
On symmetric invariants of centralisers in
reductive Lie algebras

Panyushev, D. and Premet, A. and Yakimova, O.

2007

MIMS EPrint: 2008.4

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


ON SYMMETRIC INVARIANTS OF CENTRALISERS
IN REDUCTIVE LIE ALGEBRAS

D. PANYUSHEV, A. PREMET, AND O. YAKIMOVA

ABSTRACT. Let g be a finite dimensional simple Lie algebra of rank l over an algebraically
closed field of characteristic 0. Let e be a nilpotent element of g and let ge be the centraliser
of e in g. In this paper we study the algebra S(ge)ge of symmetric invariants of ge. We prove
that if g is of type A or C, then S(ge)ge is always a graded polynomial algebra in l variables,
and we show that this continues to hold for some nilpotent elements in the Lie algebras of
other types. In type A we prove that the invariant algebra S(ge)ge is freely generated by a
regular sequence in S(ge) and describe the tangent cone at e to the nilpotent variety of g.

To Ernest Borisovich Vinberg on occasion of his 70th birthday
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INTRODUCTION

0.1. Let g be a finite-dimensional reductive Lie algebra of rank l over an algebraically
closed field K of characteristic zero, and let G be the adjoint group of g. Let N(g) denote
the nilpotent cone of g, i.e., the set of all nilpotent elements of g. Given x ∈ g we denote by
gx and Gx the centraliser of x in g and G, respectively. It is well-known that gx = Lie Gx =

Lie G◦
x (here and in what follows H◦ stands for the connected component of an algebraic

group H).

D.P. and O.Y were supported in part by RFBI Grant 05-01-00988.
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Inspired by a conversation with J. Brundan at the Oberwolfach meeting on enveloping
algebras in March 2005, the second author put forward the following conjecture:

Conjecture 0.1. For any x ∈ g the invariant algebra S(gx)
gx is a graded polynomial algebra in l

variables.

In order to prove (or disprove) Conjecture 0.1 it suffices to consider the case where g is
simple and x ∈ N(g). The conjecture is known to hold for some x ∈ N(g). For example,
when x = 0, it is an immediate consequence of the Chevalley Restriction Theorem. At the
other extreme, when x ∈ N(g) is regular, the centraliser gx is abelian of dimension l and
we have S(gx)

gx = S(gx) ∼= K[X1, . . . , Xl] with degXi = 1 for all i.
Conjecture 0.1 is closely related to an earlier conjecture of A. Elashvili (initiated by a

question of A. Bolsinov). Recall that the index of a finite-dimensional Lie algebra s over
K, denoted ind s, is defined as the minimal dimension of the stabilisers of linear functions
on s. In other words, ind s = min {dim sf | f ∈ s∗} where sf = {x ∈ s | f([x, s]) = 0}.
Elashvili’s conjecture states that

ind gx = l = rk g (∀x ∈ g).

According to Vinberg’s inequality, ind gx > l for all x ∈ g (see [17, 1.6 & 1.7], but the
equality is much harder to establish.

During the last decade Elashvili’s conjecture drew attention of several Lie theorists.
Similar to Conjecture 0.1 it reduces to the case in which g is simple and x ∈ N(g). For
the spherical nilpotent orbits, Elashvili’s conjecture was proved in [17] and [18] by the
first author. For g classical, Elashvili’s conjecture was recently proved in [29] by the third
author. In 2004, J.-Y. Charbonnel published a case-free proof of Elashvili’s conjecture
applicable to all simple Lie algebras; see [4]. Unfortunately, the argument in [4] has a gap
in the final part of the proof, which was pointed out by L. Rybnikov. At present we are
unable to close this gap. Answering a question of Elashvili, W. de Graaf used a computer
programme to verify the conjecture for all nilpotent elements in the Lie algebra of type
E8 (unpublished). Since there are many nilpotent orbits in the Lie algebras of exceptional
types, it is difficult to present the results of such computations in a concise way.

To summarise, Elashvili’s conjecture holds for the Lie algebras of type A, B, C, D and
G2 and remains a challenging open problem for the Lie algebras of type E and F4. We
feel that it would be very important to find a conceptual proof of Elashvili’s conjecture
applicable to all finite-dimensional simple Lie algebras.
0.2. The main goal of this paper is to prove Conjecture 0.1 for all nilpotent elements in
the Lie algebras of type A and C. Our methods also work for some nilpotent elements
in the Lie algebras of type B and D and for a few nilpotent orbits in the exceptional Lie
algebras.

From now on, we fix a nonregular element e ∈ N(g)\{0} and include it into an sl2-triple
(e, h, f) of g. Let ( · , · ) denote the the scalar multiple of the Killing form of g such that
(e, f) = 1, and put χ = (e, · ). The map κ from g to g∗ which takes x to (x, · ) extends
uniquely to a G-equivariant isomorphism between the symmetric algebra S(g) and the
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coordinate algebra K[g] of g. This isomorphism of graded algebras will be denoted by the
same letter κ and referred to as a Killing isomorphism. The G-equivariance of ( · , · ) implies
that ge = [e, g]⊥. On the other hand, g = [e, g] ⊕ gf by the sl2-theory. It follows that the
Killing isomorphism κ induces an algebra isomorphism

κe : S(ge)
∼−→ K[gf ], x 7→ (x, · )|gf

(∀x ∈ ge).

The coordinate algebra K[gf ] carries a natural Z-grading in which the linear forms on gf
have degree 1. Each nonzero ϕ ∈ K[gf ] is expressed uniquely as

ϕ = ϕk + terms of higher degree,

where ϕk is a nonzero homogeneous element of degree k = k(ϕ). We say that ϕk is the
initial term of ϕ, written ϕk = in(ϕ). For ϕ = 0 we set in(ϕ) = 0.

Let Se denote the Slodowy slice e+ gf at e through the adjoint orbit G · e. The translation
map x 7→ e + x induces an isomorphism of affine varieties τ : ge

∼→ Se. The comorphism
τ ∗ maps the coordinate algebra K[Se] isomorphically onto K[gf ].

Let F be a homogeneous element in S(g). Then κ(F ) ∈ K[g] and κ(F )| Se ∈ K[Se]. The
above discussion shows that τ ∗(κ(F )| Se) ∈ K[gf ] and κ−1

e

(
in(τ ∗(κ(F )| Se))

)
∈ S(ge). We

now put
eF := κ−1

e

(
in(τ ∗(κ(F )| Se))

)
.

Thus, to each homogeneous F ∈ S(g) we assign a homogeneous element eF ∈ S(ge).
Roughly speaking, eF is the initial component of F|κ(Se).

Proposition 0.1. If F is a homogeneous element of S(g)G, then eF ∈ S(ge)
Ge .

We give two proofs of Proposition 0.1. The first proof relies in a crucial way on some
properties of the quantisation of the coordinate algebra K[Se] introduced in [19] (see also
[11]). The second (elementary) proof is given in the Appendix.

0.3. Of particular interest are those homogeneous generating sets {F1, . . . , Fl} ⊂ S(g)g for
which the resulting systems eF 1, . . . ,

eF l are algebraically independent. In Section 2 we
show that if Elashvili’s conjecture holds for ge, then for any homogeneous system of basic
invariants F1, . . . , Fl in S(g)g we have the inequality∑l

i=1 deg eFi 6 (dim ge + rk g)/2.(1)

Furthermore, eF1, . . . ,
eF l are algebraically independent in S(ge) if and only if the equality

holds in (1), that is
∑l

i=1 deg eFi = (dim ge+rk g)/2. If this happens, we say that the system
F1, . . . , Fl is good for e.

Given a linear function γ on ge we denote by gγe the stabiliser of γ in ge and set

(g∗e)sing := {γ ∈ g∗e | dim gγe > ind ge}.

The complement g∗e \ (g∗e)sing consists of all regular linear functions of ge. We prove in
Section 2 that if Elashvili’s conjecture holds for ge, then for any good generating set
{F1, . . . , Fl} ⊂ S(g)g the differentials dγ(eF1), . . . , dγ(

eFl) are linearly independent at γ ∈ g∗e
if and only if γ is regular in g∗e. When e = 0, this is a classical result of Lie Theory often
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referred to as Kostant’s differential criterion for regularity (note that any homogeneous gener-
ating system in S(g)g is good for e = 0 and Elashvili’s conjecture is true in this case). When
e is regular nilpotent, the statement follows from another theorem of Kostant saying that
the restriction of the adjoint quotient map to the Slodowy slice Se is an isomorphism of
algebraic varieties. Beyond these two extreme cases our result seems to be new. It should
be stressed, however, that if g is not of type A or C, then there may exist nilpotent ele-
ments in g which do not admit good generating systems in S(g)g. One such element in
g = so12 is exhibited in Example 4.1. Quite surprisingly, the root vectors in Lie algebras of
type E8 provide yet another example of this kind.

0.4. Our proof of the above results relies on some geometric properties of Poisson algebras
of Slodowy slices (established in [19] and [11]) and a theorem of Odesskii-Rubtsov [15] on
polynomial Poisson algebras with a regular structure of symplectic leaves. All necessary
background on polynomial Poisson algebras is assembled in Section 1.

Let A = K[x1, . . . , xn] be a polynomial algebra in n variables. For g1, . . . , gm ∈ A, we
denote by J(g1, . . . , gm) the Jacobian locus of g1, . . . , gm, i.e., the set of all ξ ∈ Specm A

for which the differentials dξg1, . . . , dξgm are linearly dependent. Suppose A is a Poisson
algebra and let π ∈ HomA (Ω2(A),A) be the corresponding Poisson bivector. Let Z(A)

denote the Poisson centre of A. The defect of the skew-symmetric matrix
(
{xi, xj}

)
16i,j6n

with entries in A is called the index of A and denoted ind A. It is well-known (and easily
seen) that tr. degK Z(A) 6 ind A. We denote by Sing π the set of all ξ ∈ Specm A for which
rkπ(ξ) < n − ind A. A subset {Q1, . . . Ql} ⊂ Z(A) is said to be admissible if l = ind A and
the Jacobian locus J(Q1, . . . , Ql) has codimension > 2 in An. We say that (A, π) is a quasi-
regular Poisson algebra if Z(A) contains an admissible subset and Sing π has codimension
> 2 in Specm A.

Assume now that A = K[x1, . . . , xn] is graded and each xi is homogeneous of positive
degree. Let f1, . . . , fs be a collection of homogeneous elements in A such that the Jacobian
locus J(f1, . . . , fs) has codimension > 2 in Specm A, and denote by R the subalgebra of
A generated by f1, . . . , fs. Inspired by Skryabin’s result [24, Theorem 5.4] on modular
invariants of finite group schemes we prove that if an element f̃ ∈ A is algebraic over R,
then necessarily f̃ ∈ R. This has the following consequence:

Theorem 0.2. Let A = K[x1, . . . , xn] be a quasi-regular Poisson algebra of index l and suppose
that A =

⊕
k>0 A(k) is graded in such a way that xi ∈ A(ri) for some ri > 0, where 1 6 i 6 n.

Suppose further that Z(A) contains an admissible set {Q1, . . . , Ql} consisting of homogeneous
elements of A. Then Z(A) = K[Q1, . . . , Ql].

0.5. In this paper, we mostly apply Theorem 0.2 to the pair (A, π) =
(
S(ge), π

PL
e

)
where

πPLe is the Poisson bivector of S(ge) induced by the Lie bracket of ge. In this situation
Z(A) = S(ge)

ge . (One noteworthy application of Theorem 0.2 to quantisations of Slodowy
slices can be found in Remark 2.1.) Of course, before applying Theorem 0.2 to the pair(
S(ge), π

PL
e

)
we have to make sure that our nilpotent element qualifies. That is to say, we

must check that e admits a good generating system F1, . . . , Fl, that Elashvili’s conjecture
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holds for ge, and that J(eF1, . . . ,
eFl) = (g∗e)sing has codimension > 2 in g∗e. Our main result

is the following:

Theorem 0.3. Suppose e admits a good generating system F1, . . . , Fl in S(g)g and assume further
that Elashvili’s conjecture holds for ge and (g∗e)sing has codimension > 2 in g∗e. Then S(ge)

ge =

S(ge)
Ge is a polynomial algebra in eF1, . . . ,

eFl.

Suppose g is of type An of Cn, where n > 2, and let e ∈ N(g). By [29], Elashvili’s con-
jecture holds for ge. In Section 3 we show that the singular locus (g∗e)sing has codimension
> 2 in g∗e, whilst our results in Section 4 imply that in types A and C the invariant algebra
S(g)g contains a homogeneous generating set which is good for all nilpotent elements in g

(this is no longer true in types B and D). Applying Theorem 0.3 we are able to conclude
that Conjecture 0.1 holds for all nilpotent elements in g.

Apart from the the above-mentioned results, we show in Sections 3 and 4 that the con-
ditions of Theorem 0.3 are satisfied for some nilpotent elements in Lie algebras of types
B and D. Subsection 3.9 illustrates the behavior of the simple Lie algebras g other than
sln and sp2n by producing a nilpotent element e ∈ g for which (g∗e)sing has codimension 1

in g∗e.

0.6. In Section 5 we study the null-cone N(e) of g∗e, that is the subvariety of g∗e consisting
of all linear functions ξ such that ϕ(ξ) = 0 for all ϕ ∈ S(ge)

ge with ϕ(0) = 0. Here we have
to assume that g = gln. Working with the good generating set {F1, . . . , Fn} ⊂ S(g)g men-
tioned in (0.5) we show that the zero locus N(e) of the ideal (eF1, . . . ,

eFn) has codimension
n in g∗e and hence eF1, . . . ,

eFn is a regular sequence in S(ge). As a consequence, we describe
the tangent cone at e to the variety of all nilpotent n×nmatrices over K; see Corollary 5.5.
Although the variety N(e) is irreducible in some interesting cases, in general it has many
irreducible components. The problem of describing the irreducible components of N(e)

for g = gln is wide open.

0.7. Let ẽ ∈ Omin, where Omin is the minimal (nonzero) nilpotent orbit in g. The element
ẽ is G-conjugate to a highest root vector in g. Recall that outside type A the orbit Omin is
rigid, i.e., cannot be obtained by Lusztig–Spaltenstein induction form a nilpotent orbit in
a Levi subalgebra of g. We put Conjecture 0.1 to the test by investigating the invariant
algebra S(gẽ)

gẽ . Here our result is as follows:

Theorem 0.4. Suppose rk g > 2. Then the singular locus (g∗ẽ)sing has codimension > 2 in g∗ẽ. If g

is not of type E8, then ẽ admits a good generating system in S(g)g and the invariant algebra S(gẽ)
gẽ

is isomorphic to a graded polynomial algebra in rk g variables. The degrees of basic invariants of
S(gẽ)

gẽ are given in the Table 1.

In order to prove Theorem 0.4 for Lie algebras of types E7 we have to use the explicit
system of basic invariants for the Weyl group of type E7 constructed in [14]. In type E8,
we reduce Conjecture 0.1 for gẽ to a specific problem on polynomial invariants of the
Weyl group of type E7; see Theorem 4.14. In principle, this problem can be tackled by
computational methods.
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Type of g Degrees of basic invariants

An, n > 1 1, 2, . . . , n
Bn, n > 3 1, 3, 4, . . . , 2n− 2

Cn, n > 2 1, 3, . . . , 2n− 1

Dn, n > 4 1, 3, 4, . . . , 2n− 4, n− 1

E6 1, 4, 4, 6, 7, 9

E7 1, 4, 6, 8, 9, 11, 14

F4 1, 4, 6, 9

G2 1, 4

TABLE 1

We adopt the Vinberg–Onishchik numbering of simple roots and fundamental weights
in simple Lie algebras; see [27, Tables]. The i-th fundamental weight is denoted by $i.

1. SOME GENERAL RESULTS

1.1. Our goal in this section is twofold: to prove an extended characteristic-zero version
of Skryabin’s theorem [24] on invariants of finite group schemes and to obtain a slight
generalisation of a result of Odesskii–Rubtsov [15] on polynomial Poisson algebras. We
first recall some basics on the classical duality between differential forms and polyvector
fields.

Let An = An
K be the n-dimensional affine space with the algebra of regular func-

tions A = K[x1, . . . , xn]. Let W denote the derivation algebra of A. This is a free A-
module with basis consisting of partial derivatives ∂1, . . . , ∂n with respect to x1, . . . , xn.
Let Ω1 = HomA(W,A) and let Ω =

⊕n
k=0 Ωk be the exterior A-algebra on Ω1. The exterior

differential d : A → Ω1, (df)(D) = D(f), extends uniquely up to a zero-square graded
derivation of the A-algebra Ω. We identify Ω0 with A and regard Ω1 as the A-module of
global sections on the cotangent bundle T ∗An. Note that Ωk is a free A-module with basis
{dxi1 ∧ . . . ∧ dxik | 1 6 i1 < · · · < ik 6 n}.

We view the exterior powers Ωk =
∧k

A Ω1 and
∧k

AW as dual A-modules by using the
nondegenerate A-pairing

〈α1 ∧ . . . ∧ αk, D1 ∧ . . . ∧Dk〉 = det
(
αi(Dj)

)
.

For η ∈ Ωk, set η(D1∧ . . .∧Dp) := 〈η,D1∧ . . .∧Dk〉. For D ∈
∧k

AW , set D(α1∧ . . .∧αk) :=

〈α1 ∧ . . . ∧ αk, D〉. Then for D ∈
∧p

AW = (Ωp)∗ and D′ ∈
∧q

AW = (Ωq)∗ we have

(D ∧D′)(α1 ∧ . . . ∧ αp+q) = 〈α1 ∧ . . . ∧ αp+q, D ∧D′〉

=
∑

(sgnσ)D(ασ(1), . . . , ασ(p))D
′(ασ(p+1), . . . , ασ(p+q)),

where the summation runs over the set of all permutations σ of {1, . . . , p + q} which are
increasing on {1, . . . , p} and {p+ 1, . . . , p+ q}.
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For X ∈
∧

AW and ξ ∈ An, the specialisation Xξ is a well-defined element of the
exterior algebra

∧
Tξ(An) on the tangent space Tξ(An). For X ∈ W , the left interior product

iX is the unique A-linear endomorphism of degree −1 on Ω such that

iX(η)(D1 ∧ · · · ∧Dk) = η(X ∧D1 . . . ∧Dk)
(
∀ η ∈ Ωk+1

)
.

For ω ∈ Ω1, the right interior product jω is the unique A-linear endomorphism of degree −1

on
∧

AW such that

jω(D)(α1 ∧ · · · ∧ αk) = D(α1 ∧ . . . ∧ αk ∧ ω)
(
∀D ∈

∧k+1
A W

)
.

Using the above discussion it is easy to observe that the endomorphisms iX and jω are
graded derivations (a.k.a. super-derivations) of Ω and

∧
AW , respectively. More gener-

ally, given X ∈
∧p

AW and ω ∈ Ωp one defines the right interior product iX and the left
interior product jω to be the unique endomorphisms of degree −p on Ω and

∧
A W , respec-

tively, such that

〈iX(η), D〉 = 〈η,X ∧D〉 and 〈η, jω(D)〉 = 〈η ∧ ω,D〉
(
∀D ∈

∧p
AW, ∀ η ∈ Ω

)
.

The mappings X 7→ iX and ω 7→ jω then give rise to A-algebra homomorphisms
i :
∧

AW → End(Ω) and j : Ω → End
(∧

A W
)
. In other words, we have iX ◦ iY = iX∧Y

and jα ◦ jβ = jα∧β for all X, Y ∈
∧

AW and all α, β ∈ Ω. Finally, iX(ω) = jω(X) = 〈ω,X〉
whenever X ∈

∧p
AW and ω ∈ Ωp.

The top components Ωn and
∧n

AW are free modules of rank 1 over A generated by
dx1 ∧ . . . ∧ dxn and ∂1 ∧ . . . ∧ ∂n, respectively. The mappings X 7→ iX(dx1 ∧ . . . ∧ dxn)

and ω 7→ jω(∂1 ∧ . . . ∧ ∂n) induce canonical A-module isomorphisms
∧p

AW
∼= Ωn−p and

Ωp ∼=
∧n−p

A W .

1.2. For g1, . . . , gm ∈ A, the Jacobian locus J(g1, . . . , gm) consists of all ξ ∈ An for which the
differentials dξg1, . . . , dξgm are linearly dependent. The set J(g1, . . . , gm) is Zariski closed
in An and it coincides with An if and only if g1, . . . , gm are algebraically dependent. Our
interpretation of Skryabin’s result [24, Theorem 5.4] will be based on the following general
result which is of independent interest:

Theorem 1.1. Suppose A = K[x1, . . . , xn] is graded in such a way that each xi is homogeneous
of positive degree. Let R be the subalgebra of A generated by homogeneous elements f1, . . . , fs and
assume further that J(f1, . . . , fs) has codimension > 2 in An. Then R is algebraically closed in A.
In other words, if f̃ ∈ A is algebraic over R, then f̃ ∈ R.

Proof. For t ∈ K×
, we denote by ρ(t) the automorphism of A such that ρ(t)·f = tkf for all

f ∈ A(k), where A(k) is the k-th graded component of A. Let Q(R) be the field of fractions
of R, a subfield of K(x1, . . . , xn), and denote by R̃ the algebraic closure of R in A. Since R̃
is nothing but the intersection of A with the algebraic closure of Q(R) in K(x1, . . . , xn), it
is a subalgebra of A. Since all fi are homogeneous, the subalgebra R is ρ(K×

)-stable. But
then so is R̃. As a consequence, R̃ is a homogeneous subalgebra of A. Thus, in order to
prove the theorem it suffices to show that if a homogeneous element f̃ ∈ A is algebraic over
R, then f̃ ∈ R.
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We shall argue by induction on the degree of f̃ . So assume that the statement holds
for all homogeneous elements of degree less than deg f̃ (when deg f̃ = 1, this is a valid
assumption).

(a) The grading of A induces that on the K-algebra Ω where we impose that deg dxi =

deg xi. Note that a ∈ A is algebraic over R if and only if da ∧ df1 ∧ . . . ∧ dfs = 0 in Ω. Since
J(g1, . . . , gm) consists of all ξ ∈ An for which dξg1 ∧ . . . ∧ dξgm = 0, our assumption on
f1, . . . , fs implies that for every subset {i1, . . . , ik} of {1, . . . , s} the locus J(fi1 , . . . , fik) has
codimension > 2 in An. From this it follows that passing to smaller subsets of {f1, . . . , fs}
and renumbering if necessary we can reduce our proof to the situation where for each i the
polynomials {f1, . . . , fi−1, fi+1, . . . , fs, f̃} are algebraically independent. So let us assume
from now that this is the case, and put

T := df1 ∧ . . . ∧ dfs, Ti := df1 ∧ . . . ∧ dfi−1 ∧ df̃ ∧ dfi+1 ∧ . . . ∧ dfs (1 6 i 6 s).

By our assumption, T and the Ti are nonzero homogeneous elements of Ω.

(b) If ξ 6∈ J(f1, . . . , fs), then dξf1, . . . , dξfs are linearly independent and dξf̃ is a linear
combination of dξf1, . . . , dξfs. It follows that the specialisation of Ti at ξ is a scalar multiple
of dξf1∧. . .∧dξfs. As Ω is a free A-module, this yields that T and Ti are linearly dependent
as elements of the K(x1, . . . , xn)-vector space K(x1, . . . , xn) ⊗A Ω. Combined with our
discussion in part (a) this implies that aiTi = biT for some nonzero coprime ai, bi ∈ A. As
J(f1, . . . , fm) has codimension > 2 in An, the function ai must be constant. Thus, Ti = piT

where pi is a nonzero homogeneous element of the graded algebra A.

(c) Since d2 = 0, we have dpi ∧ T = d(piT ) = dTi = 0. Our remarks in part (a) now show
that all pi are algebraic over R. Let

F = Sk(X1, . . . , Xs)Y
k + Sk−1(X1, . . . , Xs)Y

k−1 + · · ·+ S0(X1, . . . , Xs)

be a nonzero polynomial in K[X1, . . . , Xs, Y ] of minimal possible degree in Y such that
F (f1, . . . , fs, f̃) = 0. Assume further that Sk has minimal possible total degree in
K[X1, . . . , Xs] and that all Si(f1, . . . , fs) are homogeneous in the graded algebra A. Ap-
plying the exterior differential we get 0 = dF (f1, . . . , fs, f̃) = ψ̃df̃ +

∑
ψidfi where

ψ̃ = kf̃k−1Sk(f1, . . . , fs) + · · ·+ S1(f1, . . . , fs),

ψi = f̃k
∂Sk
∂Xi

(f1, . . . , fs) + f̃k−1∂Sk−1

∂Xi

(f1, . . . , fs) + · · ·+ ∂S0

∂Xi

(f1, . . . , fs) (1 6 i 6 m).

As ψ̃ 6= 0 by our choice of F , we have df̃ = −
∑

(ψi/ψ̃)dfi. This forces Ti = −(ψi/ψ̃)T for
all i. Then ψi = −piψ̃ by our concluding remark in part (b).

(d) Part (b) also shows that each pi is homogeneous with deg pi = deg f̃ − deg fi < deg f̃ .
Since all pi are algebraic over A by part (c), our induction hypothesis implies that pi ∈ R

for all i. We now look again at the formulae displayed in part (c), this time keeping in
mind that ψi + piψ̃ = 0 and pi ∈ K[f1, . . . , fs].

If at least one of the partial derivatives ∂Sk/∂Xi was nonzero, we would have a non-
trivial polynomial relation for f̃ , f1, . . . , fs with a smaller total degree of Sk. Due to our
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choice of F this is impossible, however. So Sk is a nonzero constant, and there will be
no harm in assuming that Sk = 1. Note that each equality ψi + piψ̃ = 0 now induces a
polynomial relation for f̃ , f1, . . . , fs of degree 6 k − 1 in Y . Since such a relation is trivial
by our choice of F , the coefficient (∂Sk−1/∂Xi)(f1, . . . , fs) + kpi of f̃k−1 in the relation has
to be zero. In view of our remarks in part (c) we thus obtain

dSk−1(f1, . . . , fs) = −
∑

kpidfi = −kdf̃ .

Then f̃ = −Sk−1/k + λ for some λ ∈ K, which shows that f̃ ∈ R. �

1.3. Now suppose that A possesses a Poisson structure { , } : A×A → A and let π denote
the corresponding Poisson bivector, the element of HomA(Ω2,A) satisfying π(df ∧ dg) =

{f, g} for all f, g ∈ A. In view of the duality described in (1.1) we may assume that
π ∈

∧2
AW , that is

〈df ∧ dg, π〉 = {f, g} (∀ f, g ∈ A).

Let rkπ(ξ) denote the rank of the skew-symmetric matrix
(
{xi, xj}

)
16i,j6n

at ξ ∈ An. The
index of the Poisson algebra A, denoted ind A, is defined as

ind A := n−max
ξ∈An

rkπ(ξ).

Let Z(A) denote the Poisson centre of A and put Sing π := {ξ ∈ An | rkπ(ξ) < n− ind A}.
Clearly, Sing π is a proper Zariski closed subset of An. Note that 〈df ∧ dg, π〉 = 0 for all
f ∈ Z(A) and all g ∈ A. Hence the linear subspace {dξf | f ∈ Z(A)} lies in the kernel of
π(ξ) and we have

tr. degK Z(A) 6 ind A.

We say that a subset {Q1, . . . Ql} ⊂ Z(A) is admissible if l = ind A and the locus
J(Q1, . . . , Ql) has codimension > 2 in An. It is clear from the definition that any admissible
subset of Z(A) is algebraically independent.

Definition 1.1. We call a Poisson algebra (A, π) quasi-regular if the Poisson centre of A

contains an admissible subset and Sing π has codimension > 2 in An.

Given k ∈ N we set

πk := π ∧ π ∧ · · · ∧ π︸ ︷︷ ︸
k factors

,

an element of
∧2k

A W . The following is a slight modification of [15, Theorem 3.1].

Theorem 1.2. Let A = K[x1, . . . , xn] be a quasi-regular Poisson algebra of index l and let
{Q1, . . . , Ql} ⊂ Z(A) be an admissible set in Z(A). Then

π(n−l)/2 = λjdQ1∧...∧dQl
(∂1 ∧ · · · ∧ ∂n)

for some nonzero λ ∈ K.
9



Proof. Set w := jdQ1∧...∧dQl
(∂1 ∧ · · · ∧ ∂n), an element of

∧n−l
A W . Since j : Ω → End(

∧
AW )

is an exterior algebra homomorphism, it must be that

jdQi
(w) = jdQi∧dQ1∧...∧dQl

(∂1 ∧ . . . ∧ ∂n) = 0 (1 6 i 6 l).

Since Qi ∈ Z(A), we also have

〈df, jdQi
(π)〉 = 〈df ∧ dQi, π〉 = {f,Qi} = 0 (∀f ∈ A).

Hence jdQi
(π) = 0. Since jdQi

is a graded derivation of
∧

AW , it follows that jdQi
(πk) = 0

for all k ∈ N. As a consequence, jdQi

(
π(n−l)/2) = jdQi

(w) = 0 for all i 6 l. As l = ind A, we
have π(n−l)/2 6= 0.

Given ξ ∈ An put Vξ :=
⋂ l

i=1{v ∈ Tξ(An) | jdξQi
(v) = 0}. Suppose ξ 6∈ J(Q1, . . . , Ql).

Then dξQ1 ∧ . . .∧ dξQl 6= 0 and dimVξ = n− l. Since the exterior algebra
∧
Tξ(An) is a free

module over its subalgebra
∧
Vξ, it is straightforward to see that

⋂ l
i=1 Ker jdξQi

=
∧
Vξ. As

dim
∧n−l Vξ = 1, our earlier remarks now imply that π(n−l)/2 and w are linearly dependent

as elements of the vector space K(x1, . . . , xn)⊗A

(∧
AW

)
.

Since dξQ1 ∧ . . . ∧ dξQl 6= 0, the above argument also shows that w 6= 0. It follows that
there exist nonzero coprime f1, f2 ∈ A such that f1π

(n−l)/2 = f2w. As the set {Q1, . . . , Ql}
is admissible, the function f1 must be constant. As Sing π has codimension > 2 in An, the
function f2 must be constant as well. Therefore, π(n−l)/2 = λw for some nonzero λ ∈ K, as
stated. �

1.4. Next we are going to apply Theorem 1.1 to determine the Poisson centre of certain
graded quasi-regular Poisson algebras.

Corollary 1.3. Let A = K[x1, . . . , xn] be a quasi-regular Poisson algebra of index l and suppose
that A =

⊕
k>0 A(k) is graded in such a way that xi ∈ A(ri) for some ri > 0, where 1 6 i 6 n.

Suppose further that Z(A) contains an admissible set {Q1, . . . , Ql} consisting of homogeneous
elements of A. Then Z(A) = K[Q1, . . . , Ql].

Proof. By our assumption, R := K[Q1, . . . , Ql] is a graded subalgebra of A contained in
Z(A). Let z be an arbitrary element of Z(A). We need to show that z ∈ R. Our discussion
in (1.3) shows that

l = tr. degK K(Q1, . . . , Ql) 6 tr. degK Z(A) 6 ind A = l,

implying that z is algebraic over R. Since J(Q1, . . . , Ql) has codimension > 2 in An, we
can apply Theorem 1.1 to complete the proof. �

1.5. Let A =
⊕

k>0Ak be a commutative graded domain over a field F . Given a ∈ A we
denote by ã the initial (lowest) component of a. Given an F -subalgebra R of A we let R̃
denote the F -span of all r̃ with r ∈ R. Clearly, R̃ is a graded F -subalgebra of A.

Proposition 1.4. Let A =
⊕

k>0Ak be an affine graded domain over a field F and suppose that
A0 = F . Then for any F -subalgebra R of A we have tr. degF R̃ = tr. degF R.
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Proof. Since the fields of fractions of R and R̃ are isomorphic to subfields of the field of
fractions of A, both tr. degF R and tr. degF R̃ are finite. It follows from [30, Ch. II, § 12,
Corollary 2] that the field of fractions of R̃ contains a transcendence basis consisting of
homogeneous elements of R̃. From this it is immediate that tr. degF R̃ 6 tr. degF R.

Put m := tr. degF R̃ and assume for a contradiction that m < tr. degF R. As every alge-
braically independent subset of R is contained in a transcendence basis of R, our earlier
remarks then show that there exist algebraically independent elements a1, . . . , am+1 ∈ R

such that tr. degF F (ã1, . . . , ãm+1) = m. Let J ⊂ F [X1, . . . , Xm+1] be the ideal of all poly-
nomial relations between ã1, . . . , ãm+1. Since F [ã1, . . . , ãm+1] ⊂ A is a domain of Krull
dimension m, one observes easily that J is a prime ideal of codimension 1 in the poly-
nomial algebra F [X1, . . . , Xm+1]. As a consequence, J is generated by one polynomial of
positive degree, say H .

Let R̃0 ⊆ R̃ denote the subalgebra of initial components of R0 := F [a1, . . . , am+1]. We
claim that R̃0 is generated by the ãi’s and the initial component h̃ of H(a1, . . . , am+1). To
prove the claim we let f(a1, . . . , am+1) be an arbitrary element ofR0. If f̃ := f(ã1, . . . , ãm+1)

is not zero, then f̃ is the initial component of f(a1, . . . , am+1). If f̃ = 0, then f ∈ I implying
that f = f0H for some polynomial f0 of smaller degree. Since A is a domain, the initial
component of f(a1, . . . , am+1) is nothing but f̃0h̃, where f̃0 is the initial component of
f0(a1, . . . , am+1). Since deg f0 < deg f , our claim follows by induction on the degree of
f ∈ F [X1, . . . , Xm+1]. As a result, the algebra R̃0 is finitely generated over F .

Next we note that the grading of A induces a descending filtration F = (Ik)k>0 of R0,
where Ik = R0 ∩

⊕
i>k Ai for all k. Furthermore, R̃0

∼= grF R0, the corresponding graded
algebra. Consequently, the algebra grF R0 is Noetherian. Since A0 = F , we now apply
[2, Theorem 4.4.6(b)] to deduce that R0

∼= F [X1, . . . , Xm+1] and grF R0
∼= R̃0 have the

same Krull dimension. However, dim R0 = m + 1 whilst dim R̃0 = tr. degF R̃0 = m. By
contradiction, the result follows. �

2. SLODOWY SLICES AND SYMMETRIC INVARIANTS OF CENTRALISERS

2.1. Let χ = (e, · ) and r = dim ge. The action of adh gives g a graded Lie algebra structure,
g =

⊕
i∈Z g(i), where g(i) = {x ∈ g | [h, x] = ix}. It is well-known that ge is a graded Lie

subalgebra of the parabolic subalgebra p :=
⊕

i>0 g(i) of g, that is ge =
⊕

>0 gi(i) where
ge(i) = ge ∩ g(i). Choose a K-basis x1, . . . , xm of p with xi ∈ g(ni) for some ni ∈ Z+, such
that x1, . . . , xr is a basis of ge and xi ∈ [f, g] for all i > r + 1. Such a basis exists because
g = ge ⊕ [g, f ] an p contains ge.

Define a skew-symmetric bilinear form 〈 · , ·〉 on the subspace g(−1) by setting 〈x, y〉 =

(e, [x, y]) for all x, y ∈ g(−1). As ge ⊂ p, this form is nondegenerate. Choose a basis
z1, . . . , zs, zs+1, . . . , z2s of g(−1) such that

〈zi+s, zj〉 = δij, 〈zi, zj〉 = 〈zi+s, zj+s〉 = 0 (1 6 i, j 6 r)

and denote by g(−1)0 the linear span of zs+1, . . . , z2s. Let m = g(−1)0 ⊕
∑

i6−2 g(i), a
nilpotent Lie subalgebra of dimension (dimG · e)/2 in g.
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Given a Lie algebra s over K denote by U(s) the universal enveloping algebra of s. As
χ vanishes on the derived subalgebra of m, the ideal Nχ of U(m) generated by all x−χ(x)

with x ∈ m has codimension 1 in U(m). Let Kχ = U(m)/Nχ, a one-dimensional U(m)-
module, and denote by 1χ the image of 1 in Kχ. Set

Qχ = U(g)⊗U(m) Kχ and Hχ = Endg(Qχ)
op.

According to [19] and [11] the associative algebra Hχ is a noncommutative filtered defor-
mation of the coordinate algebra K[Se] endowed with its Slodowy grading [25, 7.4].

2.2. Given (a,b) ∈ Zm
+ ×Zs

+ we set xazb = xa1
1 · · ·xam

m zb11 · · · zms
s , an element of U(g). By the

PBW theorem, the monomials xazb ⊗ 1χ, where (a,b) ∈ Zm
+ × Zs

+, form a K-basis of the
induced U(g)-module Qχ. For k ∈ Z+ we denote by Qk

χ the K-span of all xazb ⊗ 1χ with

|(a,b)|e :=
m∑
i=1

ai(ni + 2) +
s∑
i=1

bi 6 k.

Any element h ∈ Hχ is uniquely determined by its effect on the canonical generator 1χ.
We let Hk

χ denote the subspace of Hχ spanned by all h ∈ Hχ with h(1χ) ∈ Qk
χ. Then

Hχ =
⋃
k>0 H

k
χ and H i

χ · Hj
χ ⊆ H i+j

χ for all i, j ∈ Z+; see [19] or [11]. The increasing
filtration {H i

χ | i ∈ Z+} of the associative algebra Hχ is often referred to as the Kazhdan
filtration of Hχ. The corresponding graded algebra grHχ is commutative. The elements x
from Qk

χ \Qk−1
χ and Hk

χ \Hk−1
χ are said to have Kazhdan degree k, written dege(x) = k.

According to [19, Theorem 4.6] the algebra Hχ has a distinguished generating set
Θ1, . . . ,Θr such that

Θk(1χ) =
(
xk +

∑
16|(i,j)|e6nk+2

λki,j x
izj
)
⊗ 1χ, 1 6 k 6 r,

where λki,j ∈ K and λki,j = 0 if either |(i, j)|e = nk + 2 and |i|+ |j| = 1 or j = 0 and it = 0 for
t > r+ 1. The monomials Θk1

1 · · ·Θkr
r and (gr Θ1)

k1 · · · (gr Θr)
kr with (k1, . . . , kr) ∈ Zr

+ form
K-bases ofHχ and grHχ, respectively. Furthermore, [Θi,Θj] = Θj ◦Θi−Θi◦Θj ∈ H

ni+nj+2
χ

for all 1 6 i, j 6 r.
As explained in [20, Sect. 2], there exists a linear map Θ : ge → Hχ, x 7→ Θx such that

Θxi
= Θi for all i and

[Θxi
,Θxj

] ≡ Θ[xi,xj ] + qij(Θ1, . . . ,Θr)
(
mod Hni+nj

χ

)
(1 6 i, j 6 r),(2)

where qij is a polynomial in r variables such that dege
(
qij(Θ1, . . . ,Θr)

)
= ni + nj + 2 and

in(qij) > 2 whenever qij 6= 0. Moreover, the map Θ has the property that Θ[x,y] = [Θx,Θy]

for all x ∈ ge(0) and y ∈ ge. In particular, Θ(ge(0)) is a Lie subalgebra of Hχ with respect
to the commutator product.

2.3. Let m1, . . . ,ml be the exponents of the Weyl group of g. By the Chevalley Restriction
Theorem, there exist algebraically independent elements F1, . . . , Fl ∈ S(g)G such that Fi ∈
Smi+1(g) for all i and S(g)G = K[F1, . . . , Fl]. Let

ϕ : g −→ An, x 7→
(
κ(F1)(x), . . . , κ(Fl)(x)

)
,
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be the adjoint quotient map of g, and let ϕe denote its restriction to the Slodowy slice
Se = e + gf . Composing ϕe with the translation τ : gf

∼→ Se, x 7→ e + x, one obtains a
morphism

ψ := ϕe ◦ τ : gf −→ An, x 7→ (ψ1(x), . . . , ψl(x)).

According to [25, 5.2 & 7.4], the morphism ψ is faithfully flat with normal fibres, while
in [19, Sect. 5] it is proved that all fibres of ψ are irreducible complete intersections of
dimension r − l. It should be mentioned here that each ψi is homogeneous of degree
2mi + 2 with respect to the Slodowy grading of K[gf ] ∼= K[Se].

Let Uk be the kth component of the standard filtration of U(g). In view of the PBW
theorem, the corresponding graded algebra grU(g) identifies with the symmetric algebra
S(g). We let Z(g) denote the centre of of U(g). It well-known that there exist algebraically
independent elements F̃1, . . . , F̃l inZ(g) such that F̃i ∈ Umi+1 and gr F̃i = Fi for all i; see [6,
7.4] for example. Moreover, the map taking each Fi to F̃i extends uniquely to an algebra
isomorphism between S(g)G and Z(g). Given F ∈ S(g)G we shall denote by F̃ the image
of F under this isomorphism. Note that when F ∈ Sk(g)G \ {0}, we have F̃ ∈ Uk \ Uk−1.

Each F̃ ∈ Z(g) maps into the centre of Hχ via F̃ 7→ F̃ (1χ). By [19, 6.2], this map is
injective. To keep the notation simple we shall identify the elements of Z(g) with their
images in Z(Hχ). Note that F̃i ∈ H2mi+2

χ \ H2mi+1
χ ; see [19, 6.2]. For 1 6 i 6 r, we

denote by ξi the restriction of κ(xi) to gf , which we regard as a homogeneous polynomial
function of degree n1 + 2 on gf . We denote by ψ̃i the image of F̃i in the Poisson algebra
grHχ. Clearly, each ψ̃i lies in the Poisson centre of grHχ.

2.4. Let M denote the subspace of g spanned by z1, . . . , zs and x1, . . . , xm. We say that the
monomial xazb ∈ S(M) has Kazhdan degree

∑m
i=1 ai(ni + 2) +

∑s
i=1 bi. By [19, 6.3], the

map δ′ taking gr Θk to xk +
∑

|(i,j)|e=nk+2 λ
k
i,j x

izj for all k 6 r extends to a graded algebra
embedding grHχ ↪→ S(M). Let ν : S(M) � S(ge) be the graded algebra epimorphism
with the property that zi, xj ∈ Ker ν for 1 6 i 6 s, r + 1 6 j 6 m and ν(xk) = xk
for 1 6 k 6 r. As in [19, 6.3] we denote by δ′′ the restriction of ν ◦ δ′ to grHχ, and set
δ := κ ◦ δ′′.

By [19, Prop. 6.3], the map δ : grHχ → K[gf ] is a graded algebra isomorphism satisfying
δ(gr Θk) = ξk for all k 6 r and δ(ψ̃i) = ψi for all i 6 l. This implies that δ′′ : grHχ

∼→ S(ge)

is a graded algebra isomorphism with the following properties:

δ′′(ψ̃i) = κ−1
e (ψi) (1 6 i 6 l); δ′′(gr Θi) = κ−1

e (ξi) = xi (1 6 i 6 r).(3)

We use δ′′ to transport the Poisson algebra structure of grHχ to the symmetric algebra
S(ge). Combining (1) and (2) one observes easily that the new Poisson bracket of S(ge)

satisfies the following condition:

{xi, xj} = [xi, xj] + qij(x1, . . . , xr) (1 6 i, j 6 r).(4)

Furthermore, each κ−1
e (ψi) is in the Poisson centre of S(ge).

2.5. With these preliminaries at hand we are in a position to prove Proposition 0.1.
13



Proof of Proposition 0.1. Let F = g(F1, . . . , Fl) be a homogeneous element of S(g)G and let
F̃ = g(F̃1, . . . , F̃l) be the corresponding element of Z(g) ↪→ Hχ; see our discussion in (2.3).
Since each F̃i commutes with h, the definition of the Kazhdan filtration and (2) yield

δ′′(gr F̃ ) = δ′′
(
g(ψ̃1, . . . , ψ̃l)

)
= g

(
κ−1
e (ψ1), . . . , κ

−1
e (ψl)

)
= κ−1

e

(
g(ψ1, . . . , ψl)

)
,

see [19, 6.2] for more detail. Note that δ′′(gr F̃ ) = κ−1
e

(
g(ψ1, . . . , ψl)

)
belongs to the Poisson

centre of S(ge), that is {x, δ′′(gr F̃ )} = 0 for all x ∈ ge. Abusing notation we denote by adx

the derivation of the algebra S(ge) induced by the inner derivation of x ∈ ge. Then

0 = {x, δ′′(gr F̃ )} = (ad x)
(
in(δ′′(gr F̃ ))

)
+ terms of higher standard degree,

in view on (3). (One should also keep in mind that qij 6= 0 implies in(qij) > 2). Since this
holds for all x ∈ ge, we deduce that in(δ′′

(
gr F̃ )) ∈ S(ge)

ge . But then
eF := κ−1

e

(
in(τ ∗(κ(F )| Se))

)
= κ−1

e

(
in(g(ψ1, . . . , ψl))

)
= in(δ′′

(
gr F̃ )) ∈ S(ge)

ge .

We thus obtain eF ∈ S(ge)
ge = S(ge)

G◦e .

Now let Ce = Ge ∩ Gf . It is well-known that Ce is a reductive subgroup of Ge, and Ge

is generated by Ce and the unipotent radical RuGe; see [10, 3.7] for example. Clearly, both
gf and Se = e + gf are Ce-stable, and the mappings κ and κe are Ce-equivariant. Since
F ∈ S(g)G, this entails eF ∈ S(ge)

Ce . But then eF ∈ S(ge)
Ce·G◦e = S(ge)

Ge , completing the
proof. �

2.6. Theorem 1.2 will enable us to obtain a differential criterion for regularity of linear
functions applicable to a large class of centralisers in g. Recall that a linear function γ ∈ g∗e
is called regular if dim gγe = ind ge, where gγe = {x ∈ ge | γ([x, ge]) = 0} is the stabiliser of γ
in ge.

Theorem 2.1. Suppose ind ge = l. Then the following are true for any homogeneous generating
system F1, . . . , Fl of the invariant algebra S(g)G:

(i)
∑l

i=1 deg eFi 6 (r + l)/2 where r = dim ge.

(ii) The elements eF1, . . . ,
eF l are algebraically independent if and only if

∑l
i=1 deg eFi =

(r + l)/2.

(iii) Suppose
∑l

i=1 deg eFi = (r+ l)/2. Then the differentials dγ(eF1), . . . , dγ(
eFl) are linearly

independent at γ ∈ g∗e if and only if γ is regular in g∗e.

Proof. We are going to apply Theorem 1.2 to the Poisson algebra grHχ. Let πe denote the
Poisson bivector of grHχ and let πPLe be the Poisson bivector of the polynomial algebra
A := S(ge) regarded with its standard Poisson structure. We identify grHχ with A by
using the recipe described in (2.4) and set fi := κ−1

e (τ ∗(κ(Fi)| Se)), 1 6 i 6 l. It follows
from [19, Theorem 5.4] that the ideal (f1, . . . , fl) ⊂ A is radical and its zero locus in g∗e is
normal. This implies that J(f1, . . . , fl) has codimension > 2 in g∗e.

From the alternative description of the Poisson structure on grHχ given in [11, Sect. 3]
it follows that

rkπe(γ) = dim(AdG)
(
e+ (κ∗e)

−1(γ)
)
− dim(AdG) e

(
∀ γ ∈ g∗e

)
.
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Consequently, γ ∈ Sing πe if and only if the adjoint orbit (AdG)
(
e + (κ∗e)

−1(γ)
)

is not
of maximal dimension. By Kostant’s criterion for regularity, this happens if and only if
e + (κ∗e)

−1(γ) ∈ J
(
κ(F1), . . . , κ(Fl)

)
. Chasing through the definitions it is easy to see that

the latter happens if and only of γ ∈ J(f1, . . . , fl). Thus, Sing πe = J(f1, . . . , fl). Our
earlier remarks now show that Sing πe has codimension > 2 in g∗e. As ind (grHχ) = ind g,
we conclude that the subset {f1, . . . , fl} is admissible and the Poisson algebra (grHχ, πe)

is quasi-regular.
The standard grading of A (by total degree) induces gradings of the K-algebras Ω and∧
AW where we impose that deg dxi = 0 and deg ∂i = 0 for all i. Our assumption that

ind ge = l yields
(
πPLe )(r−l)/2 6= 0 whereas (4) entails that in(πe) = πPLe . Consequently,

in(π(r−l)/2
e ) = (πPLe )(r−l)/2 6= 0.(5)

As in(fi) = eFi for all i, we also have that

deg
(
in(df1 ∧ . . . ∧ dfr)

)
> deg d(eF1) ∧ . . . ∧ d(eFl).(6)

Combining (5) and (6) with Theorem 1.2 we now conclude that

r − l

2
= deg

(
(πPLe )(r−l)/2) = deg

(
in(jdf1∧...∧dfl

(∂1 ∧ · · · ∧ ∂r)
)

> −l +
∑l

i=1 deg eFi.

Statement (i) follows. Now eF1, . . . ,
eF l are algebraically independent in S(ge) if and only

if d(eF1) ∧ . . . ∧ d(eFl) 6= 0. Since the latter happens if and only if deg
(
in(df1 ∧ . . . ∧ dfr)

)
=

−l +
∑l

i=1 deg eFi, the above argument also yields (ii).

Finally, suppose
∑l

i=1 deg eFi = (r + l)/2. Then in(df1 ∧ . . . ∧ dfr) = d(eF1) ∧ . . . ∧ d(eFl),
and Theorem 1.2 forces

(πPLe )(r−l)/2 = λjd(eF1)∧...∧d(eFl)(∂1 ∧ · · · ∧ ∂r), λ ∈ K×.(7)

Since ind ge = l, the specialisation of (πPLe )(r−l)/2 at γ is nonzero if and only if γ a regular
linear function of ge. On the other hand, the RHS of (7) is nonzero at γ if and only if the
differentials dγ(eF1), . . . , dγ(

eFl) are linearly independent. This completes the proof. �

2.7. Suppose Elashvili’s conjecture holds for ge. Simple examples show that the sum of
the degrees of eF1, . . . ,

eFl depends on the choice of homogeneous generators F1, . . . , Fl of
S(g)G. We say that a homogeneous generating system {F1, . . . , Fl} ⊂ S(g)G is good for e if∑l

i=1 deg eFi = (dim ge + rk g)/2.

For any generating system {F1, . . . , Fl} ⊂ S(g)G which is good for e the Jacobian lo-
cus J(eF1, . . . ,

eFl) is a proper Zariski closed subset of g∗e; see Theorem 2.1. We say that
a homogeneous generating system {F1, . . . , Fl} ⊂ S(g)G is very good for e if the Jaco-
bian locus J(eF1, . . . ,

eFl) has codimension > 2 in g∗e. It follows from Theorem 2.1(ii)
that for any very good generating system {F1, . . . , Fl} ⊂ S(g)G we have the equality∑l

i=1 deg eFi = (dim ge + rk g)/2. This shows that very good systems are good.
We are now in a position to prove the main result of this section:
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Theorem 2.2. Suppose e admits a very good generating system {F1, . . . , Fl} ⊂ S(g)G and assume
further that Elashvili’s conjecture holds for ge, that is ind ge = l. Then

S(ge)
ge = S(ge)

Ge = K[eF1, . . . ,
eFl].

In particular, S(ge)
ge is a graded polynomial algebra in l = rk g variables.

Proof. By Theorem 0.1, the elements eF1, . . . ,
eFl are in S(ge)

Ge . Since ind ge = l and
J(eF1, . . . ,

eFl) has codimension > 2 in g∗e by our assumption, the set {eF1, . . . ,
eFl} is an

admissible for the Poisson algebra S(ge). Moreover, Theorem 2.1(iii) shows that the
Poisson algebra S(ge) is quasi-regular. Applying Corollary 1.3 to the Poisson algebra
S(ge) regarded with its standard grading we now obtain that S(ge)

ge coincides with
K[eF1, . . . ,

eFl]. Since K[eF1, . . . ,
eFl] ⊆ S(ge)

Ge ⊆ S(ge)
ge , the result follows. �

Remark 2.1. As explained in the proof of Theorem 2.1, the Poisson algebra (grHχ, πe) is
quasi-regular and {f1, . . . , fl} is an admissible set for grHχ. Applying Corollary 1.3 to
the Poisson algebra grHχ (regarded with its Slodowy grading) we are able to deduce that
the Poisson centre Z(grHχ) of grHχ is generated by f1, . . . , fl. In particular, Z(grHχ) is
a polynomial algebra in l variables. This, in turn, implies that Z(Hχ) = Z(g). We thus
recover a result of Victor Ginzburg; see the footnote in [20].

2.8. Let eZ denote the K-span of all eF with F ∈ S(g)G, a subalgebra of S(ge)
Ge . For later

applications we put on record the following consequence of Proposition 1.4:

Corollary 2.3. For any nilpotent element e ∈ g we have the equality tr.degK(eZ) = rk g.

Proof. Recall that eZ coincides with the algebra of initial components of the subalgebra
κ−1
e (τ ∗(κ(S(g)G)|Se)) of S(ge), where the latter is regarded with its standard grading. Since

S(g)G is spanned by homogeneous elements, Proposition 1.4 implies that

tr.degK(eZ) = tr.degK
(
κ(S(g)G)|Se

)
= tr.degK S(g)G = rk g,

as stated. �

Question 2.1. Is it true that eZ is always finitely generated over K?

3. REGULAR LINEAR FUNCTIONS ON CENTRALISERS

3.1. Given a finite dimensional Lie algebra q and a linear function γ on q we let qγ denote
the stabiliser of γ in q. Recall that ind q = minγ∈q∗ dim qγ . We set

q∗sing := {γ ∈ q∗ | dim qγ > ind q}.

The set q∗reg := q∗ \ q∗sing consists of all regular linear fuctions of q. The main goal of this
section is to prove that (g∗e)sing has codimension > 2 in g∗e for any nilpotent element e in
g = gln and g = sp2n, where n > 2. When dealing with g = gln we do not impose any
restrictions on the characteristic of K, whilst for g = sp2n we require that char K 6= 2.
3.2. Let V be an n-dimensional vector space over K and let e be a nilpotent element in
g = gl(V). Let k be the number of Jordan blocks of e and W ⊆ V a (k-dimensional)
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complement of Im e in V. Let di + 1 denote the size of the i-th Jordan block of e. We
always assume that the Jordan blocks are ordered such that d1 > d2 > . . . > dk. Choose
a basis w1, w2, . . . , wk in W such that the vectors ej·wi with 1 6 i 6 k, 0 6 j 6 di form a
basis for V, and put V[i] := span{ej·wi | j > 0}. Note that edi+1·wi = 0 for all i 6 k. When
k = 1, the element e is regular in g, so that ge is abelian of dimension n and (g∗e)sing = ∅.
So we assume from now on that k > 2.

If ξ ∈ ge, then ξ(ej·wi) = ej·ξ(wi), hence ξ is completely determined by its values on W .
Each vector ξ(wi) can be written as

(8) ξ(wi) =
∑
j,s

cj,si e
s·wj, cj,si ∈ K.

Thus, ξ is completely determined by the coefficients cj,si = cj,si (ξ). This shows that ge has
a basis {ξj,si } such that{

ξj,si (wi) = es·wj,
ξj,si (wt) = 0 for t 6= i,

1 6 i, j 6 k, and max{dj − di, 0} 6 s 6 dj .

Note that ξ ∈ ge preserves each V[i] if and only if cj,si (ξ) = 0 for i 6= j.

3.3 Given a collection a1, . . . , ak of scalars in K we consider the linear function α on ge
defined by the formula

(9) α(ξ) =
k∑
i=1

aic
i,di

i (∀ ξ ∈ ge),

where cj,si are the coefficients of ξ ∈ ge. Let gαe denote the stabiliser of α in ge. By aesthetic
reasons we prefer it to (ge)

α.

Proposition 3.1 ([29]). If the scalars a1, . . . , ak are nonzero and pairwise distinct, then the sta-
biliser of α = α(a1, . . . , ak) in ge consists of all elements in ge preserving the subspaces V[i], where
1 6 i 6 k. In other words, gαe is the linear span of the basis elements ξi,si , and dim gαe = n. In
particular, α ∈ (g∗e)reg.

A direct computation shows that the following commutator relation holds in ge:

[ξ, ξj,si ] =
∑
t,`

ci,`t (ξ)ξj,`+st −
∑
t,`

ct,`j (ξ)ξt,`+si (∀ ξ ∈ ge);(10)

see [29] for more detail. To show that (g∗e)sing has codimension > 2 in g∗e, for ge ⊂ gl(V),
we have to produce more regular elements in g∗e.

Proposition 3.2. Define β ∈ g∗e by setting β(ξ) =
k−1∑
i=1

ci,di

i+1(ξ) for all ξ ∈ ge. Then dim gβe = n,

so that β ∈ (g∗e)reg.

Proof. From (10) and the definition of β it follows that β([ξ, ξj,si ]) = c
i,dj−s
j+1 (ξ)− ci−1,di−1−s

j (ξ)

for all ξ ∈ ge. Suppose (ad∗ξ)β = 0. Then β([ξ, ge]) = 0 forcing ci,dj−s
j+1 (ξ) = c

i−1,di−1−s
j (ξ) for

all i, j ∈ {1, . . . , k} and all s such that max(0, dj − di) 6 s 6 dj .
17



We claim that ci,sj (ξ) = 0 for i < j. Suppose for a contradiction that this is not the case
and take the maximal j for which there are i < j and di − dj 6 t 6 di such that ci,tj (ξ) 6= 0.
Recall that, according to our convention, di > dj . Moreover, di+1 > dj , because i + 1 6 j.
Set s := di − t. Then 0 6 s 6 dj and c

i+1,dj−s
j+1 (ξ) = ci,di−s

j (ξ). As j + 1 > j and i+ 1 < j + 1,
the coefficients ci+1,dj−s

j+1 (ξ) and ci,tj (ξ) are both zero, hence the claim.
Now take ξi,si+1 ∈ ge with di − di+1 6 s 6 di. Since β([ξ, ξi,si+1]) = 0, we have ci+1,di−s

i+1 (ξ) =

ci,di−s
i (ξ). Therefore, ci+1,t

i (ξ) = ci,ti (ξ) = c1,t1 (ξ) for 0 6 t 6 di+1. In the same way one can
show that ci+`,ti (ξ) = ci+`−1,t

i−1 (ξ) = c1+`,t
1 (ξ) for 0 6 t 6 di+`. It follows that ξ is completely

determined by its effect on w1. So dim gβe 6 n simply because ξ(w1) ∈ V. On the other
hand, dim gβe > ind ge > ind g = n by Vinberg’s inequality. The result follows. �

3.4. Let a : K× → GL(V)e be the cocharacter such that a(t)wi = tiwi for all i 6 k and
t ∈ K× , and define a rational linear action ρ : K× → GL(g∗e) by the formula

(11) ρ(t)γ = t(Ad∗ a(t))−1γ
(
∀ γ ∈ g∗e, ∀ t ∈ K×)

.

Proposition 3.3. (Kα⊕Kβ) ∩ (g∗e)sing = 0.

Proof. Since (Ad a(t))(ξj,si ) = tj−iξj,si , we have (Ad∗ a(t))(α) = α and (Ad∗ a(t))(β) = tβ.
Hence ρ(t)α = tα and ρ(t)β = β. So Kα ⊕ Kβ is ρ(K×

)-stable and the induced action of
ρ(K×

) on this plane is a contraction to Kβ. Since dim(ge)
ρ(t)γ = dim gγe and β ∈ (g∗e)reg, all

linear functions xα + yβ with y 6= 0 are regular. The linear functions xα with x 6= 0 are
regular by Proposition 3.1. �

Theorem 3.4. Suppose dim V > 2. Then for any nilpotent element e ∈ g the locus (g∗e)sing has
codimension > 2 in ge.

Proof. Since (g∗e)sing is conical and Zariski closed, the assertion follows immediately from
Proposition 3.3. �

3.5. Using similar ideas we prove below a symplectic analogue of Theorem 3.4. Our
argument in the symplectic case is more involved. We also provide an example showing
that Theorem 3.4 does not extend to all nilpotent elements in orthogonal Lie algebras. We
begin with some useful facts on Z2-graded Lie algebras.

Let q = q0 ⊕ q1 be a symmetric decomposition (i.e., a Z2-grading) of a Lie algebra q.
Then q∗ = q∗0 ⊕ q∗1. If α ∈ q∗, then α̃ denotes its restriction to q0.

Proposition 3.5. Suppose α ∈ q∗ and α(q1) = 0. Then (q0)
α̃ = qα ∩ q0.

Proof. Take ξ ∈ q0. Since [ξ, q1] ⊂ q1, we have that α̃([ξ, q0]) = 0 if and only if α([ξ, q]) = 0.
Hence (q0)

α̃ = (q0)α, where (q0)α is the stabiliser of α in q0. Clearly (q0)α = qα ∩ q0. �

Each γ ∈ q∗0 gives rise to a skew-symmetric bilinear form γ̂ on q1 by γ̂(x, y) = γ([x, y])

for all x, y ∈ q1. The following assertion is taken from [29].

Proposition 3.6. In the above notation we have ind q 6 ind q0 + min
γ∈q∗0

dim(Ker γ̂).
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Proof. Take any γ ∈ q∗0 and extend it to a linear function on q by setting γ(q1) = 0. Then
qγ = (q0)

γ⊕ (qγ∩q1) = (q0)
γ⊕Ker γ̂. There exists a nonempty Zariski open subset U1 ⊂ q∗0

such that dim(q0)
γ = ind q0 for all γ ∈ U1 ⊂ q∗0. The linear functions γ on q0 for which

Ker γ̂ has the minimal possible dimension form another nonempty Zariski open subset in
q∗0, call it U2. For each γ ∈ U1 ∩ U2 6= ∅, the dimension of qγ equals the required sum,
hence the result. �

Lemma 3.7. Suppose α ∈ q∗ is such that α(q1) = 0 and dim qα = ind q. Then dim(q0)
α̃ =

ind q0.

Proof. By Proposition 3.6 we have:

ind q0 > ind q−min
γ∈q∗0

dim(Ker γ̂) > dim qα − dim(Ker α̂) = dim(qα ∩ q0).

Applying Proposition 3.5 yields the assertion. �

3.6. Let ( , ) be a nondegenerate symmetric or skew-symmetric form on V and let J be the
matrix of ( , ) with respect to a basis B of V. Let X denote the matrix of x ∈ gl(V) relative
to B. The linear mapping x 7→ σ(x) sending each x ∈ gl(V) to the linear transformation
σ(x) whose matrix relative to B equals −JX tJ−1 is an involutory automorphism of gl(V)

independent of the choice ofB. The elements of gl(V) preserving ( , ) are exactly the fixed
points of σ. We now set g̃ := gl(V) and let g̃ = g̃0 ⊕ g̃1 be the symmetric decomposition of
g̃ with respect to σ. The elements x ∈ g̃1 have the property that (x·v, w) = (v, x·w) for all
v, w ∈ V.

Set g := g̃0 and let e be a nilpotent element of g. Since σ(e) = e, the centraliser g̃e of e in
g̃ is σ-stable and (g̃e)0 = g̃σe = ge. This yields the ge-invariant symmetric decomposition
g̃e = (g̃e)0 ⊕ (g̃e)1.

Suppose that dim V = 2n > 4 and our form is skew-symmetric. Then g̃0
∼= sp2n. Since e

is a nilpotent transformation of V, we recycle the notation introduced in (3.2). Note that
in the present case if di is even, that is if the dimension of V[i] = span{ej·wi | j > 0} is
odd, then the restriction of ( , ) to V[i] is identically zero. By the same reason as in (3.2) it
can be assumed that k > 2.

Lemma 3.8. [13, Sect. 1] The vectors {wi}ki=1 can be chosen such that the following conditions
are satisfied:

(i) if di is odd, then the restriction of ( , ) to V[i] is nondegenerate and (V[i],V[j]) = 0 for
any j 6= i.

(ii) if di is even, then there is a unique i′ 6= i such that (V[i′],V[i]) 6= 0.

We thus obtain a decomposition of the set of Jordan blocks of odd size (i.e., those with
di even) into pairs {i, i′}. Note that di′ = di necessarily holds and the restriction of ( , ) to
V[i]⊕ V[i′] is nondegenerate. For i 6 k such that di is odd we put i′ = i.

Choose vectors {wi}ki=1 according to Lemma 3.8. Since the form ( , ) is g-invariant,
(edi·wi, v) = (−1)di(wi, e

di·v) and edi·wi is orthogonal to all es·wj with either j 6= i′ or s > 0.
Since ( , ) is nondegenerate, we also have that (edi·wi, wi′) 6= 0 for all i.
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3.7. Let α = α(a1, . . . , ak) ∈ g̃∗e be as in (9) and assume that {ai} ⊂ K are nonzero and
pairwise distinct. Assume further that ai′ = −ai whenever i 6= i′. Then α vanishes on
(g̃e)1; see [29, Lemma 2]. By Lemma 3.7 and Proposition 3.1, α̃ ∈ (g∗e)reg. Unfortunately,
the linear function β defined in Proposition 3.2 does not always vanish on (g̃e)1. For this
reason, we need a more sophisticated construction.

Renumbering the V[i]’s if necessary we may assume without loss of generality that
i′ = i± 1 for each pair {i, i′}. As di = di′ , our assumption that d1 > d2 > . . . > dk will not
be violated. Note that if i′ 6= i+ 1, then i′ 6 i and (i+ 1)′ > i+ 1.

For each i 6 k − 1 with i′ 6= i+ 1 we now define a linear function γi on g̃e by setting

γi(ξ) := −
(wi+1, e

di+1 ·w(i+1)′)

(edi·wi, wi′)
c
(i+1)′,di+1

i′ (ξ) (∀ ξ ∈ g̃e),

and put β′ :=
∑

i6k−1, i′ 6= i+1 γi. Recall from (3.4) that the map ρ gives us a rational action
of K× on g̃∗e. From Lemma 3.8 and the definition of β it is immediate that β + β′ 6= 0.

Lemma 3.9. For all i 6 k − 1 with i′ 6= i + 1 we have ρ(t)γi = tsiγi where si > 2. Moreover,
β + β′ vanishes on (g̃e)1.

Proof. Recall that (wi, e
di·wi′) 6= 0 for all i. Take any ξ ∈ (g̃e)1. Then

ci,di

i+1(ξ)(e
di·wi, wi′) = (ξ(wi+1), wi′) = (wi+1, ξ(wi′) = c

(i+1)′,di+1

i′ (ξ)(wi+1, e
di+1·w(i+1)′).

For i′ 6= i + 1 this yields ci,di

i+1(ξ) = −γi(ξ). Suppose i′ = i + 1. Then also (i + 1)′ = i and
di = di+1 is even, hence

ci,di

i+1(ξ)(e
di·wi, wi+1) = ci,di

i+1(ξ)(wi+1, e
di·wi) = −ci,di

i+1(ξ)(e
di·wi, wi+1).

So ci,di

i+1(ξ) = 0 (recall that char K 6= 2). But then

(β + β′)(ξ) =
∑

i6k−1, i′ 6= i+1

(
ci,di

i+1(ξ) + γi(ξ)
)

= 0.

It follows from (11) that ρ(t)γi = tsiγi, where si = (i + 1)′ − i′ + 1. Since i′ 6= i + 1, we
have i′ 6 i and (i+ 1)′ > i+ 1. Then si > i+ 1− i+ 1 = 2. �

Combining Lemma 3.9 with [29, Lemma 2], we observe that any γ ∈ Kα ⊕ K(β + β′)

vanishes on (g̃e)1. Let E denote the K-span of α̃ and β̃ + β′ in g∗e.

Proposition 3.10. Under the above assumptions, dimE = 2 and E ∩ (g∗e)sing = 0.

Proof. Let γ = xα + y(β + β′) with x, y ∈ K. By Lemma 3.9, ρ(t)γi = tsiγi, where si > 2,
while in (3.4) it is shown that ρ(t)α = tα and ρ(t)β = β. Since α and β + β′ are nonzero
and ρ(K×

) is diagonalisable, it follows that α and β+β′ are linearly independent. As both
α and β + β′ vanish on (g̃e)1, this yields that dimE = 2.

The above discussion also shows that limt→0 ρ(t)γ = yβ. If y 6= 0, then Proposition 3.2
gives γ ∈ (g̃∗e)reg. By Proposition 3.1, α ∈ (g̃∗e)reg as well. Then dim(g̃e)

γ = 2n = ind g̃e for
any nonzero γ ∈ Kα ⊕ K(β + β′). As any such γ vanishes on (g̃e)1, applying Lemma 3.7
we now conclude that E \ {0} ⊂ (g∗e)reg. Equivalently, E ∩ (g∗e)sing = 0. �
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The following is an immediate consequence of Proposition 3.10.

Theorem 3.11. Let e be a nilpotent element of g = sp2n, n > 2. Then (g∗e)sing has codimension
> 2 in g∗e.

Proof. Straightforward (see the proof of Proposition 3.4). �

3.8. We shall see in a moment that there are nilpotent elements e in the orthogonal Lie
algebra g = so(V) for which (g∗e)sing has codimension 1 in g∗e. But first we would like to
give two positive examples.

Suppose dim V is odd and let e be a nilpotent element in so(V) with 2m+1 Jordan blocks
indexed by the integers ranging from −m to m, where m > 1. Similar to the symplectic
case we may assume that there is an involution i→ i′ on the set of indices such that i′ = i

if and only if di is even and (V[i],V[j]) = 0 whenever j 6= i′. Recall that di′ = di necessarily
holds.

Suppose that i′ = −i and di 6 dj for i > j > 0. Then d0 is even and the other di are odd.
Choose K[e]-generators wi ∈ V[i] such that (wi, e

diw−i) = 1 for i > 0, and let α̃ denote the
restriction to ge of the linear function α on gl(V )e given by

α(ξ) =
m∑

i=−m+1

ci,di

i−1(ξ)
(
∀ ξ ∈ gl(V )e

)
.

By [29, Section 4], this linear function is regular. Let g ∈ GL(V) be such that

g(wi) = w−i for i > 0, g(wi) = −w−i for i < 0, g(es·wi) = (−1)ses·wi for s > 1.

Then g ∈ O(V) and (Ad g)e = −e, i.e., g normalises Ke. Hence Ad g acts on ge as a Lie
algebra automorphism. Set β̃ := (Ad∗ g)α̃. In coordinates,

β̃(ξ) =
m−1∑
i=−m

ci,di

i+1(ξ)− 2c0,d01 (ξ)
(
∀ ξ ∈ ge

)
.

Set E ′ := Kα̃+ Kβ̃, a subspace of g∗e.

Lemma 3.12. The subspace E ′ is 2-dimensional and E ′∩ (g∗e)sing = 0. The singular locus (g∗e)sing

has codimension > 2 in g∗e.

Proof. By [29, Section 4], the function α̃ is regular in g∗e. Hence so is β̃ = (Ad∗g)α̃. In
particular, both α̃ and β̃ are nonzero. There exists a cocharacter a : K× → SO(V)e such
that a(t)wi = tiwi for all i. It has the property that (Ad∗a(t))α̃ = t−1α̃ and (Ad∗a(t))β̃ = tβ̃.
This implies that dimE ′ = 2. Since the Zariski closed set E ′ ∩ (g∗e)sing = 0 is conical and
(Ad∗a(K×

))-stable and both α̃ and β̃ are regular, it also follows that E ′ ∩ (g∗e)sing = 0. �

Suppose now that Ṽ = V⊕Kv is an even dimensional vector space such that (V, v) = 0

and (v, v) = 1. Let e ∈ so(V) be the same nilpotent element as above (one with 2m + 1

Jordan blocks and with i′ = −i for all i). We regard e as a nilpotent element of so(Ṽ) by
setting e(v) = 0. Then e ∈ so(Ṽ) has 2m + 2 Jordan blocks. Assume that the new Jordan
block of size 1 is indexed by M with M > m and that v is its generator.
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Lemma 3.13. For e as above, the singular locus (g∗e)sing has codimension > 2 in g∗e = so(Ṽ)∗e.

Proof. Note that so(V) is a symmetric subalgebra of g = so(Ṽ). Let so(Ṽ) = so(V) ⊕ p be
the corresponding symmetric decomposition. Then we can identify the dual space of the
centraliser so(V)e with the annihilator of pe := p ∩ ge in g∗e. Let α̃ and β̃ be the same linear
functions as in Lemma 3.12. We view them as linear functions of ge vanishing on pe. As
O(V) ↪→ O(Ṽ) and SO(V)e ↪→ Ge, we still have that β̃ = (Ad∗g)α̃ and (Ad∗a(t))α̃ = t−1α̃,
(Ad∗a(t))β̃ = tβ̃ for the same cocharacter a : K× → Ge as in Lemma 3.12. Therefore, in
order to prove the statement it suffices to show that α̃ ∈ (g∗e)reg. By construction,

dim gα̃e = (dim Ṽ)/2− 1 + dim {ξ ∈ pe | α̃([ξ, pe]) = 0}.

The linear space pe has a basis {ξM,0
i + ε(i)ξ−i,di

M | −m 6 i 6 m} where ε(i) = −1 for i > 0

and ε(i) = 1 for i < 0. Using (10) we get

α̃
(
[ξM,0
i + ε(i)ξ−i,di

M , ξM,0
j + ε(j)ξ

−j,dj

M ]
)

= 0 for j 6= −i− 1;

α̃
(
[ξM,0
i + ε(i)ξ−i,di

M , ξM,0
−i−1 + ε(−i− 1)ξ

i+1,di+1

M ]
)

= 2ε(i), −m 6 i 6 m.

It follows that α̃ induces on pe a skew-symmetric bilinear form of rank 2m. But then

dim {ξ ∈ pe | α̃([ξ, pe]) = 0} = 1

and the statement follows. �

3.9. For any simple Lie algebra g of type different from A and C we provide in this sub-
section a uniform construction of e ∈ N(g) for which (g∗e)sing has codimension 1 in g∗e. We
assume for simplicity that char K = 0. The Lie algebras sln and sp2n are distinguished by
the property that their highest root is not a fundamental dominant weight. This seem-
ingly insignificant fact is the source of many structural differences between sln and sp2n,
and the other finite dimensional simple Lie algebras. In our situation, it manifests itself
as follows.

Let G·ẽ = Omin be the minimal nilpotent orbit in g and {ẽ, h̃, f̃} an sl2-triple. Consider
the Z-grading determined by h̃

g =
2⊕

i=−2

g(i).

Here g(2) = Kẽ and g(−2) = Kf̃ . Let G(0) denote the stabiliser of h̃ in G. This is a Levi
subgroup of G which acts on g(1) with finitely many orbits. If g 6= sln, then the centre of
g(0) is one-dimensional and g(1) is a simple g(0)-module. Furthermore, if g 6= sp2n, then
the open G(0)-orbit in g(1) is affine. Let e ∈ g(1) be a point in this orbit.

From now on we assume in this subsection that g is not isomorphic to sln or sp2n. Our
goal is to prove that (g∗e)sing has codimension 1 in g∗e. Set l = [g(0), g(0)] and let K denote
the stationary subgroup of e in G(0). Then k := LieK is a Lie subalgebra of l acting triv-
ially on g(2). The centraliser ge is graded and has the following structure. Its component
of degree 0 is k and its component of degree 1 is isomorphic as a k-module to Ke⊕W⊕W ∗,
where W is a k-module of dimension dim g(1)

2
− 1. The component of degree 2 is still Kẽ.
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Consider the hyperplane H = {γ ∈ g∗e | (γ(ẽ) = 0}. We wish to prove that H ⊂ (g∗e)sing.
Because ẽ acts trivially on H, the representation of ge/Kẽ in H is equivalent to the coad-
joint representation of ge/Kẽ. That is, we have to compute the index of this Lie algebra.
Modulo the trivial direct summand Ke, this algebra is the semi-direct product of k and
W ⊕W ∗, denoted kn (W ⊕W ∗). For such semi-direct products, one can use Raı̈s’ formula
for the index [21]. As the generic stabiliser for the representation of k on W ⊕W ∗, say s, is
reductive, Raı̈s’ formula yields

ind (k n (W ⊕W ∗)) = rk s + dim(W ⊕W ∗)//K.

It turns out that in all cases of interest for us this number equals rk g. Taking into account
the direct summand Ke and the passage to H, we see that generic Ge-orbits in H are of
codimension rk g + 2 in g∗e. On the other hand, it is straightforward to see that for any
linear function γ ∈ g∗e \ H satisfying γ |ge(1) = 0 one has dim(ge)γ = dim kγ + 2. As k is
reductive with rk k = rk g− 2, this implies that ind ge = rk g. Then H ⊂ (g∗e)sing, as wanted.

In Tables 2 and 3, we provide the necessary information related to these computations.
In Table 2, W is always a simple k-module which is represented by its highest weight.

TABLE 2. DATA FOR THE EXCEPTIONAL LIE ALGEBRAS

g l k W dimW s dim(W ⊕W ∗)//K ind (k n (W ⊕W ∗))

E6 A5 2A2 $1 +$′
1 9 T2 4 6

E7 D6 A5 $2 15 (A1)
3 4 7

E8 E7 E6 $1 27 D4 4 8
F4 C3 A2 2$1 6 0 4 4
G2 A1 0 0 1 0 2 2

TABLE 3. DATA FOR son, n > 7

g l k dimW s dim(W⊕W ∗)//K ind (kn(W⊕W ∗))

so7 so3×sl2 t1 2 0 3 3

son
(n>8)

son−4×sl2 son−6×t1 n−5 son−8 4 [n/2]

3.10. Adopt the notations and conventions of (3.9) and let ẽ be an element in the minimal
nilpotent orbit Omin. Then ind gẽ = rk g by [17]. We now wish to investigate the singular
locus of g∗ẽ.

Theorem 3.14. If rk g > 2 and ẽ ∈ Omin, then (g∗ẽ)sing has codimension > 2 in g∗ẽ.

Proof. In view of Theorems 3.4 and 3.11 the statement holds when g is of type A or C. So
we may assume in this proof that g is not isomorphic to sln or sp2n. Then

gẽ = l⊕ g(1)⊕ g(2).
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Since dim g(2) = 1, we have a skew-symmetric bilinear form 〈 · , · 〉 on g(1) such that
[x, y] = 〈x, y〉ẽ for all x, y ∈ g(1). This form is nondegenerate.

Given a subset X ⊂ gẽ we denote by Ann(X) the annihilator of X in g∗ẽ, that is

Ann(X) := {γ ∈ g∗ẽ | γ(X) = 0}.

Then Ann(ẽ) := Ann({ẽ}) is a hyperplane in g∗ẽ. We claim that Ann(ẽ) 6⊂ (g∗ẽ)sing. To prove
the claim we are going to argue in the spirit of (3.9).

Let L denote the derived subgroup of G(0). Since ẽ acts trivially on Ann(ẽ), the repre-
sentation of gẽ/Kẽ in Ann(ẽ) is equivalent to the coadjoint representation of gẽ/Kẽ. This
Lie algebra is the semi-direct product of l and g(1), denoted lng(1). The generic stabiliser
for the representation of l on g(1) is isomorphic to k. Since k is reductive, Raı̈s’ formula
[21] yields

ind (l n g(1)) = rk k + dim g(1)//L.

As the complement g(1) \ G(0)·e is a hypersurface in g(1) and the semisimple group L

has codimension 1 in G(0), the orbit L·e has codimension 1 in g(1). This implies that
dim g(1)//L = 1, whereas Tables 2 and 3 yield rk k = rk g − 2. Therefore, ind (l n g(1)) =

rk g− 1. Each γ ∈ Ann(ẽ) may be regarded as a linear function on l n g(1). Moreover, it is
easy to see that gγẽ

∼= Kẽ⊕ (l n g(1))γ for every γ ∈ Ann(ẽ). This implies that for a generic
γ ∈ Ann(ẽ) we have dim gγẽ = rk g = ind gẽ. The claim follows.

It remains to deal with the affine open set Y := g∗ẽ \ Ann(ẽ). Set n := g(1) ⊕ g(2) and
let N ⊂ Gẽ be the connected subgroup of G with LieN = n. The derived subgroup
(N,N) is 1-dimensional with Lie (N,N) = Kẽ, and N/(N,N) ∼= g(1) as varieties. Let
α ∈ Ann(l⊕ g(1)) be a nonzero function. The set Ann(g(1)) ∩ Y is Zariski closed in Y and
can be identified with l∗⊕K×

α. Let γ = β + aα be an element of Ann(g(1))∩ Y with β ∈ l∗

and a 6= 0. Then

(Ad∗N)γ =
{
β +

a

2
(ad∗v)2α+ a(ad∗v)α+ aα | v ∈ g(1)

}
.

Since the form 〈 · , · 〉 is nondegenerate, it follows that the N -saturation of Y ∩ Ann(g(1))

is equal to Y , that each N -orbit (Ad∗N)γ is isomorphic to N/(N,N) ∼= g(1), and that
gγẽ = lβ ⊕Kẽ. In particular, the action morphism

τ :
(
N/(N,N)

)
×
(
Ann(g(1)) ∩ Y

)
→ Y

is an isomorphism. Suppose g ∈ N/(N,N) and γ = β + aα, where β ∈ l∗ and a 6= 0.
Then τ((g, γ)) ∈ (g∗ẽ)reg if and only if β ∈ (l∗)reg. Since (l∗)sing has codimension 3 in l∗, the
intersection (g∗ẽ)sing ∩ Y is of codimension 3 in Y and also in g∗ẽ. The result follows. �

4. DEGREES OF BASIC INVARIANTS

4.1. From now on we assume that char K = 0. Let Q be a connected linear algebraic group
with Lie algebra q. Suppose we are given a rational linear action of Q on a vector space
V . The differential of this action at the identity element of Q is a representation of the Lie
algebra q in V .
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Definition 4.1. A vector x ∈ V (a stabiliser qx) is called a generic point (a generic stabiliser),
if there exists a Zariski open subset U ⊂ V such that x ∈ U and qx is Q-conjugate to any
qy with y ∈ U .

Let e be a nilpotent element in g = gl(V) and set G := GL(V). Let α = α(a1, . . . , ak) ∈ g∗e
be as in (3.3) and put h := gαe .

Proposition 4.1 ([29]). If all a1, . . . , ak are nonzero and pairwise distinct, then h is a generic
stabiliser for the coadjoint representation of Ge.

For 1 6 i 6 n, let ∆i denote the sum of the principal minors of order i of the generic
matrix (xij)16i,j6n, a regular function on g, and set Fi := κ−1(∆i). It is well-known that
{F1, . . . , Fn} is a generating set of the invariant algebra S(g)G. Recall from (0.2) the defini-
tion of eF1, . . . ,

eFn. Let (d1 + 1 > d2 + 1 > · · · > dk + 1) be the partition of n corresponding
to e and put d0 = 0.

Theorem 4.2. Suppose dim V > 2 and let F1, . . . Fn be as above. Then {F1, . . . , Fn} is a very
good generating system for e and S(ge)

ge = S(ge)
Ge = K[eF1, . . . ,

eFn]. Moreover,

deg(eFd0+···+di+i+1) = · · · = deg(eFd0+···+di+di+1+i+1) = i+ 1 (0 6 i 6 k − 1).

Proof. Let α be as in Proposition 4.1 and and let r be the linear span of all ξj,si with i 6= j.
Let t be the span of all ξi,0i , a maximal toral subalgebra of ge. Then the centraliser h = cge(t)

is an abelian Cartan subalgebra of ge. Moreover, ge = h⊕ r and [h, r] = r (this follows from
the formula displayed in the proof of Proposition 2 in [29]). We identify h∗ with Ann(r) ⊂
g∗e. The above implies that h∗ = {γ ∈ g∗e | (ad∗ h)γ = 0}. Since h is a generic stabiliser,
we have Ge · h∗ = g∗e. Therefore, the restriction map ϕ 7→ ϕ|h∗ induces an embedding
K[g∗e]

Ge ↪→ K[h∗]. It follows that each eFi|h∗ is nonzero and hence has the same degree as
eFi.

Let r⊥ ⊂ g be the orthogonal complement to r with respect to κ and s := Se ∩ r⊥. Then
s = e+ (κ∗e)

−1(Ann r), implying that eFi|h∗ = eFi|Ann r is equal to the component of minimal
degree of the restriction of ∆i to s. Let g[i] ∼= gl(V[i]) be the subalgebra of g consisting of
all endomorphisms acting trivially on V[j] for j 6= i, and ĝ := g[1]⊕ · · · ⊕ g[k]. Then ĝ is a
Levi subalgebra of g and s ⊂ ĝ.

For 1 6 ` 6 dj + 1 we denote by ∆`[j] the sum of all principal minors of order ` of
the generic matrix

(
x

(j)
pq

)
16p,q6dj+1

, a homogeneous element of degree ` in K[ĝ], and put
∆0[j] = 1. Since the characteristic polynomial of a block-diagonal matrix is the product of
the characteristic polynomials of its blocks, it follows that

∆`|ĝ =
∑

`1+···`k=`

∆`1 [1] · · ·∆`k [k] (1 6 ` 6 n).

As the restriction of e to V[i] is a regular nilpotent element of gl(V[i]), we have inequality
deg e(κ−1(∆`i [i])) > 1 whenever `i > 0. Hence deg eF` > q, where q is the minimal number
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for which there exists a decomposition ` = t1 + . . .+ tq with 0 < ti 6 di+1. More precisely,

deg eFi = 1 for i = 1, . . . , d1 + 1,

deg eFi > 2 for i = d1 + 2, . . . , d1 + d2 + 2,

deg eFi > 3 for i = d1 + d2 + 3, . . . , d1 + d2 + d3 + 3,

and so on. Consequently,
∑n

i=1 deg eFi >
∑k

i=1 i(di+1). On the other hand, the well-known
formula for dim ge implies that

dim ge =
k∑
i=1

(2i−1)(di+1) = 2
k∑
i=1

i(di+1)− n;

see [13] or [3, p. 398] for example. In view of Theorem 2.1(i) we must have the equalities
throughout, and

∑n
i=1 deg eFi = (dim ge + n)/2.

As ind ge = n by [29], Theorem 2.1(i) yields that the generating set {Fi | 1 6 i 6 n} is
good for e. Combining Theorem 2.1(iii) with Theorem 3.4 shows that this set is actually
very good for e. But then S(ge)

ge = S(ge)
Ge = K[eF1, . . . ,

eFn] in view of Theorem 2.2. �

The degrees of eF1, . . . ,
eFn can be read off the Young diagram of e, as shown in Figure 1.
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4.2. In this subsection we give a description of eFi in terms of ξj,si . No generality will be
lost by assuming that h·wi = −diwi for 1 6 i 6 k and f(es·wi) ∈ K(es−1·wi). Then each ξj,si
is an eigenvector for adh. More precisely, using our discussion in (3.2) it easy to observe
that

(12) (adh)(ξj,si ) = (di − dj + 2s)ξj,si .

Given a subset I ⊂ {1, . . . , k} we denote by |I| the cardinality of I . Given a permutation
σ of I = {i1, . . . , im} and a nonnegative function s̄ : I → Z>0 we associate with the triple
(I, σ, s̄) the monomial

Ξ(I, σ, s̄) := ξ
σ(i1), s̄(i1)
i1

ξ
σ(i2), s̄(i2)
i2

. . . ξ
σ(im), s̄(im)
im

∈ S(ge)

of degree m = |I|. For every Ξ = Ξ(I, σ, s̄) we denote by λ(I, σ, s̄) the weight of Ξ with
respect to h. Obviously, λ(I, σ, s̄) is the sum of the adh-eigenvalues of the factors ξσ(ij),s̄(ij)

ij

of Ξ.
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Lemma 4.3. For each ` 6 n, we have
eF` =

∑
|I|=m, λ(I,σ,s̄)= 2(`−m)

a(I, σ, s̄) Ξ(I, σ, s̄)

for some a(I, σ, s̄) ∈ K.

Proof. 1) Fix a basis {y1, . . . , yn} = {w1, e·w1, . . . , e
d1·w1, w2, . . . , wk, . . . , e

dk ·wk} of V and let
Eij ∈ gl(V ) be such that Eij(yk) = δjkyi for all 1 6 i, j, k 6 n. View F` as a polynomial
in variables Eij and let T be a monomial of F` for which deg eT = deg eF `. It can be pre-
sented as a product T = T1 · · ·Tk, where each Tq involves only only those Eij annihilating⊕

t6=q V[t]. IfEij is such a variable with j 6= i−1, then the restriction ofEij to κ(Se) is either
zero or proportional to some ξu,sq . Note also that if yi = edq ·wq, i.e., if yi+1 6∈ V[q], then the
restriction of Ei+1,i to κ(Se) equals ξq+1,dq+1

q . So when we restrict T to κ(Se), nonzero con-
stants (terms of degree 0) will arise only from those variables Ei+1,i with yi+1 ∈ V[q]. But
all such variables lie under the main diagonal and the monomial T comes from a princi-
pal minor, hence Tq cannot contain only them. Thus, if deg Tq > 0, then either Tq |κ(Se)

is
zero or deg eTq > 1.

On the other hand,
∑

deg eTq = deg eF` and each Tq |κ(Se)
is nonzero, by our assumption

on T . Let d(T ) denote the cardinality of {q 6 k | deg Tq > 0}. The above discussion shows
that deg eT > d(T ). Since deg Tq 6 dq + 1 and

∑
deg Tq = degF`, our discussion in (4.1)

yields deg eF ` 6 d(T ). Hence deg eT = d(T ), forcing deg eTj 6 1 for all 1 6 j 6 k. This
means that each monomial of eF `, when expressed via {ξj,si }, has no factors of the form
ξj,sq ξ

i,t
q .

2) Let Ξ = ξj1,s1i1
. . . ξjm,sm

im
be a monomial involved in eF`. In part 1) we have proved that

all indices i1, . . . , im are distinct. Let I = {i1, . . . , im}. Suppose there is j = jq with j 6∈ I .
Then Ξ has a positive weight with respect to the semisimple element ξj,0j ∈ ge. But eF ` is
invariant under ge, hence Ξ must be of weight zero. This contradiction shows that j ∈ I .
Similarly, each iq must be among j1, . . . , jm. In other words, (j1, . . . , jm) is a permutation
of (i1, . . . , im).

3) Since all ξj,si are eigenvectors for adh, each monomial Ξ involved in eF` has the same
weight as eF` itself. Since F` is h-invariant and f has weight −2, we see that each Ξ has
weight 2(`−m). This completes the proof. �

Conjecture 4.1. Up to a nonzero constant,
eF` =

∑
|I|=m, λ(I,σ,s̄)= 2(`−m)

(sgnσ) Ξ(I, σ, s̄),

where m = deg eF`.

4.3. In this subsection we use the notation of (3.6) and consider a nilpotent element e of
the symplectic Lie algebra g = g̃0 (recall that g̃0 = g̃σ where g̃ = gl(V) and dim V = 2n).
It is well-known that ∆2i|g with 1 6 i 6 n generate the invariant algebra K[g]g and the
regular functions ∆2i+1 vanish on g. For 1 6 i 6 n we denote by δi the component of
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minimal degree of the restriction of ∆2i to Se = e+ gf . Since e+ gf is an affine subspace of
e+ g̃f and g∗e identifies with the linear subspace κ∗e(gf ) of g̃∗e = κ∗e(g̃f ), one observes easily
that either deg δi = deg eF2i or the restriction of eF2i to g∗e is zero and deg δi > deg eF2i.

For 1 6 i 6 n we denote by F̄i ∈ S(g)g the preimage of ∆i|g ∈ K[g]g under the Killing
isomorphism S(g)

∼→ K[g]. Note that deg eF̄2i = deg δi for all i 6 n.

Theorem 4.4. Suppose dim V = 2n > 4 and let F1, . . . , F2n be as above. Then {F̄2i | 1 6 i 6 n}
is a very good generating system for any e ∈ g ∼= sp2n and S(ge)

ge = S(ge)
Ge = K[eF̄2, . . . ,

eF̄2n].

Furthermore, deg eF̄2i = deg eF2i for all i 6 n.

Proof. From Theorem 4.2 and the formula for dim ge given in [13, 3.1(3)] we deduce that

dim ge = 1
2

(
dim g̃e +

∑
i, di even

1

)
=

2n∑
j=1

deg eFj − n+
∑

i, i′=i+1

1 .

On the other hand, applying Theorem 4.2 to g̃e yields

n∑
j=1

deg eF 2j =
∑

i, di odd

i(di+1)
2

+
∑

i, i′=i+1

(
idi

2
+ (i+ 1)di+2

2

)
= 1

2

(
2n∑
j=1

deg eF j

)
+

∑
i, i′=i+1

1
2
.

To check this equality one takes the Young diagram of shape (d1 + 1 > · · · > dk + 1) with
all boxes in the j-th column labelled j (as shown in Figure 1) and then sums up all labels
assigned to the even boxes of the diagram (counted from bottom to top and from left to
right). One should also keep in mind that di = di′ for all i and di + 1 is odd whenever
i′ 6= i. Using the above formulae one obtains

2
∑

deg eF2i − dim ge =
∑

i6k, i′=i

di + 1

2
+

∑
i6k, i′=i+1

(di + 1) = n.

Since deg δi > deg eF2i for all i 6 n, by our earlier remarks, we now derive
n∑
i=1

deg eF̄2i =
n∑
i=1

deg δi >
n∑
i=1

deg eF2i = (dim ge + n)/2.

On the other hand, {F̄2i | 1 6 i 6 n} is a generating system for S(g)g. As ind ge = rk g =

n by [29], Theorem 2.1(i) shows that
∑n

i=1 deg eF̄2i 6 (dim ge + n)/2. Hence deg eF̄2i =

deg eF2i for all i and {F̄2i | 1 6 i 6 n} is a good generating system for e. Combining
Theorem 2.1(iii) with Theorem 3.11, we now see that the generating set {F̄2i | 1 6 i 6 n} is
very good for e. Then Theorem 2.2 yields S(ge)

ge = S(ge)
Ge = K[eF̄2, . . . ,

eF̄2n], completing
the proof. �

4.4. Now suppose g = so(V). Recall that g is a symmetric subalgebra of g̃ = gl(V). Let
F1, . . . , Fn be as in (4.1) and set F̄i := Fi|g∗ . If n = dim V is odd, then the set {F̄2i | 0 <

i < n/2} is a basis of S(g)G. If n is even, then F̄n = P 2, where P is the pfaffian. Clearly,
(eP )2 = eF̄ n. Similar to the symplectic case, we have deg eF̄2i > deg eF2i. From [13, 3.1(3)] it
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follows that

(13) dim ge = 1
2

(
dim g̃e −

∑
i, di even

1

)
.

Note that l = rk g = [(dim V)/2]. In order to compute
∑l

i=1 deg eF2i we again consider our
labelled Young diagram (see Figure 1) and sum up the labels assigned to the even boxes.
It is important to observe that in the present case neighbouring columns of the same odd
size will always have a different number of even boxes. This is illustrated in Figure 2.
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Taking into account (13) and the equality
∑n

j=1 deg eFj = (dim g̃e + n)/2 we now arrive at
the following:

(14)

l∑
j=1

deg eF2j =
∑

i′=i+1

(2i+ 1)di+1
2

+
∑

i=i′, i odd
idi

2
+

∑
i=i′, i even

idi+2
2

= 1
2

(
n∑
j=1

deg eFj −
∑

i=i′, i odd
i +

∑
i=i′, i even

i

)

= 1
2

(
dim ge + n

2
+

∑
i, di even

1
2
−

∑
i=i′, i odd

i +
∑

i=i′, i even
i

)
.

Lemma 4.5. Let e be a nilpotent element in g = so(V) such that

1) d1 is even;

2) if di−1 is even for i odd, then di is even.

Then either F̄2, F̄4, . . . , F̄n−1 or F̄2, F̄4, . . . , F̄n−2, P (depending on the parity of n) is a good gen-
erating system for e ∈ g.

Proof. Let t1, . . . , tq be the indices of the odd-sized Jordan blocks of e. Note that tj and j

has the same parity.
First suppose n is odd. Then q is also odd, by (13). Recall that deg eF̄2i > deg eF2i for all i.

By Theorem 2.1, we have
∑l

i=1 deg eF̄2i 6 (dim ge + rk g)/2. Due to (14) it suffices to prove
that

n
2

+ q
2
− t1 + t2 − t3 + · · · − tq = n−1

2
.

By the assumptions of the lemma, t1 = 1, t3 = t2 + 1, t5 = t4 + 1, and so on. Thus,∑q
i=1(−1)iti = −1− (q − 1)/2, which is exactly what we wanted.
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Now suppose n is even. In this case q is even, by (13), and deg eP > (deg eFn)/2. More-
over, since dtq+1 cannot be even and odd at the same time, we have tq = k, that is the last
Jordan block has odd size. As above, tj+1 = tj + 1 for all even 1 < j < q. Therefore,

n/2−1∑
j=1

deg eF̄2j + deg eP > 1
2

(
dim ge + n+q

2
+

q∑
i=1

(−1)iti

)
− k

2

= 1
2

(
dim ge + n+q

2
− 1− q−2

2
+ k − k

)
= 1

2

(
dim ge + n

2

)
,

and we are done. �

Lemma 4.6. Suppose dim V = 2l and let e be a nilpotent element in g = so(V) such that
1) d1 is odd and d2 = d1;

2) di is even for i > 3.
Then e admits a good generating system in S(g)g.

Proof. Recall that deg eF̄2i > deg eF2i for all i and deg eP > (deg eF2l)/2. Because k is even,
by (13), it follows from (14) that

l−1∑
i=1

deg eF̄2i + deg eP > 1
2

(
dim ge + l + k−2

2
+ k−2

2

)
− k

2
= 1

2
(dim ge + l)− 1.

Thus, the system F̄2, . . . , F̄r−2, P is “almost good”. Applying Lemma 4.3 we see that in
the present case

eF2d1+2 = a1ξ
1,d1
1 ξ2,d2

2 + a2ξ
2,d1
1 ξ1,d1

2

for some a1, a2 ∈ K. Since eF2d1+2 is irreducible, being a generator of the polynomial
algebra S(g̃)eg, it must be that a1a2 6= 0. Both ξ2,d1

1 and ξ1,d2
2 vanish on ge and so does

ξ1,d1
1 − ξ2,d1

2 . Therefore, eF̄2d1+2 = a1ξ
1,d1
1 ξ2,d2

2 . For d = (d1 + 1)/2 we have eF̄2d = ξ1,d1
1 , up to

a nonzero scalar. Consequently, eF̄2d1+2 = c(eF̄2d)
2 for some c ∈ K× .

If k > 2, then d1 + 1 < l, and we can replace F̄2d1+2 by F̄ ′
2d1+2 := F̄2d1+2 − cF̄ 2

d1+1. Since
deg eF̄ ′

2d1+2 > deg eF̄2d1+2 + 1, Theorem 2.1(i) implies that F̄2, . . . , F̄
′
2d1+2, . . . , P is a good

generating system for e.
If k = 2, then eP = c0

eF̄2d for some c0 ∈ K× . In this case we can replace P by P ′ :=

P − c0F̄d1+1. Then deg eP ′ > deg eP +1, implying that F̄2, . . . , F̄2r−2, P
′ is a good generating

system for e. �

Combining Lemmas 3.12, 3.13, and 4.5 we obtain the following result:

Theorem 4.7. Let V be an n-dimensional vector space over K, where n is odd, and let Ṽ = V⊕Kv
be as in (3.8). Let (d1 + 1 > d2 + 1 > · · · > dk + 1) be a partition of n such that

1) d1 is even and k > 1;

2) di is odd for all i > 2.
Let e and ê be nilpotent elements in g = so(V) and ĝ = so(Ṽ), respectively, corresponding to the
partitions (d1+1, . . . , dk+1) and (d1+1, . . . , dk+1, 1). Then e and ê admit very good generating
systems in S(g)g and S(ĝ)ĝ, respectively, and the invariant algebras S(ge)

ge and S(ĝê)
ĝê are free.
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Remark 4.1. Conditions of Lemmas 4.5 and 4.6 are only sufficient for the existence of a
good generating system. But we conjecture that the other nilpotent elements in g = so(V)

do not possess good generating systems in S(g)g.

Example 4.1. Now we wish to exhibit a nilpotent element e in g = so(V) without a good
generating system in S(g)g. Some details will be left to the reader. Let e ∈ so12 be a
nilpotent element with partition (5, 3, 2, 2). Then dim ge = 18, ind ge = 6, but

5∑
i=1

deg eF2i + (deg eF12)/2 = 11 < (18 + 6)/2 = 12.

One can show that deg eF̄2i = deg eF2i and deg eP = 2. We have only two eF̄2i’s of degree
one, but the centre of ge is 3-dimensional and eF̄8 = a2, where a is a central element of ge
linear independent of eF̄2 and eF̄4. Moreover, up to a scalar eF̄10 = a·eP . We see that eF̄2i’s
and eP are algebraically dependent. On the other hand, computations show that there is
no good way to modify the system of generators F̄2, F̄4, F̄6, F̄10, P of S(g)g.

4.5. Suppose that rk g > 2. Our next goal in this section is to attack Conjecture 0.1 for the
elements of the minimal nilpotent orbit Omin = G·ẽ in g. More precisely, we are going to
show that if g is not of type E8, then ẽ admits a good generating system in S(g)g. Thanks to
Theorem 3.14 and Theorem 2.2 this will reduce verifying Conjecture 0.1 for the elements
in Omin to the case where g is of type E8. Some partial results on the E8 case are obtained in
(4.8) where Conjecture 0.1 for Omin is reduced to a computational problem on polynomial
invariants for the Weyl group of type E7.

We adopt the notation introduced in (3.9) and (3.10), choose a Cartan subalgebra t̃ of g

contained in g(0), and denote by Φ the root system of g with respect to t̃. Choose a positive
system Φ+ in Φ such that for every γ ∈ Φ+ the root subspace gγ = Keγ is contained
in the parabolic subalgebra p := g(0) ⊕ g(1) ⊕ g(2). Note that Φ = t−26i62 Φi where
Φi := {γ ∈ Φ | gγ ⊂ g(i)}. Clearly, Φ2 = {α̃} where α̃ is the longest root in Φ+. No
generality will be lost by assuming that ẽ = eα̃ and f̃ = e−α̃. Set t := Ker α̃. It is well-
known (and easy to see) that t is a Cartan subalgebra in gẽ and gẽ = t ⊕

⊕
γ∈Φi, i>0 gγ.

For β ∈ ti>0 Φi we denote by ξβ the linear function on gẽ that vanishes on t and has the
property that ξβ(eγ) = δβγ for all γ ∈ ti>0 Φi. The dual space t∗ will be identified with the
subspace of g∗ẽ consisting of all linear functions ξ such that ξ(eγ) = 0 for all γ ∈ ti>0 Φi.
Set h := t⊕ Kẽ, an abelian subalgebra of gẽ. We regard h∗ = t∗ ⊕ Kξα̃ as a subspace of g∗ẽ.

Choose ξ0 ∈ t∗ such that ξ0([gγ, g−γ]) 6= 0 for all γ ∈ Φ0 and put η := ξ0 + ξα̃, an element
of h∗. Since η vanishes on g(1), it is immediate from our discussion in (3.10) that gηẽ = h.
In particular, η ∈ (g∗ẽ)reg. Moreover, our earlier remarks show that

h∗ = {ξ ∈ g∗ẽ | (ad∗ h)ξ = 0} and h∗ ∩ (ad∗ gẽ)h
∗ = 0.

It follows that the differential of the coadjoint action morphismGẽ×h∗ → g∗ẽ is surjective at
1×η. ThenGẽ · h∗ = g∗ẽ, implying that the restriction map ϕ 7→ ϕ|h∗ induces an embedding
K[g∗ẽ]

Ge ↪→ K[h∗]. Hence, for every nonzero homogeneous F ∈ S(g)g the regular function
ẽF|h∗ is nonzero and thus has the same degree as ẽF .
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4.6. The Weyl group W = NG(̃t)/ZG(̃t) is generated by the orthogonal reflections sγ in
the hyperplanes Ker γ, where γ ∈ Φ. Let CW (h̃) be the stabiliser of h̃ in W . It is well-
known that CW (h̃) = 〈sγ | γ(h̃) = 0〉. Obviously, CW (h̃) preserves t. We denote by ρ0 the
corresponding representation of CW (h̃) and put W0 := ρ0(CW (h̃)). Note that W0 is a finite
reflection subgroup of GL(t). Since t = Ker α̃ and sα̃(h̃) = −h̃, any nonzero ϕ ∈ S(̃t)W has
the form

ϕ =
ν∑
i=0

ϕ(i)h̃2i
(
ϕ(i) ∈ S(t)W0 , ϕ(ν) 6= 0, ν = ν(ϕ)

)
.(15)

For ψ ∈ S(̃t) we denote by t̃ψ the set of all h ∈ t̃ such that ψ(x + λh) = ψ(x) for all x ∈ t̃

and all λ ∈ K. If ψ ∈ S(̃t)W , then t̃ψ is a W -invariant subspace of t̃. As t̃ is an irreducible
W -module, then for ϕ as in (15) we must have t̃ϕ = 0. Consequently, ν(ϕ) > 1.

Proposition 4.8. If {ϕ1, ϕ2, . . . , ϕl} is a homogeneous generating set in S(̃t)W with degϕ1 = 2,
then

∑l
i=2 ν(ϕi) > 1

2
dim g(1). If

∑l
i=2 ν(ϕi) = 1

2
dim g(1), then ϕ(ν)

2 , . . . , ϕ
(ν)
l are algebraically

independent and S(g)g admits a good generating system for ẽ.

Proof. Consider the Levi subalgebra s̃ = Kf̃⊕ t̃⊕Kẽ of g and put c := h̃2 +4ẽf̃ , an element
of S(s̃). Since z(s̃) = t and [s̃, s̃] = Kf̃ ⊕ Kh̃ ⊕ Kẽ, we have that S(s̃)s̃ ∼= S(t) ⊗K K[c]

as algebras. We identify s̃∗ with Kξ−α̃ ⊕ t∗ ⊕ Kξα̃. Then h∗ = t∗ ⊕ Kξα̃ ⊂ s̃∗. Since ẽ is
regular nilpotent in s̃, the restriction map F 7→ F|ξ−α̃+h∗ induces an algebra isomorphism
ι : S(s̃)s̃ ∼−→ S(h) such that ι|t = id and ι(c) = 4ẽ.

By the Chevalley Restriction Theorem, there exists a homogeneous generating system
{F1, . . . , Fl} ⊂ S(g)g such that Fk |̃t∗ = ϕk for all k. Since ϕk =

∑ν(ϕk)
i=0 ϕ

(i)
k h̃

2i by (15), it
follows that Fk |s̃∗ =

∑ν(ϕk)
i=0 ϕ

(i)
k c

i. But then ι(Fk |s̃∗) =
∑ν(ϕk)

i=0 4iϕ
(i)
k e

i. It is now immediate
from the definition of ẽF that

(ẽFk)|h∗ = 4ν(ϕk)ϕ
(ν)
k eν(ϕk) (1 6 k 6 l).(16)

Since deg ẽFk = deg (ẽFk)|h∗ by our concluding remark in (4.5), Theorem 2.1(i) in conjunc-
tion with with (16) gives

l∑
i=1

degϕ
(ν)
i +

l∑
i=1

ν(ϕi) 6 (dim gẽ + l)/2.

On the other hand, (15) shows that
l∑

i=1

degϕ
(ν)
i + 2

l∑
i=1

ν(ϕi) =
l∑

i=1

degϕi =
l∑

i=1

degFi = (dim g + l)/2.

As dim g− dim gẽ = 2 + dim g(1) and ν(ϕ1) = 1 by our assumption on degϕ1, we are now
able to conclude that

∑l
i=2 ν(ϕi) > 1

2
dim g(1).

If
∑l

i=2 ν(ϕi) = 1
2
dim g(1), then the above shows that
l∑

i=1

deg ẽFi =
l∑

i=1

degϕ
(ν)
i +

l∑
i=1

ν(ϕi) = (dim gẽ + l)/2.
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Hence {F1, . . . , Fl} ⊂ S(g)g is a good generating system for ẽ, implying that ẽF1,
ẽF2, . . . ,

ẽFl
are algebraically independent; see Theorem 2.1(ii). As ϕ(ν)

1 is a nonzero constant, our dis-
cussion in (4.5) together with (16) shows that e, ϕ(ν)

2 eν(ϕ2), . . . , ϕ
(ν)
l eν(ϕl) are algebraically

independent in S(gẽ). Then ϕ
(ν)
2 , . . . , ϕ

(ν)
l must be algebraically independent in S(t). This

completes the proof. �

4.7. Proposition 4.8 in conjunction with Theorems 2.1(iii), 3.4, 3.11, 3.14 and 2.2 will enable
us to show that S(gẽ)

gẽ is a graded polynomial algebra in rk g variables in all cases except
when g is of type E8. We shall identify S(̃t) with S(̃t∗) by means of the W -invariant scalar
product ( · | · ) used in [1] and [27]. Note that h̃ = α̃∨ identifies with a nonzero multiple of
α̃. The basis of simple roots contained in Φ+ will be denoted by ∆.

(1) Suppose g is of type An, n > 2. Then t̃∗ is spanned by ε1, ε2, . . . , εn+1 subject to the
relation ε1 + ε2 + · · ·+ εn+1 = 0. The Weyl group W = Sn+1 permutes the εi’s. Put

sk :=
∑

σ∈Sn+1

εσ(1)εσ(2) · · · εσ(k) (2 6 k 6 n+ 1).

Since α̃ = ε1−εn+1 and (α̃|εi) = 0 for 2 6 i 6 n, it is routine that ν(sk) = 1 for 2 6 k 6 n+1.
Now set ϕk := sk+1, 2 6 k 6 n + 1. Then {ϕ1, ϕ2, . . . , ϕn} is a homogeneous generating
set in S(̃t∗)W with degϕ1 = 2. Since

∑n
i=2 deg ν(ϕi) = n − 1 = 1

2
dim g(1), we derive that

S(gẽ)
gẽ is a graded polynomial algebra in n variables. The degrees of basic invariants are

1, 2, . . . , n. Since g = sln+1 and the partition of ẽ is (2, 1n−1), this is consistent with the
combinatorial description in Theorem 4.2.

(2) Suppose g is of type Cn, n > 2. Then α̃ = 2ε1, and we can assume that ϕk = s̃k, where

s̃k :=
∑

σ∈Sn+1

ε2
σ(1)ε

2
σ(2) · · · ε2

σ(k) (1 6 k 6 n).(17)

As (α̃|εi) = 0 for 2 6 i 6 n, it is clear that ν(ϕk) = 1 for all k. Then
∑n

i=2 deg ν(ϕi) = n−1 =
1
2
dim g(1), which shows that S(gẽ)

gẽ is a graded polynomial algebra in n variables. The
degrees of basic invariants are 1, 3, . . . , 2n − 1. Since g = sp2n and the partition of ẽ is
(2, 12n−2), this is consistent with our description in Theorem 4.4.

(3) Suppose g is of type Bn, n > 3. Then α̃ = ε1 + ε2. For k ∈ {1, 3, . . . , n} put ϕk :=

s̃k, where s̃k is as in (17), and set ϕ2 := s̃2 − 1
4
s̃2
1. As (α̃|εi) = 0 for 3 6 i 6 n, it is

straightforward to see that ν(ϕ2) = 1 and ν(ϕk) = 2 for 3 6 k 6 n. Then
∑n

i=2 deg ν(ϕi) =

1+2(n−2) = 1
2
dim g(1). Hence S(gẽ)

gẽ is a graded polynomial algebra in n variables, and
the degrees of basic invariants are 1, 3, 4, . . . , 2n− 2.

(4) Suppose g is of type Dn, n > 4. Then again α̃ = ε1 + ε2. For k ∈ {1, 3, . . . , n − 1}
put ϕk := s̃k and set ϕ2 := s̃2 − 1

4
s̃2
1. Finally, set ϕn := p where p =

∏n
i=1 εi. As in

part (3) we obtain ν(ϕ2) = 1 and ν(ϕk) = 2 for 3 6 k 6 n − 1. Since ν(ϕn) = 1, we have∑n
i=2 deg ν(ϕi) = 1+2(n−3)+1 = 1

2
dim g(1). Thus, S(gẽ)

gẽ is a graded polynomial algebra
in n variables, and the degrees of basic invariants are 1, 3, 4, . . . , 2n− 4, n− 1.
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(5) Suppose g is of type G2 and assume that ∆ = {α, β} where β is a short root. Then
α̃ = 2α+ 3β and (β|α̃) = 0. The degrees of basic invariants in S(̃t∗)W are 2, 6. There exists
ϕ1 ∈ S(̃t∗)W such that ϕ1 = α̃2 + λ0β

2 for some λ0 ∈ K. Since degϕ3
1 = 6, we can find a

basic W -invariant ϕ2 in S6(̃t∗) such that ϕ2 = λ1α̃
4β2 + λ2α̃

2β4 + λ3β
6 for some λ1, λ2, λ3 ∈

K. Then ν(ϕ2) 6 2 = 1
2
dim g(1). Applying Proposition 4.8 yields ν(ϕ2) = 1

2
dim g(1).

Then S(gẽ)
gẽ is a graded polynomial algebra in two variables, and the degrees of basic

invariants are 1, 4.

(6) Suppose g is of type F4. In this case α̃ = ε1 + ε2 and basic invariants in S(̃t∗)W have
degrees 2, 6, 8, 12. Let W ′ denote the subgroup of W generated all reflections sα corre-
sponding to long roots in Φ. The reflection group W ′ has type D4 and acts on the ε-basis
of t̃∗ in the standard way. Therefore, S(̃t∗)W

′
= K[s̃1, s̃2, s̃3, p] where s̃1, s̃2, s̃3, p are as in

part (4). Note that W ′ is a normal subgroup of W and W/W ′ ∼= S3.
Set ϕ1 = s̃1. It is easy to see that ϕ1 ∈ S(̃t∗)W . Since ϕ3

1 ∈ S6(̃t∗)W and ν(ϕ3
1) = 3, there

exists a basic invariant ϕ2 ∈ S6(̃t∗)W for which ν(ϕ2) 6 2. Next observe that M := S4(̃t∗)W
′

is a W/W ′-module with basis {s̃2, p, s̃
2
1}. We denote by M ′ the submodule of M spanned

by all (w − 1)·m with w ∈ W and m ∈ M . Let β := ε1 and γ := 1
2
(ε1 + ε2 + ε3 + ε4), short

roots in Φ, and put p′ :=
∏4

i=1 (εi − γ). Since p′ = sγ(
∏4

i=1 εi) = sγ(p) and sβ(p) = −p, we
have p, p′ ∈ M ′. Since sβ(s̃2) = s̃2 and S4(̃t∗)W = Ks̃2

1, this shows that M ′ is isomorphic to
the reflection module for W/W ′ ∼= S3, and p and p′ form a basis for M ′.

The above discussion implies that there exist homogeneous polynomials q2, q3 ∈
K[X, Y ] of degree 2 and 3, respectively, such that q2(p, p′) and q3(p, p

′) generate the in-
variant algebra K[M ′]S3 ⊂ S(̃t∗)W . As (α̃|γ) = (α̃|ε1) = (α̃|ε2) = 1, one checks easily that
ν(p) = ν(p′) = 1. Hence ν(q2(p, p′)) 6 2 and ν(q3(p, p

′)) 6 3. Since S6(̃t∗)W
′ is spanned by

s̃3, s̃1s̃2, t̃1p, s̃3
1, there are λ1, λ2, λ3, λ4 ∈ K such that ϕ2 = λ1s̃3 + s̃1(λ2p + λ3p

′) + λ4s̃
3
1. As

(M ′)W = 0, it must be that λ1 6= 0. From this it is immediate that

S(̃t∗)W
′ ∼= K[ϕ1, ϕ2]⊗K K[M ′]

asW -modules. But then we can set ϕ3 := q2(p, p
′) and ϕ4 := q3(p, p

′) to obtain a generating
set {ϕ1, ϕ2, ϕ3, ϕ4} ⊂ S(̃t∗)W with degϕ1 = 2 and

∑4
i=2 ν(ϕi) 6 2 + 2 + 3 = 7. Since in the

present case dim g(1) = 14, Proposition 4.8 shows that ν(ϕ2) = ν(ϕ3) = 2 and ν(ϕ4) = 3.
Hence S(gẽ)

gẽ is a graded polynomial algebra in four variables, and the degrees of basic
invariants are 1, 4, 6, 9.

(7) Now suppose g is of type E6 and let σ denote the outer involution in Aut(Φ) preserving
∆. In the present case, the degrees of basic invariants in S(̃t∗)W are 2, 5, 6, 8, 9, 12. The
reflection group W0 has type A5 and basic invariants in S(t∗)W0 have degrees 2, 3, 4, 5, 6.
We choose a homogeneous generating system {ψ1, . . . , ψ5} ⊂ S(t∗)W0 with degψi = i + 1

for 1 6 i 6 5. Since σ(α̃) = α̃, both W0 and t are σ-stable. Set t̃σ := {t ∈ t̃ | σ(t) = t} and
tσ := t̃σ ∩ t. The groups W σ = {w ∈ W | σw = wσ} and W σ

0 = W σ ∩W0 act on t̃σ and
tσ, respectively, and we shall denote by ρ̃ and ρ the corresponding representations. It is
well-known that ρ̃(W σ) and ρ(W σ

0 ) are reflection groups of type F4 and C3, respectively.
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Note that t̃σ = tσ ⊕ Kh̃. To make use of the results obtained in part (6) we shall restrict
functions from S(̃t∗)W to t̃σ. Let ψ̄i denote the restriction of ψi to tσ. Since ρ(W σ

0 ) is a
reflection group of type C3, we have that ψ̄2 = ψ̄4 = 0 and K[tσ]W

σ
0 = K[ψ̄1, ψ̄3, ψ̄5].

Observe that dim S5(̃t∗)W = 1. Let ϕ̃2 be a nonzero element in S5(̃t∗)W . By our remarks
in (4.6) we have ν(ϕ̃2) > 1. Thus, it can be assumed that ϕ̃2 = α̃2ψ2 + ϕ̃

(0)
2 where ϕ̃(0)

2 ∈
S5(t∗)W0 . Clearly, ν(ϕ̃2) = 1. Next note that dim S9(̃t∗)W = 2. As ν(ϕ̃2ϕ̃

2
1) = 3, we can find

ϕ̃5 ∈ S9(̃t∗)W \Kϕ̃2ϕ̃
2
1 for which ν(ϕ̃5) 6 2. This element is a basic invariant of S(̃t∗)W .

Let {ϕ1, ϕ2, ϕ3, ϕ4} ⊂ K[̃tσ]W
σ be the generating set obtained in part (6). Choose ϕ̃1 ∈

S2(̃t∗)W such that ϕ̃1 = α̃2 + ϕ̃
(0)
1 where ϕ̃(0)

1 ∈ S2(t∗)W0 . As ϕ̃3
1 ∈ S6(̃t∗)W we can find a

nonzero ϕ̃3 ∈ S6(̃t∗)W such that ϕ̃3 = α̃4a + α̃2b + c for some a, b, c ∈ S(t∗)W0 . Suppose
a = 0. Since ν(ϕ̃3) > 1, we then have b 6= 0. Since b is a W0-invariant of degree 4, it is
a polynomial in ψ1 and ψ3. Then b|tσ 6= 0. Consequently, ϕ̃3 |̃tσ = λϕ2 + µϕ3

1 where either
λ 6= 0 or µ 6= 0. Part (6) now yields ν(ϕ̃3) > 2 forcing a 6= 0, a contradiction. Thus,
ν(ϕ̃3) = 2, and it can be assumed without loss that a = ψ1.

Next we observe that dim S8(̃t∗)W = 3. Because ν(ϕ̃4
1) = 4 and ν(ϕ̃3ϕ̃1) = 3 by the

above, the set S8(̃t∗)W \ {Kϕ̃4
1 ⊕ Kϕ̃2ϕ̃1} contains an element of the form α̃4a′ + α̃2b′ + c′

with a′, b′, c′ ∈ S(t∗)W0 , say ϕ̃4. The element ϕ̃4 is a basic invariant of S(̃t∗)W . As ν(ϕ̃6
1) = 6

and ν(ϕ̃3ϕ̃
3
1) = 5, we can find a basic invariant ϕ̃6 ∈ S12(̃t∗)W for which ν(ϕ̃6) 6 4.

Suppose for a contradiction that a′ = 0. In view of our remarks in (4.6) we then have
b′ 6= 0 and ν(ϕ̃4) = 1. Consequently,

6∑
i=2

ν(ϕ̃i) 6 1 + 2 + 1 + 2 + 4 = 10.

Since in the present case dim g(1) = 20, Proposition 4.8 shows that we have equalities
everywhere and the elements ϕ̃(ν)

i with 2 6 i 6 6 are algebraically independent in S(t∗)W0 .
But then ν(ϕ̃5) = 2 and ν(ϕ̃6) = 4, forcing ϕ̃

(ν)
5 ∈ Kψ1ψ2 ⊕ Kψ4 and ϕ̃

(ν)
6 ∈ Kψ2

1 ⊕ Kψ3.
As ν(ϕ̃4) = 1, we have ϕ̃(ν)

4 = µ1ψ5 + µ2ψ1ψ3 + µ3ψ
2
2 + µ4ψ

3
1 for some µi ∈ K. Because

ϕ̃
(ν)
2 , . . . , ϕ̃

(ν)
6 are algebraically independent, the above shows that µ1 6= 0. In conjunction

with our earlier remarks this yields that for ϕ̃4 |̃tσ ∈ K[̃tσ]W
σ we have ν

(
ϕ̃4 |̃tσ

)
= 1. On the

other hand, ϕ̃4 |̃tσ is a linear combination of ϕ3, ϕ1ϕ2 and ϕ4
1. Since ν(ϕ3) = 2, ν(ϕ1ϕ2) = 3

and ν(ϕ4
1) = 4, this is impossible. Therefore, a′ 6= 0 and ν(ϕ̃4) = 2.

Since a′ is a W0-invariant of degree 4, we have a′ = λ′ψ3 + µ′ψ2
1. Hence a′|tσ = λ′ψ̄3 +

µ′ψ̄2
1 6= 0. It follows that ν

(
ϕ̃4 |̃tσ

)
= 2. Then the above implies that ϕ̃4 |̃tσ = ηϕ3 for some

η ∈ K× . Since ϕ(ν)
3 = η−1a′|tσ is algebraically independent of ϕ(ν)

2 by part (6), we now

derive that λ′ 6= 0. Since ϕ̃(ν)
6 ∈ Kψ3 ⊕ Kψ2

1 , it follows that we can adjust ϕ̃6 by a suitable
linear combination of ϕ̃2

1ϕ̃4 and ϕ̃2
3 to achieve ν(ϕ̃6) 6 3. Then

6∑
i=2

ν(ϕ̃i) 6 1 + 2 + 2 + 2 + 3 =
1

2
dim g(1).
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Proposition 4.8 now shows that ν(ϕ̃5) = 2, ν(ϕ̃6) = 3, and S(g)g admits a good generating
system for ẽ. Hence S(gẽ)

gẽ is a graded polynomial algebra, and the degrees of basic
invariants are 1, 4, 4, 6, 7, 9.

(8) Finally, suppose g is of type E7. The degrees of basic invariants in S(̃t)W are 2, 6, 8, 10,
12, 14, 18, and our arguments in part (7) are not easily adapted to the present situation.
Fortunately, this will not be necessary because a suitable for us system of basic invariants
in S(̃t)W is already recorded in the literature. It has been constructed in [14] with the help
of computer-aided calculations.

We have to adopt the notation of [14]. So let ∆′ = {v0, v1, . . . , v6} be a basis of the root
system Φ with the simple roots numbered as follows:

(18) ◦ ◦ ◦ ◦ ◦ ◦

◦

...................................................... ..................................................................................................

...................................................... ...................................................... ......................................................

v1 v2 v3 v4 v5 v6

v0

Since all roots in Φ are conjugate under W , we may (and will) assume that α̃ = v1. Let
{v∗0, v∗1, . . . , v∗6} be the basis of t̃ such that vi(v∗j ) = δij for all 0 6 i, j 6 6. As (v1|v1) = 2,
it follows from (18) that h̃ = 2v∗1 − v∗2 , whilst our choice of α̃ ensures that v∗i ∈ Ker α̃ for
i ∈ {0, 2, . . . , 6}. For a root system type E7, the distinguished functionals t1, t2, . . . , t7 are
defined in [14] by the following formulae:

t1 = −2

3
v∗0 + v∗1, t2 = −2

3
v∗0 − v∗1 + v∗2, t3 = −2

3
v∗0 − v∗2 + v∗3,

t4 =
1

3
v∗0 − v∗3 + v∗4, t5 =

1

3
v∗0 − v∗4 + v∗5, t6 =

1

3
v∗0 − v∗5 + v∗6, t7 =

1

3
v∗0 − v∗6.

We are particularly interested in the basic invariants A2, A6, A8, A10, A12, A14, A18 of S(̃t)W

displayed in [14, Appendix 2]. These are presented as polynomials in the elementary sym-
metric functions s1, s2, . . . , s7 of the distinguished functionals t1, t2, . . . , t7. The coefficients
of these polynomials are of no importance to us, but we need to examine the monomials
in s1, s2, . . . , s7 that occur in the Ak’s.

Note that α̃(t1) = v1(t1) = 1, α̃(t2) = −v1(v
∗
1) = −1, and α̃(ti) = v1(ti) = 0 for 3 6 i 6 7.

It follows that ν(s1) = ν(s1(t1, . . . , t7)) = 0 and ν(si) = ν(si(t1, . . . , t7)) = 1 for 2 6 i 6 7.
Therefore,

ν(sj11 s
j2
2 · · · sj77 ) = j2 + · · ·+ j7 (∀ jk ∈ Z+, 1 6 k 6 7).

Taking this into account and using the explicit formulae for A2, A6, A8, A10, A12, A14, A18

in [14, Appendix 2] one finds out that ν(A2) = 1, ν(A6) 6 2, ν(A8) 6 2, ν(A10) 6 2,
ν(A12) 6 3, ν(A14) 6 3 and ν(A18) 6 4. It follows that

ν(A6) + ν(A8) + ν(A10) + ν(A12) + ν(A14) + ν(A18) 6 2 + 2 + 2 + 3 + 3 + 4 = 16.

Since in the present case the derived subalgebra of g(0) has codimension 1 in g(0) and is
isomorphic to so12, we have 1

2
dim g(1) = (dim g− dim so12 − 3)/4 = (133− 66− 3)/4 = 16.

Proposition 4.8 now shows that ν(A6) = ν(A8) = ν(A10) = 2, ν(A12) = ν(A14) = 3 and
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ν(A18) = 4. This implies that S(gẽ)
gẽ is a graded polynomial algebra in seven variables,

and the degrees of basic invariants are 1, 4, 6, 8, 9, 11, 14.
We summarise the results of this subsection:

Corollary 4.9. If g is not of type E8, then S(̃t)W contains a homogeneous generating system
ϕ1, ϕ2, . . . , ϕl such that degϕ1 = 2 and S(t)W0 = K[ϕ

(ν)
2 , . . . , ϕ

(ν)
l ].

Proof. We have shown that under the above assumption on g there exists a homogeneous
system of basic invariants ϕ1, ϕ2, . . . , ϕl in S(̃t)W such that degϕ1 = 2 and the elements
ϕ

(ν)
2 , . . . , ϕ

(ν)
l are algebraically independent in S(t)W0 . So the result follows by compar-

ing the Hilbert series of the graded polynomial algebra S(t)W0 and its graded subalgebra
K[ϕ

(ν)
2 , . . . , ϕ

(ν)
l ]. �

Remark 4.2. If g is of type E8, then one can show by using ad hoc arguments that S(gẽ)
gẽ

contains an element of degree 4 linearly independent of ẽ4. Looking at the degrees of
basic invariants in S(g)g and taking into account (16) one can observe that this element is
not of the form ẽF with F ∈ S(g)g. It follows that in type E8 the elements in Omin do not
admit good generating systems in S(g)g. Combining this with Proposition 4.8 one obtains
that for any homogeneous generating system ϕ1, ϕ2, . . . , ϕ8 in S(̃t)W with degϕ1 = 2 the
elements ϕ(ν)

2 , . . . , ϕ
(ν)
l are algebraically dependent in S(t)W0 . This is in sharp contrast with

Corollary 4.9.

4.8. In this subsection we assume that g is of type E8, so that l = rk g = 8. We adopt
the notation introduced in (3.9) and (3.10). In particular, n = g(1) ⊕ g(2). As before, we
identify l∗ with Ann(n) ⊂ g∗ẽ and g(1)∗ with Ann(l⊕ g(2)).

In the course of proving Theorem 3.14 we established that the principal open subset
Y = g∗ẽ \ Ann(ẽ) of g∗ẽ decomposes as Y ∼=

(
(N/(N,N)

)
×
(
Ann(g1) ∩ Y

)
. It follows that

restricting regular functions on Y to Ann(g(1)) ∩ Y we get algebra isomorphisms(
S(gẽ)[1/ẽ]

)N ∼= S(l)[ẽ, 1/ẽ] and S(gẽ)
gẽ [1/ẽ] =

(
S(gẽ)[1/ẽ]

)gẽ ∼= (S(l)L[ẽ, 1/ẽ].

The standard Poisson bracket of S(gẽ) (induced by Lie product) gives S(gẽ)[1/ẽ] a Pois-
son algebra structure. As n is a Heisenberg Lie algebra, the subspace S2(g(1))/ẽ is closed
under the Poisson bracket of S(gẽ)[1/ẽ], i.e., S2(g(1))/ẽ is a Lie subalgebra of S(gẽ)[1/ẽ].
This Lie algebra acts faithfully on g(1) and is isomorphic to sp(g(1)). Since the bilin-
ear form 〈 · , · 〉 is (ad l)-invariant, l acts on g(1) as a Lie subalgebra of sp(g(1)). From
this it follows that for every x ∈ l there exists a unique ω(x) ∈ S2(g(1)) for which
x+ ω(x)/ẽ ∈

(
S(gẽ)[1/ẽ]

)N . Since the restriction of ω(x) to Ann(g(1)) is zero, x+ ω(x)/ẽ is
the preimage of x in (S(gẽ)[1/ẽ])

N . It is straightforward to see that the map ω : l → S2(g(1))

is linear.
Let x1, . . . , xm be a basis of l. Given an L-invariant H = Q(x1, . . . , xm) in S(l) we define

Ĥ := Q(x1 + ω(x1)/ẽ, . . . , xm + ω(xm)/ẽ).
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Clearly, Ĥ ∈ S(gẽ)
gẽ [1/ẽ]. Let k = k(H) be the smallest integer for which ẽkĤ ∈ S(gẽ)

gẽ ,
and set H̃ := ẽkĤ . Let ω(H) denote the “constant term” of H̃ with respect to ẽ, so that
ω(H) equals the restriction of H̃ to Ann(ẽ). Note that k = degω(H)− degH .

Let {H1, . . . , Hl−1} be a homogeneous generating set for S(l)L. Then both {Ĥ1, . . . , Ĥl−1}
and {H̃1, . . . , H̃l−1} generate the K[ẽ, 1/ẽ]-algebra (S(gẽ)

gẽ [ẽ, 1/ẽ].

Lemma 4.10. The algebra S(gẽ)
gẽ is free if and only if S(l)L contains a homogeneous generating

system H1, . . . , Hl−1 such that the elements ω(H1), . . . , ω(Hl−1) are algebraically independent.

Proof. First suppose that S(l)L contains a required set of generators H1, . . . , Hl−1, and let
H ∈ S(gẽ)

gẽ . Then H is a polynomial in H̃i, ẽ and 1/ẽ, hence can be presented as a fi-
nite sum H =

∑
p∈Z ẽ

pQp, where Qi are nontrivial polynomials in H̃i. Since ω(Hi) are
algebraically independent by our assumption, all Qi are coprime to ẽ. This implies that
H =

∑
p>0 ẽ

pQp, that is H is a polynomial in H̃i and ẽ.
Now suppose that S(gẽ)

gẽ is a free algebra generated over K by T1, . . . , Tl. Without loss
of generality we may (and will) assume that all Ti are homogeneous and Tl = ẽ. As
(S(gẽ)[1/ẽ])

gẽ ∼= S(l)L[ẽ, 1/ẽ], there exist H1, . . . , Hl−1 ∈ S(l)L and b1, . . . , bl−1 ∈ Z such that
Ti = ebiĤi for 1 6 i 6 l − 1. Moreover, H1, . . . , Hl−1 generate S(l)L. Because ebiĤi is both
irreducible and regular, it must be that bi = ki. Hence Ti = H̃i for all i < l.

Assume for a contradiction that P (ω(H1), . . . , ω(Hl−1)) = 0 for a nonzero polynomial
P ∈ K[X1, . . . , Xl−1]. Then H ′ := P (T1, . . . , Tl−1)/ẽ is a regular gẽ-invariant. On the other
hand,H ′ is uniquely expressed as a polynomial in T1, . . . , Tl−1 with coefficients in K[ẽ, 1/ẽ],
and S(gẽ)

gẽ = K[T1, . . . , Tl−1, ẽ] by our assumption. But then H ′ 6∈ S(gẽ)
gẽ . By contradic-

tion, the result follows. �

It is well-known that in the present case L has type E7 and the stationary subgroup
K = L ∩ Ge is a simple algebraic group of type E6. Recall from (3.9) that e is a generic
point of the L-module g(1) and K is a genetic stabiliser in L; see Definition 4.1. It is
also known that K is the derived subgroup of the intersection of two opposite maximal
parabolics of L. More precisely, K = (L+ ∩ L−, L+ ∩ L−), where L+ (resp., L−) is the
the normaliser in L of the line spanned by a highest (resp., lowest) weight vector of the
L-module g(1). These primitive vectors will be denoted by e+ and e−, respectively. Note
that [e+, e−] is a nonzero multiple of ẽ (equivalently, 〈e+, e−〉 6= 0). Choose a maximal
torus t̂ in the Levi subalgebra Lie (L+ ∩ L−) of l and set t := t̂ ∩ k. It is easy to see that t is
a maximal torus in k = LieK.

It follows from the above description that g(1)K = Ke+⊕Ke−. Hence it can be assumed
without loss of generality that e = e+ + e−. Since the nondegenerate skew-symmetric
form 〈 · , · 〉 is L-invariant, g(1) ∼= g(1)∗ as L-modules. Set w+ := 〈 e+, · 〉, w− := 〈 e−, · 〉,
and v := 〈 e, · 〉. As explained in the proof Theorem 3.14, the orbit (AdL)e has codimension
1 in g(1) and (AdL)(K×

e) = (AdG(0))e is Zariski open in g(1). Hence the tangent space
l·v (at v) to the orbit L·v has codimension 1 in g(1)∗ = g(0)·v = t̂·v+ l·v. As K is reductive
and (g(1)∗)K = Kw ⊕ Kw∗ is t̂-stable, we have that l·v = Kh0·v ⊕ V0, where h0 ∈ t̂ is
orthogonal to k with respect to the Killing form and V0 =

{
〈x , · 〉 | 〈x, e+〉 = 〈x, e−〉 = 0

}
.
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As in (4.5), we regard the dual space t̂∗ as a subspace of l∗ ⊂ g∗ẽ. We identify t∗ with
the subspace {γ ∈ t̂∗ | γ(h0) = 0} and view v ∈ g(1)∗ as a linear function on gẽ vanishing
on l⊕Kẽ. Set W ′ := NL(̂t)/ZL(̂t) and W ′

0 := NK(t)/ZK(t) (these are reflection groups of
type E7 and E6, respectively).

Lemma 4.11. Let H1, . . . , Hl−1 be a homogeneous generating set in S(l)L. Then the elements
ω(H1), . . . , ω(Hl−1) are algebraically independent if and only if their restrictions to t∗ ⊕Kv are.

Proof. Recall that Ĥi ∈ S(gẽ)
gẽ and ω(Hi) = H̃i|Ann(ẽ) for 1 6 i 6 l − 1. It follows that all

ω(Hi) are invariant under the coadjoint action of the semidirect product l n g(1), where
g(1) is considered as a commutative Lie algebra.

By our earlier remarks, the L-saturation of Kv is dense in g(1)∗. Also, for the same v,
but regarded as an element of (l n g(1))∗, we have

(
ad ∗g(1)

)
v ∼= (l/k)∗. Combining this

two facts we obtain natural embeddings

K[ω(H1), . . . , ω(H`−1)] ↪→ K[l∗ ⊕Kv]k ng(1) ↪→ K[k∗ ⊕Kv]k ↪→ K[t∗ ⊕Kv].

As the composition of these embeddings is also an embedding, the result follows. �

Now we wish to express ω(Hi) in terms of polynomial invariants for W ′. Let α ∈ g∗ẽ be
such that α(ẽ) = 1 and α(l⊕ g(1)) = 0, and set

s := t∗ ⊕Kv ⊕Kα.

Then the restriction of ω(Hi) to t∗ ⊕Kv is equal to the “constant term” (with respect to ẽ)
of Ĥi|s. We thus need to describe the restrictions of Ĥi to s. Let t̂⊥ ⊂ l be the orthogonal
complement to t̂ = t⊕Kh0 with respect to the Killing form, so that l = t⊕Kh0 ⊕ t̂⊥. Since
t̂⊥ is spanned by root vectors of l with respect to t̂ and e = e+ + e−, it is straightforward to
see that [[̂t⊥, e], e] = 0.

Lemma 4.12. The following statements are true:

(a) (x+ ω(x)/ẽ)|s = 0 for all x ∈ t̂⊥;
(b) (x+ ω(x)/ẽ)|s = x for all x ∈ t;
(c) (h0 + ω(h0)/ẽ)|s = a(e+ + e−)2/ẽ for some a ∈ K× .

Proof. Let x ∈ l and let β = γ + λv + µα ∈ s, where γ ∈ t∗ and λ, µ ∈ K. We shall calculate
the value of x + ω(x)/ẽ at β. Without loss of generality we may assume that both λ and
µ are nonzero. Recall that e = e+ + e−. Since x + ω(x)/ẽ is N -invariant, we can replace
β by

(
Ad∗(exp λ

µ
ad e)

)
β. Because v = 〈e, · 〉 = −(ad ∗e)α and [e, [e, t̂⊥]] = 0, we have that(

Ad∗(exp λ
µ

ad e)
)
β = γ+δ+µα,where δ is a nonzero linear function on gẽ which vanishes

on t⊕ t̂⊥ ⊕ g(1)⊕ g(2) and has the property that

δ(h0) =
λ2

2µ
v([h0, e

+ + e−]).

Thus, x + ω(x)/ẽ is zero on s for all x ∈ t̂⊥, proving (a). If x ∈ t, then (x + ω(x)/ẽ)(β) =

x(γ) = x(β), hence (b). Finally, (h0 + ω(h0)/ẽ)(β) is a nonzero multiple of λ2/µ, showing
that the restriction of h0 + ω(h0)/ẽ is a nonzero multiple of (e+ + e−)2/ẽ. �
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For 1 6 i 6 l − 1, set ϕi := Hi |̂t∗ . Then ϕi is homogeneous element in S(̂t)W
′ . It can be

presented uniquely as

ϕi =
ν∑
j=0

ϕ
(j)
i hj0

(
ϕ

(j)
i ∈ S(t)W

′
0 , ϕ

(ν)
i 6= 0, ν = ν(i)

)
.

Recall that h0 spans the orthogonal complement to t in t̂ with respect to the Killing form.

Corollary 4.13. In the above notation,

ω(Hi)|t∗⊕Kv = aν(i) ϕ
(ν)
i (e+ + e−)2ν(i) (1 6 i 6 l − 1).

Proof. This follows from Lemmas 4.11 and 4.12. �

Summing up the material of this subsection we obtain the following result:

Theorem 4.14. The algebra S(gẽ)
gẽ is free if and only if there is a homogeneous generating system

ϕ1, . . . , ϕ7 in S(̂t)W
′ such that the elements ϕ(ν)

1 h
ν(1)
0 , . . . , ϕ

(ν)
7 h

ν(7)
0 are algebraically independent.

In type E7 it is difficult to calculate Weyl invariants by hand, and the system of basic
invariants used in the final part of (4.7) is not very helpful in the present situation. Since
this paper is already quite long, we leave the E8 case open for the time being.

4.9. Assume now that g is not of type An or E8. Let ẽ be as before and put p := ng(Kẽ).
Recall that p = g(0)⊕g(1)⊕g(2) is a parabolic subalgebra of g. We are now going to apply
our results on S(gẽ)

gẽ to prove that the semi-centre of the universal enveloping algebra
U(p) is a polynomial algebra. This will confirm a conjecture of Joseph for the parabolic
subalgebra p.

Corollary 4.15. Under the above assumptions, the semi-centre U(p)[p,p] is a polynomial algebra
in l = rk g variables.

Proof. Since g is not of type A, we have [p, p] = gẽ and p = Kh̃ ⊕ gẽ. Let v ∈ S(p)[p,p] and
write v = h̃kvk + h̃k−1vk−1 + · · · + v0 with vi ∈ S(gẽ). Since ẽ ∈ z(gẽ) and ẽ·h̃i = −2ih̃i−1ẽ

for all i > 0, we get 0 = ẽ·v = −
∑k

i=1 2ih̃i−1ẽvi. This yields S(p)[p,p] = S(gẽ)
[p,p] = S(gẽ)

gẽ .
Arguing in a similar fashion we obtain

U(p)[p,p] = U(gẽ)
gẽ = Z(gẽ),

whereZ(gẽ) stands for the centre ofU(gẽ). As S(gẽ)
gẽ is a polynomial algebra in l variables,

there exist algebraically independent homogeneous elements v1, . . . , vl ∈ S(p) such that
S(p)[p,p] = K[v1, . . . , vl].

Let ri = deg vi, where 1 6 i 6 l, and let (Uk)k>0 denote the standard filtration of
U(p). Using the symmetrisation map S(p)

∼→ U(p) it is easy to observe that there exist
u1, . . . , ul ∈ U(p)[p,p] such that ui ∈ Uri and grri(ui) = vi for all i. Since the ui’s are central
in U(gẽ), the standard filtered-graded techniques now shows that U(p)[p,p] = K[u1, . . . , ul]

is a polynomial algebra in l variables. �
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5. THE NULL-CONES IN TYPE A

5.1. In this section we assume that g = gl(V) where dim V > 2. Our goal is to prove that
for every e ∈ N(g) the null-cone N(e) ⊂ g∗e has the expected codimension, i.e., dim N(e) =

dim ge − n. According to Theorem 4.2, the variety N(e) is the zero locus of eF1, . . . ,
eFn,

where Fi = κ−1(∆i). Thanks to the Affine Dimension Theorem, in order to compute
dim N(e) it suffices to find an n-dimensional subspace W ⊂ g∗e such that W ∩ N(e) = 0.
This will be achieved in a somewhat roundabout way: first we shall construct a larger
subspace V ∗ ⊂ g∗e for which the restrictions eFi|V ∗ can be described more or less explicitly
and then show that V ∗ contains an n-dimensional subspace transversal to N(e).

For m ∈ {1, . . . , k}, we partition the set {1, . . . ,m} into pairs (j,m− j + 1). If m is odd,
then there will be a “singular pair” in the middle consisting of the singleton {(m+ 1)/2}.
We denote by Vm the subspace of ge spanned by all ξj,si with i + j = m + 1, and set
V :=

⊕
m>1 Vm. Using the basis {(ξj,si )∗} of g∗e dual to the basis {ξj,si }, we shall regard the

dual spaces V ∗
i and V ∗ as subspaces of g∗e. Since K[V ∗] ∼= S(V ), the restrictions ϕ̂i := eF i|V ∗

are elements of S(V ). For s̄ := (s1, . . . , sk) with si ∈ Z>0 we set |s̄| := s1+s2+ . . .+sk.

Lemma 5.1. Suppose 0 6 q 6 dk. Then ϕ̂n−q ∈ S(Vk). More precisely,

ϕ̂n−q =
∑
|s̄|=q

a(s̄) ξk,dk−sk
1 ξ

k−1,dk−1−sk−1

2 · · · ξ1,d1−s1
k for some a(s̄) ∈ K×

.

Proof. (a) According to Lemma 4.3, eFn−q is a sum of monomials ξσ(1),t1
1 . . . ξ

σ(k),tk
k , where

σ is a permutation of {1, . . . , k} and t1, . . . , tk are nonnegative integers. Such a monomial
does not vanish on V ∗ only if σ(k) = 1, σ(k − 1) ∈ {1, 2} and σ(j) 6 k + 1 − j for all
j 6 k. Since σ is a permutation, we then have σ(k − 1) = 2, σ(k − 2) = 3 and, in general,
σ(j) = k + 1− j.

From (12) we see that ξk−j+1, dk−j+1−sk−j+1

j ξ
j, dj−sj

k−j+1 has weight 2(dj + dk−j+1 − sj − sk−j+1)

with respect to adh. As a consequence, the h-weight of

ξk,dk−sk
1 ξ

k−1,dk−1−sk−1

2 · · · ξ1,d1−s1
k

equals 2(n− k − |s̄|). Since degFn−q = n − q and deg eFn−q = k, this implies that only
monomials with |s̄| = q can occur in eFn−q. Because |s̄| = q 6 dk 6 di and all si are
nonnegative, we have that si 6 dj for all i, j. This means that every ξi,di−si

k−i+1 is a nonzero
element of ge.

(b) We now prove by induction on k that every a(s̄) is nonzero. If k = 1, then V = ge,
ϕ̂n−q = eF n−q = a(q)ξ1,d1−q

1 ; and clearly a(q) 6= 0. If k = 2, then
(
ad∗ξ1,1

1

)
·V ∗ ⊂ V ∗. From

this it follows that the Poisson bracket {ξ1,1
1 , ϕ̂n−q} is zero. On the other hand,

{ξ1,1
1 , ϕ̂n−q} =

q−1∑
i=0

(
a(q − i, i)− a(q − i− 1, i+ 1)

)
ξ2,d2−i
1 ξ1,d1−q+i+1

2 .

As the monomials ξ2,d2−i
1 ξ1,d1−q+i+1

2 with 0 6 i 6 q − 1 are nonzero in S(ge), all coefficients
a(s̄) with |s̄| = q must be equal. If one of them is zero, then all are zeros. Assume that this
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is the case. By Lemma 4.3, we then have

eFn−q =
∑
|s̄|=q

b(s̄) ξ1,d1−s1
1 ξ2,d2−s2

2 , where b(s̄) ∈ K.

Let s2 be the largest integer with b(s1, s2) 6= 0. As s2 6 q 6 d2, the element ξ := ξ1,d1−d2+s2
2

is nonzero in ge. As eF n−q belongs to the Poisson centre of S(ge), we have {ξ, eF n−q} = 0.
On the other hand,

{ξ, eF n−q} = b(s1, s2) ξ
1,s1
1 ξ1,d1

2 + (multiples of monomials of the form ξ1,∗
2 ξ2,∗

2 ).

Since the RHS is nonzero, we reach a contradiction, proving the lemma in case k = 2.

(c) Now suppose k > 2, and set g′ := gl
(
V[1]⊕V[k]

)
and g′′ := gl

(
V[2]⊕ · · ·⊕V[k − 1]

)
.

These are Lie subalgebras of g (embedded diagonally), and e = e′ + e′′ where e′ and e′′ are
the restrictions of e to the e-stable subspaces V[1]⊕V[k] and V[2]⊕ · · ·⊕V[k − 1].

We adopt the notation introduced in the course of proving Lemma 4.3 and express
Fn−q as a polynomial in the variables Eij . Let T be a monomial of Fn−q such that T|V ∗

is a nonzero multiple of a monomial of degree k in ξ
j,dj−sj

k−j+1 . Then T = T ′T ′′, where T ′

and T ′′ are polynomials in the variables coming from g′ and g′′, respectively. Suppose the
restriction of T ′ to V ∗ equals a′ξk,dk−sk

1 ξ1,d1−s
k , where a′ ∈ K× . Then T ′ is a monomial of

F ′
p′ ∈ S(g′)g′ for p′ = d1 + d2 + 2− s1 − s2. Likewise, T ′′ is a monomial of Fp′′ ∈ S(g′′)g′′ for
p′′ = n− q−p′. It follows that a(s̄) = a(s1, sk)a(s2, . . . , sk−1) where the coefficients a(s1, sk)

and a(s2, . . . , ak−1) are related to the nilpotent elements e′ ∈ g′ and e′′ ∈ g′′, respectively.
Note that e′ ∈ g′ has two Jordan blocks of sizes d1 + 1 and d2 + 1, and a(s1, sk) is

the coefficient of ξk,dk−sk
1 ξ1,d1−s1

k in the expression for ϕ̂p′ . This coefficient is nonzero by
part (b). The coefficient a(s2, . . . , sk−1) arises in a similar way from the nilpotent element
e′′ ∈ g′′. Since g′′ ∼= gln−d1−dk−2 we can apply the inductive hypothesis to conclude that
a(s2, . . . , sk−1) 6= 0. Therefore every a(s̄) is nonzero, as wanted. �

5.2. Our next goal is to describe the zero locus X = X(dk) of ϕ̂n, ϕ̂n−1, . . . , ϕ̂n−dk
in V ∗

k .
Denote by Xs̄ the subspace of V ∗

k consisting of all γ ∈ V ∗
k such that ξi,di−t

k−i+1(γ) = 0 for
0 6 t < si. Let ei be the k-tuple whose i-th component equals 1 and the other components
are zero.

Lemma 5.2. The variety X is a union of subspaces. More precisely, X =
⋃
|s̄|=dk+1 Xs̄.

Proof. Let X(q) ⊂ V ∗
k be the zero locus of ϕ̂n, ϕ̂n−1, . . . , ϕ̂n−q. We are going to prove by

induction on q that X(q) is a union of subspaces in V ∗
k and the irreducible components

of X(q) correspond bijectively to the k-tuples s̄ with |s̄| = q + 1. When q = 0, our set of
functions is a singleton containing ϕ̂n = ξ1,d1

k ξ2,d2
k−1 · · · ξ

k,dk
1 . Therefore, X(0) is the union of

k hyperplanes in V ∗
k defined by the equations ξi,di

k−i+1 = 0, where 1 6 i 6 k.
Assume that X(q−1) is a union of subspaces of V ∗

k parametrised by the k-tuples of size
q. Let s̄ be a k-tuple of size q − 1 and let Xs̄ be the irreducible component of X(q−1) corre-
sponding to s̄. Now consider an arbitrary monomial f := ξk,dk−tk

1 ξ
k−1,dk−1−tk−1

2 · · · ξ1,d1−t1
k
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with
∑
ti = q, i.e., a typical summand of ϕ̂n−q. If t̄ = (t1, . . . , tk) 6= s̄, then there ex-

ists an index i such that ti < si. But then ξi,di−ti
k−i+1 , and hence f , vanishes on Xs̄. This

shows that the restriction of ϕ̂n−q to Xs̄ coincides, up to a nonzero multiple, with that of
ξk,dk−sk
1 ξ

k−1,dk−1−sk−1

2 · · · ξ1,d1−s1
k . As a consequence, the zero locus of ϕ̂n, ϕ̂n−1, . . . , ϕ̂n−q in

Xs̄ is the union of k linear subspaces Xs̄+ei
, where 1 6 i 6 k. Then X(q) =

⋃
|s̄|=q+1Xs̄,

and the statement follows by induction on q. �

5.3. By Lemma 5.2, all irreducible components of the variety X(dk) ⊂ V ∗
k have dimension

equal to dimVk − (dk + 1). Hence there is a linear subspace Wk ⊂ V ∗
k such that dimWk =

dk + 1 and Wk ∩X(dk) = 0.

Proposition 5.3. There exists an n-dimensional linear subspaceW =
⊕

m>1Wm in V ∗ such that
Wm ⊂ V ∗

m for all m and W ∩N(e) = 0.

Proof. We argue by induction on k. If k = 1, then N(e) = 0 and there is nothing to prove.
So assume that k > 2, and set gk := gl

(
V[k]

)
and ḡ := gl

(
V[2]⊕ · · ·⊕V[k]

)
. These Lie

algebras are embedded diagonally into g, and we regard the dual spaces ḡ∗ and g∗k as
subspaces of g∗. Note that e = ek + ē where ek and ē are the restrictions of e to V[k] and
V[2]⊕ · · ·⊕V[k], respectively. Clearly, ek is a regular nilpotent element in gk ∼= gldk+1 and
ē ∈ ḡ ∼= gln−dk−1 is a nilpotent element with Jordan blocks of sizes d1 + 1, . . . , dk−1 + 1. For
1 6 i 6 n−dk−1, put F̄i := Fi|ḡ∗ . Restricting the principal minors ∆i from g to ḡ it is easy
to see that the homogeneous generating system F̄i, . . . , F̄n−dk−1 of S(ḡ)ḡ is good for ē ∈ ḡ.

Next we observe that ḡē is a Lie subalgebra of ge spanned by all ξj,si with 1 6 i, j < k.
Hence we may identify the dual space (ḡē)

∗ with the linear span of
{
(ξj,si )∗ | 1 6 i, j < k

}
in g∗e. For every i ∈ {1, . . . , n− dk − 1} the restriction of eFi to (ḡē)

∗ equals ēF̄i.
Note that V ∗

m ⊂ (ḡē)
∗ for m < k and V ∗

k ∩ (ḡē)
∗ = 0. By our inductive hypothesis, there

exists a subspace W =
⊕k−1

m=1 Wi such that dimW = n− dk− 1 and W ∩N(ē) = 0. Choose
a (dk + 1)-dimensional subspace Wk in V ∗

k with Wk ∩X(dk) = 0. Such a subspace exists by
Lemma 5.2. Now set W := W ⊕Wk. Then dimW = n.

We claim that W ∩ N(e) = 0. By Lemma 5.1, for n − dk 6 i 6 n the restriction ϕ̂i =
eF i|V ∗ belongs to S(Vk). Therefore, the zero locus of ϕ̂n, . . . , ϕ̂n−dk

in V ∗ coincides with(⊕k−1
m=1 V

∗
m

)
×X(dk). Since Wk ∩X(dk) = 0, we obtain W ∩ N(e) ⊂

⊕k−1
m=1 V

∗
m ⊂ (ḡē)

∗. But
then W ∩N(e) ⊂ W ∩N(ē) = 0, and we are done. �

The following is the main result of this section:

Theorem 5.4. Let e be an arbitrary nilpotent element in g = gln. Then all irreducible components
of the null-cone N(e) have codimension n in g∗e and hence eF 1, . . . ,

eF n is a regular sequence in
S(ge).

5.4. LetX ⊂ Ad
K be a Zariski closed set and let x = (x1, . . . , xd) be a point ofX . Let I denote

the defining ideal of X in the coordinate algebra A = K[X1, . . . , Xd] of Ad
K. Each nonzero

f ∈ A can be expressed as a polynomial in X1 − x1, . . . , Xd − xd, say f = fk + fk+1 + · · · ,
where fi is a homogeneous polynomial of degree i in X1 − x1, . . . , Xd− xd and fk 6= 0. We
set inx(f) := fk and denote by inx(I) the linear span of all inx(f) with f ∈ I \ {0}. This

43



is an ideal of A, and the affine scheme TCx(X) := Spec A/inx(I) is called the tangent cone
to X at x. Note that (I ∩ mk

x)k>1 is a descending filtration of I , and the scheme TCx(X) is
nothing but the prime spectrum of the graded algebra grmx

A/gr I . It is well-known that
the projectivised tangent cone PTCx(X) ⊂ PTx(X) is isomorphic to the special divisor of
the blow-up of X at x; see [9, Ex. IV-24] for example. Consequently, for X irreducible, all
irreducible components of TCx(X) have dimension equal to dimX .

Corollary 5.5. Let N be the nilpotent cone of g = gln and Fi = κ−1(∆i) where 1 6 i 6 n. Let
e ∈ N and r = dim ge. Then TCe(N) ∼= An2−r

K × Spec S(ge)/(
eF1, . . . ,

eFn) as affine schemes.

Proof. Since the map x 7→ (x, · ) takes e to χ and N isomorphically onto the zero locus of
the ideal J = (F1, . . . , Fn) ⊂ S(g), the scheme TCe(N) is isomorphic to Spec S(g)/inχ(J).
As χ(f) = 1, we have g = Kf ⊕ e⊥ where e⊥ is the orthogonal complement to Ke in g.
For 1 6 i 6 n write Fi = fk(i)p0,i + fk(i)−1p1,i + · · ·+ pk(i),i, where pj,i ∈ S(e⊥) and p0,i 6= 0.
According to Corollary 7.2, we have p0,i = eF i. Since e⊥ and f − χ(f) lie in the maximal
ideal of χ in K[g∗] = S(g), it follows that inχ(Fi) = eF i for all 1 6 i 6 n.

By Theorem 5.4, eF 1, . . . ,
eF n is a regular sequence in S(ge). Therefore, it is also a regular

sequence in S(g). Since J = (F1, . . . , Fn), it follows that the ideal inχ(J) is generated by
eF 1, . . . ,

eF n; see [26, Prop. 2.1]. As a consequence,

TCe(N) ∼= Spec S(g)/(eF 1, . . . ,
eF n) ∼= Ann(ge)× Spec S(ge)/(

eF1, . . . ,
eFn)

as affine schemes. Since dim Ann(ge) = n2 − r, the result follows. �

Conjecture 5.1. If g = gln, then for any e ∈ N the scheme TCe(N) is reduced.

Remark 5.1.
1. It can be shown that in the subregular G2 case the variety TCe(N(g))red is isomorphic
to an affine space, but the scheme TCe(N(g)) is not reduced. Thus, one cannot expect
Conjecture 5.1 to be true for any simple Lie algebra.
2. It follows from Corollary 5.5 that for g = gln the affine variety TCe(N(g))red is isomor-
phic to Am

K ×N(e) wherem = dim g−dim ge. It is possible that this isomorphism continues
to hold for any reductive Lie algebra g. If this is the case, then the variety N(e) is always
equidimensional.
3. Although the variety N(e) is irreducible in some cases, in general it has many irre-
ducible components. Due to Theorem 2.1(iii), in order to prove Conjecture 5.1 it would
be sufficient to show that every irreducible component of N(e) intersects with (g∗e)reg.
Describing the irreducible components of N(e) for g = gln appears to be an interesting
combinatorial problem.

6. MISCELLANY

6.1. In this section, Conjecture 0.1 will be verified in some special cases. The idea is that,
for some e ∈ N(g), we can prove that the algebra K[ge]

ge is graded polynomial. If, in
addition, it is known that ge ' g∗e as ge-modules, then we conclude that Conjecture 0.1
holds for such e.
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We briefly recall the structure of the centralizer ge of a nilpotent element e ∈ g as de-
scribed by the Dynkin–Kostant theory; see e.g. [5, Ch. 4]. Let {e, h, f} be an sl2-triple and
g =

⊕
i∈Z g(i) the corresponding Z-grading. Then ge =

⊕
i>0 ge(i) and ge(0) is a maximal

reductive subalgebra of ge. Moreover, ge(0) = zg(e, f) = zg(e, h, f). The element e is called
even if all the eigenvalues of adh are even, i.e., if g(i) = 0 for i odd. By a classical result
of Dynkin, e is even if and only if g(1) = 0; see [7, Thm. 8.3]. In this case the weighted
Dynkin diagram of e contains only labels 0 and 2.

In the following theorem, we use some concepts and results on (1) semi-direct products
of Lie algebras and (2) contractions of Lie algebras. All the necessary definitions can be
found in [16, Sect. 4] and [28, Ch. 7], respectively.

Theorem 6.1. Suppose that a principal nilpotent element in ge(0) is also principal in g(0) and e is
even. Then K[ge]

ge is a polynomial algebra and the degrees of basic invariants (= free homogeneous
generators) are the same as those for K[g(0)]g(0).

Proof. Associated to the triple (e, h, f) and the corresponding Z-grading, we have three
Lie algebras: g(0), ge, and q := ge(0) n

(⊕
i>2 ge(i)

)
. Here the sign n refers to the semi-

direct product of Lie algebras and the space
⊕

i>2 ge(i) in q is regarded as commutative
Lie algebra. Clearly, dim q = dim ge. The equality dim g(0) = dim ge is equivalent to the
fact that e is even. Thus, all three Lie algebras have the same dimension. Here we obtain
the chain of Lie algebra contractions:

g(0) ; ge ; q .

The first contraction can be described as follows. Consider the curve e(t) := e + tf ∈ g,
t ∈ K. For t 6= 0, the element e(t) is G-conjugate to h. Therefore, ge(t) is isomorphic to
gh = g(0). Hence limt→0 ge(t) = ge yields a contraction of g(0) to ge. Using the terminology
of [16, Sect. 9], one can say that the passage ge ; q is an isotropy contraction of ge. By [16,
Theorem 6.2], the algebra of invariants of the adjoint representation of q is polynomial.
Moreover, if a regular nilpotent element of ge(0) is also regular in g(0), then by [16, The-
orem 9.5] the invariant algebras K[g(0)]g(0) and K[q]q have the same Krull dimension and
the same degrees of basic invariants. It is easily seen that the algebra of invariants of the
adjoint representation can only become larger under contractions. Since K[g(0)]g(0) and
K[q]q appear to be ”the same”, the intermediate algebra K[ge]

ge must also be polynomial
with the same degrees of basic invariants. �

6.2. By a result of Elashvili–Panyushev (Appendix to [12]), the assumptions on e in The-
orem 6.1 precisely mean that e is a member of a rectangular principal nilpotent pair. The
general theory of principal nilpotent pairs (to be abbreviated as pn-pairs from now) was
developed by Victor Ginzburg [12]. Because the general notion is not needed here, we
only recall the definition of a rectangular pn-pair.

Definition 6.1. A pair of nilpotent elements e = (e1, e2) is called a rectangular pn-pair
if dim(ge1 ∩ ge2) = rk g and there are pairwise commuting sl2-triples (e1, h1, f1) and
(e2, h2, f2).
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We say that a nilpotent orbit G·e is very nice if e is a member of a rectangular pn-pair
and ge ' g∗e as ge-modules.

Corollary 6.2. Suppose G·e is very nice. Then Conjecture 0.1 holds for ge and S(g)g admits a
good generating system for e.

A classification of rectangular pn-pairs is obtained by Elashvili and Panyushev in [12,
Appendix]. From that classification one derives a description of very nice orbits. It is
worth mentioning that for a pn-pair (e1, e2) the condition that G·e1 is very nice does not
in general guarantee that so is G·e2.

Although there are not too many very nice nilpotent orbits (especially in the exceptional
Lie algebras), this approach does provide new examples supporting Conjecture 0.1. The
examples for sln and sp2n are not new; see Section 4.

6.3. Below we list the very nice nilpotent orbits in exceptional Lie algebras. For each
such orbit we give the Dynkin-Bala-Carter label, the weighted Dynkin diagram, and the
degrees of basic invariants for S(ge)

ge .

E6 D4
0–0–2

2

–0–0
1, 1, 2, 2, 3, 3

E7 E6
0–2–0–2

0

–2–2
1, 1, 1, 1, 2, 2, 2

A2+A4
0–0–0–2

0

–0–0
1, 2, 2, 2, 3, 3, 4

A6
0–2–0–2

0

–0–0
1, 1, 2, 2, 2, 2, 3

Let us give some details on the unique orbit for E6. Here dim ge = 18 and ge is the direct
sum of the 2-dimensional centre and the Takiff Lie algebra s modelled on sl3. Namely, s

is just the semi-direct product sl3 n sl3.

6.4. The very nice nilpotent orbits in classical Lie algebras are described below.

1◦. g = sln. Here e is a member of a rectangular pn-pair if and only if the corresponding
partition of n is a rectangle (i.e., all the parts are equal). That is, we may assume that
n = rs and the partition of e is (r, . . . , r), with s parts. We also write e ∼ (r, . . . , r︸ ︷︷ ︸

s

) for

this. It is harmless but technically easier to work with g = gln in place of sln. Then
ge is a generalised Takiff Lie algebra modelled on gls. More precisely, consider the Lie
algebra gls ⊗ K[t] (t is an undeterminate) and take the quotient with respect to the ideal
generated by tr. It is easily seen that ge ' g∗e. (See [22] and [16, Sect. 11] for more results on
generalised Takiff Lie algebras.) The second member of the rectangular pn-pair is given
by the conjugate partition (s, . . . , s), with r parts. This situation is symmetric and both
nilpotent orbits are very nice.
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2◦. g = sp2n. Here e is a member of a rectangular pn-pair if and only if the corresponding
partition of 2n is a rectangle whose sides have different parity. That is, we may assume
that 2n = rs, where r is even and s is odd. The situation here is not symmetric. Only the
orbit corresponding to the partition (s, . . . , s) with r parts is very nice.

3◦. g = son. Here we have to distinguish the series B and D.
• If n is odd, then the only suitable partitions are the rectangles whose both sides are
odd. That is, n = rs, where r and s are odd. Then e ∼ (s, . . . , s︸ ︷︷ ︸

r

). Here both members of

the rectangular pn-pair give rise to very nice orbits.
• For n even, there are more possibilities for rectangular pn-pairs.

(1) If a partition of n is rectangle with both even sides, then neither of the respective
orbits is very nice.

(2) If n = rs + 1, where r, s are odd, the there is a rectangular pn-pair (e1, e2) with
e1 ∼ (s, . . . , s︸ ︷︷ ︸

r

, 1) and e2 ∼ (r, . . . , r︸ ︷︷ ︸
s

, 1). Here both members of the rectangular pn-pair give

rise to very nice orbits.
(3) If n = r + s, where r, s are odd, then there is a rectangular pn-pair (e1, e2) with

e1 ∼ (s, 1, . . . , 1︸ ︷︷ ︸
r

) and e2 ∼ (r, 1, . . . , 1︸ ︷︷ ︸
s

). Here neither of the respective orbits is very nice.

7. APPENDIX

Here we give an alternative (elementary) proof of Proposition 0.1, which is inspired by
an unpublished result of J.-Y. Charbonnel (private communication).

Let e⊥ ⊂ g be the orthogonal complement of Ke. Since (e, f) = 1, we have g = Kf ⊕ e⊥.
Take a homogeneous F ∈ S(g)G and express it as

F = fkp0 + fk−1p1 + · · ·+ pk,

where pi ∈ S(e⊥).

Lemma 7.1. For any homogeneous F ∈ S(g)G we have that p0 ∈ S(ge)
Ge .

Proof. If g ∈ Ge, then (Ad g)e⊥ ⊂ e⊥ and (Ad g)f ∈ f + e⊥. Therefore,

F = g·F = (g·p0)f
k + fk−1p′1 + · · ·+ p′k

for some p′i ∈ S(e⊥). Since g·p0 ∈ S(e⊥), this shows that p0 is Ge-invariant.
Recall that g = ge ⊕ Im ad f . Choose a basis y1, . . . , yt of e⊥ ∩ Im ad f . If p0 is not

an element of S(ge), then renumbering the yi’s if necessary we may assume that p0 =

ys1q0 + ys−1
1 q1 + · · · + qs, where qi ∈ K[y2, . . . , yt] and q0 6= 0. Since the Killing form of

g induces a nondegenerate pairing between Im ad e and Im ad f , there is a z ∈ g such
that ([e, z], y1) 6= 0, ([e, z], yi) = 0 for all i 6= 1, and ([e, z], f) = 0. Note that ([z, y1], e) =

(y1, [e, z]) 6= 0, but ([z, yi], e) = 0 for all i 6= 1, and ([z, x], e) = −(z, [e, x]) = 0 for all x ∈ ge.
Rescaling z if need be, we may assume that ([z, y1], e) = 1. Then [z, y1] = f + e⊥ and
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[z, f ] ∈ e⊥, implying

{z, F} = (sys−1
1 q0 + (s− 1)ys−2

1 q1 + · · ·+ q1)f
k+1 + (terms with smaller powers of f ).

This, however, contradicts the equality {z, F} = 0. �

Corollary 7.2. For any homogeneous F ∈ S(g)G we have that eF = p0 and eF ∈ S(ge)
Ge .
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Math. 425 (1992), 123–140.
[23] M. ROSENLICHT, A remark on quotient spaces, An. Acad. Brasil. Cienc., 35 (1963), 487–489.
[24] S. SKRYABIN, Invariants of finite group schemes, J. London Math. Soc. (2), 65 (2002), 339–360.
[25] P. SLODOWY, “Simple Singularities and Simple Algebraic Groups”, Lecture Notes in Mathematics,

Vol. 815, Springer, Berlin/Heidelberg/New York, 1980.
[26] P. VALABREGA and G. VALLA, Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93–101.
[27] �.B. Vinberg, A.L. Oniwik, “Seminar po gruppam Li i algebraiqeskim gruppam”. Moskva:

“Nauka” 1988 (Russian). English translation: A.L. ONISHCHIK and E.B. VINBERG, “Lie groups and
algebraic groups”, Springer, Berlin, 1990.

[28] �.B. Vinberg, V.V. Gorbaceviq, A.L. Oniwik, “Gruppy i algebry Li - 3”, Sovremennye
problemy matematiki. Fundamental~nye napravleni�, t. 41. Moskva: VINITI 1990 (Rus-
sian). English translation: V.V. Gorbatsevich, A.L. Onishchik and E.B. Vinberg, “Lie Groups and Lie
Algebras” III (Encyclopaedia Math. Sci., vol. 41) Berlin/Heidelberg/New York: Springer 1994.

[29] O. �kimova, Indeks centralizatorov �lementov v klassiqeskih algebrah Li, Funkc. analiz
i ego prilo�., 40, } 1 (2006), 52–64 (Russian). English translation: O. YAKIMOVA, The centralisers of
nilpotent elements in classical Lie algebras, Funct. Anal. Appl., 40 (2006), 42–51.

[30] O. ZARISKI and P. SAMUEL, “Commutative Algebra”. (Vols. 1 and 2). Reprint of the 1958–1960 edition.
Springer, New York, 1979.

(D.P.) INDEPENDENT UNIVERSITY OF MOSCOW, BOL’SHOI VLASEVSKII PER. 11, 119002, MOSCOW RUS-
SIA

E-mail address: panyush@mccme.ru

(A.P.) SCHOOL OF MATHEMATICS, THE UNIVERSITY OF MANCHESTER, OXFORD RD, M13 9PL, UK.
E-mail address: sashap@maths.man.ac.uk

(O.Y.) MATHEMATISCHES INSTITUT, UNIVERSITÄT ZU KÖLN, WEYERTAL 86-90, 50931 KÖLN GERMANY

E-mail address: yakimova@mpim-bonn.mpg.de

49


