{1}-\omega_{1}^{-1}\right) & x-x^{-1} & 0 \\
0 & 0 & 0 & x \omega_{1}-x^{-1} \omega_{1}^{-1}
\end{array}\right)
$$

and the L-operator is

$$
\mathcal{L}\left(y, p_{1}, p_{2}\right)=\left(\begin{array}{cc}
y^{-1} c_{1} c_{2} Z_{1}-b_{1} b_{2} y Z_{1}^{-1} & -y\left(b_{1} d_{2} Z_{1}^{-1}-c_{1} a_{2} Z_{1}\right) X \tag{11}\\
\omega_{1} y^{-1} X^{-1}\left(d_{1} b_{2} Z_{1}^{-1}-a_{1} c_{2} Z_{1}\right) & y^{-1} d_{1} d_{2} Z_{1}^{-1}-a_{1} a_{2} \omega_{1}^{2} y Z_{1}
\end{array}\right) .
$$

Exactly this L-operator was found in [5]. We call it the cyclic representation of the algebra of monodromy matrices in the Bazhanov-Stroganov form.

We now multiply $L(y)$ by $y Z_{1}$ and introduce the notation

$$
v=y^{2}, \quad Z=Z_{1}^{2}, \quad \omega=\omega_{1}^{2}
$$

We then obtain operator (4). For the equation $R L L=L L R$ to hold, we must multiply the R-matrix as follows:

$$
R(u)=-\omega_{1} x K_{1} \mathcal{R}(x) K_{2}^{-1}
$$

where

$$
u=x^{2}, \quad K=\omega_{1}^{\left(\sigma^{z}-1\right) / 2}=\left(\begin{array}{ll}
1 & 0 \\
0 & \omega_{1}^{-1}
\end{array}\right)
$$

The subscript of the matrix K indicates the space in which this matrix acts. It is easy to see that the matrix R then coincides with (1) and the operator L coincides with (4).

We stress that hereinafter we let L denote the Tarasov cyclic representations and \mathcal{L} denote the cyclic representations in the Bazhanov-Stroganov form. The matrix elements of the L-operators are denoted by $L_{i \alpha}^{j \beta}$ and $\mathcal{L}_{i \alpha}^{j \beta}, i, j=0,1$ and $\alpha, \beta=0, \ldots, N-1$.

4. The Q-operator and the $T Q$ equation

The transfer matrix constructed from $\mathcal{L}(u)$,

$$
\mathcal{Q}(u)=\operatorname{tr}_{0} \mathcal{L}_{10}(u) \mathcal{L}_{20}(u) \cdots \mathcal{L}_{n 0}(u)
$$

where the trace is evaluated in the N-dimensional space, has a very important property that makes it the Baxter Q-operator [5]. Namely, this matrix satisfies the $T Q$ equation. We prove this statement.

We consider the equation

$$
\begin{equation*}
\mathcal{R}_{i_{1} i_{2}}^{j_{1} j_{2}}(u) \mathcal{L}_{j_{1} \alpha}^{k_{1} \beta}(u v) \mathcal{L}_{j_{2} \beta}^{k_{2} \gamma}(v)=\mathcal{L}_{i_{2} \alpha}^{j_{2} \beta}(u v) \mathcal{L}_{i_{1} \beta}^{j_{1} \gamma}(v) \mathcal{R}_{j_{1} j_{2}}^{k_{1} k_{2}}(u) \tag{12}
\end{equation*}
$$

Fig. 1
which is shown graphically in Fig. 1. If the indices i_{1} and k_{1} are fixed, both sides of Eq. (12) are operators in the tensor product $\mathbb{C}^{2} \times \mathbb{C}^{N}$. We act with these operators on the vector $\psi_{k_{2} \gamma}$, which belongs to the kernel of the operator $\mathcal{L}_{23}(v)$, that is, on the vector satisfying the equation

$$
\mathcal{L}_{j_{2} \beta}^{k_{2} \gamma}(v) \psi_{k_{2} \gamma}=0
$$

A kernel of $\mathcal{L}_{23}(v)$ is nontrivial only at some special values of the spectral parameter $v=v_{*}: v_{*}^{2}=c_{1} d_{1} / a_{1} b_{1}$ or $v_{*}^{2}=c_{2} d_{2} / a_{2} b_{2}$. It can be seen from Fig. 1 that the kernel of the operator $\mathcal{L}_{23}\left(v_{*}\right)$ is a subspace that is invariant with respect to the tensor product $\mathcal{L}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)$. In this case, the complement of the kernel considered as a coset space is also an invariant subspace. The matrix of the operator $\mathcal{L}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)$ therefore has a block-diagonal form,

$$
\mathcal{L}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)=\left(\begin{array}{cc}
P_{1} & * \\
0 & P_{2}
\end{array}\right)
$$

where all blocks are N-dimensional square matrices and stars denote the matrix elements inessential for us. We introduce the ordering of the basis vectors as follows: the first N vectors generate the kernel, and the remaining N vectors generate its complement.

Let the equations

$$
\begin{equation*}
P_{1}=\phi_{1} \mathcal{L}\left(u v_{*} \lambda\right), \quad P_{2}=\phi_{2} \mathcal{L}\left(u v_{*} \lambda^{-1}\right) \tag{13}
\end{equation*}
$$

hold for some values of the parameters of $\mathcal{L}\left(v_{*}\right)$. After multiplying n copies of the operator $\mathcal{L}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)$ in the spaces 2 and 3 (see Fig. 2) and evaluating the trace, we then obtain the equation

$$
\begin{equation*}
\widetilde{\mathcal{Q}}\left(u v_{*}\right) T(u)=\phi_{1}^{n} \widetilde{\mathcal{Q}}\left(u v_{*} \lambda\right)+\phi_{2}^{n} \widetilde{\mathcal{Q}}\left(u v_{*} \lambda^{-1}\right) \tag{14}
\end{equation*}
$$

where

$$
\widetilde{\mathcal{Q}}\left(u v_{*}\right)=\operatorname{tr}_{3} \mathcal{L}_{13}\left(u v_{*}\right) \mathcal{L}_{1^{\prime} 3}\left(u v_{*}\right) \cdots \mathcal{L}_{1^{(n)} 3}
$$

Fig. 2
and $T(u)$ is the standard transfer matrix of the ice model. Substituting $\mathcal{Q}(u)=\widetilde{\mathcal{Q}}\left(u v_{*}\right)$, we obtain the $T Q$ equation.

Unfortunately, we cannot realize this scheme for the given definition of the operator $\mathcal{L}(v)$, because it is impossible to satisfy conditions (13) for any set of the parameters. But we can redefine the operator $\mathcal{L}(v)$ such that condition (13) and hence Eq. (14) do hold [5]. For this, we make p_{1} depend on the spectral parameter v and p_{2} remain unchanged:

$$
p_{1}(v)=\left(a_{1} v^{-1}, b_{1}, c_{1}, d_{1} v\right), \quad p_{2}(v)=\left(a_{2}, b_{2}, c_{2}, d_{2}\right)
$$

It is shown in Appendix A that $\mathcal{Q}(u)=\mathcal{Q}\left(u, p_{1}(u), p_{2}\right)$ does satisfy the $T Q$ equation,

$$
\mathcal{Q}(u) T(u)=\left(u-u^{-1}\right)^{n} \mathcal{Q}(u \omega)+\left(u \omega-u^{-1} \omega^{-1}\right)^{n} \mathcal{Q}\left(u \omega^{-1}\right)
$$

where $T(u)$ is the standard transfer matrix of the ice model.

5. The elementary isomorphisms: The special case

We consider two representations of the L-operator algebra: $L\left(u, p_{1}, p_{2}\right)$ and $L\left(u, p_{2}, p_{1}\right)$. Let the parameters p_{1} and p_{2} be such that these representations are equivalent. We introduce the operator G satisfying the equation

$$
\begin{equation*}
G(Z) L\left(u, p_{1}, p_{2}\right)=L\left(u, p_{2}, p_{1}\right) G(Z) \tag{15}
\end{equation*}
$$

where $G(Z)$ acts in the N-dimensional space.
We now consider two tensor products of a pair of cyclic representations: $L_{1}\left(u, p_{1}, p_{2}\right) L_{2}\left(u, p_{3}, p_{4}\right)$ and $L_{1}\left(u, p_{1}, p_{3}\right) L_{2}\left(u, p_{2}, p_{4}\right)$ (note the permutation $\left.p_{2} \leftrightarrow p_{3}\right)$. Let the parameters p_{1}, p_{2}, p_{3}, and p_{4} be such that these two representations are equivalent. We introduce the intertwining operator F,

$$
\begin{equation*}
F\left(X_{1} X_{2}^{-1}\right) L_{1}\left(u, p_{1}, p_{2}\right) L_{2}\left(u, p_{3}, p_{4}\right)=L_{1}\left(u, p_{1}, p_{3}\right) L_{2}\left(u, p_{2}, p_{4}\right) F\left(X_{1} X_{2}^{-1}\right) \tag{16}
\end{equation*}
$$

where $F\left(X_{1} X_{2}^{-1}\right)$ acts in the N-dimensional space.
It turns out that conditions (5) certainly suffice for G and F to exist. These two operators are

$$
\begin{align*}
& \frac{G\left(p_{1}, p_{2} ; \omega^{k}\right)}{G\left(p_{1}, p_{2} ; 1\right)}=\prod_{j=1}^{k} \frac{d_{1} b_{2}-a_{1} c_{2} \omega^{j}}{b_{1} d_{2}-c_{1} a_{2} \omega^{j}} \tag{17}\\
& \frac{F\left(p_{1}, p_{2} ; \omega^{k}\right)}{F\left(p_{1}, p_{2} ; 1\right)}=\prod_{j=1}^{k} \frac{\omega a_{1} d_{2}-d_{1} a_{2} \omega^{j}}{c_{1} b_{2}-b_{1} c_{2} \omega^{j}} \tag{18}
\end{align*}
$$

where we let $G\left(p_{1}, p_{2} ; \omega^{k}\right)$ and $F\left(p_{1}, p_{2} ; \omega^{k}\right)$ denote the diagonal matrix elements of the N-dimensional matrices $G\left(p_{1}, p_{2} ; Z\right)$ and $F\left(p_{1}, p_{2} ; X_{1} X_{2}^{-1}\right)$ in their respective eigenvalue bases (G and F cannot be brought to the diagonal form simultaneously). We calculate these two operators in a more general case in the next section, but now we merely note that formulas (17) and (18) coincide with formulas (7).

The existence of elementary isomorphisms of G and F explains the factoring of the R-matrix of the chiral Potts model. Permuting the pairs, we obtain the chain

$$
\left(p_{1}, p_{2}\right)\left(p_{3}, p_{4}\right) \xrightarrow{F_{1}}\left(p_{1}, p_{3}\right)\left(p_{2}, p_{4}\right) \xrightarrow{G_{1}, G_{2}}\left(p_{3}, p_{1}\right)\left(p_{4}, p_{2}\right) \xrightarrow{F_{2}}\left(p_{3}, p_{4}\right)\left(p_{1}, p_{2}\right)
$$

The factoring of the R-matrix then becomes evident.

6. The general case

6.1. The \boldsymbol{G}-operator. We consider the two representations $L\left(u, p_{1}, \bar{p}_{1}\right)$ and $L\left(u, p_{2}, \bar{p}_{2}\right)$ of the L operator algebra. We want to find the conditions for these representations to be equivalent and find the corresponding intertwiner, which is a generalization of the operator G introduced in the previous section (formula (15)). For simplicity, we let the same symbol G denote this generalized intertwiner. The two representations are equivalent if the equations

$$
\begin{array}{ll}
a_{1}^{N} \bar{a}_{1}^{N}=a_{2}^{N} \bar{a}_{2}^{N}, & b_{1}^{N} \bar{b}_{1}^{N}=b_{2}^{N} \bar{b}_{2}^{N} \\
\frac{\bar{c}_{1}^{N} \bar{d}_{1}^{N}}{\bar{a}_{1}^{N} \bar{b}_{1}^{N}}=\frac{c_{2}^{N} d_{2}^{N}}{a_{2}^{N} b_{2}^{N}}, & \frac{\bar{c}_{2}^{N} \bar{d}_{2}^{N}}{\bar{a}_{2}^{N} \bar{b}_{2}^{N}}=\frac{c_{1}^{N} d_{1}^{N}}{a_{1}^{N} b_{1}^{N}}, \tag{19}\\
\frac{d_{1}^{N} \bar{d}_{1}^{N}}{a_{1}^{N} \bar{a}_{1}^{N}}=\frac{d_{2}^{N} \bar{d}_{2}^{N}}{a_{2}^{N} \bar{a}_{2}^{N}}, & d_{1}^{N} \bar{b}_{1}^{N}-a_{1}^{N} \bar{c}_{1}^{N}=d_{2}^{N} \bar{b}_{2}^{N}-a_{2}^{N} \bar{c}_{2}^{N}
\end{array}
$$

hold (see Appendix C).
We consider the simplest case where we extract the N th roots by simply erasing the letter N. As a result, we obtain the system

$$
\begin{array}{ll}
a_{1} \bar{a}_{1}=a_{2} \bar{a}_{2}, & b_{1} \bar{b}_{1}=b_{2} \bar{b}_{2}, \\
\frac{\bar{c}_{1} \bar{d}_{1}}{\bar{a}_{1} \bar{b}_{1}}=\frac{c_{2} d_{2}}{a_{2} b_{2}}, & \frac{\bar{c}_{2} \bar{d}_{2}}{\bar{a}_{2} \bar{b}_{2}}=\frac{c_{1} d_{1}}{a_{1} b_{1}}, \tag{20}\\
d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2}, & d_{1}^{N} \bar{b}_{1}^{N}-a_{1}^{N} \bar{c}_{1}^{N}=d_{2}^{N} \bar{b}_{2}^{N}-a_{2}^{N} \bar{c}_{2}^{N} .
\end{array}
$$

We find the operator G satisfying the equation

$$
G L\left(u, p_{1}, \bar{p}_{1}\right)=L\left(u, p_{2}, \bar{p}_{2}\right) G
$$

If conditions (20) are satisfied, then the operator G exists. We now prove this. Using the ansatz

$$
G=G(Z)
$$

we obtain the system of equations

$$
\begin{aligned}
& G(Z) A_{1}=A_{2} G(Z) \\
& G(Z) B_{1}=B_{2} G(Z) \\
& G(Z) C_{1}=C_{2} G(Z) \\
& G(Z) D_{1}=D_{2} G(Z)
\end{aligned}
$$

We choose a basis $|k\rangle, k=0, \ldots, N-1(\bmod N)$:

$$
Z|k\rangle=\omega^{k}|k\rangle, \quad X|k\rangle=|k+1\rangle
$$

It is clear that the matrix $G(Z)$ is diagonal in this basis. We now find its nonzero matrix elements.
The first equation of the obtained system is

$$
G(Z)\left(c_{1} \bar{c}_{1} Z-b_{1} \bar{b}_{1} u\right)=\left(c_{2} \bar{c}_{2} Z-b_{2} \bar{b}_{2} u\right) G(Z)
$$

Acting on the vector $|k\rangle$ with the left- and right-hand sides of this equality and comparing the coefficients at the same powers of u, we obtain the parameter restrictions

$$
\begin{equation*}
c_{1} \bar{c}_{1}=c_{2} \bar{c}_{2}, \quad b_{1} \bar{b}_{1}=b_{2} \bar{b}_{2} \tag{21}
\end{equation*}
$$

From the fourth equation,

$$
G(Z)\left(d_{1} \bar{d}_{1}-a_{1} \bar{a}_{1} \omega u Z\right)=\left(d_{2} \bar{d}_{2}-a_{2} \bar{a}_{2} \omega u Z\right) G(Z)
$$

we similarly obtain

$$
\begin{equation*}
d_{1} \bar{d}_{1}=d_{2} \bar{d}_{2}, \quad a_{1} \bar{a}_{1}=a_{2} \bar{a}_{2} \tag{22}
\end{equation*}
$$

The second equation is

$$
G(Z) X^{-1}\left[d_{1} \bar{b}_{1}-a_{1} \bar{c}_{1} Z\right]=\left[d_{2} \bar{b}_{2}-a_{2} \bar{c}_{2} Z\right] G(Z)
$$

and it implies that

$$
\begin{equation*}
G\left(\omega^{k+1}\right)=\frac{d_{1} \bar{b}_{1}-a_{1} \bar{c}_{1} \omega^{k+1}}{d_{2} \bar{b}_{2}-a_{2} \bar{c}_{2} \omega^{k+1}} G\left(\omega^{k}\right) \tag{23}
\end{equation*}
$$

where we let $G\left(\omega^{k}\right), k=0, \ldots, N-1$, denote the diagonal matrix elements of the matrix $G(Z)$. From the third equation,

$$
G(Z)\left[b_{1} \bar{d}_{1}-c_{1} \bar{a}_{1} Z\right] X=\left[b_{2} \bar{d}_{2}-c_{2} \bar{a}_{2} Z\right] X G(Z)
$$

we can easily derive

$$
\begin{equation*}
G\left(\omega^{k+1}\right)=\frac{b_{2} \bar{d}_{2}-c_{2} \bar{a}_{2} \omega^{k+1}}{b_{1} \bar{d}_{1}-c_{1} \bar{a}_{1} \omega^{k+1}} G\left(\omega^{k}\right) \tag{24}
\end{equation*}
$$

in the same way.
Because the function $G\left(\omega^{k}\right)$ is single valued, we obtain

$$
\left(d_{1} \bar{b}_{1}-a_{1} \bar{c}_{1} \omega^{k+1}\right)\left(b_{1} \bar{d}_{1}-c_{1} \bar{a}_{1} \omega^{k+1}\right)=\left(d_{2} \bar{b}_{2}-a_{2} \bar{c}_{2} \omega^{k+1}\right)\left(b_{2} \bar{d}_{2}-c_{2} \bar{a}_{2} \omega^{k+1}\right)
$$

Comparing coefficients at the same powers of ω and taking (21) and (22) into account, we obtain the additional condition

$$
\begin{equation*}
\frac{\bar{c}_{1} \bar{d}_{1}}{\bar{a}_{1} \bar{b}_{1}}+\frac{c_{1} d_{1}}{a_{1} b_{1}}=\frac{\bar{c}_{2} \bar{d}_{2}}{\bar{a}_{2} \bar{b}_{2}}+\frac{c_{2} d_{2}}{a_{2} b_{2}} \tag{25}
\end{equation*}
$$

Further, we obtain

$$
\begin{equation*}
d_{1}^{N} \bar{b}_{1}^{N}-a_{1}^{N} \bar{c}_{1}^{N}=d_{2}^{N} \bar{b}_{2}^{N}-a_{2}^{N} \bar{c}_{2}^{N} \tag{26}
\end{equation*}
$$

from the periodicity condition $G\left(\omega^{N+1}\right)=G(\omega)$. Using the gauge symmetries of the L-operators, we can set

$$
\begin{equation*}
a_{1}=\bar{a}_{2}, \quad b_{1}=\bar{b}_{2} \tag{27}
\end{equation*}
$$

It then follows from (20) that (21), (22), (25), and (26) are valid. The matrix elements $G\left(\omega^{k}\right)$ therefore exist and are given by recursive relation (23).

We can easily rewrite $G\left(\omega^{k}\right)$ in terms of p_{1} and \bar{p}_{1}. Substituting

$$
\bar{c}_{2}=\frac{c_{1} \bar{c}_{1}}{c_{2}}
$$

in (26) and expressing c_{2} in terms of p_{1} and \bar{p}_{1},

$$
c_{2}=\bar{c}_{1} \sqrt[N]{\frac{b_{1}^{N} \bar{d}_{1}^{N}-c_{1}^{N} \bar{a}_{1}^{N}}{d_{1}^{N} \bar{b}_{1}^{N}-a_{1}^{N} \bar{c}_{1}^{N}}}=\Lambda\left(p_{1}, \bar{p}_{1}\right) \bar{c}_{1},
$$

where we introduce the new function

$$
\Lambda\left(p_{1}, p_{2}\right)=\sqrt[N]{\frac{b_{1}^{N} d_{2}^{N}-c_{1}^{N} a_{2}^{N}}{d_{1}^{N} b_{2}^{N}-a_{1}^{N} c_{2}^{N}}}
$$

we obtain

$$
\frac{G\left(p_{1}, \bar{p}_{1} ; \omega^{k}\right)}{G\left(p_{1}, \bar{p}_{1} ; 1\right)}=\Lambda\left(p_{1}, \bar{p}_{1}\right)^{k} \prod_{j=1}^{k} \frac{d_{1} \bar{b}_{1}-a_{1} \bar{c}_{1} \omega^{j}}{\bar{d}_{1} b_{1}-\bar{a}_{1} c_{1} \omega^{j}}
$$

We stress that G depends on only p_{1} and \bar{p}_{1}.
The operator G just found generates an isomorphism of two representations $L\left(u, p_{1}, \bar{p}_{1}\right)$ and $L\left(u, p_{2}, \bar{p}_{2}\right)$ of the algebra of monodromy matrices with the parameters p_{2} and \bar{p}_{2} depending on p_{1} and \bar{p}_{1} as follows:

$$
\begin{array}{ll}
a_{2}=\bar{a}_{1}, & \bar{a}_{2}=a_{1} \\
b_{2}=\bar{b}_{1}, & \bar{b}_{2}=b_{1}, \\
c_{2}=\Lambda\left(p_{1}, \bar{p}_{1}\right) \bar{c}_{1}, & \bar{c}_{2}=\Lambda\left(p_{1}, \bar{p}_{1}\right)^{-1} c_{1} \tag{28}\\
d_{2}=\Lambda\left(p_{1}, \bar{p}_{1}\right)^{-1} \bar{d}_{1}, & \bar{d}_{2}=\Lambda\left(p_{1}, \bar{p}_{1}\right) d_{1}
\end{array}
$$

The operator G obtained is a generalization of the operator G in (7), (15). In that special case, we must set $p_{2}=\bar{p}_{1}$ and $\bar{p}_{2}=p_{1}$, thus obtaining the additional constraint $\Lambda\left(p_{1}, \bar{p}_{1}\right)=1$ on the parameters p_{1} and \bar{p}_{1}.

Remark. We extract the N th roots by simply erasing the letter N. Evidently, the general case reduces to this. A complete investigation, however, can be performed as follows. For two representations to be equivalent, their centers must coincide. But we do not compare all central elements when deriving our conditions. We must add the condition of equality of the corresponding quantum determinants to our system of equations. We have not completely investigated what this additional condition leads to. Apparently, it can be used to clarify how the N th root can be extracted, and it strongly restricts the number of possibile variants.
6.2. The \boldsymbol{F}-operator. We now consider two representations of the L-operator algebra: $L_{1}\left(u, p_{1}, \bar{p}_{1}\right) \times$ $L_{2}\left(u, p_{2}, \bar{p}_{2}\right)$ and $L_{1}\left(u, p_{3}, \bar{p}_{3}\right) L_{2}\left(u, p_{4}, \bar{p}_{4}\right)$. We find the conditions under which these two representations are equivalent and calculate the corresponding intertwiner. The latter is a generalization of the operator F introduced in formulas (7) and (16).

The matrix of the central elements is

$$
\langle L(u, p, \bar{p})\rangle=\left(\begin{array}{cc}
c^{N} \bar{c}^{N}-b^{N} \bar{b}^{N} u & -u\left(b^{N} \bar{d}^{N}-c^{N} \bar{a}^{N}\right) \tag{29}\\
d^{N} \bar{b}^{N}-a^{N} \bar{c}^{N} & d^{N} \bar{d}^{N}-a^{N} \bar{a}^{N} u
\end{array}\right) .
$$

The necessary condition for the equivalence of the two representations is the coincidence of their centers. Therefore,

$$
\left\langle L_{1}\left(u, p_{1}, \bar{p}_{1}\right)\right\rangle\left\langle L_{2}\left(u, p_{2}, \bar{p}_{2}\right)\right\rangle=\left\langle L_{1}\left(u, p_{3}, \bar{p}_{3}\right)\right\rangle\left\langle L_{2}\left(u, p_{4}, \bar{p}_{4}\right)\right\rangle
$$

From this, we have

$$
\begin{equation*}
\operatorname{det}\left\langle L_{1}\left(u, p_{1}, \bar{p}_{1}\right)\right\rangle \operatorname{det}\left\langle L_{2}\left(u, p_{2}, \bar{p}_{2}\right)\right\rangle=\operatorname{det}\left\langle L_{1}\left(u, p_{3}, \bar{p}_{3}\right)\right\rangle \operatorname{det}\left\langle L_{2}\left(u, p_{4}, \bar{p}_{4}\right)\right\rangle \tag{30}
\end{equation*}
$$

We show in Appendix C that these conditions yield the following relations between the parameters (we do not consider the trivial case where $p_{3}=p_{1}, \bar{p}_{3}=\bar{p}_{1}, p_{4}=p_{2}$, and $\bar{p}_{4}=\bar{p}_{2}$):

$$
\begin{align*}
& b_{1}^{N} \bar{b}_{1}^{N}=b_{3}^{N} \bar{b}_{3}^{N}, b_{2}^{N} \bar{b}_{2}^{N}=b_{4}^{N} \bar{b}_{4}^{N}, \\
& a_{1}^{N} \bar{a}_{1}^{N}=a_{3}^{N} \bar{a}_{3}^{N}, a_{2}^{N} \bar{a}_{2}^{N}=a_{4}^{N} \bar{a}_{4}^{N}, \\
& d_{1}^{N} \bar{b}_{1}^{N}=d_{3}^{N} \bar{b}_{3}^{N}, a_{2}^{N} \bar{c}_{2}^{N}=a_{4}^{N} \bar{c}_{4}^{N}, \\
& \frac{c_{2}^{N} d_{2}^{N}}{a_{2}^{N} b_{2}^{N}}=\frac{\bar{c}_{3}^{N}}{\bar{a}_{3}^{N} \bar{b}_{3}^{N}}, \quad \frac{c_{1}^{N} d_{1}^{N}}{a_{1}^{N} b_{1}^{N}}=\frac{c_{3}^{N} d_{3}^{N}}{a_{3}^{N} b_{3}^{N}}, \tag{31}\\
& \frac{\bar{c}_{2}^{N} \bar{d}_{2}^{N}}{\bar{a}_{2}^{N} \bar{b}_{2}^{N}}=\frac{\bar{c}_{4}^{N}}{\bar{a}_{4}^{N} \bar{d}_{4}^{N}}, \quad \frac{c_{4}^{N} d_{4}^{N}}{a_{4}^{N} b_{4}^{N}}=\frac{\bar{c}_{1}^{N}}{\bar{a}_{1}^{N} \bar{b}_{1}^{N}}, \\
& b_{2}^{N} \bar{c}_{3}^{N}=c_{2}^{N} \bar{b}_{1}^{N} \frac{b_{2}^{N} \bar{c}_{1}^{N}-\bar{a}_{1}^{N} d_{2}^{N}}{c_{2}^{N} \bar{b}_{1}^{N}-a_{2}^{N} \bar{d}_{1}^{N}} \\
& \bar{a}_{1}^{N} d_{4}^{N}=\bar{d}_{1}^{N} a_{2}^{N} \frac{b_{2}^{N} \bar{c}_{1}^{N}-\bar{a}_{1}^{N} d_{2}^{N}}{c_{2}^{N}-a_{2}^{N} \bar{d}_{1}^{N}} .
\end{align*}
$$

We again erase the letter N and obtain

$$
\begin{array}{ll}
b_{1} \bar{b}_{1}=b_{3} \bar{b}_{3}, & b_{2} \bar{b}_{2}=b_{4} \bar{b}_{4}, \\
a_{1} \bar{a}_{1}=a_{3} \bar{a}_{3}, & a_{2} \bar{a}_{2}=a_{4} \bar{a}_{4}, \\
d_{1} \bar{b}_{1}=d_{3} \bar{b}_{3}, & a_{2} \bar{c}_{2}=a_{4} \bar{c}_{4} \\
\frac{c_{2} d_{2}}{a_{2} b_{2}}=\frac{\bar{c}_{3} \bar{d}_{3}}{\bar{a}_{3} \bar{b}_{3}}, & \frac{c_{1} d_{1}}{a_{1} b_{1}}=\frac{c_{3} d_{3}}{a_{3} b_{3}}, \tag{32}\\
\frac{\bar{c}_{2} \bar{d}_{2}}{\bar{a}_{2} \bar{b}_{2}}=\frac{\bar{c}_{4} \bar{d}_{4}}{\bar{a}_{4} \bar{b}_{4}}, & \frac{c_{4} d_{4}}{a_{4} b_{4}}=\frac{\bar{c}_{1} \bar{d}_{1}}{\bar{a}_{1} \bar{b}_{1}}
\end{array}
$$

Recalling the gauge symmetries of the L-operator, we observe that the substitution

$$
\begin{array}{ll}
a \rightarrow \lambda a, & \bar{a} \rightarrow \lambda^{-1} \bar{a}, \\
c \rightarrow \lambda c, & \bar{c} \rightarrow \lambda^{-1} \bar{c}, \\
b \rightarrow b, & \bar{b} \rightarrow \bar{b}, \quad d \rightarrow d, \quad \bar{d} \rightarrow \bar{d}
\end{array}
$$

does not change the operator $L(u, p, \bar{p})$. The same is true for the substitution

$$
\begin{array}{ll}
b \rightarrow \lambda b, & \bar{b} \rightarrow \lambda^{-1} \bar{b}, \\
d \rightarrow \lambda d, & \bar{d} \rightarrow \lambda^{-1} \bar{d}, \\
a \rightarrow a, & \bar{a} \rightarrow \bar{a}, \quad c \rightarrow c, \quad \bar{c} \rightarrow \bar{c}
\end{array}
$$

Using the gauge degrees of freedom, we can set

$$
\begin{equation*}
b_{1}=b_{3}, \quad b_{2}=b_{4}, \quad a_{1}=a_{3}, \quad a_{2}=a_{4} \tag{33}
\end{equation*}
$$

From this and from (32), we find that

$$
\begin{array}{llll}
\bar{b}_{1}=\bar{b}_{3}, & \bar{b}_{2}=\bar{b}_{4}, & \bar{a}_{1}=\bar{a}_{3}, & \bar{a}_{2}=\bar{a}_{4} \\
d_{1}=d_{3}, & \bar{d}_{2}=\bar{d}_{4}, & c_{1}=c_{3}, & \bar{c}_{2}=\bar{c}_{4} \tag{34}
\end{array}
$$

Moreover, we have the equations

$$
\begin{equation*}
\bar{c}_{3} \bar{d}_{3}=c_{2} d_{2} \frac{\bar{a}_{3} \bar{b}_{3}}{a_{2} b_{2}}, \quad c_{4} d_{4}=\bar{c}_{1} \bar{d}_{1} \frac{a_{2} b_{2}}{\bar{a}_{1} \bar{b}_{1}} \tag{35}
\end{equation*}
$$

From formulas (31), we now obtain

$$
\begin{align*}
& \bar{c}_{3}^{N}=\frac{c_{2}^{N} \bar{b}_{1}^{N}}{b_{2}^{N}} \frac{b_{2}^{N} \bar{c}_{1}^{N}-\bar{a}_{1}^{N} d_{2}^{N}}{c_{2}^{N} \bar{b}_{1}^{N}-a_{2}^{N} \bar{d}_{1}^{N}} \tag{36}\\
& d_{4}^{N}=\frac{\bar{d}_{1}^{N} a_{2}^{N}}{\bar{a}_{1}^{N}} \frac{b_{2}^{N} \bar{c}_{1}^{N}-\bar{a}_{1}^{N} d_{2}^{N}}{c_{2}^{N} \bar{b}_{1}^{N}-a_{2}^{N} \bar{d}_{1}^{N}} . \tag{37}
\end{align*}
$$

We now find the matrix F intertwining the two representations in question. In particular, we prove that conditions (33)-(37) are not only necessary but also sufficient for the existence of F. We start with

$$
\begin{equation*}
F L_{1}\left(p_{1}, \bar{p}_{1}\right) L_{2}\left(p_{2}, \bar{p}_{2}\right)=L_{1}\left(p_{3}, \bar{p}_{3}\right) L_{2}\left(p_{4}, \bar{p}_{4}\right) F \tag{38}
\end{equation*}
$$

We now find the operator F in the form $F\left(X_{1} X_{2}^{-1}\right)$, where X_{1} and X_{2} are the shift matrices acting in the respective first and second N-dimensional spaces. As shown in Appendix D, F does exist and is expressed through $p_{1}, \bar{p}_{1}, p_{2}$, and \bar{p}_{2},

$$
\frac{F\left(\bar{p}_{1}, p_{2} ; \omega^{k}\right)}{F\left(\bar{p}_{1}, p_{2} ; 1\right)}=\Omega\left(\bar{p}_{1}, p_{2}\right)^{-k} \prod_{j=1}^{k} \frac{\bar{c}_{1} b_{2}-\bar{a}_{1} d_{2} \omega^{j}}{\bar{b}_{1} c_{2}-\bar{d}_{1} a_{2} \omega^{j}}
$$

where we define the new function

$$
\Omega\left(p_{1}, p_{2}\right)=\sqrt[N]{\frac{b_{1}^{N} c_{2}^{N}-d_{1}^{N} a_{2}^{N}}{c_{1}^{N} b_{2}^{N}-a_{1}^{N} d_{2}^{N}}}
$$

for further convenience. We stress that F depends on only the parameters \bar{p}_{1} and p_{2}. The action of F is then given by the formulas

$$
\begin{align*}
& a_{3}=a_{1}, \quad \bar{a}_{3}=\bar{a}_{1}, \quad a_{4}=a_{2}, \quad \bar{a}_{4}=\bar{a}_{2}, \\
& b_{3}=b_{1}, \quad \bar{b}_{3}=\bar{b}_{1}, \quad b_{4}=b_{2}, \quad \bar{b}_{4}=\bar{b}_{2}, \\
& c_{3}=c_{1}, \quad d_{3}=d_{1}, \quad \bar{c}_{4}=\bar{c}_{2}, \quad \bar{d}_{4}=\bar{d}_{2}, \tag{39}\\
& \bar{c}_{3}=\Omega\left(\bar{p}_{1}, p_{2}\right) \frac{c_{2} \bar{b}_{1}}{b_{2}}, \quad c_{4}=\Omega\left(\bar{p}_{1}, p_{2}\right)^{-1} \frac{\bar{c}_{1} b_{2}}{\bar{b}_{1}}, \\
& \bar{d}_{3}=\Omega\left(\bar{p}_{1}, p_{2}\right)^{-1} \frac{d_{2} \bar{a}_{1}}{a_{2}}, \quad d_{4}=\Omega\left(\bar{p}_{1}, p_{2}\right) \frac{\bar{d}_{1} a_{2}}{\bar{a}_{1}} .
\end{align*}
$$

It is clear that the expression obtained for F is gauge-invariant.
We recall that in addition to the gauge symmetry, the tensor product of two L-operators has another symmetry, namely, the unity can be inserted between these two operators:

$$
L_{1}\left(p_{3}, \bar{p}_{3}\right) L_{2}\left(p_{4}, \bar{p}_{4}\right)=L_{1}\left(p_{3}, \bar{p}_{3}\right) M^{-1} M L_{2}\left(p_{4}, \bar{p}_{4}\right)
$$

where M is an arbitrary 2×2 matrix. We set

$$
M=\left(\begin{array}{cc}
\frac{\bar{b}_{1}}{b_{2}} & 0 \\
0 & \frac{\bar{a}_{1}}{a_{2}}
\end{array}\right)
$$

and apply this additional symmetry to our L-operators. As a result, we obtain the product of new L operators, whose parameters are expressed through $p_{1}, \bar{p}_{1}, p_{2}$, and \bar{p}_{2} as

$$
\begin{array}{lll}
a_{3}=a_{1}, & \bar{a}_{3}=a_{2}, & a_{4}=\bar{a}_{1}, \\
b_{3}=b_{1}, & \bar{b}_{3}=\bar{a}_{2}, \\
c_{3}, & b_{4}=\bar{b}_{1}, & \bar{b}_{4}=\bar{b}_{2} \tag{40}\\
c_{3}, & d_{3}=d_{1}, & \bar{c}_{4}=\bar{c}_{2}, \\
\bar{d}_{4}=\bar{d}_{2} \\
\bar{c}_{3}=\Omega\left(\bar{p}_{1}, p_{2}\right) c_{2}, & c_{4}=\Omega\left(\bar{p}_{1}, p_{2}\right)^{-1} \bar{c}_{1} \\
\bar{d}_{3}=\Omega\left(\bar{p}_{1}, p_{2}\right)^{-1} d_{2}, & d_{4}=\Omega\left(\bar{p}_{1}, p_{2}\right) \bar{d}_{1}
\end{array}
$$

The expression for $F\left(\omega^{k}\right)$ remains unchanged.
The case in [6] was a special case of the approach in question and can be obtained by setting

$$
p_{3}=p_{1}, \quad \bar{p}_{3}=p_{2}, \quad p_{4}=\bar{p}_{1}, \quad \bar{p}_{4}=\bar{p}_{2}
$$

in all formulas. In particular, we can easily derive the F-operator in relation (7). For this, we must impose the additional restriction

$$
\Omega\left(\bar{p}_{1}, p_{2}\right)=1
$$

on the parameters \bar{p}_{1} and p_{2}.
The obtained operators G and F satisfy the relation that generalizes the star-triangle relation of the chiral Potts model [2]. Namely, we have

$$
\begin{equation*}
G\left(\tilde{q}, \tilde{r} ; Z_{1}\right) F\left(\tilde{p}, r ; X_{1} X_{2}^{-1}\right) G\left(p, q ; Z_{1}\right)=\mu F\left(p^{\prime}, q^{\prime} ; X_{1} X_{2}^{-1}\right) G\left(p, r^{\prime} ; Z_{1}\right) F\left(q, r ; X_{1} X_{2}^{-1}\right) \tag{41}
\end{equation*}
$$

where μ is a constant and the intertwiners depend on the parameters that are expressed in terms of p, q, and r by the formulas

$$
\left.\begin{array}{l}
\begin{cases}a_{r}^{\prime}=a_{r}, \\
b_{r}^{\prime}=b_{r}, \\
c_{r}^{\prime}=\Omega(q, r) c_{r}, \\
d_{r}^{\prime}=\Omega(q, r)^{-1} d_{r},\end{cases} \\
\left\{\begin{array}{l}
a_{p}^{\prime}=a_{p}, \\
b_{p}^{\prime}=b_{p}, \\
c_{p}^{\prime}=\Lambda\left(p, r^{\prime}\right)^{-1} c_{p}, \\
d_{p}^{\prime}=\Lambda\left(p, r^{\prime}\right) d_{p},
\end{array}\right. \\
\left\{\begin{array}{l}
a_{q}^{\prime}=a_{q}, \\
b_{q}^{\prime}=b_{q}, \\
c_{q}^{\prime}=\Omega(q, r)^{-1} c_{q} \\
d_{q}^{\prime}=\Omega(q, r) d_{q}
\end{array}\right. \\
\left\{\begin{array}{l}
\tilde{a}_{p}=a_{p}, \\
\tilde{b}_{p}=b_{p}, \\
\tilde{c}_{p}=\Lambda(p, q)^{-1} c_{p}, \\
\tilde{d}_{p}=\Lambda(p, q) d_{p},
\end{array}\right. \\
\tilde{a}_{q}=a_{q}, \\
\tilde{b}_{q}=b_{q}, \\
\tilde{c}_{q}=\Lambda(p, q) c_{q}, \\
\tilde{d}_{q}=\Lambda(p, q)^{-1} d_{q}
\end{array}, \begin{array}{l}
\tilde{a}_{r}=a_{r}, \\
\tilde{b}_{r}=b_{r} \\
\tilde{c}_{r}=\Omega(\tilde{p}, r) c_{r} \\
\tilde{d}_{r}=\Omega(\tilde{p}, r)^{-1} d_{r}
\end{array}\right] .
$$

The proof of these statements is in Appendix E.
Remark. The above statement suggests a new algebraic structure related to the cyclic representations of the monodromy-matrix algebra.

We now consider a Hopf algebra with the generators $L_{i}^{j}\left(p_{1}, p_{2}\right), i, j=0,1, p_{1}, p_{2} \in \mathbb{C}^{4}$. The coproduct is

$$
\Delta\left(L_{i}^{j}\right)=\left(L_{i}^{k}\right)_{1}\left(L_{k}^{j}\right)_{2}
$$

The relations in the Hopf algebra are

$$
\begin{aligned}
& G\left(p_{1}, p_{2}\right) L_{i}^{j}\left(p_{1}, p_{2}\right)=L_{i}^{j}\left(\tilde{p}_{1}, \tilde{p}_{2}\right) G\left(p_{1}, p_{2}\right) \\
& F\left(\bar{p}_{1}, p_{2}\right)\left(L_{i}^{k}\left(p_{1}, \bar{p}_{1}\right)\right)_{1}\left(L_{k}^{j}\left(p_{2}, \bar{p}_{2}\right)\right)_{2}=\left(L_{i}^{k}\left(p_{1}, \tilde{p}_{1}\right)\right)_{1}\left(L_{k}^{j}\left(\tilde{p}_{2}, \bar{p}_{2}\right)\right)_{2} F\left(\bar{p}_{1}, p_{2}\right) \\
& \left(L_{i}^{k}\left(p_{1}, \bar{p}_{1}\right)\right)_{1}\left(L_{k}^{j}\left(p_{2}, \bar{p}_{2}\right)\right)_{2}=\left(L_{i}^{k}\left(p_{1}, \bar{p}_{1}\right)\right)_{1} M_{k}^{l}\left(M^{-1}\right)_{l}^{m}\left(L_{m}^{j}\left(p_{2}, \bar{p}_{2}\right)\right)_{2}
\end{aligned}
$$

where an arbitrary two-dimensional diagonal matrix is denoted by M and the parameters in the right-hand sides of the relations are expressed in terms of the parameters in the left-hand sides by formulas (28) and (40). Repeated indices imply summation.

7. The algebra of the \boldsymbol{Q}-operators

In addition to the operator $\mathcal{Q}(u)$ introduced in Sec. 4 and related to the cyclic representations of the algebra of monodromy matrices in the Bazhanov-Stroganov form, we can consider the operator

$$
Q(u)=\operatorname{tr}_{0} L_{10}(u) L_{20}(u) \cdots L_{k 0}(u)
$$

where the trace is calculated in the N-dimensional space and $L_{i 0}(u)$ are the cyclic representations of the monodromy-matrix algebra in the Tarasov form. The operators $Q(u)$ generate the algebra with the relations following from the properties of the operators $L(u)$,

$$
\begin{align*}
& Q\left(\lambda p_{1}, \bar{p}_{1}\right)=\lambda^{k} Q\left(p_{1}, \bar{p}_{1}\right) \tag{42}\\
& Q\left(p_{1}, \mu \bar{p}_{1}\right)=\mu^{k} Q\left(p_{1}, \bar{p}_{1}\right) \tag{43}\\
& Q\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right)=Q\left(\lambda a_{1}, b_{1}, \lambda c_{1}, d_{1}, \lambda^{-1} \bar{a}_{1}, \bar{b}_{1}, \lambda^{-1} \bar{c}_{1}, \bar{d}_{1}\right) \tag{44}\\
& Q\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right)=Q\left(a_{1}, \mu b_{1}, c_{1}, \mu d_{1}, \bar{a}_{1}, \mu^{-1} \bar{b}_{1}, \bar{c}_{1}, \mu^{-1} \bar{d}_{1}\right) \tag{45}\\
& Q\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right)=Q\left(\bar{a}_{1}, \bar{b}_{1}, \Lambda \bar{c}_{1}, \Lambda^{-1} \bar{d}_{1}, a_{1}, b_{1}, \Lambda^{-1} c_{1}, \Lambda d_{1}\right) \tag{46}\\
& Q\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right) Q\left(a_{2}, b_{2}, c_{2}, d_{2}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right)= \\
& \quad=Q\left(a_{1}, b_{1}, c_{1}, d_{1}, \beta \bar{a}_{1}, \alpha \bar{b}_{1}, \alpha \bar{c}_{1}, \beta \bar{d}_{1}\right) Q\left(\beta^{-1} a_{2}, \alpha^{-1} b_{2}, \alpha^{-1} c_{2}, \beta^{-1} d_{2}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right), \tag{47}\\
& Q\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right) Q\left(a_{2}, b_{2}, c_{2}, d_{2}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right)= \\
& \quad=Q\left(a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, \Omega c_{2}, \Omega^{-1} d_{2}\right) Q\left(\bar{a}_{1}, \bar{b}_{1}, \Omega^{-1} \bar{c}_{1}, \Omega \bar{d}_{1}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right), \tag{48}
\end{align*}
$$

where $\Lambda=\Lambda\left(p_{1}, \bar{p}_{1}\right), \Omega=\Omega\left(\bar{p}_{1}, p_{2}\right)$, and α, β, λ, and μ are arbitrary numbers. The derivation of all these relations can be found in Appendix F.

8. Discussion

We note some questions relevant for future investigations.
The approach used in this paper can be applied to more general cases. In particular, it would be interesting to study the elementary isomorphisms intertwining the cyclic representations of the monodromymatrix algebra related to the elliptic R-matrix and also to the R-matrix corresponding to the quantum algebra $U_{\mathrm{q}}\left(s l_{n}\right)$.

The spectrum of the transfer matrix of the six-vertex model at roots of unity is degenerate [5], [14]. Some finite-dimensional representations of the Q-operator algebra correspond to multidimensional eigensubspaces of the transfer matrix. The Q-operators act on these spaces nontrivially because these operators do not commute with each other in general. Therefore, investigating finite-dimensional representations of the Q-operator algebra given by (42)-(48) can shed light on the properties of the transfer-matrix spectrum.

It would also be interesting to clarify the relationship between the algebra of Q-operators and the $U\left(A_{1}^{1}\right)$ symmetry found in [14]. ${ }^{2}$

Appendix A: The $T Q$ equation

We find the kernel of the operator, $\mathcal{L}_{23}\left(v ; p_{1}(v), p_{2}\right)=\tilde{\mathcal{L}}_{23}(v)$, where

$$
p_{1}(v)=\left(a_{1} v^{-1}, b_{1}, c_{1}, d_{1} v\right), \quad p_{2}=\left(a_{2}, b_{2}, c_{2}, d_{2}\right)
$$

We have

$$
\tilde{\mathcal{L}}_{23}(v)=\left(\begin{array}{cc}
v^{-1} c_{1} c_{2} Z-b_{1} b_{2} v Z^{-1} & -v\left(b_{1} d_{2} Z^{-1}-c_{1} a_{2} Z\right) X \\
\omega v^{-1} X^{-1}\left(d_{1} b_{2} v Z^{-1}-a_{1} c_{2} v^{-1} Z\right) & d_{1} d_{2} Z^{-1}-a_{1} a_{2} \omega^{2} Z
\end{array}\right) .
$$

[^1]Hereafter, we use the following basis $|\alpha\rangle, \alpha=0, \ldots, N-1(\bmod N)$:

$$
Z|\alpha\rangle=\omega^{\alpha}|\alpha\rangle, \quad X|\alpha\rangle=|\alpha+1\rangle
$$

We consider a $2 N$-dimensional vector Ψ

$$
\Psi=\binom{\Phi_{1}}{\Phi_{2}}
$$

where Φ_{1} and Φ_{2} are N-dimensional vectors. We act on Ψ with the operator $\tilde{\mathcal{L}}_{23}(v)$ and equate the result to zero, thus obtaining

$$
\begin{aligned}
& \left(c_{1} c_{2} Z-b_{1} b_{2} v^{2} Z^{-1}\right) \Phi_{1}-v^{2}\left(b_{1} d_{2} Z^{-1}-c_{1} a_{2} Z\right) X \Phi_{2}=0 \\
& \omega X^{-1} v^{-1}\left(d_{1} b_{2} v Z^{-1}-a_{1} c_{2} v^{-1} Z\right) \Phi_{1}+\left(d_{1} d_{2} Z^{-1}-a_{1} a_{2} \omega^{2} Z\right) \Phi_{2}=0
\end{aligned}
$$

It is easy to see that this system has a solution if and only if

$$
v^{2}=v_{*}^{2}=\frac{c_{2} d_{2}}{a_{2} b_{2}}
$$

The vectors generating the kernel are

$$
\Psi_{\alpha}=\binom{-d_{2}|\alpha\rangle}{ b_{2}|\alpha-1\rangle}=-d_{2}|0, \alpha\rangle+b_{2}|1, \alpha-1\rangle
$$

We must now act on the vectors Ψ_{α} with the operator $\tilde{\mathcal{L}}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)$ (it is especially useful that we can use the ordinary matrix multiplication in the two-dimensional space here). Let

$$
\tilde{\mathcal{L}}_{13}\left(u v_{*}\right)=\left(\begin{array}{ll}
A\left(u v_{*}\right) & B\left(u v_{*}\right) \\
C\left(u v_{*}\right) & D\left(u v_{*}\right)
\end{array}\right), \quad \mathcal{R}_{12}(u)=\left(\begin{array}{cc}
a(u) & b(u) \\
c(u) & d(u)
\end{array}\right)
$$

Then

$$
\tilde{\mathcal{L}}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)=\left(\begin{array}{ll}
a(u) A\left(u v_{*}\right)+c(u) B\left(u v_{*}\right) & b(u) A\left(u v_{*}\right)+d(u) B\left(u v_{*}\right) \\
a(u) C\left(u v_{*}\right)+c(u) D\left(u v_{*}\right) & b(u) C\left(u v_{*}\right)+d(u) D\left(u v_{*}\right)
\end{array}\right) .
$$

Acting on the vector Ψ_{α} with each of the four matrix elements, for example, we obtain

$$
\begin{aligned}
(\tilde{\mathcal{L} \mathcal{R}})_{0}^{0} \Psi_{\alpha}= & {\left[a(u) A\left(u v_{*}\right)+c(u) B\left(u v_{*}\right)\right]\left[-d_{2}|0, \alpha\rangle+b_{2}|1, \alpha-1\rangle\right]=} \\
= & -d_{2}\left(u \omega-u^{-1} \omega^{-1}\right)\left(v_{*}^{-1} u^{-1} c_{1} c_{2} \omega^{\alpha}-b_{1} b_{2} u v_{*} \omega^{-\alpha}\right)|0, \alpha\rangle+ \\
& +\omega b_{2}\left\{\left(u-u^{-1}\right)\left(v_{*}^{-1} u^{-1} c_{1} c_{2} \omega^{\alpha-1}-b_{1} b_{2} u v_{*} \omega^{1-\alpha}\right)|1, \alpha-1\rangle+\right. \\
& \left.+u\left(\omega-\omega^{-1}\right)\left(-u v_{*}\right)\left(b_{1} d_{2} \omega^{-\alpha}-c_{1} a_{2} \omega^{\alpha}\right)|0, \alpha\rangle\right\}= \\
= & \left(u-u^{-1}\right)\left(v_{*}^{-1} u^{-1} c_{1} c_{2} \omega^{\alpha-1}-b_{1} b_{2} v_{*} u \omega^{1-\alpha}\right) \Psi_{\alpha} .
\end{aligned}
$$

Analogously,

$$
\begin{aligned}
& (\tilde{\mathcal{L}} \mathcal{R})_{1}^{1} \Psi_{\alpha}=\left(u-u^{-1}\right)\left(d_{1} d_{2} \omega^{-\alpha}-a_{1} a_{2} \omega^{2+\alpha}\right) \Psi_{\alpha} \\
& (\tilde{\mathcal{L}} \mathcal{R})_{0}^{1} \Psi_{\alpha}=\left(u-u^{-1}\right)\left(-v_{*} u\right)\left(b_{1} d_{2} \omega^{-\alpha-1}-c_{1} a_{2} \omega^{\alpha+1}\right) \Psi_{\alpha+1} \\
& (\tilde{\mathcal{L} R})_{1}^{0} \Psi_{\alpha}=\left(u-u^{-1}\right) \omega v_{*}^{-1} u^{-1}\left(d_{1} b_{2} u v_{*} \omega^{1-\alpha}-a_{1} c_{2} u^{-1} v_{*}^{-1} \omega^{\alpha-1}\right) \Psi_{\alpha-1}
\end{aligned}
$$

It is clear that the kernel $\tilde{\mathcal{L}}_{23}\left(v_{*}\right)$ is actually an invariant subspace with respect to the operator $\tilde{\mathcal{L}}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)$. It is easy to see that the obtained N-dimensional matrix is proportional to $\tilde{\mathcal{L}}\left(u v_{*} \omega\right)$,

$$
\left.\tilde{\mathcal{L}}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)\right|_{\text {Ker } \mathcal{L}_{23}}=\left(u-u^{-1}\right) \tilde{\mathcal{L}}\left(u v_{*} \omega\right) .
$$

We now consider the vectors that belong to the complement of the kernel. If we factor by the vectors of the kernel itself, then this complement must be an invariant space with respect to the operator $\tilde{\mathcal{L}}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)$. We choose the basis $\Psi_{\alpha}^{\prime}=|0, \alpha\rangle$. Performing all calculations, we obtain $\left(\bmod \Psi_{\alpha}\right)$

$$
\begin{aligned}
& (\tilde{\mathcal{L} \mathcal{R}})_{0}^{0} \Psi^{\prime}=\left(u \omega-u^{-1} \omega^{-1}\right)\left(v_{*}^{-1} u^{-1} c_{1} c_{2} \omega^{\alpha}-b_{1} b_{2} v_{*} u \omega^{-\alpha}\right) \Psi_{\alpha}^{\prime}, \\
& (\tilde{\mathcal{L} \mathcal{R}})_{1}^{1} \Psi^{\prime}{ }_{\alpha}=\left(u \omega-u^{-1} \omega^{-1}\right)\left(d_{1} d_{2} \omega^{1-\alpha}-a_{1} a_{2} \omega^{1+\alpha}\right) \Psi_{\alpha}^{\prime}, \\
& (\tilde{\mathcal{L} \mathcal{R}})_{0}^{1} \Psi_{\alpha}^{\prime}=\left(u \omega-u^{-1} \omega^{-1}\right)\left(-v_{*} u\right)\left(b_{1} d_{2} \omega^{-\alpha}-c_{1} a_{2} \omega^{\alpha}\right) \Psi_{\alpha+1}^{\prime}, \\
& (\tilde{\mathcal{L} \mathcal{R}})_{1}^{0} \Psi_{\alpha}^{\prime}=\left(u \omega-u^{-1} \omega^{-1}\right) \omega v_{*}^{-1} u^{-1}\left(d_{1} b_{2} u v_{*} \omega^{-\alpha}-a_{1} c_{2} u^{-1} v_{*}^{-1} \omega^{\alpha}\right) \Psi_{\alpha-1}^{\prime} .
\end{aligned}
$$

As in the previous case, it is easy to see that the obtained N-dimensional matrix is proportional to $\tilde{\mathcal{L}}\left(u v_{*} \omega^{-1}\right)$,

$$
\left.\tilde{\mathcal{L}}_{13}\left(u v_{*}\right) \mathcal{R}_{12}(u)\right|_{\left(\operatorname{Ker} \mathcal{L}_{23}\right)^{\perp}}=\left(u \omega-u^{-1} \omega^{-1}\right) \tilde{\mathcal{L}}\left(u v_{*} \omega^{-1}\right) .
$$

We thus find that conditions (13) are satisfied. Then,

$$
\lambda=\omega, \quad \phi_{1}=u-u^{-1}, \quad \phi_{2}=u \omega-u^{-1} \omega^{-1}
$$

and the $T Q$ equation holds,

$$
\mathcal{Q}(u) T(u)=\left(u-u^{-1}\right)^{n} \mathcal{Q}(u \omega)+\left(u \omega-u^{-1} \omega^{-1}\right)^{n} \mathcal{Q}\left(u \omega^{-1}\right)
$$

where

$$
\mathcal{Q}(u)=\operatorname{tr}_{3} \tilde{\mathcal{L}}_{13}(u) \tilde{\mathcal{L}}_{1^{\prime} 3}(u) \cdots \tilde{\mathcal{L}}_{1^{(n)} 3}(u)
$$

Appendix B: The conditions for the equivalence of representations: The Fermat curve

Let N be odd. We now prove that in the general case, the representations $L_{1}\left(u, p_{1}, p_{2}\right) L_{2}\left(u, p_{3}, p_{4}\right)$ and $L_{1}\left(u, p_{3}, p_{4}\right) L_{2}\left(u, p_{1}, p_{2}\right)$ are equivalent if and only if we can choose $p_{i}, i=1,2,3,4$, satisfying the conditions

$$
\frac{a_{i}^{N} \pm b_{i}^{N}}{c_{i}^{N} \pm d_{i}^{N}}=\lambda_{ \pm}
$$

which determine the Fermat curve. For convenience, we hereafter substitute

$$
a_{i}^{N} \rightarrow a_{i}, \quad b_{i}^{N} \rightarrow b_{i}, \quad c_{i}^{N} \rightarrow c_{i}, \quad d_{i}^{N} \rightarrow d_{i} .
$$

We have

$$
\begin{aligned}
\left\langle L\left(u, p_{1}, p_{2}\right)\right\rangle & =\left(\begin{array}{cc}
c_{1} c_{2}-b_{1} b_{2} u & -u\left(b_{1} d_{2}-c_{1} a_{2}\right) \\
d_{1} b_{2}-a_{1} c_{2} & d_{1} d_{2}-a_{1} a_{2} u
\end{array}\right), \\
\left\langle L\left(u, p_{3}, p_{4}\right)\right\rangle & =\left(\begin{array}{cc}
c_{3} c_{4}-b_{3} b_{4} u & -u\left(b_{3} d_{4}-c_{3} a_{4}\right) \\
d_{3} b_{4}-a_{3} c_{4} & d_{3} d_{4}-a_{3} a_{4} u
\end{array}\right) .
\end{aligned}
$$

Two representations L_{π} and $L_{\pi^{\prime}}$ are equivalent if there exists an isomorphism P such that

$$
L_{\pi^{\prime}}=P L_{\pi} P^{-1}
$$

that is, elements of L_{π} and $L_{\pi^{\prime}}$ are in a one-to-one correspondence. The central elements $\left\langle L_{\pi}\right\rangle$ and $\left\langle L_{\pi^{\prime}}\right\rangle$ must coincide [6]. If $\pi=\pi_{1} \times \pi_{2}$ and $\pi^{\prime}=\pi_{2} \times \pi_{1}$, then

$$
\left\langle L_{\pi_{1}}\right\rangle\left\langle L_{\pi_{2}}\right\rangle=\left\langle L_{\pi_{2}}\right\rangle\left\langle L_{\pi_{1}}\right\rangle .
$$

It hence follows that

$$
\left\langle L\left(u, p_{1}, p_{2}\right)\right\rangle\left\langle L\left(u, p_{3}, p_{4}\right)\right\rangle=\left\langle L\left(u, p_{3}, p_{4}\right)\right\rangle\left\langle L\left(u, p_{1}, p_{2}\right)\right\rangle .
$$

Multiplying the matrices, we obtain five equations. Only three of them are independent:

$$
\begin{align*}
& \frac{b_{1} d_{2}-c_{1} a_{2}}{d_{1} b_{2}-a_{1} c_{2}}=\frac{b_{3} d_{4}-c_{3} a_{4}}{d_{3} b_{4}-a_{3} c_{4}}=s \\
& \frac{a_{1} a_{2}-b_{1} b_{2}}{b_{1} d_{2}-c_{1} a_{2}}=\frac{a_{3} a_{4}-b_{3} b_{4}}{b_{3} d_{4}-c_{3} a_{4}}=q \tag{B.1}\\
& \frac{c_{1} c_{2}-d_{1} d_{2}}{b_{1} d_{2}-c_{1} a_{2}}=\frac{c_{3} c_{4}-d_{3} d_{4}}{b_{3} d_{4}-c_{3} a_{4}}=r
\end{align*}
$$

where s, q, and r are arbitrary constants.
We now find the constraints on p_{i} under which this system has solutions. We have

$$
\begin{align*}
& b_{1} d_{2}-c_{1} a_{2}=s\left(d_{1} b_{2}-a_{1} c_{2}\right) \\
& a_{1} a_{2}-b_{1} b_{2}=q\left(b_{1} d_{2}-c_{1} a_{2}\right) \tag{B.2}\\
& c_{1} c_{2}-d_{1} d_{2}=r\left(b_{1} d_{2}-c_{1} a_{2}\right)
\end{align*}
$$

It turns out that (B.2) holds if p_{1} and p_{2} are points on a curve obtained by intersecting two planes (the projective symmetry of the operator L):

$$
\begin{aligned}
& \alpha_{1} a_{i}+\beta_{1} b_{i}+\gamma_{1} c_{i}+\delta_{1} d_{i}=0 \\
& \alpha_{2} a_{i}+\beta_{2} b_{i}+\gamma_{2} c_{i}+\delta_{2} d_{i}=0, \quad i=1,2
\end{aligned}
$$

We find these manifolds. From the last system, we have

$$
\begin{align*}
& a_{i}=\lambda_{i} c_{i}+\mu_{i} d_{i}, \\
& b_{i}=\nu_{i} c_{i}+\eta_{i} d_{i}, \quad i=1,2 . \tag{B.3}
\end{align*}
$$

We substitute (B.3) in (B.2) and obtain the system of equations for the coefficients,

$$
\begin{array}{ll}
\eta_{1}=s \eta_{2}, & \lambda_{2}=s \lambda_{1}, \\
1=-r \lambda_{2}, & \nu_{1}=\mu_{2}, \quad \nu_{2}=\mu_{1}, \\
\lambda_{1} \lambda_{2}-\nu_{1} \nu_{2}=r \eta_{1}, & \nu_{1}=\mu_{2}, \\
\lambda_{1} \mu_{2}-\nu_{1} \eta_{2}=q \nu_{1}-q \mu_{2}, & \mu_{1} \mu_{2}-\eta_{1} \eta_{2}=q \eta_{1}, \\
\mu_{1} \lambda_{2}-\nu_{2} \eta_{1}=0 .
\end{array}
$$

Solving the system, we obtain

$$
\begin{aligned}
& \nu_{1}=\mu_{2}=\mu, \quad \mu_{1}=\nu_{2}=\nu \\
& \eta_{1}=\lambda_{2}=\lambda, \quad \lambda_{1}=\eta_{2}=\eta \\
& \lambda=-\frac{1}{r}, \quad \nu \mu=(q+\eta) \lambda, \quad s=1
\end{aligned}
$$

Moreover, because the points p_{1} and p_{2} lie on the same curve, we have

$$
\lambda_{1}=\lambda_{2}=\lambda, \quad \mu_{1}=\mu_{2}=\mu, \quad \nu_{1}=\nu_{2}=\nu, \quad \eta_{1}=\eta_{2}=\eta
$$

Consequently,

$$
\lambda=\eta, \quad \nu=\mu
$$

As a result, we have

$$
\frac{a_{1}+b_{1}}{c_{1}+d_{1}}=\frac{a_{2}+b_{2}}{c_{2}+d_{2}}, \quad \frac{a_{1}-b_{1}}{c_{1}-d_{1}}=\frac{a_{2}-b_{2}}{c_{2}-d_{2}}
$$

Similarly, we can obtain

$$
\frac{a_{3}+b_{3}}{c_{3}+d_{3}}=\frac{a_{4}+b_{4}}{c_{4}+d_{4}}, \quad \frac{a_{3}-b_{3}}{c_{3}-d_{3}}=\frac{a_{4}-b_{4}}{c_{4}-d_{4}}
$$

Returning to the old notation

$$
p_{i} \rightarrow p_{i}^{N}, \quad i=1,2,3,4
$$

we find that by virtue of (B.1), the points p_{1}, p_{2}, p_{3}, and p_{4} can be related in two different ways:
a. $\frac{a_{1}^{N} \pm b_{1}^{N}}{c_{1}^{N} \pm d_{1}^{N}}=\frac{a_{2}^{N} \pm b_{2}^{N}}{c_{2}^{N} \pm d_{2}^{N}}=\frac{a_{3}^{N} \pm b_{3}^{N}}{c_{3}^{N} \pm d_{3}^{N}}=\frac{a_{4}^{N} \pm b_{4}^{N}}{c_{4}^{N} \pm d_{4}^{N}}$,
b. $\frac{a_{1}^{N} \pm b_{1}^{N}}{c_{1}^{N} \pm d_{1}^{N}}=\frac{a_{2}^{N} \pm b_{2}^{N}}{c_{2}^{N} \pm d_{2}^{N}}=\frac{a_{3}^{N} \mp b_{3}^{N}}{c_{3}^{N} \mp d_{3}^{N}}=\frac{a_{4}^{N} \mp b_{4}^{N}}{c_{4}^{N} \mp d_{4}^{N}}$.

This pertains to the existence of two roots of the equation

$$
\nu^{2}=\mu^{2}=-\frac{q}{r}+\frac{1}{r^{2}}
$$

But recalling the symmetries of the operator $L\left(u, p_{1}, p_{2}\right)$, we can substitute

$$
b_{1} \rightarrow \lambda b_{1}, \quad b_{2} \rightarrow \lambda^{-1} b_{2}, \quad d_{1} \rightarrow \lambda d_{1}, \quad d_{2} \rightarrow \lambda^{-1} d_{2}
$$

and $L\left(u, p_{1}, p_{2}\right)$ must remain unchanged. With such a substitution for $\lambda=-1$, case b is reduced to case a (we recall that N is odd).

Appendix C: The conditions for equivalence of representations in the general case

We introduce the notation

$$
\begin{array}{lll}
\phi=d^{N} \bar{b}^{N}, & \psi=a^{N} \bar{c}^{N}, & \beta=b^{N} \bar{b}^{N} \\
\delta=a^{N} \bar{a}^{N}, & \mu=\frac{c^{N} d^{N}}{a^{N} b^{N}}, & \lambda=\frac{\bar{c}^{N} \bar{d}^{N}}{\bar{a}^{N} \bar{b}^{N}} .
\end{array}
$$

Then $\langle L(u, p, \bar{p})\rangle$ can be written as

$$
\langle L(u, p, \bar{p})\rangle=\left(\begin{array}{cc}
\frac{\mu \beta \psi}{\phi}-\beta u & -u\left(\frac{\lambda \beta \delta}{\psi}-\frac{\mu \beta \delta}{\phi}\right) \\
\phi-\psi & \frac{\lambda \delta \phi}{\psi}-\delta u
\end{array}\right)
$$

We consider two representations $L\left(u, p_{1}, \bar{p}_{1}\right)$ and $L\left(u, p_{2}, \bar{p}_{2}\right)$ of the L-operator algebra and find the conditions under which they are equivalent. The necessary condition for the equivalence of the two representations is a coincidence of the centers of these representations. We have

$$
\begin{equation*}
\left\langle L\left(u, p_{1}, \bar{p}_{1}\right)\right\rangle=\left\langle L\left(u, p_{2}, \bar{p}_{2}\right)\right\rangle . \tag{C.1}
\end{equation*}
$$

By equating the coefficients of the same powers of u, we hence obtain

$$
\begin{align*}
& \delta_{1}=\delta_{2}, \quad \beta_{1}=\beta_{2}, \quad \phi_{1}-\psi_{1}=\phi_{2}-\psi_{2} \tag{C.2}\\
& \frac{\lambda_{1} \phi_{1}}{\psi_{1}}=\frac{\lambda_{2} \phi_{2}}{\psi_{2}} \tag{C.3}
\end{align*}
$$

In addition, it follows from (C.1) that

$$
\operatorname{det}\left\langle L\left(u, p_{1}, \bar{p}_{1}\right)\right\rangle=\operatorname{det}\left\langle L\left(u, p_{2}, \bar{p}_{2}\right)\right\rangle
$$

In this equation, the left- and right-hand sides are second-degree polynomials in u. The roots of the left polynomial are

$$
u_{1}=\lambda_{1}, \quad \bar{u}_{1}=\mu_{1},
$$

and the roots of the right polynomial are

$$
u_{2}=\lambda_{2}, \quad \bar{u}_{2}=\mu_{2} .
$$

The roots of the left- and right-hand sides must coincide. We consider the case where

$$
\begin{equation*}
\lambda_{1}=\mu_{2}, \quad \lambda_{2}=\mu_{1} \tag{C.4}
\end{equation*}
$$

Rewriting (C.2)-(C.4) in terms of a_{i}, b_{i}, c_{i}, and d_{i}, we obtain

$$
\begin{array}{ll}
a_{1}^{N} \bar{a}_{1}^{N}=a_{2}^{N} \bar{a}_{2}^{N}, & b_{1}^{N} \bar{b}_{1}^{N}=b_{2}^{N} \bar{b}_{2}^{N} \\
\frac{\bar{c}_{1}^{N} \bar{d}_{1}^{N}}{\bar{a}_{1}^{N} \bar{b}_{1}^{N}}=\frac{c_{2}^{N} d_{2}^{N}}{a_{2}^{N} b_{2}^{N}}, \quad \frac{\bar{c}_{2}^{N} \bar{d}_{2}^{N}}{\bar{a}_{2}^{N} \bar{b}_{2}^{N}}=\frac{c_{1}^{N} d_{1}^{N}}{a_{1}^{N} b_{1}^{N}}, \\
\frac{d_{1}^{N} \bar{d}_{1}^{N}}{a_{1}^{N} \bar{a}_{1}^{N}}=\frac{d_{2}^{N} \bar{d}_{2}^{N}}{a_{2}^{N} \bar{a}_{2}^{N}} \\
d_{1}^{N} \bar{b}_{1}^{N}-a_{1}^{N} \bar{c}_{1}^{N}=d_{2}^{N} \bar{b}_{2}^{N}-a_{2}^{N} \bar{c}_{2}^{N}
\end{array}
$$

We now consider two representations $L_{1}\left(u, p_{1}, \bar{p}_{1}\right) L_{2}\left(u, p_{2}, \bar{p}_{2}\right)$ and $L_{1}\left(u, p_{3}, \bar{p}_{3}\right) L_{2}\left(u, p_{4}, \bar{p}_{4}\right)$ of the L operator algebra. We find the conditions under which these two representations are equivalent. We have

$$
\begin{equation*}
\operatorname{det}\left\langle L_{1}\left(u, p_{1}, \bar{p}_{1}\right)\right\rangle \operatorname{det}\left\langle L_{2}\left(u, p_{2}, \bar{p}_{2}\right)\right\rangle=\operatorname{det}\left\langle L_{1}\left(u, p_{3}, \bar{p}_{3}\right)\right\rangle \operatorname{det}\left\langle L_{2}\left(u, p_{4}, \bar{p}_{4}\right)\right\rangle \tag{C.5}
\end{equation*}
$$

Each determinant is a second-degree polynomial in u. The roots of these polynomials are

$$
u=\lambda, \quad \bar{u}=\mu
$$

The left-hand side of (C.5) then vanishes at $u_{1}=\lambda_{1}, \bar{u}_{1}=\mu_{1}, u_{2}=\lambda_{2}$, and $\bar{u}_{2}=\mu_{2}$, and the right-hand side vanishes at $u_{3}=\lambda_{3}, \bar{u}_{3}=\mu_{3}, u_{4}=\lambda_{4}$, and $\bar{u}_{4}=\mu_{4}$. It is then clear that the left and the right roots coincide. We consider the case where

$$
\mu_{2}=\lambda_{3}, \quad \mu_{1}=\mu_{3}, \quad \lambda_{2}=\lambda_{4}, \quad \lambda_{1}=\mu_{4}
$$

We have

$$
\begin{equation*}
\left\langle L_{1}\left(u, p_{1}, \bar{p}_{1}\right)\right\rangle\left\langle L_{2}\left(u, p_{2}, \bar{p}_{2}\right)\right\rangle=\left\langle L_{1}\left(u, p_{3}, \bar{p}_{3}\right)\right\rangle\left\langle L_{2}\left(u, p_{4}, \bar{p}_{4}\right)\right\rangle \tag{C.6}
\end{equation*}
$$

and we find the roots that correspond to the separate multipliers in the left- and right-hand sides of (C.6):

$$
\mu_{1}, \lambda_{1}, \quad \mu_{2}, \lambda_{2}, \quad \mu_{1}, \mu_{2}, \quad \lambda_{1}, \lambda_{2}
$$

We see that the two roots λ_{1} and μ_{2} are interchanged.
Let $u=\lambda_{2}$. We act on the vector Ψ_{1} (the right zero vector of the operator $\left\langle L_{2}\left(\lambda_{2}, p_{2}, \bar{p}_{2}\right)\right\rangle$) from the left with both sides of Eq. (C.6):

$$
\Psi_{1}=\binom{-\lambda_{2} \delta_{2}}{\psi_{2}}, \quad\left\langle L_{2}\left(\lambda_{2}, p_{2}, \bar{p}_{2}\right)\right\rangle \Psi_{1}=0
$$

This vector is also the right zero vector for $\left\langle L_{2}\left(\lambda_{2}, p_{4}, \bar{p}_{4}\right)\right\rangle$. We hence obtain the equation

$$
\frac{\delta_{2}}{\psi_{2}}=\frac{\delta_{4}}{\psi_{4}}
$$

Now let $u=\mu_{1}$. We act on the left zero vector Ψ_{2} of the operator $\left\langle L_{1}\left(\mu_{1}, p_{1}, \bar{p}_{1}\right)\right\rangle$ from the right with both sides of Eq. (C.6):

$$
\Psi_{2}=\binom{\phi_{1}}{\mu_{1} \beta_{1}}, \quad \Psi_{2}\left\langle L_{1}\left(\mu_{1}, p_{1}, \bar{p}_{1}\right)\right\rangle=0
$$

Because this vector is the left zero vector of the operator $\left\langle L_{1}\left(\mu, p_{3}, \bar{p}_{3}\right)\right\rangle$, we have

$$
\frac{\phi_{1}}{\beta_{1}}=\frac{\phi_{3}}{\beta_{3}} .
$$

It is clear that (C.6) holds if we insert the unity $1=M M^{-1}$ between the two factors in the right-hand side, where M is a two-dimensional matrix,

$$
M=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)
$$

Using this gauge symmetry, we can set

$$
\beta_{3}=\beta_{1}, \quad \delta_{4}=\delta_{2},
$$

whence it immediately follows that

$$
\phi_{3}=\phi_{1}, \quad \psi_{4}=\psi_{2}
$$

Multiplying the matrices in (C.6) and equating coefficients of the powers of u, it is easy to see that

$$
\begin{aligned}
& \beta_{4}=\beta_{2}, \quad \delta_{3}=\delta_{1} \\
& \psi_{3}=\phi_{4} \frac{\mu_{2} \psi_{1}}{\lambda_{1} \phi_{2}} \\
& \psi_{3} \beta_{2}-\delta_{1} \phi_{4}=\psi_{1} \beta_{2}-\delta_{1} \phi_{2}
\end{aligned}
$$

Two last equalities imply

$$
\begin{equation*}
\phi_{4}=\frac{\lambda_{1} \phi_{2}\left(\beta_{2} \psi_{1}-\delta_{1} \phi_{2}\right)}{\beta_{2} \mu_{2} \psi_{1}-\lambda_{1} \delta_{1} \phi_{2}}, \quad \psi_{3}=\frac{\mu_{2} \psi_{1}\left(\beta_{2} \psi_{1}-\delta_{1} \phi_{2}\right)}{\beta_{2} \mu_{2} \psi_{1}-\lambda_{1} \delta_{1} \phi_{2}} . \tag{C.7}
\end{equation*}
$$

Collecting all the obtained equations, in addition to (C.7), we have

$$
\begin{array}{lll}
\beta_{1}=\beta_{3}, & \beta_{2}=\beta_{4}, & \delta_{1}=\delta_{3}, \\
\phi_{1}=\phi_{3}, & \psi_{2}=\psi_{4}, & \mu_{2}=\lambda_{3} \\
\mu=\mu_{3}, & \lambda_{2}=\lambda_{4}, & \lambda_{1}=\mu_{4} .
\end{array}
$$

Appendix D: Calculating the operator \boldsymbol{F}

Matrix equation (38) can be written in the form of a system of equations corresponding to the four matrix elements. We have

$$
L_{1}\left(p_{1}, \bar{p}_{1}\right) L_{2}\left(p_{2}, \bar{p}_{2}\right)=\left(\begin{array}{cc}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right)\left(\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right)=\left(\begin{array}{ll}
A_{1} A_{2}+B_{1} C_{2} & A_{1} B_{2}+B_{1} D_{2} \\
C_{1} A_{2}+D_{1} C_{2} & C_{1} B_{2}+D_{1} D_{2}
\end{array}\right)
$$

As a result, we obtain the system

$$
\begin{align*}
& F\left(X_{1} X_{2}^{-1}\right)\left(A_{1} A_{2}+B_{1} C_{2}\right)=\left(A_{3} a_{4}+B_{3} C_{4}\right) F\left(X_{1} X_{2}^{-1}\right) \\
& F\left(X_{1} X_{2}^{-1}\right)\left(A_{1} B_{2}+B_{1} D_{2}\right)=\left(A_{3} B_{4}+B_{3} D_{4}\right) F\left(X_{1} X_{2}^{-1}\right) \tag{D.1}\\
& F\left(X_{1} X_{2}^{-1}\right)\left(C_{1} A_{2}+D_{1} C_{2}\right)=\left[C_{3} a_{4}+D_{3} C_{4}\right] F\left(X_{1} X_{2}^{-1}\right) \\
& F\left(X_{1} X_{2}^{-1}\right)\left(C_{1} B_{2}+D_{1} D_{2}\right)=\left(C_{3} B_{4}+D_{3} D_{4}\right) F\left(X_{1} X_{2}^{-1}\right)
\end{align*}
$$

We choose a basis $\left|k_{1}, k_{2}\right\rangle, k_{1}, k_{2}=0, \ldots, N-1(\bmod N)$,

$$
\begin{array}{ll}
X_{1}\left|k_{1}, k_{2}\right\rangle=\omega^{k_{1}}\left|k_{1}, k_{2}\right\rangle, & X_{2}\left|k_{1}, k_{2}\right\rangle=\omega^{k_{2}}\left|k_{1}, k_{2}\right\rangle, \\
Z_{1}\left|k_{1}, k_{2}\right\rangle=\left|k_{1}-1, k_{2}\right\rangle, & Z_{2}\left|k_{1}, k_{2}\right\rangle=\left|k_{1}, k_{2}-1\right\rangle
\end{array}
$$

The matrix $F\left(X_{1} X_{2}^{-1}\right)$ is diagonal in this basis. We now calculate its nonzero matrix elements. Substituting the expressions for A_{i}, B_{i}, C_{i}, and $D_{i}, i=1,2$, for the first equation in (D.1), for example, we have

$$
\begin{aligned}
F\left(X_{1} X_{2}^{-1}\right) & {\left[\left(c_{1} \bar{c}_{1} Z_{1}-b_{1} \bar{b}_{1} u\right)\left(c_{2} \bar{c}_{2} Z_{2}-b_{2} \bar{b}_{2} u\right)-u\left(b_{1} \bar{d}_{1}-c_{1} \bar{a}_{1} Z_{1}\right) X_{1} X_{2}^{-1}\left(d_{2} \bar{b}_{2}-a_{2} \bar{c}_{2} Z_{2}\right)\right]=} \\
& =\left[\left(c_{3} \bar{c}_{3} Z_{1}-b_{3} \bar{b}_{3} u\right)\left(c_{4} \bar{c}_{4} Z_{2}-b_{4} \bar{b}_{4} u\right)-u\left(b_{3} \bar{d}_{3}-c_{3} \bar{a}_{3} Z_{1}\right) X_{1} X_{2}^{-1}\left(d_{4} \bar{b}_{4}-a_{4} \bar{c}_{4} Z_{2}\right)\right] F\left(X_{1} X_{2}^{-1}\right)
\end{aligned}
$$

Opening the parenthesis and acting on the vector $\left|k_{1}, k_{2}\right\rangle$ with the left- and right-hand sides and equating coefficients of the linearly independent vectors and of the same powers of u, we obtain

$$
\begin{aligned}
& c_{1} \bar{c}_{1} c_{2} \bar{c}_{2}=c_{3} \bar{c}_{3} c_{4} \bar{c}_{4}, \quad b_{1} \bar{b}_{1} b_{2} \bar{b}_{2}=b_{3} \bar{b}_{3} b_{4} \bar{b}_{4} \\
& b_{1} \bar{d}_{1} d_{2} \bar{b}_{2}=b_{3} \bar{d}_{3} d_{4} \bar{b}_{4}, \quad c_{1} \bar{a}_{1} a_{2} \bar{c}_{2}=c_{3} \bar{a}_{3} a_{4} \bar{c}_{4} \\
& F\left(\omega^{k+1}\right)=\frac{b_{3} \bar{c}_{4}\left(\bar{d}_{3} a_{4} \omega^{k+1}-\bar{b}_{3} c_{4}\right)}{b_{1} \bar{c}_{2}\left(\bar{d}_{1} a_{2} \omega^{k+1}-\bar{b}_{1} c_{2}\right)} F\left(\omega^{k}\right)=\frac{c_{1} \bar{b}_{2}\left(\bar{a}_{1} d_{2} \omega^{k+1}-\bar{c}_{1} b_{2}\right)}{c_{3} \bar{b}_{4}\left(\bar{a}_{3} d_{4} \omega^{k+1}-\bar{c}_{3} b_{4}\right)} F\left(\omega^{k}\right),
\end{aligned}
$$

where $F\left(\omega^{k}\right), k=0, \ldots, N-1$, are the diagonal matrix elements of the matrix F. Using the obtained restrictions on a_{i}, b_{i}, c_{i}, and d_{i}, we can reduce this system to the system

$$
\begin{aligned}
& \bar{c}_{1} c_{2}=\bar{c}_{3} c_{4}, \quad \bar{d}_{1} d_{2}=\bar{d}_{3} d_{4} \\
& F\left(\omega^{k+1}\right)=\frac{\bar{d}_{3} a_{4} \omega^{k+1}-\bar{b}_{3} c_{4}}{\bar{d}_{1} a_{2} \omega^{k+1}-\bar{b}_{1} c_{2}} F\left(\omega^{k}\right)=\frac{\bar{a}_{1} d_{2} \omega^{k+1}-\bar{c}_{1} b_{2}}{\bar{a}_{3} d_{4} \omega^{k+1}-\bar{c}_{3} b_{4}} F\left(\omega^{k}\right) .
\end{aligned}
$$

It can be easily seen that the second equation can be derived from the first if the constraints

$$
\bar{c}_{3} \bar{d}_{3}=c_{2} d_{2} \frac{\bar{a}_{3} \bar{b}_{3}}{a_{2} b_{2}}, \quad c_{4} d_{4}=\bar{c}_{1} \bar{d}_{1} \frac{a_{2} b_{2}}{\bar{a}_{1} \bar{b}_{1}}
$$

are used. Because $F\left(\omega^{k}\right)$ is a single-valued function, we must equate the two fractions in terms of which $F\left(\omega^{k}\right)$ is expressed. We then obtain

$$
\left(\bar{d}_{3} a_{4} \omega^{k+1}-\bar{b}_{3} c_{4}\right)\left(\bar{a}_{3} d_{4} \omega^{k+1}-\bar{c}_{3} b_{4}\right)=\left(\bar{d}_{1} a_{2} \omega^{k+1}-\bar{b}_{1} c_{2}\right)\left(\bar{a}_{1} d_{2} \omega^{k+1}-\bar{c}_{1} b_{2}\right)
$$

Equating the coefficients of the same powers of ω, we obtain

$$
\begin{aligned}
& \bar{a}_{1} \bar{d}_{1} a_{2} d_{2}=\bar{a}_{3} \bar{d}_{3} a_{4} d_{4}, \quad \bar{b}_{1} \bar{c}_{1} b_{2} c_{2}=\bar{b}_{3} \bar{c}_{3} b_{4} c_{4}, \\
& \bar{a}_{1} \bar{b}_{1} a_{2} b_{2}\left(\frac{\bar{c}_{1} \bar{d}_{1}}{\bar{a}_{1} \bar{b}_{1}}+\frac{c_{2} d_{2}}{a_{2} b_{2}}\right)=a_{4} b_{4} \bar{a}_{3} \bar{b}_{3}\left(\frac{\bar{c}_{3} \bar{d}_{3}}{\bar{a}_{3} \bar{b}_{3}}+\frac{c_{4} d_{4}}{a_{4} b_{4}}\right) .
\end{aligned}
$$

If we again take the restrictions on a_{i}, b_{i}, c_{i}, and d_{i} into account, we obtain

$$
\begin{equation*}
\bar{c}_{1} c_{2}=\bar{c}_{3} c_{4} \tag{D.2}
\end{equation*}
$$

that is, the same equation as before. From the obvious equation

$$
F\left(\omega^{N+k}\right)=F\left(\omega^{k}\right)
$$

we also have

$$
\begin{equation*}
\bar{c}_{1}^{N} b_{2}^{N}-\bar{a}_{1}^{N} d_{2}^{N}=\bar{c}_{3}^{N} b_{4}^{N}-\bar{a}_{3}^{N} d_{4}^{N} \tag{D.3}
\end{equation*}
$$

We now prove that (D.2) and (D.3) follow from (33)-(37). We have

$$
\begin{aligned}
& \psi_{3}=a_{3}^{N} \bar{c}_{3}^{N}=\frac{c_{2}^{N} \bar{b}_{1}^{N} a_{1}^{N}}{b_{2}^{N}} \frac{b_{2}^{N} \bar{c}_{1}^{N}-\bar{a}_{1}^{N} d_{2}^{N}}{c_{2}^{N} \bar{b}_{1}^{N}-a_{2}^{N} \bar{d}_{1}^{N}} \\
& \phi_{4}=d_{4}^{N} \bar{b}_{4}^{N}=\frac{\bar{d}_{1}^{N} a_{2}^{N} \bar{b}_{2}^{N}}{\bar{a}_{1}^{N}} \frac{b_{2}^{N} \bar{c}_{1}^{N}-\bar{a}_{1}^{N} d_{2}^{N}}{c_{2}^{N} \bar{b}_{1}^{N}-a_{2}^{N} \bar{d}_{1}^{N}}
\end{aligned}
$$

Expressing \bar{c}_{3}^{N} and d_{4}^{N} from this equation and substituting them in (D.3), we obtain an identity. Moreover, we have

$$
\frac{\bar{c}_{3}}{d_{4}}=\frac{c_{2}}{\bar{d}_{1}} \frac{\bar{a}_{1} \bar{b}_{1}}{a_{2} b_{2}}
$$

Multiplying the last equation by

$$
c_{4} d_{4}=\bar{c}_{1} \bar{d}_{1} \frac{a_{2} b_{2}}{\bar{a}_{1} \bar{b}_{1}}
$$

we obtain (D.2). Therefore,

$$
F\left(\omega^{k+1}\right)=\sqrt[N]{\frac{\bar{d}_{1}^{N} a_{2}^{N}-\bar{b}_{1}^{N} c_{2}^{N}}{\bar{a}_{1}^{N} d_{2}^{N}-\bar{c}_{1}^{N} b_{2}^{N}}} \frac{\bar{c}_{1} b_{2}-\bar{a}_{1} d_{2} \omega^{k+1}}{\bar{b}_{1} c_{2}-\bar{d}_{1} a_{2} \omega^{k+1}} F\left(\omega^{k}\right) .
$$

Appendix E: The star-triangle equation

Here, we prove the star-triangle relation

$$
\begin{equation*}
G\left(\tilde{q}, \tilde{p} ; Z_{1}\right) F\left(\tilde{p}, r ; X_{1} X_{2}^{-1}\right) G\left(p, q ; Z_{1}\right)=\mu F\left(p^{\prime}, q^{\prime} ; X_{1} X_{2}^{-1}\right) G\left(p, r^{\prime} ; Z_{1}\right) F\left(q, r ; X_{1} X_{2}^{-1}\right) \tag{E.1}
\end{equation*}
$$

and find μ. We start with the diagram

Now, if $r^{\prime \prime}, q^{\prime \prime}$, and $p^{\prime \prime}$ obtained in two different ways coincide up to gauge transformations, then we prove that Eq. (E.1) is valid. We recall the definition of the functions $\Lambda\left(p_{1}, p_{2}\right)$ and $\Omega\left(p_{1}, p_{2}\right)$:

$$
\Lambda\left(p_{1}, p_{2}\right)=\sqrt[N]{\frac{b_{1}^{N} d_{2}^{N}-c_{1}^{N} a_{2}^{N}}{d_{1}^{N} b_{2}^{N}-a_{1}^{N} c_{2}^{N}}}, \quad \Omega\left(p_{1}, p_{2}\right)=\sqrt[N]{\frac{c_{1}^{N} b_{2}^{N}-a_{1}^{N} d_{2}^{N}}{b_{1}^{N} c_{2}^{N}-d_{1}^{N} a_{2}^{N}}}
$$

We perform all calculations for the first chain of the diagram. For $(p, q)(r, s) \xrightarrow{F}\left(p, r^{\prime}\right)\left(q^{\prime}, s\right)$, we have

$$
\begin{array}{ll}
a_{r}^{\prime}=a_{r}, & a_{q}^{\prime}=a_{q}, \\
b_{r}^{\prime}=b_{r}, & b_{q}^{\prime}=b_{q}, \\
c_{r}^{\prime}=\Omega(q, r) c_{r}, & c_{q}^{\prime}=\Omega(q, r)^{-1} c_{q} \\
d_{r}^{\prime}=\Omega(q, r)^{-1} d_{r}, & d_{q}^{\prime}=\Omega(q, r) d_{q}
\end{array}
$$

For $\left(p, r^{\prime}\right)\left(q^{\prime}, s\right) \xrightarrow{G}\left(r^{\prime \prime}, p^{\prime}\right)\left(q^{\prime}, s\right)$, we have

$$
\begin{array}{ll}
a_{r}^{\prime \prime}=a_{r}^{\prime}, & a_{p}^{\prime}=a_{p}, \\
b_{r}^{\prime \prime}=b_{r}^{\prime}, & b_{p}^{\prime}=b_{p}, \\
c_{r}^{\prime \prime}=\Lambda\left(p, r^{\prime}\right) c_{r}^{\prime}, & c_{p}^{\prime}=\Lambda\left(p, r^{\prime}\right)^{-1} c_{p}, \\
d_{r}^{\prime \prime}=\Lambda\left(p, r^{\prime}\right)^{-1} d_{r}^{\prime}, & d_{p}^{\prime}=\Lambda\left(p, r^{\prime}\right) d_{p} .
\end{array}
$$

For $\left(r^{\prime \prime}, p^{\prime}\right)\left(q^{\prime}, s\right) \xrightarrow{F}\left(r^{\prime \prime}, q^{\prime \prime}\right)\left(p^{\prime \prime}, s\right)$, we have

$$
\begin{array}{ll}
a_{q}^{\prime \prime}=a_{q}^{\prime}, & a_{p}^{\prime \prime}=a_{p}^{\prime}, \\
b_{q}^{\prime \prime}=b_{q}^{\prime}, & b_{p}^{\prime \prime}=b_{p}^{\prime}, \\
c_{q}^{\prime \prime}=\Omega\left(p^{\prime}, q^{\prime}\right) c_{q}^{\prime}, & c_{p}^{\prime \prime}=\Omega\left(p^{\prime}, q^{\prime}\right)^{-1} c_{p}^{\prime}, \\
d_{q}^{\prime \prime}=\Omega\left(p^{\prime}, q^{\prime}\right)^{-1} d_{q}^{\prime}, & d_{p}^{\prime \prime}=\Omega\left(p^{\prime}, q^{\prime}\right) d_{p}^{\prime} .
\end{array}
$$

We now perform all calculations for the second chain of the diagram. For $(p, q)(r, s) \xrightarrow{G}(\tilde{q}, \tilde{p})(r, s)$, we have

$$
\begin{array}{ll}
\tilde{a}_{q}=a_{q}, & \tilde{a}_{p}=a_{p}, \\
\tilde{b}_{q}=b_{q}, & \tilde{b}_{p}=b_{p}, \\
\tilde{c}_{q}=\Lambda(p, q) c_{q}, & \tilde{c}_{p}=\Lambda(p, q)^{-1} c_{p}, \\
\tilde{d}_{q}=\Lambda(p, q)^{-1} d_{q}, & \tilde{d}_{p}=\Lambda(p, q) d_{p} .
\end{array}
$$

For $(\tilde{q}, \tilde{p})(r, s) \xrightarrow{F}(\tilde{q}, \tilde{r})\left(p^{\prime \prime}, s\right)$, we have

$$
\begin{array}{ll}
\tilde{a}_{r}=a_{r}, & a_{p}^{\prime \prime}=\tilde{a}_{p}, \\
\tilde{b}_{r}=b_{r}, & b_{p}^{\prime \prime}=\tilde{b}_{p}, \\
\tilde{c}_{r}=\Omega(\tilde{p}, r) c_{r}, & c_{p}^{\prime \prime}=\Omega(\tilde{p}, r)^{-1} \tilde{c}_{p}, \\
\tilde{d}_{r}=\Omega(\tilde{p}, r)^{-1} d_{r}, & d_{p}^{\prime \prime}=\Omega(\tilde{p}, r) \tilde{d}_{p} .
\end{array}
$$

For $(\tilde{q}, \tilde{r})\left(p^{\prime \prime}, s\right) \xrightarrow{G}\left(r^{\prime \prime}, q^{\prime \prime}\right)\left(p^{\prime \prime}, s\right)$, we have

$$
\begin{array}{ll}
a_{r}^{\prime \prime}=\tilde{a}_{r}, & a_{q}^{\prime \prime}=\tilde{a}_{q}, \\
b_{r}^{\prime \prime}=\tilde{b}_{r}, & b_{q}^{\prime \prime}=\tilde{b}_{q}, \\
c_{r}^{\prime \prime}=\Lambda(\tilde{q}, \tilde{r}) \tilde{c}_{r}, & c_{q}^{\prime \prime}=\Lambda(\tilde{q}, \tilde{r})^{-1} \tilde{c}_{q}, \\
d_{r}^{\prime \prime}=\Lambda(\tilde{q}, \tilde{r})^{-1} \tilde{d}_{r}, & d_{q}^{\prime \prime}=\Lambda(\tilde{q}, \tilde{r}) \tilde{d}_{q} .
\end{array}
$$

It remains to verify that the obtained L-operators actually coincide. Comparing the parameters $r^{\prime \prime}$, $q^{\prime \prime}$, and $p^{\prime \prime}$ obtained in the two different ways, we conclude that Eq. (41) is satisfied if

$$
\begin{align*}
& \Lambda\left(p, r^{\prime}\right) \Omega\left(p^{\prime}, q^{\prime}\right)=\Lambda(p, q) \Omega(\tilde{p}, r) \tag{E.2}\\
& \Omega(q, r) \Lambda\left(p, r^{\prime}\right)=\Omega(\tilde{p}, r) \Lambda(\tilde{q}, \tilde{r})
\end{align*}
$$

It is easy to show that (E.2) is satisfied identically.
We have thus proved (E.1) for some as yet unknown μ. We now find μ^{N}. It is clear that

$$
\mu^{N}=\frac{\operatorname{det} G(p, q) \operatorname{det} F(\tilde{p}, r) \operatorname{det} G(\tilde{q}, \tilde{r})}{\operatorname{det} F(q, r) \operatorname{det} G\left(p, r^{\prime}\right) \operatorname{det} F\left(p^{\prime}, q^{\prime}\right)}
$$

The determinants of matrices $G\left(p_{1}, p_{2}\right)$ and $F\left(p_{1}, p_{2}\right)$ can be easily evaluated. Each of these matrices can be individually reduced to the diagonal form (not simultaneously), and in each case, the diagonal matrix elements are

$$
\begin{aligned}
& \frac{G\left(p_{1}, p_{2} ; \omega^{k}\right)}{G\left(p_{1}, p_{2} ; 1\right)}=\left(\frac{b_{1}^{N} d_{2}^{N}-c_{1}^{N} a_{2}^{N}}{d_{1}^{N} b_{2}^{N}-a_{1}^{N} c_{2}^{N}}\right)^{k / N} \prod_{j=1}^{k} \frac{d_{1} b_{2}-a_{1} c_{2} \omega^{j}}{b_{1} d_{2}-c_{1} a_{2} \omega^{j}} \\
& \frac{F\left(p_{1}, p_{2} ; \omega^{k}\right)}{F\left(p_{1}, p_{2} ; 1\right)}=\left(\frac{b_{1}^{N} c_{2}^{N}-d_{1}^{N} a_{2}^{N}}{c_{1}^{N} b_{2}^{N}-a_{1}^{N} d_{2}^{N}}\right)^{k / N} \prod_{j=1}^{k} \frac{c_{1} b_{2}-a_{1} d_{2} \omega^{j}}{b_{1} c_{2}-d_{1} a_{2} \omega^{j}}
\end{aligned}
$$

We set

$$
G\left(p_{1}, p_{2} ; 1\right)=F\left(p_{1}, p_{2} ; 1\right)=1
$$

Then

$$
\begin{aligned}
& \operatorname{det} G\left(p_{1}, p_{2}\right)=\left(\frac{b_{1}^{N} d_{2}^{N}-c_{1}^{N} a_{2}^{N}}{d_{1}^{N} b_{2}^{N}-a_{1}^{N} c_{2}^{N}}\right)^{(N-1) / 2} \prod_{k=1}^{N-1} \prod_{j=1}^{k} \frac{d_{1} b_{2}-a_{1} c_{2} \omega^{j}}{b_{1} d_{2}-c_{1} a_{2} \omega^{j}} \\
& \operatorname{det} F\left(p_{1}, p_{2}\right)=\left(\frac{b_{1}^{N} c_{2}^{N}-d_{1}^{N} a_{2}^{N}}{c_{1}^{N} b_{2}^{N}-a_{1}^{N} d_{2}^{N}}\right)^{(N-1) / 2} \prod_{k=1}^{N-1} \prod_{j=1}^{k} \frac{c_{1} b_{2}-a_{1} d_{2} \omega^{j}}{b_{1} c_{2}-d_{1} a_{2} \omega^{j}}
\end{aligned}
$$

Appendix F: The relations in the Q-operator algebra

The relations in the Q-operator algebra follow from the properties of the cyclic representations of the L-operator algebra. We now prove this.

Relations (42)-(45) become evident if we recall that

$$
Q(u)=\operatorname{tr}_{0} L_{10}(u) L_{20}(u) \cdots L_{n 0}(u)
$$

and that we have the symmetries

$$
\begin{aligned}
& L\left(\lambda p_{1}, \bar{p}_{1}\right)=\lambda L\left(p_{1}, \bar{p}_{1}\right) \\
& L\left(p_{1}, \mu \bar{p}_{1}\right)=\mu L\left(p_{1}, \bar{p}_{1}\right) \\
& L\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right)=L\left(\lambda a_{1}, b_{1}, \lambda c_{1}, d_{1}, \lambda^{-1} \bar{a}_{1}, \bar{b}_{1}, \lambda^{-1} c_{q}, \bar{d}_{1}\right) \\
& L\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right)=L\left(a_{1}, \mu b_{1}, c_{1}, \mu d_{1}, \bar{a}_{1}, \mu^{-1} \bar{b}_{1}, \bar{c}_{1}, \mu^{-1} \bar{d}_{1}\right)
\end{aligned}
$$

where λ and μ are arbitrary numbers. Relation (47) follows from another symmetry:

$$
L_{1}\left(p_{1}, \bar{p}_{1}\right) L_{2}\left(p_{2}, s\right)=L_{1}\left(p_{1}, \bar{p}_{1}\right) M M^{-1} L_{2}\left(p_{2}, s\right)
$$

or, in more detail,

$$
\begin{aligned}
& L_{1}\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right) L_{2}\left(a_{2}, b_{2}, c_{2}, d_{2}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right)= \\
& \quad=L_{1}\left(a_{1}, b_{1}, c_{1}, d_{1}, \beta \bar{a}_{1}, \alpha \bar{b}_{1}, \alpha \bar{c}_{1}, \beta \bar{d}_{1}\right) L_{2}\left(\beta^{-1} a_{2}, \alpha^{-1} b_{2}, \alpha^{-1} c_{2}, \beta^{-1} d_{2}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right)
\end{aligned}
$$

where α and β are arbitrary numbers. Here,

$$
M=\left(\begin{array}{ll}
\alpha & 0 \\
0 & \beta
\end{array}\right)
$$

Relation (46) is obtained from the equation

$$
G L\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right) G^{-1}=L\left(a_{1}, b_{1}, \Lambda c_{1}, \Lambda^{-1} d_{1}, \bar{a}_{1}, \bar{b}_{1}, \Lambda^{-1} \bar{c}_{1}, \Lambda \bar{d}_{1}\right)
$$

where

$$
\Lambda=\Lambda\left(p_{1}, \bar{p}_{1}\right)=\sqrt[N]{\frac{b_{1}^{N} \bar{d}_{1}^{N}-c_{1}^{N} \bar{a}_{1}^{N}}{d_{1}^{N} \bar{a}_{1}^{N}-a_{1}^{N} \bar{c}_{1}^{N}}}
$$

and relation (48) is obtained from

$$
\begin{aligned}
F L_{1}\left(a_{1}, b_{1}, c_{1}, d_{1}, \bar{a}_{1}, \bar{b}_{1}, \bar{c}_{1}, \bar{d}_{1}\right) & L_{2}\left(a_{2}, b_{2}, c_{2}, d_{2}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right) F^{-1}= \\
& =L_{1}\left(a_{1}, b_{1}, c_{1}, d_{1}, a_{2}, b_{2}, \Omega c_{2}, \Omega^{-1} d_{2}\right) L_{2}\left(\bar{a}_{1}, \bar{b}_{1}, \Omega^{-1} \bar{c}_{1}, \Omega \bar{d}_{1}, \bar{a}_{2}, \bar{b}_{2}, \bar{c}_{2}, \bar{d}_{2}\right)
\end{aligned}
$$

where

$$
\Omega=\Omega\left(\bar{p}_{1}, p_{2}\right)=\sqrt[N]{\frac{\bar{c}_{1}^{N} b_{2}^{N}-\bar{a}_{1}^{N} d_{2}^{N}}{\bar{b}_{1}^{N} c_{2}^{N}-\bar{d}_{1}^{N} a_{2}^{N}}}
$$

Acknowledgments. We are grateful to B. Feigin and Yu. Stroganov for the useful discussions. One of us (A. O.) is grateful to V. Bazhanov for the discussion of the factoring property of the R-matrix of the chiral Potts model.

This work was supported by the Russian Foundation for Basic Research (Grant Nos. 01-02-16686, 99-01-01169, and 00-15-96579), the CRDF-RP1 (Grant No. 2254), and INTAS (Grant No. 00-00055).

REFERENCES

1. R. I. Baxter, Ann. Phys., 70, 193, 323 (1972); 76, 48 (1973).
2. R. J. Baxter, J. H. H. Perk, and H. Au-Yang, Phys. Lett. A, 128, 138 (1988).
3. H. Au-Yang, B. M. McCoy, J. H. H. Perk, S. Tang, and M. L. Yan, Phys. Lett. A, 123, 219 (1987).
4. R. J. Baxter, V. V.Bazhanov, and J. H. H. Perk, Int. J. Mod. Phys. B, 4, 803 (1990).
5. V. V. Bazhanov and Yu. G. Stroganov, J. Stat. Phys., 51, 799 (1990).
6. V. O. Tarasov, Int. J. Mod. Phys. A, 7, 963 (1992).
7. V. Pasquier and M. Gaudin, J. Phys. A, 25, 5243 (1992).
8. V. B. Kuznetsov and E. K. Sklyanin, J. Phys. A, 31, 2241 (1998).
9. E. K. Sklyanin, "Bäcklund transformations and Baxter's Q-operator," nlin.SI/0009009 (2000).
10. G. P. Pronko, Commun. Math. Phys., 212, 687 (2000).
11. P. P. Kulish and N. Yu. Reshetikhin, Zap. Nauch. Sem. LOMI, 101, 101 (1980); J. Sov. Math., 23, 2435 (1983).
12. M. Jimbo, Lett. Math. Phys., 11, 247 (1986).
13. M. Jimbo, "Topics from representations of $U_{q}(\{g\})$: An introductory guide to physicists," Preprint, Faculty of Science, Kyoto University, Kyoto 606, Japan (1991).
14. T. Deguchi, K. Fabricius, and B. M. McCoy, J. Stat. Phys., 102, 701 (2001); cond-mat/9912141 (1999).
15. S. Pakuliak and S. Sergeev, "Relativistic Toda chain at root of unity II: Modified Q-operator," nlin.SI/0107062 (2001); S. Sergeev, "Exactly solvable lattice models in statistical physics [in Russian]," Doctoral dissertation, Inst. High-Energy Phys., Protvino (2001).

[^0]: ${ }^{1}$ Landau Institute for Theoretical Physics, Chernogolovka, Moscow Oblast, Russia.

[^1]: ${ }^{2}$ After this paper was sent to the journal, we learned that isomorphisms between representations of a monodromy algebra at roots of unity were studied by Pakulyak and Sergeev for the case of the relativistic Toda chain [15].

