ty
er

The Universi
of Manchest

MANCHESTER

1824

Uniform decision problems for automatic
semigrouos

Kambites, Mark and Otto, Friedrich

2006

MIMS EPrint: 2007.29

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Available online at www.sciencedirect.com

. . JOURNAL OF
“ ScienceDirect Algebra

o~

LSEVIER Journal of Algebra 303 (2006) 789-809 —
www.elsevier.com/locate/jalgebra

Uniform decision problems
for automatic semigroups *

Mark Kambites *, Friedrich Otto

Fachbereich Mathematik/Informatik, Universitit Kassel, 34109 Kassel, Germany
Received 7 October 2005
Available online 20 December 2005
Communicated by Derek Holt

Abstract

We consider various decision problems for automatic semigroups, which involve the provision
of an automatic structure as part of the problem instance. With mild restrictions on the automatic
structure, which are necessary to make the problem well defined, the uniform word problem for
semigroups described by automatic structures is decidable. Under the same conditions, we show that
one can also decide whether the semigroup is completely simple or completely zero-simple; in the
case that it is, one can compute a Rees matrix representation for the semigroup, in the form of a Rees
matrix together with an automatic structure for its maximal subgroup. On the other hand, we show
that it is undecidable in general whether a given element of a given automatic monoid has a right
inverse.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction

Over the past two decades, one of the most successful and productive areas of computa-
tional algebra has been the theory of automatic groups. Roughly speaking, the description

* This research was supported by a Marie Curie Intra-European Fellowship within the 6th European Community
Framework Programme.
* .
Corresponding author.
E-mail addresses: kambites @theory.informatik.uni-kassel.de (M. Kambites),
otto @theory.informatik.uni-kassel.de (F. Otto).

0021-8693/$ — see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.11.028

790 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

of a group by an automatic structure allows one efficiently to perform various computa-
tions involving the group, which may be hard or impossible given only a presentation.
Groups which admit automatic structures also share a number of interesting structural and
geometric properties [9]. More recently, many authors have followed a suggestion of Hud-
son [16] by considering a natural generalisation to the broader class of monoids or, even
more generally, of semigroups, and a coherent theory has begun to develop [4-8,11-14,
22-26].

A number of authors have considered decision problems in automatic semigroups; for
example, it has been established that the word problem for an automatic semigroup is al-
ways decidable in quadratic time [5] and in certain cases is P-complete [19]. In general,
this research has assumed a fixed semigroup with automatic structure, and asked what
computations can be performed in the semigroup. Since an automatic structure is a finite
description of a (typically infinite) semigroup, one is also able to consider decision prob-
lems in which a semigroup, defined by means of an automatic structure, forms part of the
problem instance. Some such problems, such as the isomorphism problem and the uniform
word problem, are also studied by group theorists. Others are more particular to semigroup
theory; for example, one can ask if there are algorithms to decide, given an automatic
structure, whether the semigroup described is a group, is completely simple, is completely
zero-simple, has a left/right/two-sided zero or identity, is right/left/two-sided cancellative
and so forth.

The aim of this paper is to make a start upon addressing these issues. We begin, in
Section 2 by developing a suitable theoretical foundation for the study of uniform problems
involving automatic semigroups. In Sections 3 and 4 we present a number of algorithms
for basic problems involving automatic semigroups; these include, amongst others, the
uniform word problem and deciding the properties of right cancellativity, the existence of
an identity and the existence of a zero. In Section 5, by contrast, we show that the existence
of right inverses for a given element of a given automatic semigroup is not, in general,
decidable. Finally, in Section 6, we present algorithms to decide if a given semigroup is
completely simple or completely zero-simple and, in the event that it is, obtain a Rees
matrix decomposition of the semigroup.

While this paper is theoretical in nature, the research documented also has a practical
aspect. We aim not only to improve our understanding of computational issues involving
automatic semigroups, but also to develop practical tools which will be of use to those
working in the field. All the algorithms documented in this paper, along with a number of
others, have been implemented by the first author using the GAP computer algebra system
[10]. They will shortly be made available in the form of a GAP package, as a resource for
researchers in the area.

2. Foundations

In this section, we begin by recalling some basic definitions which we shall require in
the sections that follow. We then proceed to develop a suitable formalism for the study
of uniform problems involving automatic structures. We assume a basic familiarity with
finite automata; the reader with no experience in this area is advised to consult a textbook

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 791

such as [18]. Throughout this paper, we write No and N to denote the sets of nonnegative
integers and strictly positive integers, respectively, and € to denote the empty word.

2.1. Synchronous automata recognising relations

Let A be a finite alphabet, let $ be a new symbol not in A, and let AS be the alphabet
A U {$}. We define a function §: A* x A* — (A% x A%)* as follows. For m, n € Ny and
at,...,am,b1,...,b, € A, let

(a1, b1) ... (ams b)) (S, bm+1) ... ($,by) ifm <n,
§lay...am,b1...by) =13 (a1, b1)...(an, by) ifm=n,
(a1, b1)...(an, bp)(an+1,9) ... (an,$) ifm>n.

Intuitively, § rewrites pairs of words over A as words of pairs over AS.

A synchronous automaton over A is a finite automaton over (A$ X A$)*. We say that
such an automaton recognises or accepts a pair (u, v) € A* x A* if it recognises §(u, v);
it recognises a relation R € A* x A* if it recognises exactly the image §(R). A relation
recognised by a synchronous automaton is called synchronously rational. The following
proposition summarises some basic properties of synchronously rational relations, which
we shall use throughout this paper without further comment; all are proved in [9].

Proposition 2.1. The class of synchronously rational relations is closed under intersec-

tion, union, complement, composition and inversion. Synchronously rational relations are

rational transductions, and hence preserve rational languages; in particular the projection

of a synchronously rational relation onto either coordinate is a rational language, and the

image of an element under a synchronously rational relation is a rational language.
Moreover, all of these operations are effectively computable.

We shall also make use of the following fact, again without further comment.

Proposition 2.2. There is an algorithm which, given two synchronous automata, decides if
they accept the same relation.

Proof. Two synchronous automata accept the same relation exactly if, when considered
as normal finite automata, they accept the same language over (A% x A%)*. The latter
property is well known to be decidable (for example, by computing minimal deterministic
automata). 0O

2.2. Automatic structures and interpretations

A (synchronous) pre-automatic structure I consists of

(i) afinite set A(I") of generators;
(ii) a finite automaton recognising a language L(I") € A(I")™;

792 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

(iii) a synchronous automaton recognising a relation L_(I") on A(I")™, which is con-
tained in L(I") x L(I"); and

(iv) foreacha € A(I'), a synchronous automaton recognising a relation L,(I") on A(I")™
which is contained in L(I") x L(I').

Where only one pre-automatic structure is under discussion, we shall for brevity write
simply A, L, L_ and L, in place of A(I"), L(I"), L—(I") and L,(I"), respectively.

An interpretation of a pre-automatic structure with respect to a semigroup S is a mor-
phism o : AT — S such that

(i) o(L)=S;
(i1) for u,v € L we have (1, v) € L= if and only if o (u) = o (v); and
(iii) foreacha € A and u,v € L, we have (u, v) € L, if and only if o (ua) = o (v).

If such an interpretation exists, we say that the pre-automatic structure is an automatic
structure for S, or that S is described by the automatic structure. A semigroup S is called
automatic if it is described by some automatic structure. If, in addition, the interpretation
restricts to a bijection from L to S, we say that the automatic structure has uniqueness, or
is an automatic cross-section for S.

Proposition 2.3. Two semigroups described by the same automatic structure are necessar-
ily isomorphic.

Proof. Suppose o: AT — S and 7:AT — T are interpretations of the same automatic
structure. Define amap p: S — T by setting p(s) to be the unique t € T such that r = 7(w)
for some w € L with o (w) = s. Itis straightforward to verify that this map is a well-defined
isomorphism of the semigroups. O

Proposition 2.3 tells us that an automatic structure uniquely defines a semigroup S up to
isomorphism, but it does not guarantee that it uniquely defines an interpretation, even up to
isomorphism. In general, an automatic structure need not contain sufficient information to
associate to each generator a unique member of the language of representatives which rep-
resents the same element in every interpretation. As an elementary example, we consider a
pre-automatic structure I" with A(I") ={a, b, c}, L(I") = {a, b},

L_(I'={(a,a), (b,b)} and L,(I')=Ly(I')=Lc(I')={(a,b), (b,b)}.
Clearly, I" is an automatic structure for the two-element semigroup S with presentation
(a,b|aa =ab =ba =bb =b).
Define morphisms p, o’ : A* — S by p(a) = p'(a) =a, p(b) =p'(b) =b and p(c) =a
but p’(c) = b. Tt is straightforward to verify that p and p’ are distinct interpretations of I".

Indeed, since S has no nontrivial isomorphisms, they are not even equivalent up to isomor-
phic permutation of S.

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 793

We will need to perform computations not only with automatic structures but also with
interpretations; for this we require a finite way of encoding of an interpretation. For-
mally, we say that an assignment of generators for the automatic structure with respect
to a semigroup S is a function ¢t: A — L with the property that there exists an interpre-
tion o: AT — § such that o(a) = o(t(a)) for all a € A; such an interpretation is said
to be consistent with 1. Two assignments of generators ¢ and (' are called equivalent if
(t(a), /' (a)) € L= for every generator a. An interpreted automatic structure for a semi-
group S is a pair (I, t) of an automatic structure together with an assignment of generators
with respect to S. This terminology is justified by the following proposition which is
straightforward to prove.

Proposition 2.4. An assignment of generators is consistent with a unique interpretation (up
to isomorphic permutation of the semigroup described). Moreover, equivalent assignments
of generators are consistent with the same interpretation.

Conversely, an interpretation for an automatic structure is consistent with an assign-
ment of generators, which is unique up to equivalence.

Given an automatic structure and a word w = ajas ...a, € A1 with each a; € A, we
define

Ly=LsoLsyo0---0L,,

where o denotes composition of relations. We extend this definition to the whole of A*
by letting L = L—. By our observations above, we can compute a synchronous automa-
ton recognising the language L., for any w € A*. It is readily verified [9] that for any
interpretation o : A1 — S of the automatic structure, we have

L, = {(u, v)eL|omw) =O’(U)}.
2.3. Interpreted vs uninterpreted automatic structures

The distinction between automatic structures with and without interpretation is impor-
tant for two reasons. Firstly, certain problems, such as the uniform word problem, involve
elements of the semigroup expressed as words in the generators as part of the problem in-
stance; these problems are not necessarily well defined in the absence of an interpretation.
Secondly, even invariant properties of the semigroup, such as whether it has an identity,
can be more straightforward to test when an assignment of generators is provided. We
presently lack an algorithm which, given an automatic structure, computes an assignment
of generators; in general it is not clear whether such an algorithm exists.

Question 2.5. Is there an algorithm which, given an automatic structure, finds an assign-
ment of generators which is consistent with some interpretation?

However, there is a very large class of semigroups for which automatic structures admit
essentially unique interpretations, and in which such an algorithm does exist.

794 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

We say that two elements s and ¢ of a semigroup S are right translationally equivalent
if xs = xt for every element x € S. Recall that a semigroup is called left reductive if
no two distinct elements are right translationally equivalent [27, p. 84]. The class of left
reductive semigroups is very large, including all monoids, left cancellative semigroups,
inverse semigroups and of course groups. An example of a semigroup which is not left
reductive is a nontrivial semigroup all of whose elements are left zeros.

Proposition 2.6. Given an automatic structure, right translational equivalence is indepen-
dent of the choice of interpretation, that is, words u and v represent right translationally
equivalent elements in all interpretations or in none.

Moreover, there is an algorithm which, given as input an automatic structure and two
words u and v in the generators, decides if u and v represent right translationally equiva-
lent elements.

Proof. It is readily verified that # and v are right translationally equivalent in any inter-
pretation if and only if the relations L, and L, are equal. These relations can be computed
independent of the interpretation, by composition of relations of the form L, for various
a € A. We can then solve the problem by testing them for equality. O

Corollary 2.7. An automatic structure for a left reductive semigroup admits a unique inter-
pretation (up to isomorphism of the semigroup described). Moreover, there is an algorithm
which, given as input an automatic structure for a left reductive semigroup, computes an
assignment of generators.

Proof. Suppose ¢ and (" are assignments of generators and a € A. Then ((a) is right transla-
tionally equivalent to a, and hence to ¢'(a). Since the semigroup is left reductive, it follows
that «(a) and ¢/(a) represent the same element, and so we must have (t(a), (' (a)) € L.
Thus, ¢ and ¢/ are equivalent, and so by Proposition 2.4, they are consistent with the same
unique interpretation.

To compute the interpretation, for each generator a we enumerate all words in L until
we find a word w € L which is right translationally equivalent to a, and set t(a) =w. O

2.4. Modifying automatic structures

We shall make use of the following propositions, which allow us, given an interpreted
automatic structure, to obtain automatic structures with nicer properties, for the same semi-
group. They are essentially algorithmic restatements of results from [5,9].

Proposition 2.8. There is an algorithm to solve the following problem:

Instance: an interpreted automatic structure with language of representatives L admit-
ting an interpretation o : AT — § and a finite automaton recognising a regular language
K C A7 such K \ L is finite and o (K) = S;

Problem: compute an automatic structure admitting the same interpretation and with
language of representatives K.

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 795

Proof. By [5, Propositions 5.3 and 5.7] there exists such an automatic structure. Moreover,
the proofs of those results give an effective method of construction. O

Proposition 2.9. There is an algorithm which, given as input an interpreted automatic
structure (I', 1) for a semigroup S, computes an intepreted automatic structure (§2,1) for
S such that

(i) A($2) S A(I);

(ii) (' is the restriction of t to A(S2);
(iii) the interpretation induced by ' restricts to a bijection between L($2) and S; and
(iv) A(£2) < L(£2).

Proof. First, we deal with the case that multiple of the generators represent the same el-
ement of S. Let B be a maximal subset of A(I") in which no two elements represent
the same element of S, that is, such that no two distinct elements of B are mapped by ¢ to
words which are equivalent under the relation L_(I"). Let ¢’ be the restriction of ¢ to B. Let
a:A(I")T — B be the unique morphism which takes each a € A(I") to the unique b € B
such that (t(a), (b)) € L_(I"). It is readily verified that applying o to L(I"), L_(I") and
each L,(I") where b € B is an effective procedure which yields a new automatic structure
in which no two generators represent the same element of S.

Now by Proposition 2.8 we may obtain an automatic structure whose language of rep-
resentatives L contains the generators. Using the argument from [9, Theorem 2.5.1], we
can construct an automaton recognising the language L’ of words in L which are minimal
with respect to the shortlex order (see [9, Section 2.5]) amongst words in L representating
the same element of the semigroup. Clearly, the generators will be contained in L’. Now
by Proposition 2.8, we obtain a suitable automatic structure with language of representa-
tives L. O

The previous proposition combines with the next one, to give us a more concise way to
encode an interpreted automatic structure.

Proposition 2.10. An automatic structure with the generators in the language of represen-
tatives admits a unique interpretation up to equivalence, and there is an algorithm which,
given such an automatic structure, computes an appropriate assignment of generators.

Proof. The identity function on the set of generators serves as an assignment of generators.
It is easy to see that any other assignment of generators must be equivalent to this one. O

In view of Propositions 2.9 and 2.10, we may describe an interpretation of an automatic
structure by including generators in the language of representatives; this avoids the need
for explicit reference to the assignment of generators.

796 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

3. Algorithms for uninterpreted automatic structures

In this section, we consider decision problems for which the instance is an automatic
structure without any further information about the assignment of generators.

First, we recall from [9, Section 5.1] that one can decide, starting only from a collection
of synchronous automata, whether they form an automatic structure for a group. In partic-
ular, one can verify whether a given semigroup automatic structure describes a group. It is
interesting to note that the corresponding problem with input specified as a finite presen-
tation is known to be undecidable [20]. One wonders whether this difference results from
(i) the difference in method of presentation, or (ii) the smaller class of semigroups under
consideration. In particular, one might ask the following question.

Question 3.1. Is there an algorithm to solve the following problem?
Instance: a finite presentation for a semigroup which is known to be automatic;
Problem: decide if the semigroup is a group.

It is not presently known whether there is an algorithm which, given a finite presentation
for an automatic semigroup, computes an automatic structure for the semigroup. If, in fact,
there is such an algorithm, then the answer to the previous question is necessarily positive.

Another property which is easily decided is that of right cancellability. The follow-
ing proposition and its corollary are essentially due to Silva and Steinberg [29, Proposi-
tion 9.4]. For completeness, we include a proof.

Proposition 3.2. Let I" be an automatic cross-section, and o : AT — S an interpretation.
Let w € A™. Then o (w) is right cancellable in S if and only if L, o L;l is the diagonal
relation on L.

Proof. Let o0 : At — S be an interpretation. If L, o L;] is not diagonal then there exist
distinct words u, v € L such that (u,v) € Ly, o L;l, that is, such that there exists x € L
with (u, x), (v, x) € L. Butnow o (u)o (w) = o (x) = o (v)o (w). But since the automatic
structure is a cross-section, we have that o (1) # o (v), so that o (w) is not right cancellable.

Conversely, if o (w) is not right cancellable, then ao (w) = bo (w) for some distinct
elements a, b € S. Let u, v and x be words in L representing a, b and ao (w), respectively.
Then we have (u, x), (v, x) € Ly, so that (u,v) € Ly, o L;l. Clearly u # v, so Ly o L;‘
is not diagonal. O

Corollary 3.3. There is an algorithm for the following problem:
Instance: an automatic structure for a semigroup;
Problem: decide whether the semigroup is right cancellative.

Proof. It suffices to check that each generator a € A is right cancellable by computing
L,o L;l and comparing with the diagonal relationon L. O

In an earlier draft of this paper, we asked whether one can decide algorithmically
whether a given automatic structure describes a cancellative, or a left cancellative semi-

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 797

group. Cain [3] has recently shown that both of these properties are in general undecidable,
even when the input is specified as an interpreted automatic structure.

Proposition 3.4. There is an algorithm for the following problem:

Instance: an uninterpreted automatic structure;

Problem: decide whether the semigroup described has a left zero, and if so find a finite
automaton recognising the language of all words in L representing left zeros.

Proof. For a word z € L we have that z is a left zero if and only if za = z in the semigroup
for all generators a € A, that is, if (z, z) € L, for all generators a € A. Hence, computing
the intersection of all the languages L, with the diagonal relation, and taking the projection
onto one coordinate, gives the language of all words in L representing left zeros. If this
language is empty, output NO. If not, output YES and the automaton computed for the
language. O

Proposition 3.5. There is an algorithm for the following problem:

Instance: an uninterpreted automatic structure;

Problem: decide whether the semigroup described has a zero, and if so find the word in
L representing it.

Proof. First apply Proposition 3.4 to check whether the semigroup has a left zero; if not,
output NO. Otherwise, let K be the language of words in L representing left zeros.

Choose any word w € K. Since a zero in a semigroup must be the unique left zero and
unique right zero, the semigroup has a zero if and only if w represents a right zero. We
can test this by checking whether uw = w in the semigroup for all words u € L, that is,
whether L,, = L x {w}. If so, output YES, otherwise output NO. O

Question 3.6. Is there an algorithm for the following problem?
Instance: an uninterpreted automatic cross-section (A, L);
Problem: decide if the semigroup presented is a monoid.

4. Basic algorithms for interpreted automatic structures

In this section we consider various basic algorithmic problems which start with an in-
terpreted automatic structure. We begin with the following simple proposition, the method
of which is essentially taken from [9].

Proposition 4.1. There is an algorithm to solve the following problem:

Instance: an interpreted automatic structure and a nonempty word u over the genera-
tors;

Problem: find a word in the language of representatives, which represents the same
element as u.

798 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

Proof. We use induction on the length of u. The base case is given by the assignment
of generators. Now in general, write u = va where a is a generator. By the inductive hy-
pothesis, we can find a word w in the language of representatives representing the same
element as v. Now a word x in the language of representatives represents u if and only
if (w, x) € L,. Using standard operations on finite automata, it is straightforward to find
suchanx. O

Corollary 4.2 (Uniform Word Problem). There is an algorithm to solve the following prob-
lem:
Instance: an interpreted automatic structure and two words u and v over the generators;
Problem: decide if u and v represent the same element.

Proof. By Proposition 4.1, we can compute elements w,, and w, in L representing u and v,
respectively, and then check whether (w,, w,) € L. O

With an interpretation available, it becomes an easy task to find the left identities (if any)
of a given automatic semigroup, and hence also to decide if the semigroup is a monoid.

Proposition 4.3. There is an algorithm for the following problem:

Instance: an interpreted automatic structure (I', 1) for a semigroup;

Problem: decide whether the semigroup described has a left identity, and if so find a
finite automaton recognising the language of all words in L representing left identities.

Proof. Note that for w € L and a € A, we have wa = a in the semigroup if and only if
(w, t(a)) € L. It follows that we can easily compute the set of words in L which stabilise
the generators on the left, that is, which represent left identities in the monoid. If this
language is empty, then output NO; otherwise, output YES and the automaton computed
for the language. O

Proposition 4.4. There is an algorithm for the following problem:

Instance: an interpreted automatic structure for a semigroup;

Problem: Decide whether the semigroup described is a monoid, and if so, find a word
in L representing the identity.

Proof. By Proposition 4.3, we can check that the semigroup has at least one left identity.
If it does not, output NO; if it does, then let K be the (nonempty) language of words in L
representing left identities.

Choose any word w € K. Since the identity in a monoid is the unique left identity and
the unique right identity, the semigroup is a monoid if and only if w represents a right
identity. We can check if w represents a right identity by verifying that for each generator
a € A we have aw = a in the semigroup (or alternatively that L,, = L-). If so, output YES
and the word w; otherwise output NO. O

Recall that a right inverse [left inverse] of a monoid element s is a monoid element ¢
such that st = 1 [respectively s = 1]. An element with a left and a right inverse (which

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 799

necessary coincide) is called a unit; the set of all units in a monoid forms a subgroup of the
monoid.

Proposition 4.5. There is an algorithm to solve the following problem:

Instance: an interpreted automatic structure describing a monoid, and a nonempty word
w in the generators;

Problem: decide whether w has a left inverse in the monoid, and obtain an automaton
recognising the language of representatives in L of its left inverses.

Proof. By Proposition 4.4, we can compute a word e € L representing the identity. Now a
left inverse of w is an element represented by a word w’ € L such that (w’,) € L,,. It is
straightforward to compute the language of such and check whether it is empty. O

In contrast, we shall see in Section 5 below that it is not in general possible to decide
whether a word w represents an element with a right inverse.

Proposition 4.6. There is an algorithm for the following problem:

Instance: an interpreted automatic structure describing a monoid and a nonempty word
w in the generators;

Problem: decide whether w represents a unit in the monoid.

Proof. By Proposition 2.9, we may assume that the automatic structure has uniqueness.
First use the method above to check that w has a left inverse, and obtain the language of its
left inverses. If w is to be a unit then it can have only one left inverse, so if this language
has more than one element, output NO. Otherwise, let w’ be the unique element of the
language, and check whether ww’ = e in the semigroup. 0O

Let S be a semigroup, and 0 a new symbol not in S. We define a new semigroup S with
set of elements S U {0}, and multiplication given by

0 ifx=0o0ry=0,
y:

the S-product xy otherwise.

The semigroup S is called S with an adjoined zero. The following result is essentially an
algorithmic restatement of [5, Proposition 3.13].

Proposition 4.7. There is an algorithm for the following problem:
Instance: an interpreted automatic structure I" describing a semigroup S;
Problem: compute an automatic structure for the semigroup S°.

5. Undecidability of the existence of a right inverse

The aim of this section is to demonstrate the existence of automatic monoids for which
there is no algorithm to decide, given a word u over the generating set, whether u represents

800 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

an element with a right inverse in the monoid. Our proof is a variation of a well-known
technique for encoding a Turing machine into a string-rewriting system (see, for example,
[21]). Our result improves upon a recent result of Lohrey [19], who used a similar method
to show that right-reachability for automatic monoids is, in general, undecidable. We use
without further comment a number of standard results from the theory of string-rewriting;
these can be found in [2].

Let M = (Q, X, B, q0, g4, 6) be a deterministic single-tape Turing machine, where Q
is the finite set of states, X is the finite tape alphabet, B ¢ X' is the blank symbol, go € Q
is the initial state, g, € Q is the final (accepting) state and

8:((Q\{gal) x ¥) > (@ x = x {1, p})

is the transition function. We assume that M halts if and when it enters the state ¢,, and
that the tape of M is unrestricted only to the right. Given a word w € X* as input, the
corresponding initial configuration of M is gow, where we assume that w occupies the
prefix of length |w| of the tape. The word w is accepted by M if and only if the computation
of M that starts from this initial configuration finally ends in the final state. As the tape is
limited on the left, during a computation the head of M cannot ever move to the left of its
start position. By L(M) we denote the set of all words that are accepted by M.
From M we now construct a finite string-rewriting system R on the alphabet

r:=QUxXUXU{d, h,h}

where X := {s | s € X'} is a marked copy of X, and d, h, and h are three new symbols.
The system Ry consists of the following rules:

() gad —bp ifé(g,a)=(p,b,p),

() qhd —bph ifé(q,B)=(p.b,p),

3) cqgad — pcb ifé(g,a)=(p,b,L), ce X,
4) cqhd — pcbh ifé(q,B)=(p,b,A), ce X,
) qguad —qq forae X,

(6) agqhd — qqh fora e X,

(7) hqg.hd — ¢,

@®) abd —adb fora,be X,

9 ahd —>adh foraelX.

We define a binary relation > on I'* as follows:

u>v << |ulg>|vlg or |ulg=n=]vlg,
u=uoduid ... uy_1du,, v=vodvid...v,—1dv,, and

3j: |ujl > |vj| and |u;| = |v;| forall 0 <i < j.

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 801

It is easily seen that > is the strict part of a partial ordering on I'* that is well founded.
Further, whenever u — g,, v holds, then u > v. Thus, Ry does not generate any infinite
reduction sequences, that is, Rj; is noetherian. As there are no nontrivial overlaps between
the left-hand sides of the rules of Ry, (recall that M is assumed to be a deterministic Turing
machine), we see that Ry is also confluent. Thus, Ry, is a finite convergent system, which
implies that the set IRR(Ryy) of irreducible words mod Ry is a regular set of normal forms
for the monoid Sy that is given through the finite presentation (I"; Ryy).

Claim 1. The language \RR(R) forms the language of representatives for an automatic
structure for Sy.

Proof. It remains to show that, for each symbol a € I", the right-multiplication relation
L, is synchronously regular. For each rule (¢ — r) € Ry, we see that £ ends with the
symbol d. Thus, for each symbol a € I" \ {d}, if u € IRR(Ry), then also ua € IRR(Ryy).
Thus, for all these letters the corresponding language L, is clearly synchronously regular.

It remains to consider the language L. Let u € IRR(Rjs). Then there are three mutually
exclusive cases:

(1) ud is also irreducible modulo Ry;;

(2) u=xaz,wherea € ¥,z e (X U{h})™T, and xad € IRR(Ry;), which implies that xadz
is the irreducible descendant of ud = xazd modulo Ry;;

(3) u = xyaz for some factors x, y, z € IRR(Ry) and a letter a € X' U {h} satisfying the
following conditions:
(a) yad is the left-hand side of one of the rules of type (1) to (7) of Ryy,
(b) ifae X, thenz e (X U{h})* andif a =h, then z =¢.
In this case the irreducible descendant of ud = xyazd is the word xrz, where r is the
right-hand side of the rule with left-hand side yad.

In the first case (u, ud) € Ly, in the second case (xaz, xadz) € Ly, while in the third case
(xyaz,xrz) € Lq.Itis easily verified that these observations imply that the language § (L4)
is regular so that L, is synchronously regular as required. 0O

Thus, the monoid S, is automatic.

Claim 2. For each word w € X*, w € L(M) if and only if there exists an integer n > 0
such that

hgowh - d" =7 ¢.

Proof. The reductions modulo Ry essentially just simulate the steps of the Turing ma-
chine M. Each step of the simulation digests one occurrence of the symbol d. Further
occurrences of the symbol d are needed to reduce the encoding hxg, yh of the final con-
figuration of M to the word hg,h, and another occurrence of the symbol d is needed for
the final step reducing hg,h to the empty word. 0O

802 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

Claim 3. For each word w € X*, hqowh is right-invertible in Sy if and only if w € L(M).

Proof. If w € L(M), then hqowh is right-invertible in Sy, by Claim 2. Conversely, if
hgowh is right-invertible in Sy, then there exists an irreducible word z such that hgowh -
z —>}§ ¢ holds. As hgowh and z are both irreducible, rewrite steps can only be applied
across the border of these two factors. It follows that z = d” for some positive integer n,

which in turn implies by Claim 2 that w € L(M) holds. O

Thus, the halting problem for the Turing machine M reduces to the problem of finding
a right inverse for an element in the automatic monoid Sj;, giving the following result.

Theorem 5.1. There exists a finitely presented automatic monoid S and an (interpreted)
automatic structure for S, for which the following problem is in general undecidable:
Instance: a word w in the language of representatives,
Problem: decide if w represents an element with a right inverse in S.

6. Completely simple and completely zero-simple semigroups

In this section, we present algorithms to decide if a given automatic structure represents
a completely simple or completely zero-simple semigroup and, in the case that it does, to
compute a Rees matrix decomposition for the semigroup. As well as being of interest in its
own right, this shows that the use of automatic structures to describe semigroups facilitates
the decision of quite complex structural properties.

Recall that a primitive idempotent in a semigroup S is an idempotent e with the property
that for any nonzero idempotent f such that ef = fe = f, we have e = f. A semigroup is
called completely simple if it has a primitive idempotent and no proper ideals. A semigroup
with zero is called completely zero-simple if the zero is the only proper ideal, and it has no
infinite descending chains of idempotents. For a detailed introduction to the theory of com-
pletely simple and completely zero-simple semigroups, including a number of equivalent
definitions, see [15, Chapter 3].

The following construction, due to Rees [28], provides a way to describe completely
zero-simple and completely simple semigroups. Let G be a group and / and A be sets. Let
0 be a symbol not in G, and let P be a A x I matrix with entries drawn from G U {0}. The
Rees matrix semigroup with zero M O(G; I, A; P) is the semigroup with set of elements

(I x G x A)Uu{0}
and multiplication given by

(i, gPujh, u) if Pyj € G;

i g,), h,) =
(NG)] {0 if Py =0

and x0 = 0 = Ox for all elements x.

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 803

The matrix P is called regular if every row and every column contains a nonzero entry.
If P contains no zero entries at all, then the set of nonzero elements of M 0(G; 1,A;P)
forms a subsemigroup, called a Rees matrix semigroup (without zero) and denoted
M(G; 1, A; P).

The following theorem is usually attributed to Rees, although it was essentially pre-
figured by Suschkewitz [30]. It provides the connection between completely simple semi-
groups and Rees matrix constructions.

Theorem 6.1. (Suschkewitz, 1928; Rees, 1940) Let G be a group, I and A sets, and P
a regular A x I matrix over G U {0}. Then M°(G; I, A; P) is a completely zero-simple
semigroup. If P contains no zero entries, then M(G; I, A; P) is a completely simple semi-
group.

Conversely, every completely simple or completely zero-simple semigroup is isomorphic
to one of this form.

Completely simple and completely zero-simple semigroups and Rees matrix construc-
tions are of fundamental importance in the theory of semigroups. Various authors have
considered the relationship between Rees matrix constructions and automaticity proper-
ties. In [6], it is shown that a finitely generated completely simple semigroup is automatic
if and only if its maximal subgroups are automatic; a consequence of results in [7] is that
the same applies in the completely zero-simple case. However, the methods used in these
papers are essentially nonconstructive, in that they presuppose knowledge of the Rees ma-
trix representation for the semigroup.

In this section, we present two algorithms relating automatic structures to completely
simple and completely zero-simple semigroups; the first takes as input an interpreted auto-
matic structure, and decides whether the semigroup represented is completely zero-simple.
Our second algorithm takes as input an automatic structure presupposed to represent a
completely zero-simple semigroup, and computes a Rees matrix representation for the
semigroup; the latter takes the form of an automatic structure for the (necessarily unique up
to isomorphism) maximal subgroup, and a sandwich matrix of words from the language of
representatives. We also show how to apply these results to completely simple semigroups
without zero.

6.1. Deciding complete simplicity and complete zero-simplicity

In this section, we show that there is an algorithm which, given an automatic structure,
decides whether the semigroup described is completely simple or completely zero-simple.
We shall require the following lemma.

Lemma 6.2. There is an algorithm for the following problem:
Instance: an interpreted automatic structure representing a semigroup S, and two non-
empty words w and e in the generators such that e represents an idempotent in S,
Problem: decide which of the following comprehensive and mutually exclusive condi-
tions applies:

804 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

(A) w has an infinite number of left inverses with respect to e;

(B) w has a finite number of left inverses with respect to e, one of which is also a right
inverse;

(C) w has a finite number of left inverses with respect to e, none of which is a right inverse.

Proof. By Proposition 2.9, we may assume that the automatic structure has uniqueness.
By Proposition 4.1, we may assume that w and e lie in the language of representatives.

We begin by computing the language K of left inverses for w with respect to e. This is
the set of all words w’ such that (w’, ¢) € Ly,. If K is infinite, output (A). Otherwise, check
each w’ € K in turn to see if ww’ = e in the semigroup. If one does, output (B); otherwise,
output (C). O

Theorem 6.3. There is an algorithm for the following problem:
Instance: an interpreted automatic structure for a semigroup S,
Problem: decide if S is completely zero-simple.

Proof. By Proposition 2.9, we may assume that we are given an interpreted automatic
structure with uniqueness, and that the language of representatives contains the generators.
By Proposition 3.5, we can check that the semigroup has a zero. If not, output NO. If so, let
z be the (unique) word in L representing the zero. Check which, if any, of the generators
represent zero.

Now for every generator a which does not represent zero, calculate the set of words in
L representing elements which stabilise a on the left (that is, the projection onto the first
coordinate of L, N (A" x {a})). Call it SL,. In a completely zero-simple semigroup, the
elements which stabilise a nonzero element s on the left are exactly the idempotents in the
R-class of s; it follows that (i) there must be one such, (ii) there can only be finitely many
such (by the Main Theorem of [1]) and (iii) they are all idempotents. Check these three
conditions, and if any fail, output NO.

Let E be the union of the SL,’s; thus, E is a (finite) set of nonzero idempotents. (If S is
indeed completely zero-simple then it follows easily from Theorem 6.1 that there must be
a generator in every JR-class, and hence that E contains all the nonzero idempotents of S;
however, we cannot directly verify this.)

Since E is finite, we can check which words in E stabilise each generator a € A on the
right; for each a € A, let SR, be the set of such. Check that every element of E lies in SR,
for some generator b. For every pair of nonzero generators a and b, check:

(i) that SL, intersects SR;, in at most one element, and in exactly one element if and only
if ba represents a nonzero element in the semigroup;
(i1) that SL, and SL, are either equal or disjoint; and
(iii) that SR, and SR}, are either equal or disjoint.

It follows from the Rees theorem that all of these conditions must hold in a completely
zero-simple semigroup, so if any fails, output NO.

Our next objective is to verify that idempotents in the same SL-class [SR-class] are
R-related [L-related] in the semigroup. For this, it will suffice to verify that for every

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 805

a € A and every pair of elements e, f € SL, [e, f € SR,] we have ef H f [ef #He] in the
semigroup. To verify this, we invoke Lemma 6.2. If the semigroup is completely simple
then it is easily verified that ef must have finitely many left inverses with respect to f
[respectively e], one of which is also right inverse. Hence, we can use Lemma 6.2 to check
that ef # f [respectively ef He], outputting NO if it transpires that ef has no left inverses,
infinitely many left inverses or finitely many left inverses none of which is a right inverse,
with respect to f [respectively e].
To proceed further, we employ the following lemma.

Lemma 6.4. There is an algorithm to perform the following task:

Instance: a word w € L which does not represent zero;

Problem: either find an idempotent in E which is L-related to w and an idempotent in
E which is R-related to w, or discover that the semigroup is not completely zero-simple.

Proof. First, check which idempotents in E stabilise w on the right. For each such idem-
potent e, check whether there exists ¢ € L such that gw = e in the semigroup, that is, such
that (g, e) € L,,. Since a completely zero-simple semigroup has an idempotent in every
L-class, if there are none such, output that the semigroup is not completely zero-simple.
Otherwise, assume we have found a nonzero idempotent e which is J£-related to w, and
such that gw =e.

Now if the semigroup is completely zero-simple then, by a standard result, wq is also a
nonzero idempotent, and, moreover, this idempotent must have a representative in £. We
can locate this representative by solving the uniform word problem; call it f. Now if the
semigroup is completely zero-simple then wg = f is R-related to w, so that fw = w.
Check this condition; if it fails, output NO. Otherwise we have fw = w and wg = f so
that w R f, asrequired. O

Using Lemma 6.4, we check that every generator a is R-related to an idempotent (and
hence to every idempotent) in SL, and J£-related to an idempotent in SR,. In a completely
zero-simple semigroup this must be the case, so if not, output NO.

Now, we check that for every pair of generators b and a with nonzero product, the
product ba is R-related to an idempotent in SL; and L-related to an idempotent in SR,,.
Again, we can check this by Lemma 6.4, and it must be satisfied in a completely zero-
simple semigroup, so if it fails, output NO.

Finally, we check that for every pair of generators a, b, there existsaword ¢y ...c, € L
which does not represent zero, and which has the property that SL., = SL, and SR, = SR;,.
Once again, if this fails, output NO.

We claim, at this point, that the semigroup is completely zero-simple.

First, we claim that for every word a; . ..a, € AT, the element represented is R-related
to a; and L-related to a, in the semigroup. If n = 1 there is nothing to prove. If n =2
then we have checked that aja is £L-related to an idempotent in SR,,, which in turn is
L-related to ay itself. Similarly, aja; is R-related to an idempotent in SL,, which in turn
is R-related to a; itself.

Now assume that a;...a, is a counterexample of minimal length (necessarily 3 or
more), say not L-related to a,. Now certainly we have ajaz £ a>. Now since £ is right

806 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

compatible, we see that aj ...a, £ az...a,. But by the minimality assumption, a3 ...a,
is JL-related to a,. Since L is transitive, this gives the required contradiction. A symmetric
argument applies in the case that a; . ..a, is not R-related to a;.

It follows now that the semigroup has a single nonzero D-class. Indeed,
suppose aj ...am, by ...b, € AT represent nonzero elements. Then a;...a, R a; and
by...by £ b,. Now there is a word ¢ ...c4 € L which does not represent zero such that
SL., =SL,, and SRCq = SRy, . It follows that

ay...am Ray Rcy Rep...cqg Lcg Lby Lby...by,

sothataj ...a, Dby ...b, asrequired. Thus, the semigroup has a single nonzero D-class.

Moreover, we have seen that every element lies in the JR-class [£-class] of one of the fi-
nitely many generators. So the semigroup has only finitely many R-classes and L-classes,
and hence also only finitely many #-classes. Since an J-class can contain at most one
idempotent, we conclude that the semigroup has only finitely many idempotents, and that
the semigroup is completely zero-simple as required. O

A corollary is a corresponding result for completely simple semigroups.

Corollary 6.5. There is an algorithm for the following problem:
Instance: an interpreted automatic structure describing a semigroup S,
Problem: decide whether S is completely simple.

Proof. Clearly, S is completely simple if and only if S° is completely zero-simple. Use
Proposition 4.7 to obtain an automatic structure for S°, and then apply Theorem 6.3. O

6.2. Computing the Rees matrix structure

In this section, we present an algorithm which, given an automatic structure for a com-
pletely zero-simple semigroup, computes its Rees matrix structure.

Theorem 6.6. There is an algorithm for the following problem:

Instance: an interpreted automatic structure I which describes a completely zero-
simple semigroup S,

Problem: construct (i) an interpreted automatic structure A for the maximal subgroup
G of S and (ii) a finite matrix Q with entries drawn from L(A) U {0}, such that S is
isomorphic to the Rees matrix semigroup M°(G; I, A; Q) (where Q is interpreted as a
matrix over G U {0} in the obvious way).

Proof. By Proposition 2.9, we may assume that the automatic structure /" has uniqueness.
We begin by using the procedure from the proof of Theorem 6.3 to find the (necessarily
finite) set E of representatives in L(I") of idempotents. Again, we sort these into J£-classes
and R-classes according to how they stabilise each other. Let / and A be the sets of
nonzero R- and L-classes, respectively. For i € I and X € A let H;; denote the #f-class

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 807

i N A and let ¢;; be the word representing the (necessarily unique) idempotent in H;, if it
exists.

Choose distinguished elements i € I and A9 € A such that H; , contains an idempo-
tent, that is, such that e;;,, exists.

Next, we wish to choose for each i € I a word r; € L(I") representing an element of
H;,. If H;), contains an idempotent then we simply set r; = ¢;;,. Otherwise, we are in-
volved in slightly more work. The words we seek are exactly those of the form awb € L(I")
where a and b are generators in the R-class i and the L£-class Xg, respectively, and awb
does not represent zero. Since the F-class cannot be empty, there must be such a word;
hence, we can find one by enumerating the set of such words until we find one which does
not represent zero. Similarly, we choose for each A € A a word g, € L(I") representing an
element of H;y;. Notice that by construction we have

Tig = gro = 9roTio = €aoio-

We now construct an A x I matrix P with entries drawn from L(I") U {0}, where O is
a new symbol. For each i € I and A € A, let P); be the word in L representing the same
element as the product g, r;. Notice that this element lies in H;,,,. It follows from the proof
of [15, Theorem 3.2.3] that the semigroup S is isomorphic to the Rees matrix semigroup
M (H;y,; I, A; P), where P is intepreted as a matrix over H;y), U {0} in the obvious way.

It remains to construct an automatic structure for the maximal subgroup H;;,. It fol-
lows from standard facts about completely zero-simple semigroups that for each generator
a € A(I"), there exists a unique i, € I, a unique A, € A and a unique b, € Hy;, such that
a =ri,bys,,. For each a € A(I"), we compute (for example, by enumeration and testing,
although more efficient means are available) a representative w, € L(I") for b,.

Define a new alphabet

AA)={calac A}Uldyi |2 e A, iel, Py;#0}.

We view A(A) as an alphabet of generators for the maximal subgroup H;;,, where each
¢, represents the element b, € H;y,,, and each dj; represents the element represented by
the sandwich matrix entry P;;.

Let R be the set of words in L which represent elements of H;,. Define a function
¢:R— BT by

¢(araz...an) = caydyy iy, Car - - - iy ia, Cay

where each iy and Ay are such that a; represents an element of H,,;,. Let L(A) =
¢ (L N R). It follows from [17, Proof of Theorem 4.6] that L(A) is a regular language
and is straightforward to compute. Now recalling that P, ;, = e;,,, one can show that

L_(A)={(ue.ve) | (u,v) € L-N(R x R)}
while for each ¢, € B we have

L, (A) ={(u¢,ve) | (u,v) € Ly, N (R x R)}

808 M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809

and for each d;; € B
La,;(A) = {(u¢p, vg) | (u,v) € Lp,, N (R x R)}.

It can now be shown (for example, using arguments similar to those in [17, Proof of The-
orem 4.6]) that each of these relations is synchronously rational and straightforward to
compute. This completes the construction of an automatic structure for the maximal sub-
group Hjyy,.

Finally, we apply the function ¢ to each nonzero entry in the sandwich matrix P, to
obtain a new A x I matrix with entries drawn from K. O

As an immediate corollary, we obtain a corresponding result for the case of completely
simple semigroups.

Corollary 6.7. There is an algorithm for the following problem:

Instance: an interpreted automatic structure I" which represents a completely simple
semigroup S,

Problem: construct (i) an automatic structure A for the maximal subgroup G of S and
(i) a finite matrix Q with entries drawn from L(A), such that S is isomorphic to the
Rees matrix semigroup M(G; I, A; Q) (Where Q is interpreted as a matrix over G in the
obvious way).

Proof. By Proposition 4.7, we can adjoin a zero to S to obtain a completely zero-
simple semigroup S°. By Theorem 6.6 we can construct a Rees matrix representation
M 0(G; 1, A; P) for S0 together with an automatic structure for G. It is easily verified
that P has no zero entries and M (G; I, A; P) is a Rees matrix representation for S. O

Acknowledgment

The first author thanks Kirsty for all her support and encouragement.

References

[1] H. Ayik, N. Ruskuc, Generators and relations of Rees matrix semigroups, Proc. Edinburgh Math. Soc. 42
(1999) 481-495.

[2] R.V. Book, F. Otto, String-Rewriting Systems, Springer-Verlag, New York, 1993.

[3] A.J. Cain, Cancellativity is undecidable for automatic semigroups, Q. J. Math., in press.

[4] C.M. Campbell, E.F. Robertson, N. Ruskuc, R.M. Thomas, Direct products of automatic semigroups, J. Aust.
Math. Soc. 69 (2000) 19-24.

[5] C.M. Campbell, E.F. Robertson, N. Ruskuc, R.M. Thomas, Automatic semigroups, Theoret. Comput.
Sci. 250 (2001) 365-391.

[6] C.M. Campbell, E.F. Robertson, N. Ruskuc, R.M. Thomas, Automatic completely-simple semigroups, Acta
Math. Hungar. 95 (2002) 201-215.

[7] L. Descalco, N. Ruskuc, On automatic Rees matrix semigroups, Comm. Algebra 30 (2002) 1207-1226.

M. Kambites, F. Otto / Journal of Algebra 303 (2006) 789-809 809

[8] AJ. Duncan, E.F. Robertson, N. Ruskuc, Automatic monoids and change of generators, Math. Proc. Cam-
bridge Philos. Soc. 127 (1999) 403-409.
[9] D.B.A. Epstein, et al., Word Processing in Groups, Jones and Bartlett, Boston, 1992.

[10] The GAP-Group, GAP—Groups, Algorithms, and Programming, Version 4.4, 2005, http://www.gap-system.
org.

[11] M. Hoffmann, D. Kuske, F. Otto, R.M. Thomas, Some relatives of automatic and hyperbolic groups, in:
G.M.S. Gomes, J.E. Pin, P.V. Silva (Eds.), Semigroups, Algorithms, Automata and Languages, World Sci-
entific, Singapore, 2003, pp. 379-406.

[12] M. Hoffmann, N. Ruskuc, R.M. Thomas, Automatic semigroups with subsemigroups of finite Rees index,
Internat. J. Algebra Comput. 12 (2002) 463-476.

[13] M. Hoffmann, R.M. Thomas, Automaticity and commutative semigroups, Glasg. Math. J. 44 (2002) 167-
176.

[14] M. Hoffmann, R.M. Thomas, Notions of automaticity in semigroups, Semigroup Forum 66 (2003) 337-361.

[15] J.M. Howie, Fundamentals of Semigroup Theory, Clarendon Press, New York, 1995.

[16] J.F.P. Hudson, Regular rewrite systems and automatic structures, in: J. Almeida, G.M.S. Gomes, P.V. Silva
(Eds.), Semigroups, Automata and Languages, World Scientific, Singapore, 1996, pp. 145-152.

[17] M.E. Kambites, Automatic Rees matrix semigroups over categories, arXiv: math.RA/0509313, 2005.

[18] M.V. Lawson, Finite Automata, Chapman and Hall, Boca Raton, FL, 2003.

[19] M. Lohrey, Decidability and complexity in automatic monoids, Internat. J. Found. Comput. Sci. 16 (4)
(2005) 707-722.

[20] A. Markov, The impossibility of certain algorithms in the theory of associative systems, Dokl. Akad. Nauk
SSSR (N.S.) 77 (1951) 19-20.

[21] F. Otto, When is an extension of a specification consistent? Decidable and undecidable cases, J. Symbolic
Comput. 12 (3) (1991) 255-273.

[22] F. Otto, On s-regular prefix-rewriting systems and automatic structures, in: T. Asano, H. Imai, D.T. Lee,
S. Nakano, T. Tokuyama (Eds.), COCOON ’99, Proc., in: Lecture Notes in Comput. Sci., vol. 1627,
Springer-Verlag, Berlin, 1999, pp. 422-431.

[23] F. Otto, On Dehn functions of finitely presented bi-automatic monoids, J. Autom. Lang. Comb. 5 (4) (2000)
405-419.

[24] F. Otto, On the Dehn functions of automatic monoids, in: T. Imaoka (Ed.), Third Symposium on Algebra,
Languages and Computation, Proc., Osaka, 1999, Shimane Univ., Matsue, 2000, pp. 55-63.

[25] F. Otto, N. Ruskuc, Confluent monadic string-rewriting systems and automatic structures, J. Autom. Lang.
Comb. 6 (3) (2001) 375-388.

[26] F. Otto, A. Sattler-Klein, K. Madlener, Automatic monoids versus monoids with finite convergent presenta-
tions, in: T. Nipkow (Ed.), RTA ’98, Proc., in: Lecture Notes in Comput. Sci., vol. 1379, Springer-Verlag,
Berlin, 1998, pp. 32-46.

[27] M. Petrich, Introduction to Semigroups, Merrill Research and Lecture Series, Merrill, Columbus, OH, 1973.

[28] D. Rees, On semi-groups, Proc. Cambridge Philos. Soc. 36 (1940) 387-400.

[29] P.V. Silva, B. Steinberg, A geometric characterization of automatic monoids, Q. J. Math. 55 (3) (2004)
333-356.

[30] A.K. Suschkewitz, Uber die endlichen Gruppen ohne das Gesetz der eindeutigen Umkehrbarkeit, Math.
Ann. 99 (1928) 30-50.

