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We present an experimental study of the reopening mechanics of a collapsed liquid-
filled elastic tube. The experiment is a simple mechanical model of pulmonary airway
reopening and aims to assess the robustness of existing theoretical models. A metre-
long horizontal elastic tube of inner radius Ri = 4.88 ± 0.14 mm is filled with silicone
oil and is carefully collapsed mechanically. The injection of nitrogen at a constant
flow rate results in the steady propagation of an air finger, after the decay of
initial transients. This behaviour is observed over the realizable range of the capillary
numbers Ca, which measures the ratio of viscous and capillary forces. With increasing
Ca, the transition region between the collapsed and reopened sections of the tube
shortens, and the height of the tube behind the bubble tip increases. We also find
that air fingers can propagate in partially reopened tubes, in which the transmural
pressure is negative far behind the finger tip.

The effect of viscosity on the reopening dynamics was explored by performing
experiments using three different grades of silicone oil, with kinematic viscosities of
1000 cS, 200 cS and 100 cS. A direct comparison between the experimental pressure
dependence on Ca and numerical simulations of the zero-gravity three-dimensional
airway-reopening model of Hazel & Heil (Trans. ASME: J. Biomech. Engng, vol. 128,
2006, p. 473) highlights some significant differences. Within the experimental para-
meter range, gravity profoundly influences the reopening mechanics in several ways.
The reopening tube is supported by a rigid base, which induces an asymmetry about
the horizontal mid-plane of the collapsed tube, resulting in distinct phases of reopening
as Ca increases. In addition, buoyancy forces act on the air finger, which is observed
to propagate near the top of the cross-section of the tube, leaving a thicker fluid-lining
below. In the limit of small Ca, the height of the reopened tube increases significantly
with viscosity. Experimental evidence suggests that this increase in viscosity leads to
significant changes in the film configuration behind the propagating finger, caused by
the increased contribution of buoyancy forces. The altered film configuration changes
the mechanical load on the tube walls and, hence, the shape of the reopened tube.

1. Introduction
The airways of the lungs form a branched network of fluid-lined elastic vessels link-

ing the trachea to the alveoli, where gas exchange takes place. A number of pulmonary
conditions are known to trigger the collapse of the smaller airways (Perun & Gaver III
1995b; Grotberg 2001). The collapse may occur through a fluid-elastic instability,
which causes the tube to buckle and eventually leads to a configuration in which
a liquid bridge occludes the airway (Kamm & Schroter 1989; Halpern & Grotberg
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1992; White & Heil 2005; Hazel & Heil 2005). Once collapsed, the airway must be
reopened quickly with minimal damage to the lining tissues. When long sections are
occluded, reopening is believed to occur through the propagation of an air finger
(Macklem, Proctor & Moss 1970; Naureckas et al. 1994). Thus, in the last 15 years,
significant efforts have been focused on understanding the mechanics of this process.

The first experimental model of airway reopening, by Gaver III, Samsel & Solway
(1990), comprised a thin-walled polyethylene tube that was mechanically collapsed
to a ribbon-like configuration and contained a thin liquid film to hold the walls in
apposition. An air finger was injected at constant pressure and propagated in an
approximately steady fashion by ‘peeling’ apart the walls. The tube had minimal
bending stiffness and the fluid–structure interaction arose essentially through the
large tension imposed on the end of the tube, relative to the viscous and capillary
forces inside the tube. The radius of the tube, R, was identified as the dominant
length scale and the dimensionless bubble pressure, P = P ∗R/σ ∗, was found to scale
approximately linearly with the capillary number, Ca = µ U/σ ∗; here P ∗ denotes the
dimensional bubble pressure (the pressure of the air finger relative to the external
pressure), U the propagation speed of the air finger, µ the dynamic viscosity of the
lining fluid and σ ∗ the surface tension at the air–liquid interface. The capillary number
is a measure of the viscous forces relative to the capillary forces in the system and
provides a non-dimensional measure of the propagation speed of the finger. Gaver III
et al. (1990) also demonstrated the existence of a yield pressure, P ∗

y ∼ 8 σ ∗/R, as
Ca → 0, which must be exceeded for an air finger to propagate.

A subsequent study by Perun & Gaver III (1995a) concentrated on a two-
dimensional analogue of this experiment, where both the collapsed and reopened ends
of the airway were constrained to a planar configuration. The results of this study were
qualitatively similar to those of Gaver III et al. (1990), although the airway geometry
was found to influence the bubble pressures significantly. For air injected at a constant
flow rate, the pressure of reopening was observed to reach a steady state for Ca > 0.5,
following a short unsteady transient. Increasingly unsteady reopening processes were
observed for Ca < 0.5. Furthermore, the yield pressure was reduced by a factor of
approximately 2 compared with that estimated by Gaver III et al. (1990). Additionally,
the effect of tethering was addressed by Perun & Gaver III (1995b), who found that
the asymmetric loading on the tube caused a change in the reopening pressures.
Experiments with non-Newtonian fluids by Low, Chew & Zhou (1997) revealed that
the presence of a yield stress leads to increased yield pressures and reopening times.

Gaver III et al. (1996) proposed a two-dimensional theoretical model for the
experiments of Perun & Gaver III (1995b). Using a combination of a lubrication
analysis and the boundary-element method, they considered the propagation of an air
finger into a fluid-filled channel whose flexible walls were placed under tension and
supported by linearly elastic springs. Their analysis showed a two-branch behaviour
in the P–Ca relationship. For low Ca, the ‘pushing branch’ results from the coupling
between surface tension and elastic stresses, P decreasing as Ca increases. In the
high-Ca limit, the ‘peeling branch’ results from the balance between viscous and
longitudinal wall tension forces, and P increases monotonically with Ca. Two-
dimensional airway reopening was also addressed by Jensen et al. (2002), whose
asymptotic analysis relied on the assumption that the membrane slope is uniformly
small, so that the bubble pressures could be predicted analytically over a wide
range of Ca. A comparison between the experimental measurements of Perun &
Gaver III (1995b) and boundary-element simulations of an asymmetric tube with
a symmetrically separated liquid layer yielded good agreement to within 10 % over
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the peeling branch. The reopening pressures obtained numerically for the asymmetric
tube were a factor of approximately 1.6 larger than in the symmetric case. The effect
of inertial forces on the reopening dynamics was addressed numerically by Heil (2000)
using a finite-element method. Inertial forces were quantified by the speed-independent
parameter Re/Ca = ρ σ ∗R/µ2, where Re = ρ U R/µ is the Reynolds number and ρ

is the density of the liquid. In the presence of finite bending stiffness of the walls,
Heil found that even for relatively small Re/Ca, i.e. values between 5 and 10, the
transition region of the reopening tube is significantly altered, resulting in steepening
of the P–Ca curves. Finally, a detailed study of the physiologically relevant influence
of surfactant was performed recently by Naire & Jensen (2005).

A fundamental shortcoming of some two-dimensional models is that a change in
transmural pressure is equivalent to a rescaling of the transverse length scale, unless
the use of a nonlinear tube law provides a natural length scale (Naire & Jensen
2005). Thus Hazel & Heil (2003) developed a three-dimensional numerical model of
airway reopening in which the radius of the tube provides a natural transverse length
scale, so that the transmural pressure becomes a significant variable of the system.
They considered the steady motion of an inviscid air finger reopening a fluid-filled
collapsed elastic tube of infinite length by coupling nonlinear Kirchhoff–Love shell
theory to the free–surface Stokes equations. The level of fluid-structure interaction was
measured by the non-dimensional surface tension, σ = σ ∗/(RK), which corresponds
to the ratio of capillary and elastic forces; K is the bending stiffness of the tube. The
initial level of tube collapse was characterized by the reduced cross-sectional area,
A∞ = A∗

∞/(4R2), where A∗
∞ is the dimensional cross-sectional area of the tube far

ahead of the bubble. This model of airway reopening was developed in the limit of
zero gravity, so that the fluid lining left behind the advancing finger on the tube walls
retained the up–down symmetry of the cross-section. Thus, far behind the finger tip,
the tube reopened approximately according to the cross-sectional shapes predicted by
the ‘tube law’ (Shapiro 1977). The qualitative behaviour of the system was found to
be very similar to the two-dimensional predictions of Gaver III et al. (1996) and Heil
(2000), with a two-branch behaviour of the P–Ca relationship. The pressure required
to drive the finger at a given speed was found to increase with both σ and A∞, so that
higher-pressure bubbles were required to reopen less strongly collapsed tubes. If σ

were sufficiently small, steady airway reopening could occur for pressures lower than
the external (pleural) pressure, i.e. the airway remained buckled after the passage of
the air finger. This is the limit investigated in the present experiments.

Hazel & Heil (2006) recently extended the three-dimensional Stokes model to finite
Reynolds numbers, so that the air-finger propagation was governed by Re, Ca, σ

and A∞. They showed that, as in the two-dimensional model of Heil (2000), inertial
forces have a significant effect on the bubble pressures, strongly influencing the
fluid dynamics and wall shape in the vicinity of the advancing finger tip, through a
mechanism consistent with the Bernoulli effect.

Thus far, airway reopening in tubes of significant bending stiffness has been
addressed exclusively by theoretical and numerical studies and, invariably, the models
are based on several approximations, for instance, steady-state propagation and zero
gravity (Hazel & Heil 2003, 2006). As reported in this paper, we chose to perform a
detailed laboratory investigation of the mechanics of airway reopening, which enabled
us to assess the robustness of these theoretical approximations. In addition to the
fluid parameters Ca and Re, the presence of gravity forces can be quantified relative
to the capillary forces by the Bond number, Bo = ρ g R2/σ ∗. We chose the mid-wall
radius, R = Ri + h/2, where Ri is the inner radius and h the wall thickness of the
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tube, as the experimental length scale. Our experimental setup is described in § 2.1,
with a strong emphasis on experimental control and reproducibility. We focus on a
simple laboratory model of air-finger propagation in a long, horizontal, fluid-filled,
partially collapsed tube. In contrast with the earlier experiments of Gaver III et al.
(1990), where the large tension applied to the end of the tube dominated the fluid–
structure interaction and the small bending stiffness of the polyethylene tube played
a negligible role, our elastic silicone tube was chosen for its finite bending stiffness,
with σ = 3.6 × 10−2. This yields ratios of viscous and elastic forces σ Ca of up to
0.4, a significant fluid–structure interaction. Our value of σ , however, is much smaller
than estimates for the deep lung of approximately σ = 50 (Hazel & Heil 2003), and
thus a direct comparison with pulmonary behaviour should be made with caution.
The low value of σ results in airway-reopening pressures that are largely negative,
in contrast with the experiments of Gaver III et al. (1990) and Perun & Gaver III
(1995a ,b). The tube collapses with two-fold symmetry according to a classical ‘tube
law’, which, as reported in § 2.2, we measured in order to determine the value of the
dimensional bending stiffness of the tube. Thus, our experiment models an idealized
isolated airway and, in the interest of simplicity, we neglect tethering and do not add
surfactants, although both are important in the lung.

The effect of viscosity on the reopening dynamics is explored in § 3 by presenting
experiments using three different grades of silicone oil, with kinematic viscosities
of 1000 cS, 200 cS and 100 cS. We attempt a direct comparison between the
experimental pressures and the computational results of Hazel & Heil (2006) in
§ 3.1, which highlights significant differences in the P–Ca relationship. We attribute
these differences to the presence of gravity in the experiment, whose dual effect on
the reopening mechanics is discussed in § 3.2. In essence, buoyancy affects the level of
reopening behind the finger tip through changes to the flow configuration inside the
tube, while gravity acting on the reopening tube breaks the symmetry of the transition
region, which results in distinct phases of reopening with increasing Ca.

2. Experimental methods
2.1. Description of the apparatus and experimental procedure

A schematic diagram of the experimental apparatus is shown in figure 1. The working
part of the apparatus consisted of a piece of translucent extruded silicone tubing
(Primasil Silicones Ltd) 1.0 m long positioned on a solid base plate. The tubing had
an inner radius Ri = 4.88 ± 0.14mm and wall thickness h = 0.48 ± 0.07 mm. The
downstream end was connected to a two-way valve, which was operated manually.
At the upstream end, a three-way pneumatic solenoid valve was used to switch the
gas flow from exiting into the atmosphere to entering the tube at the start of each
experiment.

The flow source was a compressed nitrogen cylinder, whose flow rate was controlled
by a fine needle valve and was accurately monitored using a 0–5000 cm3 min−1 mass-
airflow meter (AWM5000 microbridge mass-airflow sensor, Honeywell) to range
between 50 and 1400 cm3 min−1. The air-mass flow meter was powered by a 10.000 ±
0.001 V stabilised direct current supply and readings were made with a five-digit-
accuracy voltmeter. At 1400 cm3 min−1, the Reynolds number of the air jet flowing out
of the solenoid valve nozzle into the tube was approximately equal to 340. Beyond this
value the recorded pressure traces showed increasing levels of fluctuations, believed
to be due to instabilities in the injected air. A differential pressure sensor (Honeywell,
±5′′ H2O) was attached to the line immediately upstream of the solenoid valve, via
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Figure 1. Schematic diagram of the experimental apparatus. (a) The vertical dashed arrow
shows motion of the upper plate; (b) the diagonal dashed arrows show the horizontal motion
of the support plate; (c) the curved arrow at the night shows the 25◦ tilt of the support plate.

a T-junction connected to one of its ports, while the second port of the pressure
sensor was left open to the atmosphere. The pressure sensor was powered by the
same power supply as the mass-airflow meter and was calibrated in situ against a
water-filled U-tube manometer. The bubble pressure in the elastic tube was obtained
by subtracting from the sensor measurements the small pressure drop due to the rigid
gas line between the sensor and the inlet of the flexible tube, which was measured
for an open circuit. The pressure was sampled on a personal computer via an RS232
serial connection from a high-resolution voltmeter at a rate of 25 Hz.

In addition to the pressure measurements, two analogue CCD cameras were used to
monitor the reopening process, as shown in figure 2. One camera captured a side view
of the tube over a length of 13 cm, starting at least 50 cm downstream of the inlet. Its
position was chosen, depending on the flow rate, to ensure that all transient behaviour
had decayed. It was used to record the propagation speed of the air bubble reopening
the tube and also to capture images of the transition region between the collapsed
and reopened sections of the tube. In order to obtain a quantitative measure of the
deformation of the top half of the tube, a laser sheet was shone onto the tube at an
angle of 50◦ from the vertical and the second camera was placed vertically above the
illuminated region to provide a top view of a section of the tube approximately 2.5 cm
long by 2.0 cm wide. As shown schematically in figure 2, the laser sheet illuminated
the tube wall at different horizontal positions depending on the local height of the
tube, thus outlining local deformations relative to the horizontal base plate. The local
height of the tube was given by D = d/ tan 50◦, where d is the displacement of the
laser line from its position on the flat base plate. An example of the aerial visualization
is shown in figure 3, where the laser line outlines the deformation of the top half of
the collapsed tube. The images of the two cameras were combined using an image
inserter (Kramer, PIP-200) and sampled simultaneously onto a personal computer at
a rate of 25 frames s−1. The resolutions of the side and aerial-view images were 0.18
and 0.09mm per pixel respectively. The values of the maximum height of the tube
were the same, within the experimental resolution, when measured with the aerial
and side-view cameras.

The base plate, on which the tube and valves were positioned, was accurately
levelled and its vertical position was held fixed. It was mounted rigidly beneath a
facing parallel plate on a vertical translation stage whose purpose was to collapse the
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Figure 2. Schematic diagram of the visualisation setup. A laser sheet, oriented at 50◦ from
the vertical, is shone onto the deformed tube. The tube is illuminated at different horizontal
positions depending on its local height. Thus, the laser sheet outlines local deformations
relative to the horizontal base plate, which are captured by the aerial camera. A sideview
camera monitors the reopening process over a section of tube 13 cm long.

4.2 mm

14.4 mm

Figure 3. Aerial view of the collapsed liquid-filled tube prior to an experimental run. The
experimental visualization technique, depicted in figure 2, provides a quantitative measure of
the outline of the top half of the deformed tube. The schematic diagram on the right-hand side
depicts the full cross-sectional area of the collapsed tube, under the assumption of a symmetric
collapsed cross-section.

tube mechanically prior to an experiment, as shown in figure 1. The base plate was
mounted on bearings so that it could slide forward from under the main frame to
facilitate the filling of the tube. It was hinged at the upstream end so that it could
be tilted upward by 25◦, and supported by a hinged arm at the downstream end.
The tube was then slowly filled with liquid via the downstream two-way valve. This
method eliminated any handling of the tube during the experimental process and
allowed all air bubbles to rise and be expelled.



The reopening of a collapsed fluid-filled elastic tube 293

H H/2

h

Figure 4. Schematic diagram of the strained shape adopted by the cross-section of the tube,
after collapse but while still in contact with both plates. This shape can be closely approximated
by a rectangle of height H capped by two semicircles, each of radius H/2.

Silicone oil grade µ ρ σ ∗

(cS) (kg m−1s−1) (kg m−3) (N m−1) Re/Ca = ρ σ ∗ R/µ2

100 0.111 961 2.04 × 10−2 8.2
200 0.216 962 2.05 × 10−2 2.2

1000 1.065 966 2.07 × 10−2 0.1

Table 1. Physical properties of the silicone fluids at 18 ◦C, where µ denotes the dynamic
viscosity, ρ the density and σ ∗ the surface tension with air. The ratio of the Reynolds number
and the capillary number, Re/Ca, is also given for each fluid.

After the filling procedure, the base plate was returned to its initial position so that
the silicone tube could be collapsed. This was achieved mechanically by lowering the
upper plate onto the liquid-filled tube while carefully letting the excess liquid escape
through the downstream valve. The position of the upper plate could be adjusted to
within 0.02 mm, which was less than 1 % of the height of the collapsed tube. Hence, the
height of the collapsed tube H could be uniformly and reproducibly attained. All the
experiments presented in this paper were conducted with tubes collapsed to a height
H = 2.92 ± 0.02 mm, which corresponds to a reduction of 73 % from the undeformed
state. During this mechanical collapse the cross-section of the tube adopted a strained
shape, which could be closely approximated by a rectangle of height H capped by
two semicircles, each of radius H/2, as shown in figure 4. After the collapse was
completed, the downstream valve was closed and the upper plate was lifted off the
tube. The tube then relaxed into its equilibrium shape, which consisted of two end
lobes separated by a thinner central region, as shown schematically in figure 3. Here,
we have assumed that the collapsed cross-section is symmetric, although the top-view
visualization yields measurements of only the top half-section of the tube.

The working liquid was silicone oil, which was chosen for its stable interfacial
properties and because it fully wets the tube. Experiments were carried out with
oils of three different viscosities. The experiments were conducted in a temperature-
controlled room at 18 ± 1◦ C; the physical properties of the oils at this temperature
are given in table 1. The dynamic viscosity µ and the density ρ were measured in the
laboratory and the value of the surface tension σ ∗ was determined on the basis of the
the manufacturer’s data and the temperature coefficient of surface tension quoted by
Schatz et al. (1995) for silicone oil.
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Figure 5. Pressure time series measured for 150, 300, 600 and 1200 cm3 min−1, with 200 cS
silicone oil. In each case, the approximately constant pressure trace that follows short initial
transients linked to the switching of the solenoid valve indicates the steady propagation of an
air finger. The pairs of markers on each curve delimit the region in which the propagating
air finger is captured by the side-view camera. An average pressure value is calculated in this
interval. The sharp rise in pressure at the end of the experiment corresponds to the time at
which the air finger reaches the end of the tube and the associated inflation of the reopened
tube takes place. The duration of the experiments reduces with increasing flow rate, because
the finger propagates with increasing speed.

Once the tube had been filled and collapsed, the nitrogen flow into the atmosphere
was adjusted with the needle valve. The solenoid valve was then triggered to direct
the nitrogen flow into the collapsed, liquid-filled, tube and the sampling of both the
pressure and video footage was initiated. In most cases, an air finger of approximately
constant pressure was observed to propagate steadily down the tube. Four typical
pressure traces sampled at flow rates of 150, 300, 600 and 1200 cm3 min−1 with
200 cS silicone oil are shown in figure 5. The steady state was established within
approximately 1 s of the opening of the solenoid valve. When the air finger was
within approximately 5 cm from the end of the tube the pressure rose rapidly, as the
injected flow continued to inflate the reopened tube and saturated the pressure sensor.
At this point the experiment was discontinued, by opening the end valve, to avoid
permanent deformation of the silicone tube. The pressure of reopening was determined
by averaging the recorded pressure trace over the section 13 cm long monitored by
the side-view camera, delimited by markers on the pressure traces in figure 5.

2.2. Experimental parameters and elastic properties of the tubes

The fluid parameters required to describe the steady propagation of an air finger
in the experiment are Ca, the ratio of viscous and capillary forces, Re, the ratio
of inertial and viscous forces and Bo, the ratio of gravity and capillary forces. The
ratios Ca = µU/σ ∗ and Re = ρUR/µ depend on the finger speed, which is accurately
determined using the side-view images of the reopening tube. The ratio Re/Ca, given
in table 1, depends exclusively on the physical properties of the fluids and the radius
of the tube, as does Bo = ρgR2/σ ∗ = 12.1, which remains constant in the experiments.
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The cross-sectional area of the collapsed tube, A∗
∞, was calculated by approximating

the shape of the cross-section of the tube held between the plates of the translation
stage at the end of the collapse procedure by a rectangle capped by two semicircles,
as mentioned above (see figure 4). Thus, assuming negligible stretching during the col-
lapse procedure, the circumference of the tube remains constant and the cross-sectional
area of the collapsed tube, estimated midway through the wall thickness, is given by

A∗
∞ = π

(
H

2
− h

2

)2

+ (H − h)

(
2 π R − π (H − h)

2

)
,

where R = 5.12 mm is the midwall radius of the undeformed tube, h = 0.48 mm is
the wall thickness and H = 2.92mm is the height of the collapsed tube held between
the plates of the translation stage. Hence

A∞ =
A∗

∞
4R2

= 0.33

for all the experiments presented in this paper.
The final non-dimensional group of parameters involves the elastic properties of

the tube; it is the non-dimensional surface tension σ = σ ∗/(R K), which measures the
relative effect of capillary and elastic forces and requires knowledge of the bending
stiffness K of the tube. Using thin-shell theory, Flaherty, Keller & Rubinow (1972)
predicted that the pressure of opposite-wall contact in a buckled elastic tube of two-
fold symmetry and undeformed circular cross-section, in the absence of gravity, is

P ∗
owc

K
= −5.25.

A. L. Hazel (2005, personal communication) estimated numerically that the pressure
of opposite-wall contact of a silicone ring with h/R = 0.09, deforming under its
own weight on a rigid surface, is reduced by less than 1.5 % compared with the
zero-gravity case. In order to determine the pressure of opposite-wall contact and
hence the value of K experimentally, measurements were made of the dependence
of the transmural pressure on the cross-sectional area, commonly referred to as the
‘tube law’. An empty tube was fully collapsed and slowly reopened by injecting air
at a flow rate of 50 cm3 min−1. The tube reopened uniformly along its entire length,
suggesting that its cross-sectional area is proportional to the time elapsed since
the opening of the solenoid valve. An example of this experimental ‘tube law’ is
shown in figure 6. The dimensional transmural pressure P ∗

t is plotted against the
cross-sectional area of the tube A normalized by the undeformed cross-sectional area,
A0 = πR2

i . The transmural pressure goes through zero slightly below A/A0 = 1. This
small discrepancy is due to the effect of gravity, which reduced the inflated height
of the tube by less than 5%. The point of opposite-wall contact is clearly visible as
a kink in the curve. The pressure at this point was found to be independent of the
flow rate at which the collapsed tube reopened, and measurements performed in four
non-contiguous lengths of tube gave P ∗

owc = −591 ± 12 Pa. Thus, the value of the
bending stiffness is K = 112 ± 2 N m−2, and the non-dimensional surface tension has
the same value, σ = (3.6 ± 0.2) × 10−2, for all three grades of silicone oil.

2.3. Experimental reproducibility

Silicone oil slowly diffuses into the wall of the tubing, altering its elastic properties.
In order to minimize this effect, tubes were discarded after six experiments and a
system was instigated to check the reproducibility of the results. For each tube used,
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Figure 6. Experimental ‘tube law’: dependence of the transmural pressure P ∗
t on the

cross-sectional area of an empty tube (solid line). The measurements were obtained by fully
collapsing an empty tube and subsequently reopening it ‘quasi-statically’ (with air injected at a
flow rate of 50 cm3 min−1). The insets are images of the top half of the tube for different levels of
collapse. The laser line outlines the shape of the tube: (a) the fully collapsed tube with minimal
lobes at the side boundaries; (b) the buckled shape near the point of opposite-wall contact, with
increasingly large side lobes; (c) the buckled tube with approximately elliptical cross-section;
(d) the inflated tube with circular cross section. The point of opposite-wall contact corresponds
to the kink in the curve. The pressure measured at this point is P ∗

owc = −591 Pa. The point
of 73 % collapse, which corresponds to the initial level of collapse in the bubble propagation
experiments, is highlighted with a marker.

three flow rates were applied and for each flow rate the experiments were conducted
twice, the same flow rate being selected for the first and last experiments on a given
tube. In addition, rather than monotonically incrementing the flow rate its values
were selected randomly, in order to avoid systematic patterns of bubble pressure due
to unavoidable fluctuations in the wall thickness along the length of a tube. Finally,
in order to ensure a sufficient sample of data, between two and 13 experiments were
performed at each flow rate.

An example of a pressure data set gathered at a flow rate of 300 cm3 min−1, with
200 cS silicone oil, over three experiments is presented in figure 7. Experiments 1 and 2
were conducted with the same tube on the same day, whereas experiment 3 was carried
out two weeks later with a different, non-contiguous, section of tube. The comparison
between these three pressure traces demonstrates a good experimental reproducibility
during the steady-state propagation phase, since the third experimental trace lies
between the two traces measured using the same tube. The fluctuations observed in
these pressure traces are believed to be due to small variations in wall thickness along
the length of the tube, as well as unavoidable perturbations in the ambient pressure.
The fluctuations within each set of measurements at a given flow rate are less than
40 Pa. The total pressure range of interest, 400 Pa, is also small, however, so that the
experimental error at each flow rate is approximately 10 % of the investigated-pressure
range.
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Figure 7. Three pressure traces recorded at the same value of the flow rate, 300 cm3 min−1,
and with 200 cS silicone oil. Experiments 1 and 2 were performed with the same piece of
silicone tubing on the same day. Experiment 3 was carried out two weeks later with a different
tube from the same batch.

In addition, the experiments were extremely sensitive to small imperfections in
the tubes. The slightly adhesive nature of the silicone created storage difficulties, as
the tubes tended to stick together, causing permanent deformations. This issue was
resolved by coating the outer walls of the tubes with talcum powder and storing them
carefully in a box 1 m long. To probe the sensitivity of the reopening dynamics to im-
perfections arising during the experimental setup procedure, a minimal twisting strain
was introduced prior to one test experiment performed with 200 cS silicone oil at a flow
rate of 300 cm3 min−1. A comparison between the resulting pressure trace (the dashed
line) and that from an unperturbed experiment (the solid line) is shown in figure 8. The
significant variation of the perturbed pressure indicates that the air finger does not
propagate uniformly. The perturbed pressure trace exhibits fluctuations of 48 Pa com-
pared with 7 Pa for the normal pressure over the measurement section. This example
highlights the quality of experimental control achieved in the results shown in figure 7.

The experiments shown in figure 8 were carried out with a tube from a batch
different from the single batch of 150 m of tubing used for the remainder of
the experiments presented in this paper. The pressure level during steady finger
propagation is approximately −500 Pa, which may be compared with −100 Pa for
the experiments shown in figure 7. This significant difference is due to variations in
the elastic properties of the silicone rubber as well as changes in the wall thickness
between batches, both of which altered the bending stiffness and thus reduced σ

by approximately 25 %. These results are in agreement with the computations of
Hazel & Heil (2003), which indicate significant reductions in the bubble pressure with
decreasing σ , for the small values of σ investigated experimentally.

3. Results
We present experimental results obtained for three different grades of silicone oil,

as shown in table 1. A total of 47, 111 and 74 experiments were performed for the
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Figure 8. Effect of small experimental perturbations on the pressure traces. In the perturbed
experiment, a minimal twisting strain was applied to the tube during setup. Both experiments
were performed for 300 cm3 min−1 with 200 cS silicone oil. The pressure level during the steady
finger propagation is approximately −500 Pa compared with −100 Pa in the experiments shown
in figure 7. This difference is due to the use of a tube from a different batch to that used for
the remainder of the experiments presented in this paper.

1000 cS, 200 cS and 100 cS silicone oils respectively. Between two and 13 realizations
of the experiment were performed at each flow rate, so that significant trends could
be reliably extracted in spite of the difficulties associated with the smallness of the
pressure range of interest and the unavoidable fluctuations present in the system. For
each value of the imposed flow rate, the same (P, Ca) state was detected during each
realization of the experiment. Thus we present the results averaged for each flow rate,
with upper and lower error bars each corresponding to one standard deviation from
the mean of the data set. These error bars are larger than any error estimated from
the variations within a single experiment. Particular attention is focused on the 200 cS
experiments (there were 111 such experiments, and up to 13 measurements per flow
rate), because they exhibited the most complex dynamics.

3.1. Pressure measurements: comparison with numerical simulations

The dependence of the bubble pressure on Ca is shown in figure 9 for the three grades
of silicone oil investigated. The pressure is non-dimensionalized on the capillary scale,
P = P ∗R/σ ∗, where P ∗ is the dimensional bubble pressure (the pressure of the air
finger relative to the external pressure). Experimental pressure measurements are
shown by symbols and the numerical simulations of Hazel & Heil (2006) are plotted
using lines. These correspond to steady solutions of the three-dimensional fully
coupled fluid–structure interaction problem calculated in the limit of zero gravity
using a finite-element method. The choice of zero gravity yielded symmetries about
the principal axes of the cross-section, so that the computational domain could be
reduced to a quarter of this cross-section over a chosen length of tube. The numerical
computations were performed using the code described by Hazel & Heil (2006) for
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Figure 9. Comparison between the experimental and numerical bubble-pressure dependences
on Ca for Re/Ca = 0.1, 2.2 and 8.2. The experimental measurements are plotted with symbols
and the numerical results, computed with the code of Hazel & Heil (2006) for A∞ = 0.33,
σ = 3.6 × 10−2 and h/R = 0.09, are plotted with lines. The experimental variation in Re/Ca
was achieved by using silicone oils of different viscosities (see table 1). The experimental results
are averaged over the flow-rate values from 47 experiments at Re/Ca = 0.1, 111 experiments
at Re/Ca = 2.2 and 74 experiments at Re/Ca = 8.2. The error bars correspond to the standard
deviations of each group of data.

experimental parameter values A∞ = 0.33, σ = 3.6 × 10−2 and h/R = 0.09. The
Poisson ratio was set to 0.49 in the calculations, which is suitable for silicone as it is
nearly incompressible.

In the experiment the range of attainable finger velocities was limited, since the
maximum achievable flow rate was 1400 cm3 min−1. Thus, the maximum experimental
capillary number varied from Ca = 5.6 for the 200 cS oil down to Ca = 2.9 for the
100 cS oil. For the 1000 cS oil the maximum flow rate investigated was 550 cm3 min−1,
which limited the capillary-number range to Ca � 11. It is clear from all three sets
of experimental data that the bubble pressure exhibits an overall growth with Ca,
so that the tube is inflated with increasing driving force. Note that negative bubble
pressures are recorded for Ca < 4, indicating that an air finger can ‘partially reopen’
a tube, so that its pressure remains less than the external pressure, as suggested by
Hazel & Heil (2003). We shall further show in § 3.2.1 that in our experiments the tube
never actually reaches its fully reopened cross-sectional area, estimated from the ‘tube
law’, and remains partially buckled even for positive bubble pressures.

For Ca � 3, the experimental bubble pressure P does not exhibit a measurable
dependence on Re/Ca but, for larger Ca, P exhibits steeper growth with Ca for
Re/Ca = 2.2 than for Re/Ca = 0.1. Similarly, in the numerical simulations, when
Ca � 3.2 the difference in pressure between Re/Ca = 0.1 and 8.2 is within the
magnitude of the experimental uncertainty. For Ca > 3.2 the steepening of the
pressure curves due to inertia as Ca increases results in a growing divergence between
the values of the bubble pressure at a given Ca.
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Figure 10. Bubble-pressure dependence on Ca for Re/Ca = 0.1. The number of experiments
performed for each flow rate is indicated next to the experimental data points on the graph.
The dashed line is a least-squares fit to the experimental data and the solid line represents the
numerical results for A∞ = 0.33 and σ = 3.6 × 10−2.
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Figure 11. Bubble-pressure dependence on Ca for Re/Ca = 2.2. The number of experiments
performed for each flow rate is indicated next to the experimental data points on the graph.
The dashed line is a least-squares fit to the experimental data and the solid line represents the
numerical results for A∞ = 0.33 and σ = 3.6 × 10−2.

The pressure curves shown collectively in figure 9 are presented individually in
figures 10, 11, 12 for Re/Ca = 0.1, 2.2 and 8.2 respectively. The number of experiments
performed at each flow rate is indicated next to each data point on the graphs.
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The dashed line is a least-squares fit to the experimental data and the solid line represents the
numerical results for A∞ = 0.33 and σ = 3.6 × 10−2.

The three sets of experimental data exhibit significant qualitative differences. For
Re/Ca = 0.1 (figure 10), the pressure increases approximately linearly, with a least-
squares-fitted slope dP/dCa = 7.2 ± 1.0. For Re/Ca = 2.2 (figure 11), a linear increase
is followed by a region of constant and approximately zero average bubble pressure
between Ca = 3.0 and 3.9, with a subsequent linear increase for Ca > 3.9. A large
number of experiments (111) was performed in this case to resolve the nonlinear
dependence of the pressure on Ca. Least-squares fits to the regions of linear increase
yield similar slopes: dP/dCa = 18.0 ± 1.0 for Ca � 2.6 and dP/dCa = 19.0 ± 2.9 for
Ca � 4.4, while the average slope of the bubble-pressure curve over the experimental
range of Ca investigated is approximately 15.4. In addition, small-amplitude periodic
pressure oscillations (with approximate period 0.3 s) were reproducibly detected for
3.0 � Ca � 3.9, where the averaged pressure remained constant. These may indicate
the existence of a transition region between two steady ‘peeling’ states. Owing to the
limited Ca range over which the oscillations occurred, as well as their small amplitude,
the unexpected qualitative features of the pressure curve could not be investigated in
further detail. The existence of the constant-pressure region, however, is confirmed
by independent measurements presented in § 3.2.2. Finally, for Re/Ca = 8.2 (figure
12), the pressure remains approximately constant for Ca < 0.8. Indeed, for flow rates
between 50 and 250 cm3 min−1, similar bubble pressures were measured while the
speed of the air finger underwent a tenfold increase. For Ca > 0.8, the pressure grows
approximately linearly, with a least-squares-fitted slope dP/dCa = 16.4 ± 2.6 within
the limited range of Ca attainable.

In the limit of small Ca, the experimental bubble pressure P shown in figure 9 tends
to a value of about −50 in all three experiments, which is considerably lower than the
yield pressure measured by Gaver III et al. (1990) in a tube of negligible bending stiff-
ness. This result emphasizes the importance of the bending stiffness in determining the
yield pressure. The region of minimum bubble pressure in the numerical simulations
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Figure 13. A series of side-view snapshots of reopening tubes filled with 200 cS oil, for
increasing capillary numbers between Ca = 0.5 and 5.0. The horizontal solid lines in (a) and
(c) denote the horizontal mid-plane far ahead of the finger tip and illustrate the asymmetry
in the reopening tube. The outline of each tube is digitally traced (the white solid lines), in
order to extract quantitative measures from the images: δ, the height of the reopened tube; θ ,
the upper-surface reopening angle; l, the length of tube which has lifted off the bottom rigid
support, as shown in (e). The height of each snapshot is 10.9 mm.

marks the transition between the ‘pushing’ regime, where the pressure decreases with
Ca and the air finger displaces a plug of fluid ahead of its tip, and the ‘peeling’ regime,
where the pressure increases with Ca (Hazel & Heil 2003). The minimum pressure
predicted by the computations remains approximately constant, at between −85.3 and
−83.5 for increasing Re/Ca, which is smaller than the experimental minimum pressure
by a factor of approximately 1.7. In the limit of small σ , the numerical calculations of
Hazel & Heil (2003) showed that the reopening pressure varies significantly with σ .
The effect of the experimental error in σ = (3.6 ± 0.2) × 10−2 was assessed by perform-
ing calculations for the maximum and minimum experimental values of σ respectively.
The resulting numerical pressure curves are shifted up and down by approximately six
units on the capillary scale, which is insufficient to explain the discrepancy between
the experimental and numerical pressures. The results of Jensen et al. (2002), however,
show that at small Ca the pressure of a bubble reopening a channel asymmetrically is
a factor of approximately 1.6 larger than in the symmetric configuration. This increase
in the reopening pressure is likely to be due to the reduced radius of curvature at
the interface, which in turn increases the pressure difference, causing adhesion. In the
present experiments, we also observed asymmetric reopening configurations which
arise owing to the coupling of gravity with elastic forces, which determines the tube’s
overall shape, as discussed in § 3.2. Thus, we speculate that the quantitative difference
between the experimental and numerical reopening pressures originates in the gravity-
induced asymmetric reopening configurations observed experimentally (see figure 13).

Also, the increasing length of the transition region between the collapsed and
reopened regions of the tube, visible in figure 13 for decreasing Ca, is suggestive
of the existence of a ‘pushing’ regime in the experiments. For Re/Ca = 8.2, where
detailed data was sampled in the limit of small Ca, the saturation of the pressure
for small Ca could further indicate the vicinity of a ‘pushing’ branch. The recent
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theoretical results of Halpern et al. (2005) support this notion as they demonstrate
that at a constant, low, flow rate, steady pushing behaviour, although unstable, may
be experimentally realizable for a significant period of time, at least until the bubble
has advanced far enough for the compliance of the inflated section to destabilize the
pushing motion.

The large discrepancy between experimental and numerical minimum pressures is
accompanied by a discrepancy in the rate of growth of the bubble pressure with Ca.
The average rates of growth of the numerical bubble pressure over the experimental
ranges of Ca are dP/dCa = 5.2, 6.6 and 9.2 for Re/Ca = 0.1, 2.2 and 8.2, respectively.
Thus, the net effect of inertia is small over this limited range of Ca. The much larger
increase in growth rates from dP/dCa = 7.2 for 1000 cS oil to dP/dCa = 15.4 and
dP/dCa = 16.4 for 200 cS and 100 cS oils, respectively, suggests that in the presence
of gravity the reduction in the viscosity has additional consequences which dominate
over the purely inertial pressure steepening.

3.2. Effect of gravity on the reopening dynamics

The differences between the experiments and the simulations appear to be closely
linked to the presence of gravity in the experiment. Because of gravity, a rigid
plate is necessary to support the bottom boundary of the reopening tube in the
experiments, which leads to asymmetrical reopening of the tube, to be discussed in
§ 3.2.2. The second effect of gravity is to induce buoyancy pressures inside the tube.
Experimentally, we observe that the steadily propagating air finger is located toward
the top of the tube, so that the liquid film left behind on the walls of the tube is thicker
below the finger. Evidence presented in § 3.2.1 suggests that the relative importance
of gravity compared with inertia, enhanced through the increase in viscosity, is the
key to determining the shape of the reopened tube far behind the finger tip.

A series of side-view snapshots of reopening tubes, filled with 200 cS oil, is shown
in figure 13 for values of the capillary number Ca between 0.5 and 5.0. The air
finger is propagating from the right to the left of each picture (i.e. from the reopened
air-filled tube to the collapsed liquid-filled tube). The consecutive snapshots indicate
that the height of the reopened tube increases with Ca, in accord with the pressure
measurements presented in § 3.1. Also, the transition region between the uniformly
collapsed tube and the uniformly reopened tube shortens significantly with increasing
Ca. Both these findings were observed in the numerical simulations of Hazel & Heil
(2003). A closer inspection of the images in figure 13, however, reveals that the
experimentally reopened tube is inherently asymmetric about the horizontal mid-
plane far ahead of the finger tip, as illustrated in snapshots (a) and (c), where the
black horizontal line denotes the mid-plane. For small values of Ca (figure 13a, b),
the tube lies flat on the rigid base and the deformation of the tube between the
collapsed and reopened states is characterized solely by the upper-surface reopening
angle θ . For Ca > 2.0, the tube lifts off the bottom plate over a length l, thus reducing
the asymmetry in the transition region. A Matlab program was developed to extract
quantitative measures from the snapshots. Firstly, an edge-finding algorithm was
applied to trace digitally the outline of the tube (the solid white lines in figure 13).
The contour data was then used to extract the quantitative measures illustrated in
figure 13(e): δ is the height of the reopened tube; l is the length of tube which has
lifted off the rigid plate and θ is the upper-boundary reopening angle. The angle θ was
determined by calculating the average slope of the upper boundary in the transition
region. Group averages of θ , l and δ were calculated for each value of the flow rate,
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Figure 14. Dependence of the height of the reopened tube on Ca. The initial height of the
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height of the open empty tube, respectively.

with upper and lower error estimates equal to one standard deviation about the mean
data.

3.2.1. The reopened tube behind the propagating air finger

We begin by presenting the scaled height of the reopened tube δ/D against Ca
in figure 14. The scaling factor, D = 2(R + h/2) = 10.7 mm, corresponds to the outer
diameter of the tube. The upper thick horizontal line on the graph is for δ/D = 1.0
and is approximately equal to the height expected in the zero-gravity fluid-filled
configuration for P =0. The effect of gravity on the open empty tube is to reduce
its height by approximately 5 %, as indicated by the lower horizontal line. Over the
range of Ca investigated, the reopening height appears to saturate at approximately
δ/D = 0.89, which is 7% less than the height of empty tube at P = 0 in the experiment.
For the 100 cS and 200 cS oils, δ/D grows faster with Ca than for the 1000 cS oil.
This trend is expected from the behaviour of the pressure with Ca (see figure 9). With
Bo= 12.1, viscous forces become comparable to buoyancy forces as Ca increases;
Ca/Bo = 0.9 for the largest value reached by Ca in the experiment. Thus, the height
measurements taken with oils of different viscosities tend to a similar value as Ca
increases.

An unexpected result, however, is that for small values of Ca the tube reopens
to larger heights with 1000 cS oil than with the lower-viscosity fluids, with up to
10 % difference between the reopening heights at 100 cS and 1000 cS even though the
bubble pressure does not exhibit a measurable dependence on viscosity for Ca � 3,
as shown in figure 9. The height of reopening, however, is linked to the distribution
of the transmural pressure within the tube. Even when the bubble pressure remains
constant, the transmural pressure distribution may be non-uniform and may vary
through changes in the liquid film configurations, which result in different load
distributions on the tube walls and thus in variations in the height of reopening. The
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Figure 15. Modified experimental ‘tube law’ for the liquid-lined configuration: the
dimensionless pressure of reopening, P , is plotted against the scaled height of the reopened
tube, δ/D, where D = 2 (R + h/2) is the outer diameter of the tube, for all three values of
viscosity investigated.

ratio of buoyancy and viscous forces, Bo/Ca, depends on the viscosity only through
Ca. The ratio of buoyancy and inertial forces, Bo/(Ca Re), however, is proportional
to the square of the dynamic viscosity at a given Ca value, so that when Ca =0.5,
Bo/(Ca Re) � 5.9, 22 and 539, for the 100 cS, 200 cS and 1000 cS oils respectively.
Given the variation by a factor 100 in Bo/(Ca Re), it is likely that the competition
between buoyancy and inertial forces in the experiment results in widely different film
configurations, particularly in the 1000 cS experiments, compared with the other two
cases.

In addition, for the 100 cS and 200 cS oils, the reopened height did not vary after
the passage of the bubble on the time scale of the experiment. For 1000 cS, a minor
reduction in δ of less than 5 % was detected, which may indicate the redistribution of
the load on the tube walls through drainage. Indeed, in the presence of gravity, the
final film configuration is only expected to be reached at very large times, because
of the increasing time scales associated with the drainage of thin liquid films left on
the tube walls after the passage of the bubble. The experimental evidence, however,
suggests that the effect of drainage on δ is very small for the grades of silicone oil
investigated.

To demonstrate further the dependence of the scaled reopening height on viscosity,
P is plotted against δ/D in figure 15 for the three values of viscosity investigated. The
pressure-versus-scaled-height data is approximately linear within the experimental
range investigated, suggesting the proportional growth of both quantities. The
significantly different slope of the (P , δ/D)-curve for the 1000 cS oil compared to
those for the 100 and 200 cS oils confirms that different heights of reopening can
occur for the same bubble pressure, depending on the viscosity of the liquid used
in the experiment. Thus when P = 0, for instance, the height of reopening increases
monotonically with increasing viscosity. We were also able to reproduce this result
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Figure 16. Outline of the top section of the reopened tube measured with the aerial camera
for 1000 cS, 200 cS and 100 cS silicone oil at P = −44 ± 1.

independently by measuring the height of the fluid-filled reopened tubes from the
video footages recorded at 50 cm3 min−1, once the reopening experiment was over and
the end two-way valve had been released to let air flow through the system.

In figure 16 a further comparison may be made of the outline of the tube
captured by the aerial camera for different-viscosity oils, at a constant bubble pressure
P = −44 ± 1. The curves were obtained by digitally tracing the deformed laser line
outlining the upper section of the reopened tube in the aerial view snapshots (see
figure 2). These results clearly demonstrate that the shape of the cross-section, as well
as its height, are strongly dependent on viscosity, with increasingly reopened tubes
observed for larger-viscosity oils. Note that all the reopened tube profiles exhibit a
small asymmetry about the mid-width of the tube. This asymmetry is linked to the
manufacturing process of the silicone tubing, where a large piece of solid silicone
is extruded into a coil, resulting in slightly curved tubes with a natural transverse
distortion of less than 3 % of their length.

3.2.2. The transition region of the reopening tube

In figure 17, the angle of reopening, θ , and the length of lift-off, l, are plotted against
Ca for each value of viscosity. The upper reopening angles are shown in the left-hand
column, while the length of lift-off is plotted in the right-hand column. Figures 17(a),
(b) are for the 1000 cS silicone oil, figures 17(c), (d) are for the 200 cS silicone oil and
figure 17(e) is for the 100 cS silicone oil. Starting with figures 17(c), (d), the angle of
reopening grows approximately linearly up to Ca � 1.9 and, within this range, the
tube does not lift off the base plate. The onset of lift-off occurs between Ca = 1.7
and Ca = 1.9, and l then grows linearly up to Ca � 3.0, which is the lower bound for
the region of constant pressure seen in figure 11. The upper-surface reopening angle
remains constant within this range of Ca. For 3.0 � Ca � 3.9, which corresponds
to the region of constant pressure, the trend reverses so that θ grows linearly while
l remains constant, and vice versa for Ca � 3.9. Hence, in the 200 cS experiments,
successive phases in the reopening process are identified which are dominated by
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Figure 17. Correlation between the angle of reopening, θ (left-hand column) and the length
of lift-off, l, (right-hand column): (a), (b) 1000 cS oil; (c), (d) 200 cS oil; (e) 100 cS oil. In
the last case, lift-off was detected only at the largest achievable value of Ca, 2.9, and thus the
dependence of l on Ca is not shown. The solid lines are local linear fits to the data, which have
been plotted as a guide to the eye. The vertical dotted lines in (a)–(d) give the approximate
value of Ca for which lift-off first occurs (left-hand line), and beyond which the length of
lift-off is observed suddenly to drop (right-hand line). The vertical dashed lines in (c) and (d)
delimit the range of Ca where a constant bubble pressure of approximately zero is observed.

the deformation of either the upper or lower boundary of the tube. In figures 17(a),
(b), which are for 1000 cS oil, lift-off again does not occur for small values of Ca,
and θ increases sharply for Ca � 2.0. The lift-off occurs between Ca = 0.6 and
Ca = 2.0, but the sparse measurements at low Ca in this case do not allow us to
resolve the threshold further. This is followed by a region of approximately constant
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θ (slow growth), with significant growth of l for 2.0 � Ca � 5.3. As in the case
of the 200 cS oil, this indicates the successive phases of reopening with Ca. There
does not appear to be any additional feature in the angle and length of lift-off for
2.0 � Ca � 5.3, in accord with the pressure results shown in figure 10, although the
smaller number of experiments (47) performed with this viscosity grade and the wider
range of Ca covered do not permit us to ascertain this conclusively. For Ca = 6.4, l

drops sharply from approximately 38 mm to 24 mm. For Ca � 6.4, it resumes linear
growth, and θ also sharply increases. This indicates a rearrangement of the transition
region of the tube, which appears to occur at a critical value of Ca. Evidence for this
behaviour is also seen in figures 17(c), (d) for Ca = 5.6 (the last experimental point).
Finally, in the 100 cS experiments, lift-off is delayed, as we detected it only in the last
experimental measurement at Ca = 2.9. Thus, we show only the variation in θ with
Ca in figure 17(e). It appears to increase in an approximately linear manner, similarly
to the pressure presented in figure 12. The angle of reopening, however, does not
appear to saturate in the limit of small Ca, indicating that evolution of the transition
region is significant even in the initial constant-pressure region (Ca < 0.8).

The different configurations of the transition region described above for increasing
Ca are a consequence of the gravity-induced asymmetry of the reopening tube. Note
that such features are not expected in the model of Hazel & Heil (2003, 2006), where
symmetries about the principal axes of the cross-section are enforced.

4. Conclusion
The results of an experimental investigation into the mechanics of airway reopening

have been presented. The injection of nitrogen at a constant flow rate into a liquid-
filled collapsed tube of finite bending stiffness resulted in the steady propagation of an
air finger after initial transients had decayed. We have demonstrated that gravity has
a profound effect on the reopening mechanics and is closely linked to the significant
differences from the three-dimensional zero-gravity model of Hazel & Heil (2006).
The ratio of gravity and inertial forces increases as the square of the viscosity of the
liquid for a given value of Ca. Thus, an increase in viscosity yields changes in the film
configuration behind the propagating finger, which in turn alters the mechanical load
on the tube walls. As a result, differing tube heights and cross-sectional shapes are
found for different values of the viscosity at the same bubble pressure. The presence of
gravity also requires the tube to be supported, and this induces an asymmetry about
the horizontal mid-plane. The different phases of reopening observed for increasing
Ca are linked to this asymmetry. In order to avoid the need for a rigid support plate,
the experiments could conceivably be carried out by immersing the tube in silicone
oil. Because of buoyancy, however, the reopening fluid would also need to be density-
matched to silicone oil, and significant practical difficulties would be associated with
this setup.

The liquid lining in a healthy lung has a viscosity µ � 10−3 kg m−1 s−1 (Kamm &
Schroter 1989), which is much lower than in the experiments. Thus with Ca = 0.05,
which corresponds to propagation speeds of 1 m s−1 in the lungs (Halpern, Jensen &
Grotberg 1998), and considering the smallest airways of radius 0.29 mm (Kamm &
Schroter 1989), we have Bo/(Ca Re) � 3 × 10−3, which suggests that buoyancy will
have a minimal influence on the dynamics. Mucous secretions in a diseased lung can,
however, result in viscosities equal to the lowest value investigated in the experiment,
µ =10−1 kgm−1 s−1 (Gaver III, Samsel & Solway 1990). In this case, the relative
importance of buoyancy could be significantly increased. For potentially smaller
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propagation speeds, of the order of 10−2 m s−1, inertial forces become negligible and
the relevant force balance, Bo/Ca, is approximately 82 in the healthy lung and 0.8 in
the diseased lung, suggesting that gravity may significantly influence the reopening
process. Finally, the bending stiffness in the experiments is approximately a factor 102

larger than in the terminal bronchioles of the lungs, whereas the radius of the tube is
approximately 16 times that of these airways. A typical value for the ratio of surface
tension and bending forces in the lung is σ = 50 (Hazel & Heil 2003), which may be
compared with σ = 3.6×10−2 in the experiment. Thus, the ratio of gravity and elastic
forces, Boσ = ρgR/K is approximately equal to 0.4 in the experiments, whereas it is
2 in the lungs. It is therefore likely that gravity may influence the reopening process
in the lungs.
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