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BASES, FILTRATIONS AND MODULE DECOMPOSITIONS OF
FREE LIE ALGEBRAS

RALPH STÖHR

Abstract. We use Lazard Elimination to devise some new bases of the free

Lie algebra which (like classical Hall bases) consist of Lie products of left

normed basic Lie monomials. Our bases yield direct decompositions of the

homogeneous components of the free Lie algebra with direct summands that

are particularly easy to describe: they are tensor products of metabelian Lie

powers. They also give rise to new filtrations and decompositions of free Lie al-

gebras as modules for groups of graded algebra automorphisms. In particular,

we obtain some new decompositions for free Lie algebras and free restricted

free Lie algebras over fields of positive characteristic.

1. Introduction

Let L = L(X) be the free Lie algebra with free generating set X over a commu-
tative ring K with 1. Thus

L =
⊕
n≥1

Ln

where Ln = Ln(X) is the homogeneous component of degree n in L (we also say:
the n-th Lie power). Assume that the set X is ordered. A left normed basic Lie
monomial of degree n over X is a Lie product of the form

[x1, x2, x3, . . . , xn] with x1, x2, x3, . . . , xn ∈ X and x1 > x2 ≤ x3 ≤ . . . ≤ xn.

We write Hn = Hn(X) for the set all left normed basic Lie monomials of degree
n, and H for the set of all left normed basic Lie monomials of degree ≥ 2. Notice
that the left normed basic Lie monomials are contained in any classical Hall basis
of L, and that any such basis consists indeed of Lie products of left normed basic
Lie monomials. Moreover, the left normed basic Lie monomials of degree ≥ 2 form
a free generating set of the derived algebra L′ =

⊕
n≥2 Ln. It follows that for

each n ≥ 1 the set Hn (more precisely, the set {v + L′′ ; v ∈ Hn}) is a basis of
the n-th homogeneous component Mn = Mn(X) of the free metabelian Lie algebra
M = L/L′′ on X. We call Mn the n-th metabelian Lie power.

In this paper we obtain some new bases for the free Lie algebra L, which (like
classical Hall bases) consist of Lie products of left normed basic Lie monomials.
The advantage of our bases is that they provide direct decompositions of the Lie
powers Ln (as K-modules) with direct summands which are particularly easy to
describe: they are metabelian Lie powers and tensor products of metabelian Lie
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2 RALPH STÖHR

powers. For example, if n > m ≥ 2, our bases may be chosen in such a way that
they contain all Lie products

(1.1) [u,w1, w2, . . . , wk] (u ∈ Hn, w1, . . . , wk ∈ Hm).

The span of these basis elements is (as a free K-module) isomorphic to the tensor
product Mn ⊗Mm ⊗ · · · ⊗Mm (with k tensor factors Mm). On contrast, a Hall
basis contains only the Lie products (1.1) with w1 ≤ w2 ≤ · · · ≤ wk, and the span
of those is isomorphic to Mn⊗Sk(Mm) where Sk(Mm) is the k-th symmetric power
of Mm.

Our bases give rise to filtrations of the Ln, not just as K-modules but as modules
for a group G of graded algebra automorphisms. The quotients of theses filtrations
are direct sums of tensor products of metabelian Lie powers. The filtrations com-
pare favorably with the (more complicated) filtrations obtained using Hall bases
in [18, Section 3.1]. In the case where K is a field of characteristic zero, we can
do better and instead of filtrations we actually get decompositions of the Ln as
KG-modules. It is interesting to compare these decompositions with somewhat
similar decompositions obtained by G.E. Wall [21], where direct summands are
tensor products of symmetric powers of metabelian Lie powers (similar to the quo-
tients of the filtration in [18]). We also obtain a number of applications for Lie
powers over fields of positive characteristic. There our methods apply not only to
free Lie algebras, but also to free restricted Lie algebras (in the case where K is a
field of positive characteristic).

When working with the free restricted Lie algebra R = R(X), it is convenient to
think of R as the closure of L in its universal envelope under the unary operation
u 7→ up. The universal envelope of L will be identified with the tensor algebra
T =

⊕
n≥0 Tn where Tn = 〈X〉⊗n, the n-th tensor power of the free K-module on

X.
Given a free K-module A, we write L(A) for the free Lie algebra on A, that is the

free Lie algebra on X where X is an arbitrary K-basis of A, and Ln(A) for the n-th
Lie power. Similar notation will be used for free restricted Lie algebras and free
metabelian Lie algebras. If G is a group acting on A by K-linear automorphisms,
so that A becomes a KG-module, then the action of G extends uniquely to the
whole of L(A) with G acting by graded algebra automorphisms. In particular, the
Lie powers Ln(A) become KG-modules. Similarly, Mn(A), Rn(A) and Tn(A) will
be regarded as KG-modules. In the most general case G is the full group of graded
algebra automorphisms of the free Lie algebra L = L(X), that is G = GL(V )
where V = L1 = 〈X〉. The actual aim of this paper is to obtain information about
the structure of the free Lie algebra as a KG-module, and the greater part of it
(Sections 5-10) deals with module structure. Our new bases have been devised to
serve this purpose, but we hope they will be of independent interest. The final four
sections are concerned with modular Lie powers. In recent years these have been
studied intensively by a number of authors, and considerable progress has been
made. Some comments on that and related references can be found at the end of
Section 7.



FREE LIE ALGEBRAS 3

The key tool in this paper is Lazard elimination for free Lie algebras (see Sec-
tion 2), and another important devise is a variation thereof, called restricted elim-
ination, that is peculiar to free restricted Lie algebras (see Section 8). We use the
left normed convention for Lie brackets (that is [u, v, w] = [[u, v], w]), and we write
〈U〉 for the span of set U in a K-module.

2. Decomposition by Lazard Elimination

Let X be a countable set of cardinality at least 2, and let L = L(X) be the
free Lie algebra on X over a commutative ring K with 1. The Lazard Elimination
Theorem (see [2, Chapter 2, Section 2.9, Proposition 10]) reads as follows.

Lazard Elimination Theorem. Let X = Y ∪Z be the disjoint union of its proper
subsets Y and Z, then

L(X) = L(Y ∪ Z) = L(Y )⊕ L(Z o Y )

where

Z o Y = {[z, y1, . . . , yk] ; z ∈ Z, yi ∈ Y, k ≥ 0}.

We call Z o Y the wreath set of Y and Z. Our aim is to apply this theorem
repeatedly, namely, first to L(X), then to L(Z o Y ), then to the free Lie algebra
on the wreath set resulting from the previous elimination, and so on, to obtain
decompositions of L(X) over K.

Definition 2.1. Let {Ei}i≥1 and {Êi}i≥0 be sequences of non-empty subsets of
the free Lie algebra L(X) satisfying the following recursive conditions.

(i) Ê0 = X .
(ii) For all i > 0, Ei is a proper subset of Êi−1 and Êi = (Êi−1 \ Ei) o Ei.

Then we call {Ei}i≥1 an elimination sequence for L(X), and the sequence {Êi}i≥0

its associated wreath sequence.

Note that the associated wreath sequence {Êi}i≥0 is uniquely determined by its
initial term Ê0 and the elimination sequence {Ei}i≥1. Observe also that, by the
definition of a wreath set, all elements of Ei and Êi are Lie monomials in X, and
therefore have a well-defined degree with respect to X. An immediate consequence
of the Lazard Elimination Theorem is the following

Lemma 2.1. Let {Ei}i≥1 be an elimination sequence for L(X) with associated
wreath sequence {Êi}i≥0. Then for each k ≥ 1 there is a direct decomposition

(2.1) L(X) = L(E1)⊕ L(E2)⊕ · · · ⊕ L(Ek)⊕ L(Êk).

of L(X) as a free K-module. �

Definition 2.2. An elimination sequence {Ei}i≥1 for L(X) is called convergent if

(2.2) L(X) =
⊕
i≥1

L(Ei).
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Next we derive some conditions for the convergence of an elimination sequence.
These conditions refer to notion of degree in L(X). It will be convenient to state
them for the case when the elements ofX may have been assigned degrees other than
one. Namely, we say that X is a graded set if X has a distinguished decomposition
as a disjoint union X =

⋃
α∈I Xα of its subsets Xα where α runs over some index

set I, and the elements of each subset Xα are assigned the degree n(α) where n(α)
is a natural number. If for each n ≥ 1 there are at most finitely many α ∈ I

with n(α) = n, we say that X is finitely graded. As in the common case where
all elements of X have degree 1, this more general notion of degree gives rise to
a decomposition of L(X) into homogeneous components: The n-th homogeneous
component Ln of L(X) is spanned by all Lie products [w1, w2, . . . , wk] with wi ∈ X
such that degw1 + · · · + degwk = n, and we have L(X) =

⊕
n≥1 Ln. For a set B

of homogeneous elements in L(X) we let δ(B) denote the smallest natural number
such that B contains an element of degree δ(B), and if all elements of B have
the same degree we write degB for the common degree of all these elements. The
definition of the sets Êi as (Êi−1 \Ei) oEi implies that for any elimination sequence
{Ei}i≥1 the sequence {δ(Êi)}i≥0 is non-decreasing.

Lemma 2.2. Let X =
⋃

α∈I Xα be a graded set, and let {Ei}i≥1 be an elimina-
tion sequence for L(X) with associated wreath sequence {Êi}i≥0. Then {Ei}i≥1 is
convergent if

lim
i→∞

δ(Êi) = ∞.

Proof. Suppose that limi→∞ δ(Êi) = ∞. Since L(X) is the direct sum of its ho-
mogeneous components, it is sufficient to show that for each n ≥ 1 the homoge-
neous component Ln is contained in

⊕
i≥1 L(Ei). Our limit condition implies that

there exists a k ≥ 1 such that Êk consists entirely of elements of degree > n, and
consequently L(Êk) ⊆

⊕
i>n Li. But then (2.1) implies that Ln is contained in⊕k

i=1 L(Ei), and hence Ln ⊆
⊕

i≥1 L(Ei) as required. �

We exploit the lemma to derive another sufficient condition for convergence.
Suppose that X =

⋃
α∈I Xα is a graded set and let β ∈ I. Then the wreath

set (X \ Xβ) o Xβ has a distinguished decomposition as the disjoint union of the
homogeneous sets

Xα,k = [Xα, Xβ , . . . , Xβ︸ ︷︷ ︸
k

] = {[u, v1, . . . , vk] ; u ∈ Xα, vi ∈ Xβ}

where α ∈ I \ {β}, k ≥ 0. We call this decomposition the natural grading of the
wreath set (X \ Xβ) o Xβ , and we refer to the sets Xα,k as to the components of
the natural grading. We call an elimination sequence {Ei}i≥1 for L(X) natural, if
E1 = Xβ for some β ∈ I, and each Ei with i > 1 is a component of the natural
grading of the wreath set Êi−1 = (Êi−2 \ Ei−1) o Ei−1. A natural elimination
sequence is called regular if each Ei is a set of smallest possible degree (that is
degEi = δ(Êi−1)).
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Example. Let Y = Y2 ∪ Y3 ∪ Y4 ∪ · · · with deg Yi = i. To produce a regular
elimination sequence {Ei}i≥1 for L(Y ), we first set E1 = Y2, the set of smallest
degree in the (natural) grading of Ê0 = Y . Then

Ê1 = {Y3, Y4, Y5, [Y3, Y2], Y6, [Y4, Y2], Y7, [Y5, Y2], [Y3, Y2, Y2], . . .}.

The regularity condition implies that E2 = Y3, the component of smallest degree
in the natural grading of Ê1. Then

Ê2 = {Y4, Y5, [Y3, Y2], Y6, [Y4, Y2], Y7, [Y5, Y2], [Y3, Y2, Y2], [Y4, Y3], . . .

Y10, [Y8, Y2], [Y6, Y2, Y2], [Y4, Y2, Y2, Y2], [Y7, Y3], [Y5, Y2, Y3],

[Y3, Y2, Y2, Y3], [Y4, Y3, Y3], . . .}.

Next comes E3 = Y4, but after that there are choices to be made as Ê3 contains
two components of minimal degree, namely, Y5 and [Y3, Y2], and there will be even
more choice later on. Different choices will result in different elimination sequences.
The first terms of the elimination sequence up to degree 8 are as follows:

Y2, Y3, Y4, Y5, [Y3, Y2], Y6, [Y4, Y2],

Y7, [Y5, Y2], [Y3, Y2, Y2], [Y4, Y3],

Y8, [Y6, Y2], [Y4, Y2, Y2], [Y5, Y3], [Y3, Y2, Y3].

(2.3)

These sets do not depend on the ordering we are required to choose, but the ordering
will have an essential effect in higher degrees. For example, if we choose Y5 >

[Y3, Y2], we get the set [Y5, [Y3, Y2], [Y3, Y2], Y5] in degree 20, but this set will not
occur if we make the opposite choice.

Lemma 2.3. Let X =
⋃

α∈I Xα be a finitely graded set. Then every regular elimi-
nation sequence for L(X) is convergent.

Proof. Let {Ei}i≥1 be a regular elimination sequence for L(X), and let Êi =⋃
α∈Ii

Uα be the natural grading of Êi. The assumption that X is finitely graded
guarantees that for each i ≥ 1 and each n ≥ 1 there are only finitely many α ∈ Ii

such that degUα = n. Let Ji denote the subset of Ii such that the Uα with α ∈ Ji

are of minimal degree, that is degUα = δ(Êi). Then the regularity condition on
the elimination sequence gives that Ei+1 = Uβ for some β ∈ Ji. But then Êi+1

consists of the sets Uα with α ∈ (Ji \β) and sets of higher degree. In particular, the
number of sets of degree δ(Êi) in the natural grading of Êi+1 is strictly less than
the number of sets of degree δ(Êi) in the natural grading of Êi. This gives that for
some j > i there will be no sets of degree δ(Êi) in the natural grading of Êj , and
since the sequence {δ(Êi)}i≥1 is non-decreasing, we have that δ(Êj) > δ(Êi). But
this means that our elimination sequence satisfies the condition of Lemma 2.2, and
the result follows. �

Convergent elimination sequences can be used to construct homogeneous K-
bases of the free Lie algebra L(X). The most straightforward example of such an
application comes from convergent elimination sequences {Ei}i≥1 in which each
term Ei is a singleton: Ei = {wi} for some wi ∈ L(X). In this case each of the
direct summands on the right hand side of (2.2) is a free Lie algebra of rank 1,
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L(Xi) = 〈wi〉, and the right hand side of (2.2) is a decomposition of L(X) into
a direct sum of rank 1 submodules 〈wi〉 (i = 1, 2, . . .). In other words, the set
{wi ; i ≥ 1} is a K-basis of L(X). In particular, if the grading of X in Lemma 2.2
is such that every Xα is a singleton Xα = {xα}, then all the sets in the natural
gradings of the wreath sets Êi are singletons, and, consequently, all elimination sets
Ei are singletons. This gives the following

Corollary 2.1. Let X =
⋃

α∈I Xα be a finitely graded set, and assume in addition
that every Xα is a singleton. Then the elimination sets Ei in every regular elim-
ination sequence {Ei}i≥1 are singletons, Ei = {wi} with wi ∈ L(X), and the set
{wi ; i = 1, 2, 3 . . .} is a K-basis of L(X). �

An easy consequence of this corollary is the following result.

Corollary 2.2. Let X be a graded set such that for each n ≥ 1 there are at most
finitely many elements of degree n in X, and let {Ei}i≥1 be an elimination sequence
such that each Ei consists of a single element wi that is of smallest possible degree
in Êi−1. Then {Ei}i≥1 is convergent. In particular, the set {wi ; i = 1, 2, 3 . . .} is
a K-basis of L(X).

Proof. Write X as a finitely graded set X =
⋃

x∈X{x}. Then any elimination
sequence satisfying the condition in the statement of the corollary will be regular
with respect to this grading, and hence it is convergent. �

Corollary 2.2 applies to the standard case where X is a finite, and all elements of
X have degree 1. In this case it is not hard to see that if {Ei}i≥1 is an elimination
sequence as in Corollary 2.2, then the resulting K-basis {w1, w2, w3, . . .} is precisely
a classical Hall basis. Hall basic monomials are defined recursively and depend on
an ordering of the basis elements. When we use an elimination sequence as above to
get a Hall basis, this order is just the order in which the elements wi are eliminated:
w1 < w2 < w3 < · · · .

Our next aim is to give an alternative description of the sets Ei in a regular
elimination sequence. To this end we define an collection of subsets of the free Lie
algebra L(X).

Definition 2.3. Let X =
⋃

α∈I Xα be a graded set. A basis set collection for L(X)
is an ordered set B = B(X) of subsets of the free Lie algebra L(X), which we call
B-sets, defined inductively as follows. The B-sets of minimal degree are the sets
Xα of minimal degree in X, ordered in an arbitrary way. Now suppose that the
B-sets of degree < n have been defined and ordered so that the ordering respects
the degree. Then the B-sets of degree n are the sets Xα with degXα = n and the
sets

[U, V ] = {[u, v]; u ∈ U, v ∈ V }
such that

(i) U and V are B- sets with degU + deg V = n,
(ii) U > V ,
(iii) if U = [U1, U2] for B-sets U1, U2 then V ≥ U2.



FREE LIE ALGEBRAS 7

The degree n sets are then ordered arbitrarily, and declared to be greater than the
B-sets of degree less than n. We write Bn for the set of all B-sets of degree n, and
B(X) or simply B for the set of all B-basis sets.

Note that if X is a finitely graded set, then each Bn consists of finitely many sets,
and hence we may assume that the order of B is of type ℵ0: B = {E1, E2, E3, . . .}
with E1 < E2 < E3 < · · · .

Theorem 2.1. Let X =
⋃

α∈I Xα be a finitely graded set, and let B = {E1, E2, E3, . . .}
be a basis set collection for L(X). Then {Ei}i≥1 is a regular elimination sequence
for L(X). In particular, there is a direct decomposition

L(X) =
⊕
i≥1

L(Ei) =
⊕
n≥1

⊕
U∈Bn

L(U)

of L(X) as a free K-module.

Proof. By construction, E1, that is one of the Xα with minimal degree, is the
initial term of a regular elimination sequence. Hence, to prove the theorem we
need to show that each Ei with i > 1 is a component of minimal degree in the
natural grading of Êi−1. The are two cases to consider. If Ei = Xα for some
α ∈ I, then Xα is a component of Êi−1 and it must be of minimal degree since,
by induction, {Ej}j<i is the initial part of an elimination sequence, and hence the
span of the Ej contains all homogeneous components Lm with m < degEi. So
Êi−1 cannot contain elements of degree less than degEi. If, on the other hand,
Ei = [U, V ] for B-sets U and V , then it follows from Definition 2.3 that Ei =
[El, Ek, . . . , Ek] for some k < l < i. But then Ei is a component of Êk−1 and hence
of all subsequent terms of the wreath sequence until Êi−1. Indeed, since {Ej}j<i is
the initial part of an elimination Ei cannot be eliminated at an earlier step than the
i-th (because otherwise the set Ei would appear more than once in our sequence of
B-sets prompting the contradiction Ei < Ei), and it must be of minimal degree in
Êi−1 by the same argument that was used in the case where Ei = Xα. �

An important consequence of the theorem is that the span of each B-set of the
form [U, V ] is (as a free K-module) isomorphic to the tensor product 〈U〉 ⊗ 〈V 〉. It
follows that the span of each basis set in Bn is isomorphic to a tensor product with
tensor factors 〈Xα〉 (α ∈ I). In view of Corollary 2.1, the number of B-basis sets in-
volving a given set the basis sets Xα1 , Xα2 , . . . , Xαq

with multiplicities t1, t2, . . . , tq,
respectively, is equal to the dimension of the fine homogeneous component of the
free Lie algebra L(X) with X = {xα ; α ∈ I} that is spanned by all Lie products
involving xα1 , xα2 , . . . , xαq

with multiplicities t1, t2, . . . , tq. This dimension is given
by the fine Witt formula (see [16, Theorem 5.11]). We summarize our discussion
as follows.

Corollary 2.3. The number of B-sets U involving the sets Xα1 , Xα2 , . . . , Xαq
with

multiplicities t1, t2, . . . , tq, respectively, is

(2.4)
1
t

∑
d|(t1,...,tq)

µ(d)
(t/d)!

(t1/d)!(t2/d)! · · · (tq/d)!
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where t = t1+t2+· · ·+tq and the sum runs over all divisors d of the greatest common
divisor (t1, . . . , tq) of t1, . . . , tq. For any such basis set U there is an isomorphism

〈U〉 ∼= 〈Xα1〉⊗t1 ⊗ 〈Xα2〉⊗t2 ⊗ · · · ⊗ 〈Xαq
〉⊗tq

as free K-modules. �

Example. If Y = Y2 ∪ Y3 ∪ · · · is as in our previous example, we have two B-
basis sets involving Y2 with multiplicity 3 and Y3 with multiplicity 2 in degree 12,
namely [Y3, Y2, Y2, Y2, Y3] and [[Y3, Y2, Y2], [Y3, Y2]], and the span of either of them
is isomorphic to the tensor product 〈Y2〉⊗3 ⊗ 〈Y3〉⊗2.

3. The Decomposition Theorem for L(X)

From now on X is a finite set , and L = L(X) is the free Lie algebra on X over
a commutative ring K with 1. We will assume that each element of X has degree
1 and that X is ordered. Write L as the direct sum

L = 〈X〉 ⊕ L′

where L′ is the derived algebra of L. Then L′ is itself a free Lie algebra (of infinite
rank). Moreover, L′ has a graded free generating set Y of the form

Y = Y2 ∪ Y3 ∪ Y4 ∪ · · ·

where the elements of Yn (n ≥ 2) have degree n (with respect to X): deg Yn = n.
A graded free generating set of this form will be referred to as a standard free
generating set for L′. The most prominent example of a standard free generating
set is the set of left normed basic Lie monomials of degree ≥ 2 in X, that is
Y = H where H is as defined in Section 1 (see, for example, [1, Section 2.4.2], or
[6, Section 2.2] where this free generating set is obtained using Lazard elimination).
Note that any standard free generating set for L′ is finitely graded. The main
result of this section involves a basis set collection for the derived algebra L′ as
a free Lie algebra with a standard free generating set Y = Y2 ∪ Y3 ∪ · · · . The
grading of Y is particularly simple, and a basis set collection for L(Y ) is relatively
straightforward. In fact, such a collection was discussed in the Example in Section
2, and the corresponding B-sets up to degree 8 are listed in (2.3). The main result
of this section is an immediate consequence of Theorem 2.1, applied to L′.

Theorem 3.1. Let Y be a standard free generating set for the derived algebra L′,
and let B = B(Y ) be a basis set collection for L′ = L(Y ). Then there is a direct
decomposition

(3.1) L = 〈X〉 ⊕
⊕
U∈B

L(U)

of L as a free K-module. �

The theorem yields the following result about the homogeneous components of
L(X).
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Corollary 3.1. For each n ≥ 2 there is a direct decomposition

Ln(X) =
⊕

d|n d 6=n

⊕
U∈Bn/d

Ld(U).

In particular, for all prime numbers p we have

Lp(X) =
⊕

U∈Bp

L1(U) =
⊕

U∈Bp

〈U〉,

and hence the union of the B-sets of degree p in B(Y ) is a basis for Lp(X). �

Another consequence of Theorem 3.1 is that the B-sets in B(Y ) are linearly
independent in L, and that the K-span of the union of all B-sets in B is the direct
sum (over K) of the spans of the individual B-sets in L. Moreover, the span of Yn

is, as a K-space, isomorphic to the metabelian Lie power Mn = Mn(X) while the
span of a basis set of the form U = [U1, U2] is isomorphic to the tensor product
〈U1〉⊗〈U2〉. It follows easily that the K-span of any B-set is isomorphic to a tensor
product of metabelian Lie powers. To make this more precise, we introduce the
following

Definition 3.1. Let Y and B as in Theorem 3.1. The associated tensor product
t(U) of a B-set U ∈ B(X) is given by

tB(U) = Mn(X) if U = Yn

and

tB(U) = tB(U1)⊗ tB(U2) if U = [U1, U2].

It follows from the definition that the associated tensor product tB(U) of a B-set
U of degree n is either a metabelian Lie power Mn or a tensor product of the form
Mn1 ⊗Mn2 ⊗· · ·⊗Mnk

with n1 +n2 + · · ·+nk = n. This observation and Corollary
3.1 imply the following

Corollary 3.2. For each U ∈ B(Y ) there is an isomorphism (of K-modules)

〈U〉 ∼= tB(U),

where

tB(U) = Mn1 ⊗Mn2 ⊗ · · · ⊗Mnk

for some k-tuple (n1, n2, . . . , nk), k ≥ 1, of natural numbers ≥ 2 with n1+n2+. . .+
nk = n. The number of B-basis sets of degree n for which tB(U) is a tensor product
in which a given set Mn1 ,Mn2 , . . . ,Mnk

occurs as tensor factors with multiplicity
t1, t2, . . . , tk, respectively, is given by (2.4). �

4. Bases

Now we exploit Theorem 3.1 to obtain new K-bases for L. In view of Corollary
3.1, the Theorem provides us with K-bases for the homogeneous components of
prime degree p : The union of the B-sets U of degree p in B(Y ) is a basis of Lp. To
obtain bases for the homogeneous components of arbitrary degree, and hence for
the whole of L, we order all the finite basis sets U ∈ B(Y ) (in an arbitrary way),
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and apply Theorem 3.1 to all direct summands L(U) in (3.1). This gives a direct
decomposition

L(X) = 〈X〉 ⊕
⊕

U∈B(Y )

〈U〉 ⊕
⊕

U∈B(Y )

⊕
V ∈B(Y (U))

L(V ).

where Y (U) is a standard basis of the derived algebra L′(U). After that we can
apply Theorem 3.1 to all the direct summands L(V ), and by repeating this process
indefinitely we obtain in the limit a direct decomposition of the free Lie algebra L
whose direct summands are freeK-modules with bases obtained fromX by repeated
application of the B-set construction to standard bases of derived algebras. In order
to turn this discussion into a formal theorem, we make the following

Definition 4.1. A complete basis set collection T for L(X) is a union

T =
⋃
k≥0

T (k)(X)

where each T (k) is a family of subsets of L(X), which are termed the T -sets of level
k (k = 0, 1, 2, . . .), such that T (0) = {X}, and for k > 0

T (k)(X) = {U ; U ∈ B(Y (V )) , V ∈ T (k−1)(X)}

where Y (V ) is a standard free generating set of the derived algebra L′(V ) and
B(Y (V )) is a basis set collection for L(Y (V )) as defined in Definition 2.3. We write
Tn and T (k)

n for the set of all T -sets of degree n in T and T (k), respectively.

Observe that the T -basis sets of level 1 are precisely the B-sets in B(Y ) where
Y = Y (X) is a standard basis of the derived algebra L′ = L′(X). With this
definition, we can now state the our basis theorem.

Theorem 4.1. Let T be a complete basis set collection for L(X). Then the union
of all T -sets in T is a K-basis for L. �

We use the term T -basis for a basis of this sort. In order to domesticate the
definition of T -sets, recall that each T -set of level k ≥ 1 is, by definition, a B-set
for a derived algebra L′ = L′(V ) regarded as a free Lie algebra L(Y (V )) with
standard free generating set Y (V ) = Y2(V ) ∪ Y3(V ) ∪ · · · , where V is a T -set of
level k − 1. In the case where V = X, we write simply Y for Y (X). As mentioned
in the previous Section, T -sets of level 1 for L(X) are listed in (2.3). Then the
level-2 T -basis sets up to degree 8 are

Y2(Y2), Y2(Y3), Y3(Y2), Y2(Y4),

and the only level-3 T -basis set of degree ≤ 8 is

Y2(Y2(Y2)).

An important special case arises if all standard free generating sets in the definition
of the complete basis set collection T are canonical free generating sets consisting
of left normed basic Lie monomials. In this case the T -basis consists of Lie products
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of left normed basic Lie monomials in X, as mentioned in the Introduction. For
example, if X = {x, y, z} with order x < y < z, then

Y2 = {[y, x], [z, x], [z, y]},

and, assuming [y, x] < [z, x] < [z, y], we get

Y2(Y2) = {[[z, x], [y, x]], [[z, y], [y, x]], [[z, y], [z, x]]}

and

Y3(Y2) = {[[z, x], [y, x], [y, x]], [[z, x], [y, x], [z, x]], . . . , [[z, y], [z, x], [z, y]]}.

An example of a level-2 T -set in degree 10 is

[Y3, Y2](Y2) = {[[[z, x], [y, x], [y, x]], [[z, x], [y, x]]],

[[[z, x], [y, x], [y, x]], [[z, y], [y, x]]], . . .}.

In the previous section we have defined the associated tensor product of a B-set.
If U is a B-set in B(Y (V )) with 〈U〉 ∼= t(U) = Mn1(V ) ⊗ · · · ⊗Mnk

(V ), and V is
itself a B-set in B(Y (W )) with 〈V 〉 ∼= t(W ) = Mm1(W )⊗ · · · ⊗Mmk

(W ), then

Mni
(V ) = Mni

(Mm1(W )⊗ · · · ⊗Mmk
(W )),

for each tensor factor in the decomposition of t(U). This motivates the following
definition of the associated iterated tensor product of a T -set.

Definition 4.2. Let T =
⋃

k≥0 T (k)(X) be a complete basis set collection for
L(X). The associated iterated tensor product t(U) for a T -set U ∈ T is defined as
follows. For X, the only T -set of level 0 we set t(X) = M1(X) = 〈X〉, and if U
is a T -set of level k > 0, that is a B-set in B(Y (V )) where V ∈ T (k−1)(X) and
Y (V ) is a standard free generating set for L′(V ), with associated tensor product
tB(U) = Mn1(V )⊗ · · · ⊗Mnk

(V ) (as in Definition 3.1) we set

t(U) = Mn1(t(V ))⊗Mn2(t(V ))⊗ · · · ⊗Mnk
(t(V )).

Note that t(U) = tB(U) for any T -set U of level 1. The following is now an
immediate consequence of the basis theorem.

Corollary 4.1. For any U ∈ T there is an isomorphism

〈U〉 ∼= t(U).

of free K-modules. �

5. Filtrations

In the remaining part of this paper we deal with the structure of the Lie powers
Ln with n ≥ 2 as modules for a group G of graded algebra automorphism of L.
The Lie powers Ln, the metabelian Lie powers Mn (and later on the restricted Lie
powers Rn) will be regarded as modules for G. The presence of the group G will be
a standing assumption for the rest of the paper.
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Let Y =
⋃

n≥2 Yn be a standard free generating set for the derived algebra L′.
The lower central series of the derived algebra L′ induces on the Lie powers Ln

with n ≥ 2 a filtration

(5.1) Ln = Ln,1 ≥ Ln,2 ≥ Ln,3 ≥ · · · ≥ Ln,l(n) ≥ Ln,l(n)+1 = 0

where Ln,k is spanned by all Lie products in Y of total degree n and degree ≥ k

with respect to Y . Here l(n) = n/2 if n is even, and if n is odd we have l(n) =
(n− 1)/2. Clearly, the Ln,k are KG-submodules of L, and we have, in particular,
Ln,2 = Ln∩L′′, and hence Ln,1/Ln,2

∼= Mn. Let B = B(Y ) be a basis set collection
for L′ = L(Y ). By construction, all B-sets U in B are homogeneous with respect
to both X and Y , and hence each of them has well defined degrees with respect to
both X and Y . We write deg as usual for the degree with respect to X and Deg
for the degree with respect to Y . It follows from Corollary 3.1 that the quotient
Ln,k/Ln,k+1 is spanned by the homogeneous components Ld(U) where d runs over
all common divisors of n and k, and U runs over all B-sets of degree n/d with respect
to X and degree k/d with respect to Y . Given n, k with n ≥ 2 and 1 ≤ k ≤ l(n),
and a common divisor d of n and k we set

Bn,k,d = {U ∈ B ; degU = n/d,DegU = k/d}.

Theorem 5.1. Let Y a standard free generating set of L′, and let B be a basis set
collection for L′ = L(Y ). Then the terms of the filtration (5.1) are KG-submodules,
and for the quotients there are KG-module isomorphisms

(5.2) Ln,k/Ln,k+1
∼=

⊕
d|(n,k)

⊕
U∈Bn,k,d

Ld(t(U)).

Proof. It follows from Corollaries 3.1 and 3.2 that for the quotients of the filtration
(5.1) we have isomorphisms of free K-modules as in (5.2). To see that these are, in
fact, isomorphisms of KG-modules, we define for each U ∈ B the associated tensor
product of Lie powers t̂(U), and a homomorphism γU : t̂(U) → Ln where n = degU
as follows. If U = Yn we set

t̂(Yn) = Ln and γYn
= id : Ln → Ln,

and if U = [U1, U2] we set

t̂(U) = t̂(U1)⊗ t̂(U2)

and define γU by

(u1 ⊗ u2)γU = [u1γU1 , u2γU2 ] (ui ∈ t̂(Ui), i = 1, 2).

Hence each t̂(U) is of the form t̂(U) = Ln1 ⊗ · · · ⊗ Lns for some positive integers
n1, . . . , ns with ni ≥ 2. For each U ∈ B there is an obvious surjection πU : t̂(U) →
t(U) stemming from the natural surjections Lni

→ Mni
(ni ≥ 2). It is clear that

the kernel of πU is spanned by all tensors u = u1⊗· · ·⊗us with ui ∈ Lni
such that

at least one of the factors ui belongs to Lni
∩ L′′. This implies, in particular, that

uγU ∈ Ln,s+1 where n = deg u and s = Deg u.
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Moreover, for each natural d the homomorphism γU induces a homomorphism
γ

(d)
U : Ld(t̂(U)) → Ldn which is, for v1, . . . , vd ∈ t̂(U) given by

[v1, . . . , vd]γ
(d)
U = [v1γU , . . . , v1γU ] ∈ Ldn

and the homomorphism πU induces a homomorphism π
(d)
U : Ld(t̂(U)) → Ld(t(U))

given by
[v1, . . . , vd]π

(d)
U = [v1πU , . . . , v1πU ] ∈ Ldn.

In particular, γ(1)
U = γU and π(1)

U = πU . Observe that the kernel of π(d)
U is spanned

by left normed Lie products v = [v1, . . . , vd] such at least one of the vi belongs to
kerπU , which, in its turn, implies that vγ(d)

U ∈ Ldn,s+1 where s = dDegU .
For n ≥ 2 and 1 ≤ k ≤ l(n), consider the homomorphism

Γn,k :
⊕

d|(n,k)

⊕
U∈Bn,k,d

Ld(t̂(U)) → Ln

which is for each direct summand U ∈ B with DegU = n/d and DegU = k/d of
the domain defined as γ(d)

U : Ld(t̂(U)) → Ln , and the surjection

Πn,k :
⊕

d|(n,k)

⊕
U∈Bn,k,d

Ld(t̂(U)) →
⊕

d|(n,k)

⊕
U∈Bn,k,d

Ld(t(U))

defined as the direct sum of the appropriate π(d)
U . In order to establish the isomor-

phism (5.2) we observe that

(i) the image of the homomorphism Γn,k is contained in Ln,k,
(ii) the homomorphism Γn,k maps the kernel of the homomorphism Πn,k into

Ln,k+1.

By (i), the homomorphism Γn,k induces a homomorphism⊕
d|(n,k)

⊕
U∈Bn,k,d

Ld(t̂(U)) → Ln,k/Ln,k+1.

By (ii), this homomorphisms factors through⊕
d|(n,k)

⊕
U∈Bn,k,d

Ld(t(U)).

Finally, it remains to observe that the induced homomorphism⊕
d|(n,k)

⊕
U∈Bn,k,d

Ld(t(U)) → Ln,k/Ln,k+1

yields a bijection between K-bases of the domain and the image (which is clear
since (5.2) is a K-isomorphism). This completes the proof of the theorem. �

Examples. For n = 8 we have l(8) = 4 and the filtration (5.1) has the form

L8 = L8,1 ≥ L8,2 ≥ L8,3 ≥ L8,4 ≥ 0.

The B-basis sets of degree up to 8 are listed in (2.3). We have

B8,1,1 = {Y8}

B8,2,1 = {[Y6, Y2], [Y5, Y3]}, B8,2,2 = {Y4}

B8,3,1 = {[Y4, Y2, Y2], [Y3, Y2, Y3]}

B8,4,1 = B8,4,2 = ∅, B8,4,4 = {Y2}.
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For the quotients of the filtration we have

L8,1/L8,2
∼= M8

L8,2/L8,3
∼= M6 ⊗M2 ⊕ M5 ⊗M3 ⊕ L2(M4)

L8,3/L8,4
∼= M4 ⊗M2 ⊗M2 ⊕ M3 ⊗M2 ⊗M3

L8,4 = L4(M2)

For n = 12 get a more illuminating example. Here l(12) = 6, and the filtration
(5.1) takes the form

L12 = L12,1 ≥ L12,2 ≥ L12,3 ≥ L12,4 ≥ L12,5 ≥ L12,6 = 0

with quotients

L12,1/L12,2
∼= t(Y12)

L12,2/L12,3
∼= t([Y10, Y2]) ⊕ t([Y9, Y3]) ⊕ t([Y8, Y5]) ⊕ t([Y7, Y6]) ⊕ L2(t(Y6))

L12,3/L12,4
∼= t([Y8, Y2, Y2]) ⊕ t([Y7, Y2, Y3]) ⊕ t([Y7, [Y3, Y2]])⊕ · · · ⊕ L3(t(Y4))

L12,4/L12,5
∼= t([Y6, Y2, Y2, Y2]) ⊕ · · · ⊕ L2(t([Y4, Y2])) ⊕ L4(t(Y3))

L12,5/L12,6
∼= t([Y4, Y2, Y2, Y2, Y2]) ⊕ t([Y3, Y2, Y2, Y2, Y3]) ⊕ t([Y3, Y2, Y2, [Y3, Y2]])

L12,6
∼= L6(t(Y2))

There are too many level-1 T -basis sets of degree 12 to list them all, but we have
listed the ones with Deg equal to 1,2, and 5 as well as all direct summands stemming
from level-1 T -basis sets of smaller degree. Note that in L12,3/L12,4 we have the
basis sets [Y7, Y2, Y3] and [Y7, [Y3, Y2]] with

t([Y7, Y2, Y3]) = M7 ⊗M2 ⊗M3, t([Y7, [Y3, Y2]]) = M7 ⊗ (M3 ⊗M2),

that is, their associated tensor products are equal up to the order of the tensor
factors.

Now we return to the direct decomposition (5.2) in Theorem 5.1. Consider the
direct summands Ld(t(U)) with d > 1 in the quotients of our filtration. Then we
can apply the theorem to these homogeneous components to obtain a filtration

Ld(t(U)) = Ld,1(t(U)) ≥ Ld,2(t(U)) ≥ · · · ≥ Ld,l(d)(t(U)) ≥ Ld,l(d)+1(t(U)) = 0

with quotients

Ld,k(t(U))/Ld,k+1(t(U)) ∼=
⊕

d1|(d,k)

⊕
V ∈Bd,k,d1 (Y )

Ld1(t(V ))

where Y is a standard free generating set for the derived algebra L′(t(U)). Now
think of the B in Theorem 5.1 as T (1) in some complete basis set collection T for
L(X). Then every V in under the big direct sum is a level-2 T -set, and t(V ) is its
associated iterated tensor product as in Definition 4.2. Theorem 5.1 can then be
applied to the direct summands Ld1(t(V (U)) with d1 > 1, and we can repeat this
process until we reach a state where all quotients in the resulting refinement of the
filtration (4.1) are of the form L1(t(U)) = t(U) for some T -set U (of level ≥ 1).
It is not hard to see that the direct summands in the ultimate refinement of the
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original filtration for Ln will be in one-to-one correspondence with the T -basis sets
on degree n. We summarize our discussion in the following

Theorem 5.2. Let T be a complete T -basis set collection for L(X). Then each
Lie power Ln with n ≥ 2 has a finite filtration whose quotients are isomorphic to
direct sums of KG-modules of the form⊕

U

t(U)

where U runs over an appropriate subset of the T -basis sets of degree n. Moreover,
there is a one-to-one correspondence between the T -sets of degree n and the direct
summands that appear in these quotients. �

Examples. Consider the filtration for L8 in the example after Theorem 5.1. Here
all direct summands of the quotients except L2(M4) = L2(t(Y2)) and L4(M2) =
L4(t(Y2)) are of the form t(U) for some level-1 T -basis set U . Applying Theorem
5.1 to the exceptional quotients gives

L2(t(Y2)) ∼= t(Y2(Y2)) = M2(M2)

and a filtration of length 2

L4(t(Y2)) = L4,1(t(Y2)) ≥ L4,2(t(Y2)) ≥ 0

with quotients

L4,1(t(Y2))/L4,2(t(Y2)) ∼= t(Y4(Y2)) = M4(M2)

and

L4,2(t(Y2)) = L2(t(Y2(Y2))) = t(Y2(Y2(Y2))) = M2(M2(M2))

where the last in this chain of equations is, strictly speaking, obtained by yet
another application of Theorem 5.1. Hence the filtration in Theorem 5.2 for L8 has
length 5, and the direct summands of the quotients are precisely the modules t(U)
for the eight T -basis sets U of degree 8.

In the filtration for L12 the direct summands L2(t(Y6)), L3(t(Y4)), L2(t([Y4, Y2])),
L4(t(Y3)) and L6(t(Y2)) require further applications of Theorem 5.1. For L4(t(Y3))
we get a filtration of length 2 with quotients isomorphic to

t(Y4(Y3)) = M4(M3) and t(Y2(Y2(Y3))),

and for L6(t(Y2)) we get a filtration of length 3 with top quotient

t(Y6(Y2)) = M6(M2),

middle quotient

t([Y4, Y2](Y2))⊕ t(Y2(Y3(Y2))) = M4(M2)⊗M2(M2) ⊕M2(M3(M2)),

and bottom quotient

t(Y3(Y2(Y2))) = M3(M2(M2)).

Hence the filtration in Theorem 5.2 for L12 has length 9, and its bottom term is
the submodule L3(L2(L2))〉 ∼= M3(M2(M2)).
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6. Module decompositions of L(X) in characteristic zero

Suppose there exists a standard free generating set Y = Y2 ∪ Y3 ∪ · · · of the
derived algebra L′ such that the span of each Yn is invariant under the action of
G. In other words, for all n ≥ 2, 〈Yn〉 is a KG-submodule of L′. Then the span
of each B-set U in a basis set collection B(Y ) is G-invariant, and the isomorphism
〈U〉 ∼= t(U) in Corollary 3.2 is an isomorphism of KG-modules. Moreover, if T is
a complete basis set collection for L(X) derived by using exclusively G-invariant
standard free generating sets, then the span of each T -set U ∈ T is G-invariant and
the isomorphism 〈U〉 ∼= t(U) in Corollary 4.1 is an isomorphism of KG-modules.
Thus any T -basis of L gives rise to a module decomposition in which the direct
summands are in one-to-one correspondence with the T -sets in T , provided that
there exists a G-invariant standard free generating set for L′. In this section we
show that this is always the case when K is a field of characteristic zero.

Lemma 6.1. Let L = L(X) be a free Lie algebra of finite rank over a commutative
ring K with 1, and let n ≥ 2 be a positive integer such that (n− 2)! is invertible in
K. Then the derived algebra L′ has a standard free generating set Y = Y2∪Y3∪· · ·
such that the span of Yn is G-invariant.

Proof. Let φn : Ln → Mn denote the natural surjection from Ln onto Mn. The
key ingredient in the proof of this lemma is the fact that there exist a KG-module
homomorphism ψn : Mn → Ln such that the composite of ψn and φn amounts to
multiplication by (n − 2)! in Mn. Such a homomorphisms is exhibited in [5, pp.
349-350]. If (n−2)! is invertible in K, then ψ̃n = 1/(n−2)!ψn is a splitting map for
the natural surjection φn. Now let Y = Y2 ∪ Y3 ∪ · · · be a standard free generating
set for L′. Then Yn is a basis of Ln modulo L′′ ∩Ln, and the set Ỹn = Ynφnψ̃n too
is basis of Ln modulo L′′ ∩Ln. Moreover, Ỹn is G-invariant as it is the image in Ln

of the KG-module Mn under the G-map ψ̃. Since L′′∩Ln = L(Y2∪· · ·∪Yn−1)∩Ln,
it follows that for each y ∈ Yn, the image ỹ = yφnψ̃n ∈ Ỹn is of the form

ỹn = yη + wy

where η is an automorphism of the free K-module 〈Yn〉. But then it is easily seen
that the set Ỹ = Y2 ∪ · · ·Yn−1 ∪ Ỹn ∪ Yn+1 ∪ · · · is a free generating set of L′ (see
[6, Lemma 2.1]), and the lemma follows. �

Now suppose that K is a field of characteristic zero. Then (n− 2)! is invertible
for all n ≥ 2, and, by Lemma 6.1, the derived algebra of any free Lie algebra of
finite rank over K has a G-invariant standard free generating set. As observed
above, this implies that for L = L(X) there exist G-invariant basis set collections
B(Y ) for L′ = L′(Y ) and G-invariant complete basis set collections T . This gives
the main result of this section.

Theorem 6.1. Let L = L(X) be a free Lie algebra of finite rank at least 2 over
a field K of characteristic zero. Then there exist complete basis set collections T
for L(X) such that the span of each T -set is a KG-submodule of L(X). For such
T , the direct decompositions in Theorem 3.1 and Corollary 3.1 (with B = T (1))
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are direct decompositions of KG-modules, and the isomorphisms in Corollary 3.2
(again with B = T (1)) and Corollary 4.1 are isomorphisms of KG-modules. �

For example, for the Lie power L8 we get

L8
∼= M8 ⊕ M6 ⊗M2 ⊕ M4 ⊗M2 ⊗M2 ⊕ M5 ⊗M3

⊕ M3 ⊗M2 ⊗M3 ⊕ M2(M4) ⊕ M2(M2(M2)).

Our decompositions are particularly simple in prime degree p as only basis sets of
level 1 (that is B-sets) occur (see Corollary 3.1), and the number of B-sets U for
which t(U) has a given set of tensor factors (counting multiplicities) is given in
Corollary 3.2. Obviously, the relevant tensor products occurring in Lp are in one-
to-one correspondence with the partitions of p in which all parts are ≥ 2. Recall
that a partition of n is a string λ = (nt1

1 , n
t2
2 , . . . , n

tq
q ) where the ni and the ti are

positive integers such that n1 > n2 > · · · > nq and t1n1 + t2n2 + · · · + tqnq = n.
Define the tensor product Mλ by

Mλ = (Mn1)
⊗t1 ⊗ (Mn2)

⊗t2 ⊗ · · · ⊗ (Mnq
)⊗tq

and set

m(λ) =
1
t

∑
d|(t1,...,tq)

µ(d)
(t/d)!

(t1/d)!(t2/d)! · · · (tq/d)!

where t = t1 + t2 + · · · + tq. Also, let Λ(n) denote the set of all partitions λ =
(nt1

1 , n
t2
2 , . . . , n

tq
q ) of n with nq ≥ 2. Then we have for any prime p an isomorphism

(6.1) Lp
∼=

⊕
λ∈Λ(p)

(Mλ)⊕m(λ).

In the case where G is the group of all graded algebra automorphisms of L = L(X),
that is G = GL(r,K) where r = |X|, it is well known that the Lie powers Ln are
semisimple with the isomorphism types of the simple direct summands indexed by
partitions of n with at most r parts (the number of parts for a partition λ as above
is t1 + · · ·+ tq). We write [λ] for the simple module corresponding to the partition
λ (and we adopt the convention that [λ] = 0 if λ has more than r parts). The
n-th metabelian Lie power Mn is known to be simple, and, in fact, Mn

∼= [n− 1, 1]
for n ≥ 3 and M2

∼= [12]. Thus (6.1) expresses Lp as a direct sum of tensor
products of simple modules. Consequently, the irreducible constituents of Lp and
their multiplicities can be calculated by using the Littlewood-Richardson rule (see
[15, p. 68]). For example, for p = 7, (6.1) turns into

L7
∼= M7 ⊕ M5 ⊗M2 ⊕ M3 ⊗M2 ⊗M2 ⊕ M4 ⊗M3.

Here M7
∼= [6, 1], and one calculates

M5 ⊗M2
∼= [5, 2]⊕ [5, 12]⊕ [4, 2, 1]⊕ [4, 13]

M3 ⊗M2 ⊗M2
∼= [4, 3]⊕ [4, 2, 1]⊕2 ⊕ [4, 13]⊕ [32, 1]⊕2 ⊕ [3, 22]⊕2 ⊕ [3, 2, 12]⊕4

⊕ [3, 14]⊕2 ⊕ [23, 1]⊕2 ⊕ [22, 13]⊕2 ⊕ [2, 15]

M4 ⊗M3
∼= [5, 2]⊕ [5, 12]⊕ [4, 3]⊕ [4, 2, 1]⊕2 ⊕ [4, 13]

⊕ [32, 1]⊕ [3, 22]⊕ [3, 2, 12]



18 RALPH STÖHR

so that

L7
∼= [6, 1]⊕ [5, 2]⊕2 ⊕ [5, 12]⊕2 ⊕ [4, 3]⊕2 ⊕ [4, 2, 1]⊕5

⊕ [4, 13]⊕3 ⊕ [32, 1]⊕3 ⊕ [3, 22]⊕3 ⊕ [3, 2, 12]⊕5

⊕ [3, 14]⊕2 ⊕ [23, 1]⊕2 ⊕ [22, 13]⊕2 ⊕ [2, 15],

as first published by Thrall [20]. In fact, in this paper of 1942 Thrall published a
list of the multiplicities of the irreducibles occurring in the Lie powers Ln for n ≤ 10
(his result for n = 10 was later corrected by Brandt [3]). Unfortunately, even in
the case where n is a prime it doesn’t appear that the method of determining those
multiplicities outlined above is more practical than Brandt’s (see [3, Corollary I],
see also [17, Chapter 8] for an overview of more recent results on multiplicities).

7. Module decompositions in positive characteristic

In this section p is an arbitrary but fixed prime, and K is a field of characteristic
p. Then the situation with module decompositions is more complicated than in the
characteristic zero case since it is no longer true that the derived algebra L′ has a G-
invariant standard free generating set. However, by Lemma 6.1, the derived algebra
L′ of every Lie algebra L over K has a standard free generating set Y = Y2∪Y3∪· · ·
such that the spans 〈Yn〉 are G-invariant for 2 ≤ n ≤ p + 1. Consequently, if T is
a complete basis set collection for L(X) derived by using exclusively standard free
generating sets of this kind, then all the T -sets involving exclusively basis sets of
degree 2, 3, . . . , p+ 1 are G-invariant. It is clear that this is the case for all T -sets
of degree ≤ p+ 1. Hence we have the following

Theorem 7.1. Let L = L(X) be a free Lie algebra of finite rank at least 2 over a
field K of positive characteristic p. Then there exist complete basis set collections
T for L(X) such that the span of each T -set of degree n ≤ p+1 is a KG-submodule
of L(X). Moreover,

(i) for all n with 2 ≤ n ≤ p+ 1 there are direct decompositions

Ln(X) =
⊕

d|n d 6=n

⊕
U∈T (1)

n/d

Ld(U) =
⊕

U∈Tn

〈U〉

as KG-modules,
(ii) for each U ∈ Tn with 2 ≤ n ≤ p+ 1, there is an isomorphism

〈U〉 ∼= t(U)

as KG-modules. �

In particular, if n = q where q is a prime, decompositions of the form (6.1) (with
q in place of p) are valid over fields of characteristic p whenever q ≤ p.

As an application of Theorem 7.1 we recover the key result of [7]. Consider the
Lie power Lp(X) where p is the characteristic of K. Then, by the theorem, we have

Lp =
⊕

U∈T (1)
p

〈U〉.
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It is clear that the intersection Lp∩L′′ coincides with the span of the T -set U ∈ T (1)
p

such that DegU ≥ 2, in other words, all T -set in T (1)
p except Yp. For any such U ,

the associated tensor power t(U) is of the form

(7.1) t(U) ∼= Mn1 ⊗Mn2 ⊗ · · · ⊗Mnk
(k ≥ 2, n1 + · · ·+ nk = p)

for some suitable n1, . . . , nk. For the metabelian Lie power Mn(X) (over an arbi-
trary commutative ring K with 1), there is a KG-homomorphism µn : Mn → Tn

from Mn into the tensor power Tn = 〈X〉⊗n such that the composite of µn with the
canonical projection ρn : Tn →Mn given by x1 ⊗ . . .⊗ xn 7→ [x1, . . . , xn] (xi ∈ X)
amounts to multiplication by n(n−2)! on Mn (see [18, Section 3.2] or [12, Theorem
3.3]). It follows that Mn is a direct summand of Tn (as KG-module) whenever
n(n − 2)! is invertible in K. In particular, in the case under consideration, where
K is a field of characteristic p, Mn is a direct summand of Tn for all n < p. This
holds for the tensor factors on the right hand side of (7.1), and hence the entire
tensor product is a direct summand on the tensor power Tp = Tn1⊗· · ·⊗Tnk

. Since
Lp ∩ L′′ is a direct sum of KG-modules 〈U〉 with t(U) as in (7.1), we have proved
the following result.

Theorem 7.2 ([7], Theorem 3.1). Let L = L(X) be a free Lie algebra of finite rank
at least 2 over a field K of positive characteristic p. Then the submodule Lp ∩ L′′

is a direct summand of the tensor power Tp = 〈X〉⊗p. �

An alternative proof of Theorem 7.2 was given by Erdmann and Schocker in [11,
Section 6]. In [7] this result was used to determine the indecomposable direct sum-
mands of Lp and their Krull-Schmidt multiplicities as modules for G = GL(r,K)
in the case where K is an infinite field of characteristic p. For Lie powers Ln with
(n, p) = 1 this had been accomplished earlier by Donkin and Erdmann [10], while
[11] deals with the case where n = mp with (m, p) = 1. Further progress has
recently been made by Bryant and Schocker [8], [9].

Over the past twelve years there has been remarkable progress in studying mod-
ular Lie powers for finite groups (see [4] and the references therein). However, most
of the results in this area refer to the case where the p-Sylow subgroup of G is cyclic,
and very little is known about Lie powers in characteristic p as modules for finite
groups with non-cyclic p-Sylow subgroup. In the smallest possible instants, where
K is a field of characteristic 2 and G is the Klein four group, some initial results
have been obtained in [14], but these rather confirm how limited our knowledge is.
We hope, however, that the results of the present paper will help to remedy the
situation, particularly for modular Lie algebras of rank 2. For these our method
gives much more detailed information as we will see in the final two sections. There
we will work with the free restricted Lie algebras, which will be discussed in the
short section that follows.

8. Free restricted Lie algebras and restricted elimination

Let K be a field of positive characteristic p, and let R = R(X) be the free
restricted Lie algebra (or p-Lie algebra) on X. As explained in the Introduction,
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R can be identified with the closure L = L(X) in the tensor algebra T =
⊕

n≥0 Tn

with respect to the unary operation u→ up, and we will take this point of view in
what follows. Then L ≤ R ≤ T , and for the degree n homogeneous components we
have Ln ≤ Rn ≤ Tn. Here Rn = R∩Tn and Ln = L∩Tn. In fact, Rn = Ln for all n
which are not divisible by p, and if p divides n, then Rn = Ln + 〈{up ; u ∈ Rn/p}〉.

As for ordinary free Lie algebras, there is Lazard elimination for free restricted
Lie algebras. The corresponding Elimination Theorem is exactly the same as the
Lazard Elimination Theorem in Section 2 with R in place of L. We also need
the following variation of Lazard elimination that is specific to free restricted Lie
algebras.

Restricted Elimination Theorem. Let X = {x} ∪ Z. Then there is a direct
decomposition (over K)

R(X) = 〈x〉 ⊕R(Z op {x})

where
Z op {x} = {xp , [z, x, . . . , x︸ ︷︷ ︸

s

] ; z ∈ Z, 0 ≤ s ≤ p− 1}.

For a proof of this theorem we refer to the proof of Theorem 2.7.4. in [1].
We conclude this section with an examination of the p-th restricted Lie power

Rp. Here we have a direct decomposition (over K)

Rp = 〈{xp ; x ∈ X} ∪Hp〉〉 ⊕ (Lp ∩ L′′).

where Hp is the set of all left normed basic Lie monomials of degree p in x and y.
However, as we have just seen in the previous section, Lp ∩L′′ is a direct summand
of Tp as a KG-module. But then it is also direct summand of Rp. We let Pp denote
the quotient Pp = Rp/(Lp ∩ L′′). Then

Rp
∼= Pp ⊕ (Lp ∩ L′′).

Clearly Pp has a submodule that is isomorphic to the metabelian Lie power Mp,
and for the quotient, which is generated by Xp, there is an isomorphism

Pp/Mp
∼= 〈X〉F

where 〈X〉F is the Frobenius twist of 〈X〉. However, in general, Mp is not a direct
summand of Pp.

9. Free Lie algebras of rank 2 in characteristic 2

Now let K be a field of characteristic 2, let X = {x, y} and consider the free
restricted Lie algebra R = R(x, y) of rank 2 over K. By applying the Restricted
Elimination Theorem twice (that is by eliminating first x and then y) we obtain
the direct decomposition

R(x, y) = 〈x, y〉 ⊕R(x2, y2, [y, x], [y, x, y], [x2, y]).

On noting that x2, y2 and [y, x] span R2, and that [y, x, x] and [x2, y] = [y, x, x]
span R3 (and recalling that both R2 and R3 are invariant under the action of G)
we obtain the following result which is implicitly contained in [19, Section 2].
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Theorem 9.1. For the free restricted Lie algebra R = R(x, y) of rank 2 over a
field K of characteristic 2 there is a direct decomposition

R(x, y) = 〈x, y〉 ⊕R(R2 ⊕R3).

as a KG-module. �

Now we can apply the methods of Section 2 to obtain a decomposition theorem
for R(x, y). For that we use Lazard elimination for free restricted Lie algebras. By
applying the restricted analogue of Theorem 2.1 (and Corollary 2.3) to R(R2⊕R3),
we obtain the following result.

Theorem 9.2. For the free restricted Lie algebra R = R(x, y) of rank 2 over a
field K of characteristic 2 there is a direct decomposition as a KG-module

R(x, y) ∼= 〈x, y〉⊕R(R2)⊕R(R3)⊕
⊕
s,t≥1

(R(R2 ⊗ · · · ⊗R2︸ ︷︷ ︸
s

⊗R3 ⊗ · · · ⊗R3︸ ︷︷ ︸
t

))⊕m(s,t).

where the direct sum runs over all ordered pairs s, t of positive integers and

m(s, t) =
1

s+ t

∑
d|(s,t)

µ(d)
((s+ t)/d)!
(s/d)!(t/d)!

.

�

Corollary 9.1. For all n ≥ 2 there is a direct decomposition of Rn = Rn(x, y) as
KG-module

Rn
∼= Rn/2(R2)⊕Rn/3(R3)⊕

⊕
s,t≥1

(Rn/(2s+3t)(R2 ⊗ · · · ⊗R2︸ ︷︷ ︸
s

⊗R3 ⊗ · · · ⊗R3︸ ︷︷ ︸
t

))⊕m(s,t)

where we adopt the convention that Rn/k = 0 if n/k is not an integer. �

For Lie powers this implies the following result.

Corollary 9.2. For all n ≥ 4 there is a direct decomposition of Ln = Ln(x, y) as
KG-module

Ln
∼= Ln/2(R2)⊕ Ln/3(R3)

⊕
⊕
s,t≥1

(Ln/(2s+3t)(R2 ⊗ · · · ⊗R2︸ ︷︷ ︸
s

⊗R3 ⊗ · · · ⊗R3︸ ︷︷ ︸
t

))⊕m(s,t)

where we adopt the convention that Ln/k = 0 if n/k is not an integer. �

Examples. For small n the decompositions in Corollary 9.2 are as follows:
L4

∼= L2(R2)
L5

∼= R3 ⊗R2

L6
∼= L2(R3) ⊕ L3(R2)

L7
∼= R3 ⊗R2 ⊗R2

L8
∼= R3 ⊗R3 ⊗R2 ⊕ L4(R2)

L9
∼= R3 ⊗R2 ⊗R2 ⊗R2 ⊕ L3(R3)

L10
∼= R3 ⊗R3 ⊗R2 ⊗R2 ⊕ L2(R3 ⊗R2) ⊕ L5(R2)

L11
∼= R3 ⊗R2 ⊗R2 ⊗R2 ⊗R2 ⊕ R3 ⊗R3 ⊗R3 ⊗R2
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Remark. Since the dimension of R3 = L3 is 2, Theorem 9.2 can be applied to
the direct summand R(R3), and then consecutively to all direct summands which
are free restricted Lie algebras of rank 2. Further applications of elimination are
possible if the 3-dimensional module R2 has a non-trivial direct decomposition.
This happens, for example, if K is the field of order 2 and G = GL(2, 2) acting
naturally on 〈x, y〉. Then R2 is the direct sum of two simple GL(2, 2)-modules (a
trivial and a natural). We mention that in this case the module structure of L(x, y)
has been completely determined in [13].

10. Free Lie algebras of rank 2 in characteristic p ≥ 3

Now let K be a field of characteristic p ≥ 3 and let L = L(x, y) and R = R(x, y)
be the free Lie algebra and the free restricted Lie algebra on two free generators
x, y. Restricted elimination of x and y gives a direct decomposition

R = 〈x, y〉 ⊕R(N)

where

N ={[y, x, . . . , x︸ ︷︷ ︸
s

, y, . . . , y︸ ︷︷ ︸
t

] ; 1 ≤ s < p, 0 ≤ t < p}

∪ {xp, yp} ∪ {[xp, y, . . . , y︸ ︷︷ ︸
t

] ; 1 ≤ t < p}.

Note that the degrees of the free generators in N range from 2 to 2p− 1. For n in
this range we write Nn for the subset of elements with degree n in N . Note that

Np = Hp ∪ {xp, yp}

where Hp denotes the set of all left normed basic Lie monomials of degree p in x

and y. As we have seen in Section 8, the set Np spans the homogeneous component
Rp modulo Lp ∩ L′′. Recall the direct decomposition (8.1), and let Ñp be a basis
of the direct summand Pp. Of course Ñp too spans Rp modulo Lp ∩ L′′, and then
it follows (see [6, Section 2.3]) that the subset Np of the free generating set N can
be replaced by Ñp so that the resulting set Ñ is again a free generating set:

R = 〈x, y〉 ⊕R(Ñ)

= 〈x, y〉 ⊕R(N2 ∪ · · · ∪Np−1 ∪ Ñp ∪Np+1 ∪ · · · ∪N2p−1).

Next we use Lazard elimination to eliminate the free restricted Lie algebra R(Ñp) =
R(Pp). This gives a direct decomposition

(10.1) R = 〈x, y〉 ⊕R(Ñp)⊕R(W ).

Here W consists of all elements of the form

[u,w1, . . . , wk]

where u ∈ Ni with 2 ≤ i ≤ 2p − 1 but i 6= p while w1, . . . , wk ∈ Ñp and k ≥ 0.
Since Pp = 〈Ñ〉 is a KG-submodule of Rp, the free restricted Lie algebra R(Ñp) is
a submodule of R. We claim that R(W ) too is a KG-submodule of R. To verify
the claim we need to show that for any v ∈ W and any g ∈ G the element vg is
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a linear combination of Lie products of elements of W . This will be an obvious
consequence of the following three assertions.

(i) For all u ∈ Ni with 2 ≤ i ≤ 2p − 1 but i 6= p and all g ∈ G, ug is a linear
combination of Lie products of elements of W .

(ii) For all w ∈ Ñp and all g ∈ G, wg is a linear combination elements of Ñp.
(iii) For all v1, . . . , vm ∈W and all w ∈ Ñp, [v1, . . . , vm, w] is a linear combination

of Lie products of elements of W .

Now, (i) holds because for any u ∈ Ni with i in the relevant range we have ug ∈ Ri

and in view of (10.1) we have Ri ⊆ R(W ) for all i with 2 ≤ i ≤ 2p − 1 but i 6= p

(since R(Ñp) consists entirely of elements whose homogeneous components have
degrees divisible by p). The assertion (ii) holds since Ñp spans a KG-submodule of
Rp, namely Pp. Finally, (iii) is an immediate consequence of the identity

[v1, . . . , vm, w] =
m∑

j=1

[v1, . . . , [vj , w], . . . , vm],

which follows easily from the Jacobi identity, and the fact that, by definition, for
any vj ∈W and any w ∈ Ñp the Lie product [vj , w] is again an element of W .

Now set Bn = R(W ) ∩Rn. Then we have the following

Theorem 10.1. Let R = R(x, y) be the free restricted Lie algebra of rank 2 over
a field K of positive characteristic p ≥ 3. For each n ≥ 2 there exists a KG-
submodule Bn of Rn such that Rn = Bn for all n ≥ 2 which are not divisible by p,
and if n is divisible by p then

Rn = Rn/p(Pp)⊕Bn.

In particular, for all n which are divisible by p, Rn/p(Pp) is a direct summand of
Rn as a KG-module. �

For the free Lie algebra L, set Cn = R(W ) ∩ Ln = L(W ) ∩ Ln. Then we obtain
the following

Corollary 10.1. Let L = L(x, y) be the free Lie algebra of rank 2 over a field K
of positive characteristic p ≥ 3. For each n ≥ 2 there exists a KG-submodule Cn

of Ln such that Ln = Cn for all n ≥ 2 which are not divisible by p, and if n is
divisible by p then

Ln = Ln/p(Pp)⊕ Cn.

for n > p while
Lp = Mp ⊕ Cp

In particular, for all n > p which are divisible by p, Ln/p(Pp) is a direct summand
of Ln as a KG-module. �

In the case where p = 3, the method used to prove Theorem 10.1 yields partic-
ularly simple decompositions of the Lie powers up to degree 9. The decomposition
of L9 is of special interest in view of recent work by Bryant and Schocker [8]. They
have shown that the general decomposition problem for Lie powers over fields of
characteristic p reduces to the decomposition problem for Lie powers of prime power
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degree pk. For k = 1 this problem has been solved in [7], and so the case of Lie
powers of degree p2 is the smallest case that is open. We conclude this section by
spelling out the details. Let K be a field of characteristic 3 and let L = L(x, y) and
R = R(x, y) be the free Lie algebra and the free restricted Lie algebra on two free
generators x, y. Restricted elimination of x and y gives a direct decomposition

R = 〈x, y〉 ⊕R(N2 ∪N3 ∪N4 ∪N5).

It is easily seen that

〈N2〉 = R2, 〈N3〉 = R3, 〈N4〉 = R4,

all of which are KG-submodules of R, while

N5 = {[y, x, x, y, y], [x3, y, y]}.

We rewrite our decomposition as

R = 〈x, y〉 ⊕R(R2 ⊕R3 ⊕R4 ⊕ 〈N5〉)

Now elimination of R(R3) gives a decomposition

R =〈x, y〉 ⊕R(R3)

⊕R(R2 ⊕R4 ⊕ (〈N5〉 ⊕ [R2, R3])⊕ [R4, R3]⊕ ([〈N5〉, R3]⊕ [R2, R3, R3])⊕ · · · ).

We will not list free generators of degree greater than 9. Now observe that

〈N5〉 ⊕ [R2, R3]) = R5 and [〈N5〉, R3]⊕ [R2, R3, R3] = [R5, R3].

With this the decomposition can be rewritten as

R = 〈x, y〉 ⊕R(R3)⊕R(R2 ⊕R4 ⊕R5 ⊕ [R4, R3]⊕ [R5, R3]⊕ · · · ).

Now apply elimination of R(R2). Since R2 is one-dimensional, this is a free re-
stricted Lie algebra of rank 1.

R =〈x, y〉 ⊕R(R3)⊕R(R2)

⊕R(R4 ⊕R5 ⊕ [R4, R2]⊕ ([R4, R3]⊕ [R5, R2])⊕ ([R5, R3]⊕ [R4, R2, R2])

⊕ ([R4, R3, R2]⊕ [R5, R2, R2])⊕ · · · ).

Next observe that

[R4, R3]⊕ [R5, R2] = R7 and [R4, R3, R2]⊕ [R5, R2, R2] = [R7, R2],

so the decomposition turns into

R =〈x, y〉 ⊕R(R3)⊕R(R2)

⊕R(R4 ⊕R5 ⊕ [R4, R2]⊕R7 ⊕ ([R5, R3]⊕ [R4, R2, R2])⊕ [R7, R2]⊕ · · · ).

Finally, elimination of R(R4) gives

R =〈x, y〉 ⊕R(R3)⊕R(R2)⊕R(R4)

⊕R(R5 ⊕ [R4, R2]⊕R7 ⊕ ([R5, R3]⊕ [R4, R2, R2])⊕ ([R7, R2]⊕ [R5, R4])⊕ · · · ).

Here
[R7, R2] ∼= R7 ⊗R2 and [R5, R4] ∼= R5 ⊗R4.

Then the decomposition yields the following result for R9.
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Theorem 10.2. Let R = R(x, y) be the free restricted Lie algebra of rank 2 over
a field K of positive characteristic 3. Then there is a direct decomposition of KG-
modules

R9 = R3(R3) ⊕ [R7, R2] ⊕ [R5, R4]

where [R7, R2] ∼= R7⊗R2 and [R5, R4] ∼= R5⊗R3 are direct summands of the tensor
power T9. �

For the free Lie algebra L(x, y) this yields the following

Corollary 10.2. Let L = L(x, y) be the free restricted Lie algebra of rank 2 over
a field K of positive characteristic 3. Then there is a direct decomposition of KG-
modules

L9 = L3(R3) ⊕ [L7, L2] ⊕ [L5, L4]

where [L7, L2] ∼= L7⊗L2 and [L5, L4] ∼= L5⊗L4 are direct summands of the tensor
power T9. �

These decompositions are peculiar to rank 2. They are not valid for ranks greater
than two. A a byproduct of our calculations for R9 we have the following decom-
positions for degree 6 in rank 2.

R6
∼= R3(R2) ⊕ R2(R3) ⊕ [R4, R2], L6

∼= L2(R3) ⊕ [L4, L2]

where [R4, R2] = [L4, L2] ∼= L4 ⊗ L2.
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