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NEW RELATIONS IN THE ALGEBRA OF THE BAXTER

Q-OPERATORS

A. A. Belavin,1 A. V. Odesskii,1 and R. A. Usmanov1

We consider irreducible cyclic representations of the algebra of monodromy matrices corresponding to

the R-matrix of the six-vertex model. At roots of unity, the Baxter Q-operator can be represented as

a trace of a tensor product of L-operators corresponding to one of these cyclic representations, and this

operator satisfies the TQ equation. We find a new algebraic structure generated by these L-operators and

consequently by the Q-operators.

1. Introduction

Baxter [1] introduced the Q-operator and used it to solve the eight-vertex model. The Q-operators
form a family that commutes with a family of the transfer matrices T (u) provided the TQ equation is
satisfied. The latter equation relates the two families to each other and is a key for solving the model.

The expressions for the chiral Potts model Boltzmann weights that are solutions of the star–triangle
relation were found in [2] (also see [3], [4]). The R-matrix S of the model can be represented as a product
of four such Boltzmann weights.

The algebraic structure of the Q-operators in the particular case of the six-vertex model and its relation
to the R-matrix of the chiral Potts model was revealed by Bazhanov and Stroganov [5]. At the Nth root
of unity (N is prime), they found the N -dimensional cyclic representation L of the Yang–Baxter algebra
related to the R-matrix of the usual six-vertex model. The trace over the N -dimensional quantum space
of a tensor product of L-operators has the properties of the Q-operator. In particular, it satisfies the TQ
equation. Tarasov [6] described irreducible cyclic representations of the algebra of monodromy matrices
corresponding to the R-matrix of the six-vertex model at roots of unity.

The Q-operator recently returned to the center of attention. It was shown [7]–[10] that for some models
in statistical physics, the Q-operator is a quantum analogue of the Bäcklund transformation. In [5], the
R-matrix S of the chiral Potts model was derived as an operator that intertwines tensor products of two
cyclic representations of the algebra of monodromy matrices being multiplied first in one order and then in
the reverse order.

The four factors generating the R-matrix S of the chiral Potts model are actually intertwiners that
provide for special cases of some elementary isomorphisms of cyclic representations of the algebra of the
L-operators and their tensor products. In this paper, we clarify the conditions under which two cyclic
representations are equivalent and find the corresponding intertwiner. We also solve the same problem for
two tensor products of a pair of cyclic representations. The obtained intertwiners generalize the well-known
vertex weights of the chiral Potts model and satisfy a modification of the star–triangle equations.

The plan of the paper is as follows. In Sec. 2, we introduce the notion of cyclic representations of the
algebra of L-operators. In Sec. 3, we discuss different versions of cyclic representations. In Sec. 4, we derive
the TQ equation. In Sec. 5, we discuss some special cases of elementary isomorphisms acting on cyclic
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representations of the algebra of monodromy matrices. In Sec. 6, we find these isomorphisms in the general
case. We show that the intertwiners of these elementary isomorphisms satisfy a generalized star–triangle
equation of the chiral Potts model. In Sec. 7, we present some relations in the algebra of Q-operators. In
Sec. 8, we discuss perspectives for possible future investigations. In the appendices, we prove some formulas
used in the paper.

2. Cyclic representations of the Yang–Baxter algebra

Following [6], we define the R-matrix

R(u) =


1 − uω 0 0 0

0 ω(1 − u) u(1 − ω) 0

0 1 − ω 1 − u 0

0 0 0 1 − uω

 . (1)

It is related to the algebra Uq(sl2) [11]–[13] and can be obtained from the R-matrix of the standard six-vertex
model by a simple transformation (see Sec. 3). For brevity, we let M = End C2, and then R(u) = M⊗M.

The algebra of monodromy matrices A is generated by A(u), B(u), C(u), D(u), H , and H−1 subject
to the relations

R(u)
1

L(uv)
2

L(v) =
2

L(v)
1

L(uv)R(u),[
ω̂ ⊗H,L(u)

]
= 0, HH−1 = H−1H = 1,

L(u) =

(
A(u) B(u)

C(u) D(u)

)
∈ M⊗A, ω̂ = diag(1, ω).

(2)

The indices 1 and 2 over L label the two-dimensional space in which the corresponding L-operator is
multiplied by the R-matrix. Both L-operators act in the same quantum space.

As shown in [6], the algebra A admits the coproduct ∆,

∆
(
L(u)

)
= L1(u)L2(u) ∈ M⊗A⊗A,

∆(H) = H ⊗H.

The subscripts 1 and 2 here label the quantum spaces in which the corresponding L-operators act. The
L-operators considered as two-dimensional matrices (each matrix element is an operator in one of the two
quantum spaces) are multiplied according to the standard matrix multiplication rule. A tensor product of
some representations of the algebra A is therefore a representation of A itself.

We now define the quantum determinant

detq L(u) = D(u)A(uω−1) − C(u)B(uω−1). (3)

It can be verified that H−1 detq L(u) is a central element of the algebra A. Hereafter, we set ωN = 1. As
shown in [6], the center of the algebra A is enhanced in this case because the operators

〈O〉(u) =
N−1∏
k=0

O(uωk), O = A,B,C,D,
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become central, and we can define the matrix of central elements,

〈L〉 =

(
〈A〉 〈B〉
〈C〉 〈D〉

)
.

It can be shown [6] that L = L1L2 satisfies the equation

∆
(
〈L〉

)
= 〈L1〉〈L2〉, 〈detqL〉 = det〈L〉.

The N -dimensional [cyclic] representation π of the algebra A is defined by [6]

L(u, p1, p2) =

(
c1c2Z − b1b2u −u(b1d2 − c1a2Z)X

X−1(d1b2 − a1c2Z) d1d2 − a1a2ωuZ

)
,

Hπ = hZ, pi = (ai, bi, ci, di), i = 1, 2.

(4)

The action of the operators X and Z on the standard basis in C
N is

Z|k〉 = ωk|k〉, X |k〉 = |k + 1〉, k = 0, . . . , N − 1, |N〉 ≡ |0〉.

We also have 〈
L(p1, p2)

〉
(v) =

(
cN1 c

N
2 − bN1 b

N
2 v −v(bN1 d

N
2 − cN1 a

N
2 )

dN
1 b

N
2 − aN

1 c
N
2 dN

1 d
N
2 − aN

1 a
N
2 v

)
.

Although formulas (4) contain eight parameters (in addition to the spectral parameter), the N -dimensional
representation depends only on six of them because the substitution

a1 → λa1, a2 → λ−1a2,

c1 → λc1, c2 → λ−1c2,

b1 → b1, b2 → b2, d1 → d1, d2 → d2,

where λ is an arbitrary number, does not change the operator L(u, p1, p2). The same is true for the
substitution

b1 → λb1, b2 → λ−1b2,

d1 → λd1, d2 → λ−1d2,

a1 → a1, a2 → a2, c1 → c1, c2 → c2.

Moreover, the projective equivalence class of the L-operators depends on only four parameters because

L(λp1, p2) = λL(p1, p2), L(p1, µp2) = µL(p1, p2),

where λ and µ are arbitrary numbers.
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The two representations L1(u, p1, p2)L2(u, p3, p4) and L2(u, p3, p4)L1(u, p1, p2) are equivalent if and
only if pi, i = 1, 2, 3, 4, can be chosen such that they satisfy the conditions

aN
i ± bNi
cNi ± dN

i

= λ±, (5)

where the λ± are independent of i (see Appendix B). The intertwiner given by the equation

S(p1, p2, p3, p4)L1(u, p1, p2)L2(u, p3, p4) = L1(u, p3, p4)L2(u, p1, p2)S(p1, p2, p3, p4) (6)

can be explicitly expressed through the Boltzmann weights Wpq and W pq of the chiral Potts model:

S(p1, p2, p3, p4) = PF (p1, p4;X1X
−1
2 )G(p1, p3;Z1)G(p2, p4;Z2)F (p2, p3;X1X

−1
2 ),

G(p, q;ωk) = Wpq(k), F (p, q;ωk) =
N∑

l=1

ωklW pq(l),
(7)

where P is the standard permutation operator interchanging the spaces 1 and 2.

3. Cyclic representations of the Yang–Baxter algebra in the
Bazhanov–Stroganov form

Together with the L-operators introduced in the previous section, we can consider their version related
to another choice of the R-matrix. We now consider the standard R-matrix of the ice model,

Rice(x) =


xω1 − x−1ω−1

1 0 0 0

0 x− x−1 ω1 − ω−1
1 0

0 ω1 − ω−1
1 x− x−1 0

0 0 0 xω1 − x−1ω−1
1

 (8)

and the corresponding relations in the Yang–Baxter algebra,

Rice(x)
1

Lice(xy)
2

Lice(y) =
2

Lice(y)
1

Lice(xy)Rice(x). (9)

The N -dimensional representation of algebra (9) can be written as

Lice(y, p1, p2) =

(
y−1c1c2Z1 − b1b2yZ

−1
1 −(b1d2Z

−1
1 − c1a2Z1)X

ω1X
−1(d1b2Z

−1
1 − a1c2Z1) y−1d1d2Z

−1
1 − a1a2ω

2
1yZ1

)
,

where the operators Z1 and X satisfy the relations

ZN
1 = 1, XN = 1, Z1X = ω1XZ1.

Substituting

R12 → C−1
1 (xy)C−1

2 (y)R12C2(y)C1(xy),

L1(xy) → C−1
1 (xy)L1(xy)C1(xy), L2(y) → C−1

2 (y)L2(y)C2(y),
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where

C(y) =

(
1 0

0 y

)
and the subscript of the matrix C indicates the space in which this matrix acts, we find that the equation
RLL = LLR remains valid. We then have

R(x) =


xω1 − x−1ω−1

1 0 0 0

0 x− x−1 x(ω1 − ω−1
1 ) 0

0 x−1(ω1 − ω−1
1 ) x− x−1 0

0 0 0 xω1 − x−1ω−1
1

 , (10)

and the L-operator is

L(y, p1, p2) =

(
y−1c1c2Z1 − b1b2yZ

−1
1 −y(b1d2Z

−1
1 − c1a2Z1)X

ω1y
−1X−1(d1b2Z

−1
1 − a1c2Z1) y−1d1d2Z

−1
1 − a1a2ω

2
1yZ1

)
. (11)

Exactly this L-operator was found in [5]. We call it the cyclic representation of the algebra of monodromy
matrices in the Bazhanov–Stroganov form.

We now multiply L(y) by yZ1 and introduce the notation

v = y2, Z = Z2
1 , ω = ω2

1 .

We then obtain operator (4). For the equation RLL = LLR to hold, we must multiply the R-matrix as
follows:

R(u) = −ω1xK1R(x)K−1
2 ,

where

u = x2, K = ω
(σz−1)/2
1 =

(
1 0

0 ω−1
1

)
.

The subscript of the matrix K indicates the space in which this matrix acts. It is easy to see that the
matrix R then coincides with (1) and the operator L coincides with (4).

We stress that hereinafter we let L denote the Tarasov cyclic representations and L denote the cyclic
representations in the Bazhanov–Stroganov form. The matrix elements of the L-operators are denoted by
Ljβ

iα and Ljβ
iα , i, j = 0, 1 and α, β = 0, . . . , N − 1.

4. The Q-operator and the TQ equation

The transfer matrix constructed from L(u),

Q(u) = tr0 L10(u)L20(u) · · · Ln0(u),

where the trace is evaluated in the N -dimensional space, has a very important property that makes it the
Baxter Q-operator [5]. Namely, this matrix satisfies the TQ equation. We prove this statement.

We consider the equation

Rj1j2
i1i2

(u)Lk1β
j1α (uv)Lk2γ

j2β (v) = Lj2β
i2α(uv)Lj1γ

i1β(v)Rk1k2
j1j2

(u), (12)
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✲ ✲

✻

✻ ✲ ✲
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u v

Rj1j2
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j1
i2

j2
i

j
α

β
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✻

✻
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❍❍❍❍❍❍❍❍❍
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❍❍❍❍❍❍❍❍❍❥
✻

✻

✻

✻

✻
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3

2

1

v

uv

u

α

β

γ

i2
j2

k2

i1

j1

k1

3

2

1 v

uv

u

α

β

γ

i2

j2
k2i1

j1 k1

Fig. 1

which is shown graphically in Fig. 1. If the indices i1 and k1 are fixed, both sides of Eq. (12) are operators
in the tensor product C2×CN . We act with these operators on the vector ψk2γ , which belongs to the kernel
of the operator L23(v), that is, on the vector satisfying the equation

Lk2γ
j2β (v)ψk2γ = 0.

A kernel of L23(v) is nontrivial only at some special values of the spectral parameter v = v∗: v2
∗ = c1d1/a1b1

or v2
∗ = c2d2/a2b2. It can be seen from Fig. 1 that the kernel of the operator L23(v∗) is a subspace that

is invariant with respect to the tensor product L13(uv∗)R12(u). In this case, the complement of the kernel
considered as a coset space is also an invariant subspace. The matrix of the operator L13(uv∗)R12(u)
therefore has a block-diagonal form,

L13(uv∗)R12(u) =

(
P1 ∗
0 P2

)
,

where all blocks are N -dimensional square matrices and stars denote the matrix elements inessential for us.
We introduce the ordering of the basis vectors as follows: the first N vectors generate the kernel, and the
remaining N vectors generate its complement.

Let the equations

P1 = φ1L(uv∗λ), P2 = φ2L(uv∗λ−1) (13)

hold for some values of the parameters of L(v∗). After multiplying n copies of the operator L13(uv∗)R12(u)
in the spaces 2 and 3 (see Fig. 2) and evaluating the trace, we then obtain the equation

Q̃(uv∗)T (u) = φn
1 Q̃(uv∗λ) + φn

2 Q̃(uv∗λ−1), (14)

where

Q̃(uv∗) = tr3 L13(uv∗)L1′3(uv∗) · · · L1(n)3
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2

3

. . .

1 1′ 1(n)

❄

❄

❄

❄

❄

❄

❄
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❄
✲ ✲ ✲

✲ ✲ ✲✲ ✲ ✲uv∗

u u u

uv∗

� � �

� � �

Fig. 2

and T (u) is the standard transfer matrix of the ice model. Substituting Q(u) = Q̃(uv∗), we obtain the TQ
equation.

Unfortunately, we cannot realize this scheme for the given definition of the operator L(v), because it
is impossible to satisfy conditions (13) for any set of the parameters. But we can redefine the operator
L(v) such that condition (13) and hence Eq. (14) do hold [5]. For this, we make p1 depend on the spectral
parameter v and p2 remain unchanged:

p1(v) = (a1v
−1, b1, c1, d1v), p2(v) = (a2, b2, c2, d2).

It is shown in Appendix A that Q(u) = Q
(
u, p1(u), p2

)
does satisfy the TQ equation,

Q(u)T (u) = (u− u−1)nQ(uω) + (uω − u−1ω−1)nQ(uω−1),

where T (u) is the standard transfer matrix of the ice model.

5. The elementary isomorphisms: The special case

We consider two representations of the L-operator algebra: L(u, p1, p2) and L(u, p2, p1). Let the
parameters p1 and p2 be such that these representations are equivalent. We introduce the operator G
satisfying the equation

G(Z)L(u, p1, p2) = L(u, p2, p1)G(Z), (15)

where G(Z) acts in the N -dimensional space.
We now consider two tensor products of a pair of cyclic representations: L1(u, p1, p2)L2(u, p3, p4) and

L1(u, p1, p3)L2(u, p2, p4) (note the permutation p2 ↔ p3). Let the parameters p1, p2, p3, and p4 be such
that these two representations are equivalent. We introduce the intertwining operator F ,

F (X1X
−1
2 )L1(u, p1, p2)L2(u, p3, p4) = L1(u, p1, p3)L2(u, p2, p4)F (X1X

−1
2 ), (16)

where F (X1X
−1
2 ) acts in the N -dimensional space.

It turns out that conditions (5) certainly suffice for G and F to exist. These two operators are

G(p1, p2;ωk)
G(p1, p2; 1)

=
k∏

j=1

d1b2 − a1c2ω
j

b1d2 − c1a2ωj
, (17)

F (p1, p2;ωk)
F (p1, p2; 1)

=
k∏

j=1

ωa1d2 − d1a2ω
j

c1b2 − b1c2ωj
, (18)
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where we let G(p1, p2;ωk) and F (p1, p2;ωk) denote the diagonal matrix elements of the N -dimensional
matrices G(p1, p2;Z) and F (p1, p2;X1X

−1
2 ) in their respective eigenvalue bases (G and F cannot be brought

to the diagonal form simultaneously). We calculate these two operators in a more general case in the next
section, but now we merely note that formulas (17) and (18) coincide with formulas (7).

The existence of elementary isomorphisms of G and F explains the factoring of the R-matrix of the
chiral Potts model. Permuting the pairs, we obtain the chain

(p1, p2)(p3, p4) F1→ (p1, p3)(p2, p4)
G1,G2−→ (p3, p1)(p4, p2) F2→ (p3, p4)(p1, p2).

The factoring of the R-matrix then becomes evident.

6. The general case

6.1. The G-operator. We consider the two representations L(u, p1, p̄1) and L(u, p2, p̄2) of the L-
operator algebra. We want to find the conditions for these representations to be equivalent and find the
corresponding intertwiner, which is a generalization of the operator G introduced in the previous section
(formula (15)). For simplicity, we let the same symbol G denote this generalized intertwiner. The two
representations are equivalent if the equations

aN
1 ā

N
1 = aN

2 ā
N
2 , bN1 b̄

N
1 = bN2 b̄

N
2 ,

c̄N1 d̄
N
1

āN
1 b̄

N
1

=
cN2 d

N
2

aN
2 b

N
2

,
c̄N2 d̄

N
2

āN
2 b̄

N
2

=
cN1 d

N
1

aN
1 b

N
1

,

dN
1 d̄

N
1

aN
1 ā

N
1

=
dN
2 d̄

N
2

aN
2 ā

N
2

, dN
1 b̄

N
1 − aN

1 c̄
N
1 = dN

2 b̄
N
2 − aN

2 c̄
N
2

(19)

hold (see Appendix C).
We consider the simplest case where we extract the Nth roots by simply erasing the letter N . As a

result, we obtain the system

a1ā1 = a2ā2, b1b̄1 = b2b̄2,

c̄1d̄1

ā1b̄1
=
c2d2

a2b2
,

c̄2d̄2

ā2b̄2
=
c1d1

a1b1
,

d1d̄1 = d2d̄2, dN
1 b̄

N
1 − aN

1 c̄
N
1 = dN

2 b̄
N
2 − aN

2 c̄
N
2 .

(20)

We find the operator G satisfying the equation

GL(u, p1, p̄1) = L(u, p2, p̄2)G.

If conditions (20) are satisfied, then the operator G exists. We now prove this. Using the ansatz

G = G(Z),

we obtain the system of equations

G(Z)A1 = A2G(Z),

G(Z)B1 = B2G(Z),

G(Z)C1 = C2G(Z),

G(Z)D1 = D2G(Z).
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We choose a basis |k〉, k = 0, . . . , N − 1 (mod N):

Z|k〉 = ωk|k〉, X |k〉 = |k + 1〉.

It is clear that the matrix G(Z) is diagonal in this basis. We now find its nonzero matrix elements.
The first equation of the obtained system is

G(Z)(c1c̄1Z − b1b̄1u) = (c2c̄2Z − b2b̄2u)G(Z).

Acting on the vector |k〉 with the left- and right-hand sides of this equality and comparing the coefficients
at the same powers of u, we obtain the parameter restrictions

c1c̄1 = c2c̄2, b1b̄1 = b2b̄2. (21)

From the fourth equation,

G(Z)(d1d̄1 − a1ā1ωuZ) = (d2d̄2 − a2ā2ωuZ)G(Z),

we similarly obtain

d1d̄1 = d2d̄2, a1ā1 = a2ā2. (22)

The second equation is

G(Z)X−1[d1b̄1 − a1c̄1Z] = [d2b̄2 − a2c̄2Z]G(Z),

and it implies that

G(ωk+1) =
d1b̄1 − a1c̄1ω

k+1

d2b̄2 − a2c̄2ωk+1
G(ωk), (23)

where we let G(ωk), k = 0, . . . , N − 1, denote the diagonal matrix elements of the matrix G(Z). From the
third equation,

G(Z)[b1d̄1 − c1ā1Z]X = [b2d̄2 − c2ā2Z]XG(Z),

we can easily derive

G(ωk+1) =
b2d̄2 − c2ā2ω

k+1

b1d̄1 − c1ā1ωk+1
G(ωk) (24)

in the same way.
Because the function G(ωk) is single valued, we obtain

(d1b̄1 − a1c̄1ω
k+1)(b1d̄1 − c1ā1ω

k+1) = (d2b̄2 − a2c̄2ω
k+1)(b2d̄2 − c2ā2ω

k+1).

Comparing coefficients at the same powers of ω and taking (21) and (22) into account, we obtain the
additional condition

c̄1d̄1

ā1b̄1
+
c1d1

a1b1
=
c̄2d̄2

ā2b̄2
+
c2d2

a2b2
. (25)

Further, we obtain

dN
1 b̄

N
1 − aN

1 c̄
N
1 = dN

2 b̄
N
2 − aN

2 c̄
N
2 (26)
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from the periodicity condition G(ωN+1) = G(ω). Using the gauge symmetries of the L-operators, we can
set

a1 = ā2, b1 = b̄2. (27)

It then follows from (20) that (21), (22), (25), and (26) are valid. The matrix elements G(ωk) therefore
exist and are given by recursive relation (23).

We can easily rewrite G(ωk) in terms of p1 and p̄1. Substituting

c̄2 =
c1c̄1
c2

in (26) and expressing c2 in terms of p1 and p̄1,

c2 = c̄1
N

√
bN1 d̄

N
1 − cN1 ā

N
1

dN
1 b̄

N
1 − aN

1 c̄
N
1

= Λ(p1, p̄1)c̄1,

where we introduce the new function

Λ(p1, p2) = N

√
bN1 d

N
2 − cN1 a

N
2

dN
1 b

N
2 − aN

1 c
N
2

,

we obtain

G(p1, p̄1;ωk)
G(p1, p̄1; 1)

= Λ(p1, p̄1)k
k∏

j=1

d1b̄1 − a1c̄1ω
j

d̄1b1 − ā1c1ωj
.

We stress that G depends on only p1 and p̄1.
The operator G just found generates an isomorphism of two representations L(u, p1, p̄1) and L(u, p2, p̄2)

of the algebra of monodromy matrices with the parameters p2 and p̄2 depending on p1 and p̄1 as follows:

a2 = ā1, ā2 = a1,

b2 = b̄1, b̄2 = b1,

c2 = Λ(p1, p̄1)c̄1, c̄2 = Λ(p1, p̄1)−1c1,

d2 = Λ(p1, p̄1)−1d̄1, d̄2 = Λ(p1, p̄1)d1.

(28)

The operator G obtained is a generalization of the operator G in (7), (15). In that special case, we
must set p2 = p̄1 and p̄2 = p1, thus obtaining the additional constraint Λ(p1, p̄1) = 1 on the parameters p1

and p̄1.

Remark. We extract the Nth roots by simply erasing the letter N . Evidently, the general case
reduces to this. A complete investigation, however, can be performed as follows. For two representations
to be equivalent, their centers must coincide. But we do not compare all central elements when deriving
our conditions. We must add the condition of equality of the corresponding quantum determinants to
our system of equations. We have not completely investigated what this additional condition leads to.
Apparently, it can be used to clarify how the Nth root can be extracted, and it strongly restricts the
number of possibile variants.
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6.2. The F -operator. We now consider two representations of the L-operator algebra: L1(u, p1, p̄1)×
L2(u, p2, p̄2) and L1(u, p3, p̄3)L2(u, p4, p̄4). We find the conditions under which these two representations
are equivalent and calculate the corresponding intertwiner. The latter is a generalization of the operator F
introduced in formulas (7) and (16).

The matrix of the central elements is

〈
L(u, p, p̄)

〉
=

(
cN c̄N − bN b̄Nu −u(bN d̄N − cN āN )

dN b̄N − aN c̄N dN d̄N − aN āNu

)
. (29)

The necessary condition for the equivalence of the two representations is the coincidence of their centers.
Therefore, 〈

L1(u, p1, p̄1)
〉〈
L2(u, p2, p̄2)

〉
=

〈
L1(u, p3, p̄3)

〉〈
L2(u, p4, p̄4)

〉
,

From this, we have

det
〈
L1(u, p1, p̄1)

〉
det

〈
L2(u, p2, p̄2)

〉
= det

〈
L1(u, p3, p̄3)

〉
det

〈
L2(u, p4, p̄4)

〉
. (30)

We show in Appendix C that these conditions yield the following relations between the parameters (we
do not consider the trivial case where p3 = p1, p̄3 = p̄1, p4 = p2, and p̄4 = p̄2):

bN1 b̄
N
1 = bN3 b̄

N
3 , bN2 b̄

N
2 = bN4 b̄

N
4 ,

aN
1 ā

N
1 = aN

3 ā
N
3 , aN

2 ā
N
2 = aN

4 ā
N
4 ,

dN
1 b̄

N
1 = dN

3 b̄
N
3 , aN

2 c̄
N
2 = aN

4 c̄
N
4 ,

cN2 d
N
2

aN
2 b

N
2

=
c̄N3 d̄

N
3

āN
3 b̄

N
3

,
cN1 d

N
1

aN
1 b

N
1

=
cN3 d

N
3

aN
3 b

N
3

,

c̄N2 d̄
N
2

āN
2 b̄

N
2

=
c̄N4 d̄

N
4

āN
4 b̄

N
4

,
cN4 d

N
4

aN
4 b

N
4

=
c̄N1 d̄

N
1

āN
1 b̄

N
1

,

bN2 c̄
N
3 = cN2 b̄

N
1

bN2 c̄
N
1 − āN

1 d
N
2

cN2 b̄
N
1 − aN

2 d̄
N
1

,

āN
1 d

N
4 = d̄N

1 a
N
2

bN2 c̄
N
1 − āN

1 d
N
2

cN2 b̄
N
1 − aN

2 d̄
N
1

.

(31)

We again erase the letter N and obtain

b1b̄1 = b3b̄3, b2b̄2 = b4b̄4,

a1ā1 = a3ā3, a2ā2 = a4ā4,

d1b̄1 = d3b̄3, a2c̄2 = a4c̄4,

c2d2

a2b2
=
c̄3d̄3

ā3b̄3
,

c1d1

a1b1
=
c3d3

a3b3
,

c̄2d̄2

ā2b̄2
=
c̄4d̄4

ā4b̄4
,

c4d4

a4b4
=
c̄1d̄1

ā1b̄1
.

(32)
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Recalling the gauge symmetries of the L-operator, we observe that the substitution

a → λa, ā → λ−1ā,

c → λc, c̄ → λ−1c̄,

b → b, b̄→ b̄, d→ d, d̄→ d̄

does not change the operator L(u, p, p̄). The same is true for the substitution

b→ λb, b̄ → λ−1b̄,

d→ λd, d̄→ λ−1d̄,

a → a, ā → ā, c → c, c̄ → c̄.

Using the gauge degrees of freedom, we can set

b1 = b3, b2 = b4, a1 = a3, a2 = a4. (33)

From this and from (32), we find that

b̄1 = b̄3, b̄2 = b̄4, ā1 = ā3, ā2 = ā4,

d1 = d3, d̄2 = d̄4, c1 = c3, c̄2 = c̄4.
(34)

Moreover, we have the equations

c̄3d̄3 = c2d2
ā3b̄3
a2b2

, c4d4 = c̄1d̄1
a2b2

ā1b̄1
. (35)

From formulas (31), we now obtain

c̄N3 =
cN2 b̄

N
1

bN2

bN2 c̄
N
1 − āN

1 d
N
2

cN2 b̄
N
1 − aN

2 d̄
N
1

, (36)

dN
4 =

d̄N
1 a

N
2

āN
1

bN2 c̄
N
1 − āN

1 d
N
2

cN2 b̄
N
1 − aN

2 d̄
N
1

. (37)

We now find the matrix F intertwining the two representations in question. In particular, we prove
that conditions (33)–(37) are not only necessary but also sufficient for the existence of F . We start with

FL1(p1, p̄1)L2(p2, p̄2) = L1(p3, p̄3)L2(p4, p̄4)F. (38)

We now find the operator F in the form F (X1X
−1
2 ), where X1 and X2 are the shift matrices acting in the

respective first and second N -dimensional spaces. As shown in Appendix D, F does exist and is expressed
through p1, p̄1, p2, and p̄2,

F (p̄1, p2;ωk)
F (p̄1, p2; 1)

= Ω(p̄1, p2)−k
k∏

j=1

c̄1b2 − ā1d2ω
j

b̄1c2 − d̄1a2ωj
,
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where we define the new function

Ω(p1, p2) = N

√
bN1 c

N
2 − dN

1 a
N
2

cN1 b
N
2 − aN

1 d
N
2

for further convenience. We stress that F depends on only the parameters p̄1 and p2. The action of F is
then given by the formulas

a3 = a1, ā3 = ā1, a4 = a2, ā4 = ā2,

b3 = b1, b̄3 = b̄1, b4 = b2, b̄4 = b̄2,

c3 = c1, d3 = d1, c̄4 = c̄2, d̄4 = d̄2,

c̄3 = Ω(p̄1, p2)
c2b̄1
b2

, c4 = Ω(p̄1, p2)−1 c̄1b2

b̄1
,

d̄3 = Ω(p̄1, p2)−1 d2ā1

a2
, d4 = Ω(p̄1, p2)

d̄1a2

ā1
.

(39)

It is clear that the expression obtained for F is gauge-invariant.
We recall that in addition to the gauge symmetry, the tensor product of two L-operators has another

symmetry, namely, the unity can be inserted between these two operators:

L1(p3, p̄3)L2(p4, p̄4) = L1(p3, p̄3)M−1ML2(p4, p̄4),

where M is an arbitrary 2×2 matrix. We set

M =


b̄1
b2

0

0
ā1

a2


and apply this additional symmetry to our L-operators. As a result, we obtain the product of new L-
operators, whose parameters are expressed through p1, p̄1, p2, and p̄2 as

a3 = a1, ā3 = a2, a4 = ā1, ā4 = ā2,

b3 = b1, b̄3 = b2, b4 = b̄1, b̄4 = b̄2,

c3 = c1, d3 = d1, c̄4 = c̄2, d̄4 = d̄2,

c̄3 = Ω(p̄1, p2)c2, c4 = Ω(p̄1, p2)−1c̄1,

d̄3 = Ω(p̄1, p2)−1d2, d4 = Ω(p̄1, p2)d̄1.

(40)

The expression for F (ωk) remains unchanged.
The case in [6] was a special case of the approach in question and can be obtained by setting

p3 = p1, p̄3 = p2, p4 = p̄1, p̄4 = p̄2

in all formulas. In particular, we can easily derive the F -operator in relation (7). For this, we must impose
the additional restriction

Ω(p̄1, p2) = 1
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on the parameters p̄1 and p2.
The obtained operators G and F satisfy the relation that generalizes the star–triangle relation of the

chiral Potts model [2]. Namely, we have

G(q̃, r̃;Z1)F (p̃, r;X1X
−1
2 )G(p, q;Z1) = µF (p′, q′;X1X

−1
2 )G(p, r′;Z1)F (q, r;X1X

−1
2 ), (41)

where µ is a constant and the intertwiners depend on the parameters that are expressed in terms of p, q,
and r by the formulas


a′r = ar,

b′r = br,

c′r = Ω(q, r)cr ,

d′r = Ω(q, r)−1dr,


a′q = aq,

b′q = bq,

c′q = Ω(q, r)−1cq,

d′q = Ω(q, r)dq ,
a′p = ap,

b′p = bp,

c′p = Λ(p, r′)−1cp,

d′p = Λ(p, r′)dp,


ãq = aq,

b̃q = bq,

c̃q = Λ(p, q)cq,

d̃q = Λ(p, q)−1dq,
ãp = ap,

b̃p = bp,

c̃p = Λ(p, q)−1cp,

d̃p = Λ(p, q)dp,


ãr = ar,

b̃r = br,

c̃r = Ω(p̃, r)cr ,

d̃r = Ω(p̃, r)−1dr.

The proof of these statements is in Appendix E.

Remark. The above statement suggests a new algebraic structure related to the cyclic representations
of the monodromy-matrix algebra.

We now consider a Hopf algebra with the generators Lj
i (p1, p2), i, j = 0, 1, p1, p2 ∈ C

4. The coproduct
is

∆(Lj
i ) = (Lk

i )1(Lj
k)2.

The relations in the Hopf algebra are

G(p1, p2)Lj
i (p1, p2) = Lj

i (p̃1, p̃2)G(p1, p2),

F (p̄1, p2)
(
Lk

i (p1, p̄1)
)
1

(
Lj

k(p2, p̄2)
)
2

=
(
Lk

i (p1, p̃1)
)
1

(
Lj

k(p̃2, p̄2)
)
2
F (p̄1, p2),(

Lk
i (p1, p̄1)

)
1

(
Lj

k(p2, p̄2)
)
2

=
(
Lk

i (p1, p̄1)
)
1
M l

k(M−1)m
l

(
Lj

m(p2, p̄2)
)
2
,

where an arbitrary two-dimensional diagonal matrix is denoted by M and the parameters in the right-hand
sides of the relations are expressed in terms of the parameters in the left-hand sides by formulas (28)
and (40). Repeated indices imply summation.

7. The algebra of the Q-operators

In addition to the operator Q(u) introduced in Sec. 4 and related to the cyclic representations of the
algebra of monodromy matrices in the Bazhanov–Stroganov form, we can consider the operator

Q(u) = tr0 L10(u)L20(u) · · ·Lk0(u),
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where the trace is calculated in the N -dimensional space and Li0(u) are the cyclic representations of the
monodromy-matrix algebra in the Tarasov form. The operatorsQ(u) generate the algebra with the relations
following from the properties of the operators L(u),

Q(λp1, p̄1) = λkQ(p1, p̄1), (42)

Q(p1, µp̄1) = µkQ(p1, p̄1), (43)

Q(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1) = Q(λa1, b1, λc1, d1, λ
−1ā1, b̄1, λ

−1c̄1, d̄1), (44)

Q(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1) = Q(a1, µb1, c1, µd1, ā1, µ
−1b̄1, c̄1, µ

−1d̄1), (45)

Q(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1) = Q(ā1, b̄1,Λc̄1,Λ−1d̄1, a1, b1,Λ−1c1,Λd1), (46)

Q(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1)Q(a2, b2, c2, d2, ā2, b̄2, c̄2, d̄2) =

= Q(a1, b1, c1, d1, βā1, αb̄1, αc̄1, βd̄1)Q(β−1a2, α
−1b2, α

−1c2, β
−1d2, ā2, b̄2, c̄2, d̄2), (47)

Q(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1)Q(a2, b2, c2, d2, ā2, b̄2, c̄2, d̄2) =

= Q(a1, b1, c1, d1, a2, b2,Ωc2,Ω−1d2)Q(ā1, b̄1,Ω−1c̄1,Ωd̄1, ā2, b̄2, c̄2, d̄2), (48)

where Λ = Λ(p1, p̄1), Ω = Ω(p̄1, p2), and α, β, λ, and µ are arbitrary numbers. The derivation of all these
relations can be found in Appendix F.

8. Discussion

We note some questions relevant for future investigations.
The approach used in this paper can be applied to more general cases. In particular, it would be

interesting to study the elementary isomorphisms intertwining the cyclic representations of the monodromy-
matrix algebra related to the elliptic R-matrix and also to the R-matrix corresponding to the quantum
algebra Uq(sln).

The spectrum of the transfer matrix of the six-vertex model at roots of unity is degenerate [5], [14].
Some finite-dimensional representations of the Q-operator algebra correspond to multidimensional eigen-
subspaces of the transfer matrix. The Q-operators act on these spaces nontrivially because these operators
do not commute with each other in general. Therefore, investigating finite-dimensional representations of
the Q-operator algebra given by (42)–(48) can shed light on the properties of the transfer-matrix spectrum.

It would also be interesting to clarify the relationship between the algebra of Q-operators and the
U(A1

1) symmetry found in [14].2

Appendix A: The TQ equation

We find the kernel of the operator, L23

(
v; p1(v), p2

)
= L̃23(v), where

p1(v) = (a1v
−1, b1, c1, d1v), p2 = (a2, b2, c2, d2).

We have

L̃23(v) =

(
v−1c1c2Z − b1b2vZ

−1 −v(b1d2Z
−1 − c1a2Z)X

ωv−1X−1(d1b2vZ
−1 − a1c2v

−1Z) d1d2Z
−1 − a1a2ω

2Z

)
.

2After this paper was sent to the journal, we learned that isomorphisms between representations of a monodromy algebra
at roots of unity were studied by Pakulyak and Sergeev for the case of the relativistic Toda chain [15].
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Hereafter, we use the following basis |α〉, α = 0, . . . , N − 1 (mod N):

Z|α〉 = ωα|α〉, X |α〉 = |α + 1〉.

We consider a 2N -dimensional vector Ψ

Ψ =

(
Φ1

Φ2

)
,

where Φ1 and Φ2 are N -dimensional vectors. We act on Ψ with the operator L̃23(v) and equate the result
to zero, thus obtaining

(c1c2Z − b1b2v
2Z−1)Φ1 − v2(b1d2Z

−1 − c1a2Z)XΦ2 = 0,

ωX−1v−1(d1b2vZ
−1 − a1c2v

−1Z)Φ1 + (d1d2Z
−1 − a1a2ω

2Z)Φ2 = 0.

It is easy to see that this system has a solution if and only if

v2 = v2
∗ =

c2d2

a2b2
.

The vectors generating the kernel are

Ψα =

(
−d2|α〉
b2|α− 1〉

)
= −d2|0, α〉 + b2|1, α− 1〉.

We must now act on the vectors Ψα with the operator L̃13(uv∗)R12(u) (it is especially useful that we
can use the ordinary matrix multiplication in the two-dimensional space here). Let

L̃13(uv∗) =

(
A(uv∗) B(uv∗)

C(uv∗) D(uv∗)

)
, R12(u) =

(
a(u) b(u)

c(u) d(u)

)
.

Then

L̃13(uv∗)R12(u) =

(
a(u)A(uv∗) + c(u)B(uv∗) b(u)A(uv∗) + d(u)B(uv∗)

a(u)C(uv∗) + c(u)D(uv∗) b(u)C(uv∗) + d(u)D(uv∗)

)
.

Acting on the vector Ψα with each of the four matrix elements, for example, we obtain

(L̃R)00Ψα =
[
a(u)A(uv∗) + c(u)B(uv∗)

][
−d2|0, α〉 + b2|1, α− 1〉

]
=

= − d2(uω − u−1ω−1)(v−1
∗ u−1c1c2ω

α − b1b2uv∗ω
−α)|0, α〉 +

+ ωb2
{

(u− u−1)(v−1
∗ u−1c1c2ω

α−1 − b1b2uv∗ω
1−α)|1, α− 1〉 +

+ u(ω − ω−1)(−uv∗)(b1d2ω
−α − c1a2ω

α)|0, α〉
}

=

= (u− u−1)(v−1
∗ u−1c1c2ω

α−1 − b1b2v∗uω
1−α)Ψα.

Analogously,

(L̃R)11Ψα = (u− u−1)(d1d2ω
−α − a1a2ω

2+α)Ψα,

(L̃R)10Ψα = (u− u−1)(−v∗u)(b1d2ω
−α−1 − c1a2ω

α+1)Ψα+1,

(L̃R)01Ψα = (u− u−1)ωv−1
∗ u−1(d1b2uv∗ω

1−α − a1c2u
−1v−1

∗ ωα−1)Ψα−1.
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It is clear that the kernel L̃23(v∗) is actually an invariant subspace with respect to the operator
L̃13(uv∗)R12(u). It is easy to see that the obtained N -dimensional matrix is proportional to L̃(uv∗ω),

L̃13(uv∗)R12(u)
∣∣
KerL23

= (u − u−1)L̃(uv∗ω).

We now consider the vectors that belong to the complement of the kernel. If we factor by the vec-
tors of the kernel itself, then this complement must be an invariant space with respect to the operator
L̃13(uv∗)R12(u). We choose the basis Ψ′

α = |0, α〉. Performing all calculations, we obtain (modΨα)

(L̃R)00Ψ′
α = (uω − u−1ω−1)(v−1

∗ u−1c1c2ω
α − b1b2v∗uω

−α)Ψ′
α,

(L̃R)11Ψ′
α = (uω − u−1ω−1)(d1d2ω

1−α − a1a2ω
1+α)Ψ′

α,

(L̃R)10Ψ′
α = (uω − u−1ω−1)(−v∗u)(b1d2ω

−α − c1a2ω
α)Ψ′

α+1,

(L̃R)01Ψ′
α = (uω − u−1ω−1)ωv−1

∗ u−1(d1b2uv∗ω
−α − a1c2u

−1v−1
∗ ωα)Ψ′

α−1.

As in the previous case, it is easy to see that the obtained N -dimensional matrix is proportional to
L̃(uv∗ω−1),

L̃13(uv∗)R12(u)
∣∣
(KerL23)⊥

= (uω − u−1ω−1)L̃(uv∗ω−1).

We thus find that conditions (13) are satisfied. Then,

λ = ω, φ1 = u− u−1, φ2 = uω − u−1ω−1,

and the TQ equation holds,

Q(u)T (u) = (u− u−1)nQ(uω) + (uω − u−1ω−1)nQ(uω−1),

where

Q(u) = tr3 L̃13(u)L̃1′3(u) · · · L̃1(n)3(u).

Appendix B: The conditions for the equivalence of representations:
The Fermat curve

Let N be odd. We now prove that in the general case, the representations L1(u, p1, p2)L2(u, p3, p4)
and L1(u, p3, p4)L2(u, p1, p2) are equivalent if and only if we can choose pi, i = 1, 2, 3, 4, satisfying the
conditions

aN
i ± bNi
cNi ± dN

i

= λ±,

which determine the Fermat curve. For convenience, we hereafter substitute

aN
i → ai, bNi → bi, cNi → ci, dN

i → di.

We have

〈
L(u, p1, p2)

〉
=

(
c1c2 − b1b2u −u(b1d2 − c1a2)

d1b2 − a1c2 d1d2 − a1a2u

)
,

〈
L(u, p3, p4)

〉
=

(
c3c4 − b3b4u −u(b3d4 − c3a4)

d3b4 − a3c4 d3d4 − a3a4u

)
.
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Two representations Lπ and Lπ′ are equivalent if there exists an isomorphism P such that

Lπ′ = PLπP
−1,

that is, elements of Lπ and Lπ′ are in a one-to-one correspondence. The central elements 〈Lπ〉 and 〈Lπ′〉
must coincide [6]. If π = π1 × π2 and π′ = π2 × π1, then

〈Lπ1〉〈Lπ2〉 = 〈Lπ2〉〈Lπ1〉.

It hence follows that

〈
L(u, p1, p2)

〉〈
L(u, p3, p4)

〉
=

〈
L(u, p3, p4)

〉〈
L(u, p1, p2)

〉
.

Multiplying the matrices, we obtain five equations. Only three of them are independent:

b1d2 − c1a2

d1b2 − a1c2
=
b3d4 − c3a4

d3b4 − a3c4
= s,

a1a2 − b1b2
b1d2 − c1a2

=
a3a4 − b3b4
b3d4 − c3a4

= q,

c1c2 − d1d2

b1d2 − c1a2
=
c3c4 − d3d4

b3d4 − c3a4
= r,

(B.1)

where s, q, and r are arbitrary constants.
We now find the constraints on pi under which this system has solutions. We have

b1d2 − c1a2 = s(d1b2 − a1c2),

a1a2 − b1b2 = q(b1d2 − c1a2),

c1c2 − d1d2 = r(b1d2 − c1a2).

(B.2)

It turns out that (B.2) holds if p1 and p2 are points on a curve obtained by intersecting two planes (the
projective symmetry of the operator L):

α1ai + β1bi + γ1ci + δ1di = 0,

α2ai + β2bi + γ2ci + δ2di = 0, i = 1, 2.

We find these manifolds. From the last system, we have

ai = λici + µidi,

bi = νici + ηidi, i = 1, 2.
(B.3)

We substitute (B.3) in (B.2) and obtain the system of equations for the coefficients,

η1 = sη2, λ2 = sλ1, ν1 = µ2, ν2 = µ1,

1 = −rλ2, − 1 = rη1, ν1 = µ2,

λ1λ2 − ν1ν2 = −qλ2, µ1µ2 − η1η2 = qη1,

λ1µ2 − ν1η2 = qν1 − qµ2, µ1λ2 − ν2η1 = 0.
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Solving the system, we obtain

ν1 = µ2 = µ, µ1 = ν2 = ν,

η1 = λ2 = λ, λ1 = η2 = η,

λ = −1
r
, νµ = (q + η)λ, s = 1.

Moreover, because the points p1 and p2 lie on the same curve, we have

λ1 = λ2 = λ, µ1 = µ2 = µ, ν1 = ν2 = ν, η1 = η2 = η.

Consequently,

λ = η, ν = µ.

As a result, we have

a1 + b1
c1 + d1

=
a2 + b2
c2 + d2

,
a1 − b1
c1 − d1

=
a2 − b2
c2 − d2

.

Similarly, we can obtain

a3 + b3
c3 + d3

=
a4 + b4
c4 + d4

,
a3 − b3
c3 − d3

=
a4 − b4
c4 − d4

.

Returning to the old notation

pi → pN
i , i = 1, 2, 3, 4,

we find that by virtue of (B.1), the points p1, p2, p3, and p4 can be related in two different ways:

a.
aN
1 ± bN1
cN1 ± dN

1

=
aN
2 ± bN2
cN2 ± dN

2

=
aN
3 ± bN3
cN3 ± dN

3

=
aN
4 ± bN4
cN4 ± dN

4

,

b.
aN
1 ± bN1
cN1 ± dN

1

=
aN
2 ± bN2
cN2 ± dN

2

=
aN
3 ∓ bN3
cN3 ∓ dN

3

=
aN
4 ∓ bN4
cN4 ∓ dN

4

.

This pertains to the existence of two roots of the equation

ν2 = µ2 = −q

r
+

1
r2
.

But recalling the symmetries of the operator L(u, p1, p2), we can substitute

b1 → λb1, b2 → λ−1b2, d1 → λd1, d2 → λ−1d2,

and L(u, p1, p2) must remain unchanged. With such a substitution for λ = −1, case b is reduced to case a

(we recall that N is odd).
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Appendix C: The conditions for equivalence of representations in
the general case

We introduce the notation

φ = dN b̄N , ψ = aN c̄N , β = bN b̄N ,

δ = aN āN , µ =
cNdN

aNbN
, λ =

c̄N d̄N

āN b̄N
.

Then
〈
L(u, p, p̄)

〉
can be written as

〈
L(u, p, p̄)

〉
=


µβψ

φ
− βu −u

(
λβδ

ψ
− µβδ

φ

)
φ− ψ

λδφ

ψ
− δu

 .

We consider two representations L(u, p1, p̄1) and L(u, p2, p̄2) of the L-operator algebra and find the
conditions under which they are equivalent. The necessary condition for the equivalence of the two repre-
sentations is a coincidence of the centers of these representations. We have〈

L(u, p1, p̄1)
〉

=
〈
L(u, p2, p̄2)

〉
. (C.1)

By equating the coefficients of the same powers of u, we hence obtain

δ1 = δ2, β1 = β2, φ1 − ψ1 = φ2 − ψ2, (C.2)

λ1φ1

ψ1
=
λ2φ2

ψ2
. (C.3)

In addition, it follows from (C.1) that

det
〈
L(u, p1, p̄1)

〉
= det

〈
L(u, p2, p̄2)

〉
.

In this equation, the left- and right-hand sides are second-degree polynomials in u. The roots of the left
polynomial are

u1 = λ1, ū1 = µ1,

and the roots of the right polynomial are

u2 = λ2, ū2 = µ2.

The roots of the left- and right-hand sides must coincide. We consider the case where

λ1 = µ2, λ2 = µ1. (C.4)

Rewriting (C.2)–(C.4) in terms of ai, bi, ci, and di, we obtain

aN
1 ā

N
1 = aN

2 ā
N
2 , bN1 b̄

N
1 = bN2 b̄

N
2 ,

c̄N1 d̄
N
1

āN
1 b̄

N
1

=
cN2 d

N
2

aN
2 b

N
2

,
c̄N2 d̄

N
2

āN
2 b̄

N
2

=
cN1 d

N
1

aN
1 b

N
1

,

dN
1 d̄

N
1

aN
1 ā

N
1

=
dN
2 d̄

N
2

aN
2 ā

N
2

,

dN
1 b̄

N
1 − aN

1 c̄
N
1 = dN

2 b̄
N
2 − aN

2 c̄
N
2 .
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We now consider two representations L1(u, p1, p̄1)L2(u, p2, p̄2) and L1(u, p3, p̄3)L2(u, p4, p̄4) of the L-
operator algebra. We find the conditions under which these two representations are equivalent. We have

det
〈
L1(u, p1, p̄1)

〉
det

〈
L2(u, p2, p̄2)

〉
= det

〈
L1(u, p3, p̄3)

〉
det

〈
L2(u, p4, p̄4)

〉
. (C.5)

Each determinant is a second-degree polynomial in u. The roots of these polynomials are

u = λ, ū = µ.

The left-hand side of (C.5) then vanishes at u1 = λ1, ū1 = µ1, u2 = λ2, and ū2 = µ2, and the right-hand
side vanishes at u3 = λ3, ū3 = µ3, u4 = λ4, and ū4 = µ4. It is then clear that the left and the right roots
coincide. We consider the case where

µ2 = λ3, µ1 = µ3, λ2 = λ4, λ1 = µ4.

We have 〈
L1(u, p1, p̄1)

〉〈
L2(u, p2, p̄2)

〉
=

〈
L1(u, p3, p̄3)

〉〈
L2(u, p4, p̄4)

〉
, (C.6)

and we find the roots that correspond to the separate multipliers in the left- and right-hand sides of (C.6):

µ1, λ1, µ2, λ2, µ1, µ2, λ1, λ2.

We see that the two roots λ1 and µ2 are interchanged.
Let u = λ2. We act on the vector Ψ1 (the right zero vector of the operator

〈
L2(λ2, p2, p̄2)

〉
) from the

left with both sides of Eq. (C.6):

Ψ1 =

(
−λ2δ2

ψ2

)
,

〈
L2(λ2, p2, p̄2)

〉
Ψ1 = 0.

This vector is also the right zero vector for
〈
L2(λ2, p4, p̄4)

〉
. We hence obtain the equation

δ2
ψ2

=
δ4
ψ4

.

Now let u = µ1. We act on the left zero vector Ψ2 of the operator
〈
L1(µ1, p1, p̄1)

〉
from the right with

both sides of Eq. (C.6):

Ψ2 =

(
φ1

µ1β1

)
, Ψ2

〈
L1(µ1, p1, p̄1)

〉
= 0.

Because this vector is the left zero vector of the operator
〈
L1(µ, p3, p̄3)

〉
, we have

φ1

β1
=
φ3

β3
.

It is clear that (C.6) holds if we insert the unity 1 = MM−1 between the two factors in the right-hand
side, where M is a two-dimensional matrix,

M =

(
m1 0

0 m2

)
.
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Using this gauge symmetry, we can set

β3 = β1, δ4 = δ2,

whence it immediately follows that

φ3 = φ1, ψ4 = ψ2.

Multiplying the matrices in (C.6) and equating coefficients of the powers of u, it is easy to see that

β4 = β2, δ3 = δ1,

ψ3 = φ4
µ2ψ1

λ1φ2
,

ψ3β2 − δ1φ4 = ψ1β2 − δ1φ2.

Two last equalities imply

φ4 =
λ1φ2(β2ψ1 − δ1φ2)
β2µ2ψ1 − λ1δ1φ2

, ψ3 =
µ2ψ1(β2ψ1 − δ1φ2)
β2µ2ψ1 − λ1δ1φ2

. (C.7)

Collecting all the obtained equations, in addition to (C.7), we have

β1 = β3, β2 = β4, δ1 = δ3, δ2 = δ4,

φ1 = φ3, ψ2 = ψ4, µ2 = λ3,

µ = µ3, λ2 = λ4, λ1 = µ4.

Appendix D: Calculating the operator F

Matrix equation (38) can be written in the form of a system of equations corresponding to the four
matrix elements. We have

L1(p1, p̄1)L2(p2, p̄2) =

(
A1 B1

C1 D1

) (
A2 B2

C2 D2

)
=

(
A1A2 + B1C2 A1B2 + B1D2

C1A2 + D1C2 C1B2 + D1D2

)
.

As a result, we obtain the system

F (X1X
−1
2 )(A1A2 + B1C2) = (A3a4 + B3C4)F (X1X

−1
2 ),

F (X1X
−1
2 )(A1B2 + B1D2) = (A3B4 + B3D4)F (X1X

−1
2 ),

F (X1X
−1
2 )(C1A2 + D1C2) = [C3a4 + D3C4]F (X1X

−1
2 ),

F (X1X
−1
2 )(C1B2 + D1D2) = (C3B4 + D3D4)F (X1X

−1
2 ).

(D.1)

We choose a basis |k1, k2〉, k1, k2 = 0, . . . , N − 1 (mod N),

X1|k1, k2〉 = ωk1 |k1, k2〉, X2|k1, k2〉 = ωk2 |k1, k2〉,

Z1|k1, k2〉 = |k1 − 1, k2〉, Z2|k1, k2〉 = |k1, k2 − 1〉.
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The matrix F (X1X
−1
2 ) is diagonal in this basis. We now calculate its nonzero matrix elements. Substituting

the expressions for Ai, Bi, Ci, and Di, i = 1, 2, for the first equation in (D.1), for example, we have

F (X1X
−1
2 )

[
(c1c̄1Z1 − b1b̄1u)(c2c̄2Z2 − b2b̄2u) − u(b1d̄1 − c1ā1Z1)X1X

−1
2 (d2b̄2 − a2c̄2Z2)

]
=

=
[
(c3c̄3Z1 − b3b̄3u)(c4c̄4Z2 − b4b̄4u) − u(b3d̄3 − c3ā3Z1)X1X

−1
2 (d4b̄4 − a4c̄4Z2)

]
F (X1X

−1
2 ).

Opening the parenthesis and acting on the vector |k1, k2〉 with the left- and right-hand sides and equating
coefficients of the linearly independent vectors and of the same powers of u, we obtain

c1c̄1c2c̄2 = c3c̄3c4c̄4, b1b̄1b2b̄2 = b3b̄3b4b̄4,

b1d̄1d2b̄2 = b3d̄3d4b̄4, c1ā1a2c̄2 = c3ā3a4c̄4,

F (ωk+1) =
b3c̄4(d̄3a4ω

k+1 − b̄3c4)
b1c̄2(d̄1a2ωk+1 − b̄1c2)

F (ωk) =
c1b̄2(ā1d2ω

k+1 − c̄1b2)
c3b̄4(ā3d4ωk+1 − c̄3b4)

F (ωk),

where F (ωk), k = 0, . . . , N − 1, are the diagonal matrix elements of the matrix F . Using the obtained
restrictions on ai, bi, ci, and di, we can reduce this system to the system

c̄1c2 = c̄3c4, d̄1d2 = d̄3d4,

F (ωk+1) =
d̄3a4ω

k+1 − b̄3c4

d̄1a2ωk+1 − b̄1c2
F (ωk) =

ā1d2ω
k+1 − c̄1b2

ā3d4ωk+1 − c̄3b4
F (ωk).

It can be easily seen that the second equation can be derived from the first if the constraints

c̄3d̄3 = c2d2
ā3b̄3
a2b2

, c4d4 = c̄1d̄1
a2b2

ā1b̄1

are used. Because F (ωk) is a single-valued function, we must equate the two fractions in terms of which
F (ωk) is expressed. We then obtain

(d̄3a4ω
k+1 − b̄3c4)(ā3d4ω

k+1 − c̄3b4) = (d̄1a2ω
k+1 − b̄1c2)(ā1d2ω

k+1 − c̄1b2).

Equating the coefficients of the same powers of ω, we obtain

ā1d̄1a2d2 = ā3d̄3a4d4, b̄1c̄1b2c2 = b̄3c̄3b4c4,

ā1b̄1a2b2

(
c̄1d̄1

ā1b̄1
+
c2d2

a2b2

)
= a4b4ā3b̄3

(
c̄3d̄3

ā3b̄3
+
c4d4

a4b4

)
.

If we again take the restrictions on ai, bi, ci, and di into account, we obtain

c̄1c2 = c̄3c4, (D.2)

that is, the same equation as before. From the obvious equation

F (ωN+k) = F (ωk),

we also have

c̄N1 b
N
2 − āN

1 d
N
2 = c̄N3 b

N
4 − āN

3 d
N
4 . (D.3)
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We now prove that (D.2) and (D.3) follow from (33)–(37). We have

ψ3 = aN
3 c̄

N
3 =

cN2 b̄
N
1 a

N
1

bN2

bN2 c̄
N
1 − āN

1 d
N
2

cN2 b̄
N
1 − aN

2 d̄
N
1

,

φ4 = dN
4 b̄

N
4 =

d̄N
1 a

N
2 b̄

N
2

āN
1

bN2 c̄
N
1 − āN

1 d
N
2

cN2 b̄
N
1 − aN

2 d̄
N
1

.

Expressing c̄N3 and dN
4 from this equation and substituting them in (D.3), we obtain an identity. Moreover,

we have
c̄3
d4

=
c2

d̄1

ā1b̄1
a2b2

.

Multiplying the last equation by

c4d4 = c̄1d̄1
a2b2

ā1b̄1
,

we obtain (D.2). Therefore,

F (ωk+1) = N

√
d̄N
1 a

N
2 − b̄N1 c

N
2

āN
1 d

N
2 − c̄N1 b

N
2

c̄1b2 − ā1d2ω
k+1

b̄1c2 − d̄1a2ωk+1
F (ωk).

Appendix E: The star–triangle equation

Here, we prove the star–triangle relation

G(q̃, p̃;Z1)F (p̃, r;X1X
−1
2 )G(p, q;Z1) = µF (p′, q′;X1X

−1
2 )G(p, r′;Z1)F (q, r;X1X

−1
2 ) (E.1)

and find µ. We start with the diagram

(p, q)(r, s) F−−−−→ (p, r′)(q′, s) G−−−−→ (r′′, p′)(q′, s)$G F

$
(q̃, p̃)(r, s) F−−−−→ (q̃, r̃)(p′′, s) G−−−−→ (r′′, q′′)(p′′, s).

Now, if r′′, q′′, and p′′ obtained in two different ways coincide up to gauge transformations, then we prove
that Eq. (E.1) is valid. We recall the definition of the functions Λ(p1, p2) and Ω(p1, p2):

Λ(p1, p2) = N

√
bN1 d

N
2 − cN1 a

N
2

dN
1 b

N
2 − aN

1 c
N
2

, Ω(p1, p2) = N

√
cN1 b

N
2 − aN

1 d
N
2

bN1 c
N
2 − dN

1 a
N
2

.

We perform all calculations for the first chain of the diagram. For (p, q)(r, s) F−→ (p, r′)(q′, s), we have

a′r = ar, a′q = aq,

b′r = br, b′q = bq,

c′r = Ω(q, r)cr , c′q = Ω(q, r)−1cq,

d′r = Ω(q, r)−1dr, d′q = Ω(q, r)dq .
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For (p, r′)(q′, s) G−→ (r′′, p′)(q′, s), we have

a′′r = a′r, a′p = ap,

b′′r = b′r, b′p = bp,

c′′r = Λ(p, r′)c′r, c′p = Λ(p, r′)−1cp,

d′′r = Λ(p, r′)−1d′r, d′p = Λ(p, r′)dp.

For (r′′, p′)(q′, s) F−→ (r′′, q′′)(p′′, s), we have

a′′q = a′q, a′′p = a′p,

b′′q = b′q, b′′p = b′p,

c′′q = Ω(p′, q′)c′q, c′′p = Ω(p′, q′)−1c′p,

d′′q = Ω(p′, q′)−1d′q, d′′p = Ω(p′, q′)d′p.

We now perform all calculations for the second chain of the diagram. For (p, q)(r, s) G−→ (q̃, p̃)(r, s),
we have

ãq = aq, ãp = ap,

b̃q = bq, b̃p = bp,

c̃q = Λ(p, q)cq, c̃p = Λ(p, q)−1cp,

d̃q = Λ(p, q)−1dq, d̃p = Λ(p, q)dp.

For (q̃, p̃)(r, s) F−→ (q̃, r̃)(p′′, s), we have

ãr = ar, a′′p = ãp,

b̃r = br, b′′p = b̃p,

c̃r = Ω(p̃, r)cr , c′′p = Ω(p̃, r)−1c̃p,

d̃r = Ω(p̃, r)−1dr, d′′p = Ω(p̃, r)d̃p.

For (q̃, r̃)(p′′, s) G−→ (r′′, q′′)(p′′, s), we have

a′′r = ãr, a′′q = ãq,

b′′r = b̃r, b′′q = b̃q,

c′′r = Λ(q̃, r̃)c̃r, c′′q = Λ(q̃, r̃)−1c̃q,

d′′r = Λ(q̃, r̃)−1d̃r, d′′q = Λ(q̃, r̃)d̃q.
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It remains to verify that the obtained L-operators actually coincide. Comparing the parameters r′′,
q′′, and p′′ obtained in the two different ways, we conclude that Eq. (41) is satisfied if

Λ(p, r′)Ω(p′, q′) = Λ(p, q)Ω(p̃, r),

Ω(q, r)Λ(p, r′) = Ω(p̃, r)Λ(q̃, r̃).
(E.2)

It is easy to show that (E.2) is satisfied identically.
We have thus proved (E.1) for some as yet unknown µ. We now find µN . It is clear that

µN =
det G(p, q) detF (p̃, r) detG(q̃, r̃)
detF (q, r) detG(p, r′) detF (p′, q′)

.

The determinants of matrices G(p1, p2) and F (p1, p2) can be easily evaluated. Each of these matrices can
be individually reduced to the diagonal form (not simultaneously), and in each case, the diagonal matrix
elements are

G(p1, p2;ωk)
G(p1, p2; 1)

=
(
bN1 d

N
2 − cN1 a

N
2

dN
1 b

N
2 − aN

1 c
N
2

)k/N k∏
j=1

d1b2 − a1c2ω
j

b1d2 − c1a2ωj
,

F (p1, p2;ωk)
F (p1, p2; 1)

=
(
bN1 c

N
2 − dN

1 a
N
2

cN1 b
N
2 − aN

1 d
N
2

)k/N k∏
j=1

c1b2 − a1d2ω
j

b1c2 − d1a2ωj
.

We set

G(p1, p2; 1) = F (p1, p2; 1) = 1.

Then

detG(p1, p2) =
(
bN1 d

N
2 − cN1 a

N
2

dN
1 b

N
2 − aN

1 c
N
2

)(N−1)/2 N−1∏
k=1

k∏
j=1

d1b2 − a1c2ω
j

b1d2 − c1a2ωj
,

detF (p1, p2) =
(
bN1 c

N
2 − dN

1 a
N
2

cN1 b
N
2 − aN

1 d
N
2

)(N−1)/2 N−1∏
k=1

k∏
j=1

c1b2 − a1d2ω
j

b1c2 − d1a2ωj
.

Appendix F: The relations in the Q-operator algebra

The relations in the Q-operator algebra follow from the properties of the cyclic representations of the
L-operator algebra. We now prove this.

Relations (42)–(45) become evident if we recall that

Q(u) = tr0 L10(u)L20(u) · · ·Ln0(u)

and that we have the symmetries

L(λp1, p̄1) = λL(p1, p̄1),

L(p1, µp̄1) = µL(p1, p̄1),

L(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1) = L(λa1, b1, λc1, d1, λ
−1ā1, b̄1, λ

−1cq, d̄1),

L(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1) = L(a1, µb1, c1, µd1, ā1, µ
−1b̄1, c̄1, µ

−1d̄1),
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where λ and µ are arbitrary numbers. Relation (47) follows from another symmetry:

L1(p1, p̄1)L2(p2, s) = L1(p1, p̄1)MM−1L2(p2, s),

or, in more detail,

L1(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1)L2(a2, b2, c2, d2, ā2, b̄2, c̄2, d̄2) =

= L1(a1, b1, c1, d1, βā1, αb̄1, αc̄1, βd̄1)L2(β−1a2, α
−1b2, α

−1c2, β
−1d2, ā2, b̄2, c̄2, d̄2),

where α and β are arbitrary numbers. Here,

M =

(
α 0

0 β

)
.

Relation (46) is obtained from the equation

GL(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1)G−1 = L(a1, b1,Λc1,Λ−1d1, ā1, b̄1,Λ−1c̄1,Λd̄1),

where

Λ = Λ(p1, p̄1) = N

√
bN1 d̄

N
1 − cN1 ā

N
1

dN
1 ā

N
1 − aN

1 c̄
N
1

,

and relation (48) is obtained from

FL1(a1, b1, c1, d1, ā1, b̄1, c̄1, d̄1)L2(a2, b2, c2, d2, ā2, b̄2, c̄2, d̄2)F−1 =

= L1(a1, b1, c1, d1, a2, b2,Ωc2,Ω−1d2)L2(ā1, b̄1,Ω−1c̄1,Ωd̄1, ā2, b̄2, c̄2, d̄2),

where

Ω = Ω(p̄1, p2) = N

√
c̄N1 b

N
2 − āN

1 d
N
2

b̄N1 c
N
2 − d̄N

1 a
N
2

.
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