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A SURVEY OF CONDITION NUMBER ESTIMATION
FOR TRIANGULAR MATRICES*

NICHOLAS J. HIGHAMf

Abstract. We survey and compare a wide variety of techniques for estimating the condition number
of a triangular matrix, and make recommendations concerning the use of the estimates in applications.
Each of the methods is shown to bound the condition number; the bounds can broadly be categorised as
upper bounds from matrix theory and lower bounds from heuristic or probabilistic algorithms. For each
bound we examine by how much, at worst, it can overestimate or underestimate the condition number.
Numerical experiments are presented in order to illustrate and compare the practical performance of the
condition estimators.

Key words, matrix condition number, triangular matrix, LINPACK, QR decomposition, rank
estimation
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1. Introduction. Let Cm(m) denote the set of all m n matrices with
complex (real) elements. Given a nonsingular matrix A C and a matrix norm
I1" on C" the condition number ofA with respect to inversion is defined by

K(A) IIA IIA-II.
We will use the matrix norms subordinate to the vector p-norms,

IIAxll, (Y2=, Ix.l’)/’, _<-p<IIAII,= max Ilxll.-xc.. Ilxll,
i

[maxl__<i__<n Ix/l. P-,
x0

for the particular values p 1, 2, 0% and also the Frobenius norm

IIAIl-- laol 2

i,j=l

These norms and the definition of (A) extend readily to Cm" [18], [40].
The condition number is important because in many matrix problems it

provides information about the sensitivity of the solution to perturbations in the data.
The most well-known example is the linear equation problem Ax b, for which
various perturbation bounds involving (A) are available [1 1, p. 5.18], [18, p. 25 ft.],
[40, p. 194 ft.]. To quote one example, if Ax b and (A + E)(x + h) b + d, where
A C"n is nonsingular, then

x r(A) E /IIA \/
bII/’

provided that (A) IIEII/IIAII < 1.
In practical computation perturbation results of this type are important for two

reasons. First, they enable the effect of errors in the data to be assessed, and second,
when combined with a backward error analysis they can be used to provide rigorous
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bounds for the error in a computed solution. To illustrate the second point, it can be
shown that when a linear system Ax- b is solved using Gaussian elimination with
partial pivoting, the computed solution satisfies a perturbed system

(A +E) b,

where E satisfies the bound

(1.2) Ell =< 8/73Pn ][A u + O(uZ),
where p, is a growth factor and u is the machine unit roundoff [18, p. 67]. A rigorous
bound for the relative error [Ix-Ycll/ilxi[ can be obtained by using (1.2) in (1.1),
provided that (A), or at least an upper bound for (A), is available.

Estimates for the condition number of a matrix are required in many areas of
numerical analysis. Some examples are optimisation [9, p. 55], [15], [16, pp. 135,
320], least squares computations [18, Chap. 6], [30], [32], condition estimation for
eigenvalues and eigenvectors [43], computation of matrix square roots [23] and the
matrix exponential [34], solution of Sylvester and Lyapunov matrix equations [4],
[17], [21], sparse matrix computations [12], [19], and the numerical solution of
differential and integral equations [36], [38], [39], [46]. In all these application areas
the matrix of interest either is already triangular or has been factored according to a
matrix decomposition which contains a triangular factor. Leading examples of such
decompositions are LU factorisation [18, Chap. 4], which is fundamental to the
solution of systems of linear equations, the Schur decomposition [18, p. 192], which
is important in the QR algorithm for computing eigenvalues and eigenvectors, and
the following two matrix decompositions, both of which are used in solving least
squares (and other) problems. Let A* fly denote the conjugate transpose of A, and
let P denote a permutation matrix. The two decompositions are

(i) QR decomposition (with column pivoting) ofA e _.mxn, rn >= n:

where Q e Cmxm is unitary (Q*Q I) and R e (2"" is upper triangular 11, Chap. 9],
[18, p. 163];

(ii) Choleski decomposition (with pivoting) of a Hermitian positive definite
matrix A C:
(1.4) PAP=LL*,

where L is lower triangular with real, positive diagonal elements [11, Chap. 8].
(Decomposition (1.3) for A is essentially equivalent to decomposition (1.4) for A*A
[11, p. 9.2].)

Using basic properties of the 2-norm and the Frobenius norm [40, pp. 180, 213]
one can show that for A in (1.3)

z(A)= 2(R), gF(A rF(R ),

and for A in (1.4)

r2(A)=r2(L) 2,

so that in these decompositions the condition number of A is obtainable, trivially,
from that of the triangular factor.
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Consider, then, a triangular matrix T of order n. For all the norms under
consideration TII can easily either be computed, or in the case of the 2-norm,
estimated, using the results that for A e Cnn 18, p. 15],

IIAIIoo-max ail,
l<--_i<-_nj=l

(1.5) IlZll= max laijl,
l<----J<--n i=1

(1.6) A z --< ,/IIA Ill A <-- A 112,

A 112 --< a F----< 4- a 112.
Thus, computationally, the greatest expense in the evaluation of (T) comes from the
term T-’II, which ostensibly requires the computation of T-l. In general, compu-
tation of T- requires n3/6 + O(n2) flops (a flop is the amount of work involved in
evaluating an expression of the form s s + aga; see [18, p. 32]). This volume of
computation may be unacceptable since it is of the same order of magnitude as the
work required to compute the decompositions (1.3) (assuming m is not much greater
than n) and (1.4). Consequently, methods which estimate T-II, in O(n2) flops or
less, are desirable.

In this paper we attempt to give a comprehensive, comparative survey of
techniques for estimating the condition number of a triangular matrix. Our restriction
to triangular matrices is justified by the applications listed above and by the fact that
the derivation and the behaviour of the only widely used condition estimator for full
matrices, that given in LINPACK [11 ], is adequately illustrated by consideration of
the triangular case.

All the methods to be described bound the condition numbersome from above
and some from below. The bounds can be divided into two classes: those that are
obtained from matrix inequalities and depend only on the moduli of the elements of
the triangular matrix, and those that are the result of heuristic or probabilistic
algorithms motivated by the definition of the subordinate matrix norm. Two types of
algorithm in the second class are shown to be related to the well-known power method
for computing matrix eigenvalues [45, p. 570 If.]. The bounds and algorithms are
described in 2-5.

An important aspect of the bounds, which we examine in 6, is their worst-case
behaviour, that is, the largest amount by which a given bound can over- or under-
estimate the condition number.

Section 7 contains the results of numerical experiments designed to illustrate and
compare the performance of the condition estimators on three different classes of test
matrix.

Finally, in 8, we review and comment on the methods discussed and explain
why in practice it is desirable to compute both an upper bound and a lower bound
for the condition number.

In addition to collecting and unifying earlier material this paper presents some
new results, namely the results in 6 describing the behaviour of the upper and lower
bound of 2.

It is clear that it suffices to consider estimation of T-l rather than (T). For
definiteness we will take T to be upper triangular throughout; modifications for the
lower triangular case are straightforward.
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2. Bounds from matrix theory. Let T= (t0.)s Cnn be upper triangular. The
bounds to be discussed in this section are defined in terms of the moduli of the
elements of T; that is, each bound is a function of the form : C"" ,

(T)= (I TI),

where

IZl- (Itil)"".

The implications of this property are explored in 6.
The following well-known lower bound for T- follows from the inequality

IIA ,Z,,F >---- al and the fact that the reciprocals of the diagonal elements of T are
themselves elements of T-:

(2.1) min Itiil) -<- T-’lll,2,oo,F.
l<_i<_n

Upper bounds for T-II can be obtained by making use of the comparison
matrices M(T) (m), where

{ It, I,. i=j,(2.2) mY= l-ltl, i#j,

and W(T) (wi), where

(2.3) I-Itiil, i=j,
wij . -ai, <j,

[ o, i>j,

and

ai max Itikl.
i+ <-k<-n

Comparison matrices arise in the theory of M-matrices [2, Chap. 6].
LEMMA 2.1 [22]. Let T be a nonsingular upper triangular matrix. Then

< W(T)-’T-II IIM(T)- lip I1, p= 1,2,,F.

Proof This result is a special case of several results which have appeared in the
literature on M-matrices. For more general results couched in terms of matrix
minorants and diagonal dominance, respectively, see [8] and [44]; see also [25, p. 58,
Exercise 15]. For a direct, elementary proof of the lemma see [22].

At first sight the upper bounds provided by the lemma appear to be no easier
to evaluate than T-II itself. However, it is easy to show that M(T) and W(T)
both have inverses whose elements are all nonnegative. An observation which has
appeared many times in the literature is that if A->- 0, then IIA-ell- IIA-]loo,
where e (1, 1, 1) v. By utilising this observation we can compute U- I1, for
U M(T) or W(T), without forming the inverse explicitly: U-ll may be com-
puted as the oo-norm of the solution of the triangular system Uz e.

We thus have the following algorithms [22]; see also [32].
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ALGORITHM 2.1 [22]. Given a nonsingular upper triangular matrix T of order n
this algorithm computes /= IIM(T)- IIoo --> T- Iloo.

For i:=n-ltolstep-1

s:=

s’- s + ltigl*z9

zi’-s/ltiil

/M := zll

(j=i+ 1,... ,n)

Cost. n2/2 flops.
For a different derivation of the equations constituting Algorithm 2.1 see [26].

ALGORITHM 2.2 [22]. Given a nonsingular upper triangular matrix T of order n
this algorithm computes -yw W(T)- Iloo--> T- Iloo.

s:=0

For := n- to step-

S := S + 2i+

i’= max Itil
i+l<-k<-n

zi:-- (1 + ai.s)/ltiil

’w:- Ilzll.

Cost. 3n flops, and nZ/2 comparisons for evaluation of the {a;}.
Remark. There are two particular classes of triangular matrices for which the

upper bound of Algorithm 2.1 is equal to T-II=. The first class consists of those
triangular matrices T for which T= M(T); this is, in fact, the class of triangular
M-matrices [2, Chap. 6]. The second class consists of the bidiagonal matrices [24],
those with zeros everywhere except (possibly) on the diagonal and the sub- or
superdiagonal; they arise as the LU factors of tridiagonal matrices 18, p. 97] and are
important in the Golub-Reinsch algorithm for computing the singular value decom-
position [18, p. 169 ft.]. For both classes of matrix Algorithm 2.1 (which simplifies in
the bidiagonal case) enables T- I1= to be evaluated with an order of magnitude less
work than is required to compute T-.

Algorithm 2.2 evaluates the -norm of W(T)-, and the 1-norm can be evaluated
by applying a "lower triangular" version of the algorithm to Tv (since IIA I1 IIA 11 oo).
Karasalo [28] shows how to compute the Frobenius norm of W(T)- in O(n) flops,
via a recurrence relation.

LEPTA 2.2 [28]. IfT e C is a nonsingular upper triangular matrix, then

W(T)-IIF ,#lt, 2,
i=
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where the {tt} are given by the recurrence

tti + Ci-1 )2/-ti- 2Ci-l

where

2<-i<=n,

c;=( max [t,[)/ltii[, <-i<-n 1.
i+l<-k<-n

Proof See [28, Lemma 3.1]. [3

Evaluation of W(T)-IIIF from Lemma 2.2 requires 6n flops and, as in Algo-
rithm 2.2, n2/2 comparisons.

Anderson and Karasalo [1] suggest the use of the power method on the matrix
B= W(T)-W(T)-l in order to estimate W(T)-1 and thereby to bound the
2-norm of T-1. Since B _-> 0 it has a real eigenvalue equal to the spectral radius of B
and an associated nonnegative eigenvector [29, p. 288]; thus, with a suitably chosen
nonnegative starting vector the power method applied to B can be expected to
converge rapidly.

In one iteration of the power method is used, with a starting vector whose ith
component is the 2-norm of the ith column of W(T)- (these column norms are by-
products of the recurrence in Lemma 2.2; see [28]) and the Perron-Frobenius theory
is applied to derive a strict upper bound for I1W(T) -1112 in terms of the power method
vectors. We note that the same technique could be used to estimate IIM(T) -1 ll2.

An alternative way to bound the 2-norm of T-t is to use Algorithm 2.1 or
Algorithm 2.2 to evaluate the appropriate fight-hand member of (see (1.6),
Lemma 2.1)

(2.4)
(2.5)

T-’ I1_ =< IIM(T)-’ 112 <- (IIM(T)-’
! W(T)-’ I1--< (11W(T)-’ II, W(T)-’lloo) ’/2.

Lemeire [31] derives the following upper bounds (where T is of order n).

(2.6) T-III,_-<(/ 1)-

(2.7) T-l II:,F -<-
(a + 2)/3

x/(o + 1) 2n + 2n(a + 2)- 1,

where

(2.8) a= max 3= min It, I.
i<j It, l’

These bounds are, in fact, equal to norms of Z(T)-1, where Z(T)= (zo) is upper
triangular with z, 3 and z;j -a3 for < j. Using the technique used in the proof
of Lemma 2.1 it is easy to show that

(2.9) W(T)-’ I1<- IIZ(T)-’ I1, p= 1,2, ,F.

Thus (2.6) and (2.7) provide the least sharp of the upper bounds given in this section.
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In summary, upper bounds for IIT- are given by the norms of the inverses of
three comparison matrices, M(T), W(T) and Z(T). The computational cost of
evaluating these bounds is, respectively, O(n) flops, O(n) flops and n:/2 comparisons,
O(1) flops and n/2 comparisons; the bounds are ordered according to (from Lemma
2.1 and (2.9))

(2.10) T-llp IIM(T)-’ IIp W(T)- I1 <- IIZ(T)-IIp, p- 1,2, ,F.

3. The LINPACK algorithm. LINPACK [11] is a collection of Fortran sub-
routines which perform many of the tasks associated with linear systems, such as
matrix factorisation and solution of a linear system. Most of the LINPACK routines
for matrix factorisation incorporate a condition estimator: an algorithm which, given
the matrix factors, yields at relatively little cost an estimate of the condition number
of the matrix. We will describe the LINPACK condition estimation algorithm as it is
implemented in STRCO, the LINPACK routine which estimates the condition
number of a real triangular matrix T.

In outline, the algorithm is as follows.

ALGORITHM 3.1 [6], 11 ].
(1) Choose a vector d such that IlYll is "large" relative to Ildll, where Try d;
(2) Solve Tx y;
(3) Estimate liT-Ill Ilxll/llYll--< IIT-II.

Here I1" denotes both a vector norm and the corresponding subordinate matrix
norm. In STRCO the norm is the l-norm, but the algorithm can be used also for the
2-norm or the -norm. Note that the LINPACK algorithm produces a lower bound
for T- II.

We now look more closely at step (1) and assume for clarity that T is lower
triangular of order n; let U Tr.

First, note that the equation Uy d can be solved by the following column-
orientated version of back-substitution:

pi:=O (i= 1,... ,n)

For j:=ntolstep-1

yj dj. pj /ujj

(,) p:=p+ uj,yj (i=j- 1,... 1).

The idea suggested in [6] is to choose the elements of the fight-hand side vector d
adaptively as the solution proceeds, with d +1. At the jth stage of the algorithm
d,, ..., d/ have been chosen and y,, ..., y+ are known. The next element
d e {+ 1, -1} is chosen so as to maximise a weighted sum of d-p and the partial
sums pj_, p which would be computed during the next execution of statement
(.) above. The algorithm is clearly heuristic, being based on the assumption that by
maximising, at each stage, a weighted sum of contributions to the remaining solution
components, a near maximally-normed final solution vector will be obtained.

The algorithm of [6] can be written as follows.
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ALGORITHM 3.2 [6]. Given a nonsingular upper triangular matrix U ["" and
a set of nonnegative weights {wi }, this algorithm computes a vector y such that Uy d,
where the elements d _1 are chosen to make IlYll large.

pi’=O (i= 1,... ,n)

For j := n to step

/

y)-’= (- -p)/u

P/+ P; + uo*Y) /.
!P-[ Pi + uij*

If

(/=j-l,... ,1)

j--I j--I

wll -PI + Y wlPTI >- %-I1 +PI + Y wilPTI
i=1 i=1

then

pi:=p (i= 1,... ,j-1)

else

Y :=Y

pi:=p7 (i= 1,... ,j- 1).

Cost. 2n 2 flops.
STRCO uses weights %.-= 1. A natural alternative is to take w 1/luggl, as this

corresponds to how p is weighted in the expression y (d-pj)/u. The former
choice saves n 2 multiplications in Algorithm 3.2. See [5], [7] for more details about
the choice of weights.

The motivation for step (2) of Algorithm 3.1 is given in [6], [33] and is based on
a singular value decomposition analysis; essentially, if IlYll/lldll ( IIT-Tll) is large
then Ilxll/llYll ( T-II) will almost certainly be at least as large, and it could well be
a sharper estimate. Notice that in Algorithm 3.1, TVTx d, so the algorithm is re-
lated to the power method on the matrix (TTT)- with the specially chosen starting
vector d.

O’Leary [35] suggests a modification to the LINPACK condition estimator which,
as her experimental results show, can produce improved estimates. In the case of
Algorithm 3.1 the modification is to estimate T-II by max {llylloo/lldllo, Ilxll /llyll
(since T-l Ill T-Tllo = IlYll/lldl[oo), and thus to make use ofinformation available
from the first step. One can go further and omit the second step of Algorithm 3.1
altogether, obtaining a 2n2 flops estimator which consists of applying Algorithm 3.2
and estimating U-111oo = IlYlloo/lldlloo- 113’11oo.

We mention in passing that in [19] a modification to the implementation details
of the LINPACK condition estimator is described that is useful for reducing the cost
when dealing with banded or sparse matrices.

Cline, Conn and Van Loan [5] describe a generalisation of Algorithm 3.2 which
incorporates a "look-behind" technique. Whereas Algorithm 3.2 holds each d fixed
once it has been assigned a value, the look-behind algorithm allows for the possibility
of modifying previously chosen d’s. At the jth stage the look-behind algorithm
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maximises a function which includes a contribution from each equation, not only
equations j down to as is the case with Algorithm 3.2. Algorithms for the 2-norm
and for the 1-norm are given.in [5]. The 2-norm look-behind algorithm requires 5n2

flops. See [5], [43] for further details of the look-behind technique.

4. Probabilistic condition estimates. An idea mentioned in [6] is to choose the
vector d in Algorithm 3.1 randomly, for an analysis based on the singular value
decomposition suggests that for a random d there is a high probability that a good
estimate of T- will be obtained. This notion is made more precise by Dixon [10],
who proves the following result.

THEOREM 4.1 [10]. Let A e"n be nonsingular and let 0 > be a constant.

Ifx ff" is a random vector from the uniform distribution on the unit sphere S,
y ff": yry 11, then the inequality

(4.1) (xT(AAT)-kx)I/2k IIA-]I2<--O(xT(AAT)-kx) /2’

holds with probability at least 0.80-k/2n /2 (k >- 1).
Note. The left-hand inequality in (4.1) always holds, as is easily shown. Only the

fight-hand inequality is in question.
Proof See[10]. Vl
We are interested in the case where A T is triangular. For k 1, (4.1) can then

be written as

(4.2)

which suggests the simple n2/2 flops estimate T-’II !1T-xll2, where x is chosen
randomly from the uniform distribution on S. Vectors x can be generated from the
formula

(4.3)

where z, ..., z, are independent random variables from the normal distribution
with mean zero and variance one [10]. To illustrate the theorem, if n 100 and
0 6400 then inequality (4.2) holds with probability at least .9.

In order to be able to take a smaller constant 0, for fixed n and a desired
probability, one can use higher values of k. In contrast to 10] we consider only the
case where k is even and we simplify (4.1), using yry= ]IYI]. If k 2j, (4.1) becomes

(4.4) [[(AA T)-Jxll/ZJ llA -1 [12 011 (AA T)-Jx[[/2J
and the minimum probability stated by the theorem is 0.80-gn /2. For A T we
obtain the estimate

(4.5) 7s II(YYT)-Jxlll/v Y-lll2,

which can be computed in jn flops. Taking j 3, for the same n 100 as before, we
find that the bound (4.4) holds with probability at least .9 for the considerably smaller
0 4.31. Table 4.1 shows the smallest values of 0 that can be taken for n 100 and

TABLE 4.1
Minimum 0 [or n 100.

p 1 3 5

.9 80 4.31 2.41
.99 800 9.29 3.81

.999 8000 20.00 6.04
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a range ofj and probabilities p; here 0 is calculated from 0 (.8n/2/(1 p)) /, which
is fairly insensitive to n, especially for large j.

For j this technique closely resembles Algorithm 3.1, the main difference
being that the fight-hand side is chosen randomly, rather than by a deterministic
algorithm that takes into account the matrix elements.

We carried out a small number of numerical tests, evaluating "r in (4.5) for
j 1, 2, ..., 25 with several T and x, and n -< 25. Three features were noticeable in
the results. First, the {’r} increased monotonically in every case (’r < y- is possible,
theoretically). Second, "r was in most cases within a factor three of T-II2, which is
distinctly better than the 0 values for p .99 might lead one to expect. Third, in the
remaining cases there was often a significant improvement of y2 over y (’r > 2y,
say), with steady but diminishing improvements in the succeeding y;s (recall that
each "r is a strict lower bound for T- , so the larger is "r, the better).

These observations indicate that it may be profitable to compute a sequence of
estimates {-rbs-_, for a fixed, random x, using the information which accumulates as
successive "iterates" are computed to choose s adaptively. We suggest the following
algorithm for implementing this idea. Given parameters r, s, t, a the algorithm
computes the condition estimates for j 1, 2, ..., r, and for j r + 1, ..., s only if
the current estimate "r is a significant improvement on the previous ones, which we
define by "j > aj-t".

ALGORITHM 4.1. Given a nonsingular triangular matrix T e "" and parameters
r, s, t, a this algorithm computes an estimate 7 _-< T-1112 such that the inequality
T-tll2 _-< O(n, r),y holds with probability at least .99, where O(n, r) (80nl/2) /r.

(1) Generate a random vector x0 according to (4.3).
(2) For j:=ltos

xj:--(TTT)-Ixj_ (solve two triangular systems)

If j >_- r then

If 3’ -< a,_t then

"r := max
I<-i<-j

quit

y := max
<-j<-s

Cost. Between rn and sn 2 flops.
Notice that the output ofthe algorithm can be regarded as either a single estimate

% which is "correct" with a given probability, or, alternatively, as a pair of bounds: a
strict lower bound "r and an upper bound O(n, r,)’r which holds with a given
probability.

In practice it is vital to scale the vectors x; in Algorithm 4.1 in order to avoid
overflow, since IIxll--< II(TTr)-II2 T-II .

Our limited experiments suggest that

(4.6) r=3, s=5, t=2, a=2

is a reasonable choice of parameters; note that O(n, 3) < 10 for n -<_ 150.
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A possible enhancement to Algorithm 4.1 is to compute, additionally, the lower
bounds

,m (11 xx U xx_, I1)’/ --< T-’ , j= 1,2,....

In brief tests the estimates o2 provided much sharper estimates of T- I1- than did the
{3?1, 3 typically having at least two correct digits. In view of this observed behaviour
it would be useful to extend the probabilistic bound of Theorem 4.1 to the {}.

We conclude this section by noting, as we did for the LINPACK condition
estimator in the last section, the close relation of Algorithm 4.1 to the power method
with matrix (TTr)- and, in this case, a random starting vector.

5. Convex optimisation approach. For A ett, the 1-norm of B A-l is the
maximal value of the convex function

(5.1) f(x) IIBxll,
i=1

over the convex set

S= Ixett": Ilxll, -<-
From convexity results (or directly from (1.5)) it follows that the maximum is attained
at one of the vertices ej, j 1, ..., n, of S, where es is the jth column of the n x n
identity matrix. Starting from these observations Hager [20] derives the following
algorithm for estimating IIA- I1,.

ALGORITHM 5.1 [20]. Given a nonsingular matrix A e tl "X" this algorithm com-
putes a lower bound , for IIA - Ill.

Choose x with ]lxll (e.g., x := n-ie n-l(1, 1, 1) r).
Repeat

Solve Ay= x.

Form ( where (= l,

Solve A rz (

If zll <- zrx then

’r "-IlYll (---f(x))

quit

x := ej where zl zll

Cost (for triangular A). sn flops, where s iterations of the main loop are required
for convergence.

The algorithm may be explained as follows (see [20] for further details). The
vector z computed at step (,) can be shown to be a subgradient offat x. Thus, from
convexity properties,

f(+e)>-_f(x)+ z(+_e-x),
so that if zsl > zx, for some j, then f can be increased by moving from x to the
vertex es of S (note that f(es) =f(-es)). If, however, Ilzll <-- zx, and if ys # 0 for all j,
then x can be shown to be a local maximum point forfover S.
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The condition y 0 for all j ensures that the set of all :subgradients offat x has
just one element, the usual gradient vector. We note that this condition will usually
not be satisfied on iterations after the first when A is upper (lower) triangular, since
y A-e has zero elements for j < n (j > 1).

In the numerical experiments reported in [20] Algorithm 5.1 almost always
terminated on the second execution of the main loop, and the local maximum
obtained was found to be a global maximum (that is, y IIA-II) with high proba-
bility.

Unlike Algorithms 3.1 and 4.1, Algorithm 5.1 is not related directly to the power
method.

6. Reliability of the bounds. The estimates discussed in {}{}2 and 3 are all rigorous
upper or lower bounds for the condition number. Both types ofbound can give useful
information about a matrix, since a small upper bound verifies well-conditioning
while a large lower bound signals ill-conditioning. However, in the absence of
knowledge about how pessimistic, at worst, the bound can be, no information can be
gained from a large value for the upper bound or a small value for the lower bound.

In this section the author describes his own investigations into the worst-case
behaviour of the upper and lower bounds of {}{}2, 3, and 5. First, in {}{}6.1 and 6.2, the
bounds of {}2 are considered.

6.1. General triangular matrices. Consider the following matrix [22] whose
elements are functions of a positive parameter k:

[ -!X- 1_
T(k)= 0 -0 0 x-J

We have

T(X)-I 0
0 0 1 [0 X X2

_),2, M(T(X))-1= 0 X
X 2 0 0

Clearly then, for the norms 1, 2, o and F,

IIM(T(X))-I
T(X)-lll

X asX-+o.

Since IIM(T)- is the smallest of the upper bounds in 2 (see (2.10)) it follows that
for general triangular matrices T C", where n => 3 is fixed, the upper bounds of2
can overestimate T- by an arbitrarily large factor.

It is well known that the lower bound (2.1) can underestimate T-II by an
arbitrarily large factor [7], [27]. This is illustrated by the matrix M(T(k)), for which
the lower bound is )k2(, 1) while IIM(T(X))-I )x 3.

As noted in {}2, the bounds of that section depend only on the moduli of the
elements of T. Consequently each bound applies not only to T but to all members of
2(T), the set of equimodular matrices U satifying gl- rl; the "unreliability" of
the bounds corresponds to the possibility of an unbounded variation in conditioning
among the members of f(T).

6.2. A restricted class of triangular matrices. Consider now the upper triangular
matrices TC which arise in decompositions (1.3) and (1.4). Because of the
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pivoting strategies these matrices satisfy [1 1, p. 9.4]
J

(6.1) It,ll> Itol k+ <-j< n, < k< n"
i=k

and so in particular,

(6.2)
and

(6.3) It,ll It,ll, j > k.

In order to describe the worst-case behaviour of the estimators of2 for the class
of triangular matrices satisfying (6.1) we need the following result, which applies to
the larger class of matrices satisfying (6.3) only.

THEOREM 6.1. Let the nonsingular upper triangular matrix Te Cnn satisfy
inequalities (6.3). Then, if ltrrl mini Itiil,

2n-I
(6.4) T-’ I1,,

Itrrl

(6.5) T-IIz,F
x/4n + 6n

(6.6) ffmin (T) > x/4+6n
where O’mi T) denotes the smallest singular value of T.

Proof The first two bounds are obtained from (2.6) and (2.7), since by (2.8) and
(6.3), c =< 1. The bound for the smallest singular value follows from (6.5) since

(6.7) O’min(T) T-i I1 ’. 3

Remarks. (1) For T satisfying inequalities (6.1), (6.6) becomes

O-min(T) > x/4n+ 6n
This inequality has been quoted in several papers; see, for example, [28], [31], [37]
and [30] (where a proof is given). The earliest references appear to be [13] (which
contains a proof) and [14].

(2) The unit lower triangular matrices L (lo) that arise in Gaussian elimination
with partial pivoting satisfy lol -<- for > j. Theorem 6.1 applied to Lr shows that
IIt-ll ,oo-< 2-, equality being obtained for the matrix all of whose subdiagonal
elements are equal to -1. This, and other more general bounds on the condition
number of L are given in [3].

TnEORE 6.2 [22]. Let the nonsingular upper triangular matrix T (_.nn satisfy
inequalities (6.1). Then, for the 1, 2 and matrix norms,

2 n-I

-<lIT-I [[<[[W(T)-I(6.8)
It,l II--< IIM(T) II--<---[tnn[

Proof The first three inequalities are from (2.1) and Lemma 2.1. The last
inequality is obtained for the 1- and -norms from (6.4) applied to the matrix W(T),
which clearly satisfies conditions (6.3). For the 2-norm the last inequality is obtained
from (1.6) using the bounds in (6.8) for W(T)- , which were just established. [21

Theorem 6.2 shows that for n x n triangular matrices satisfying inequalities (6.1),
the upper and lower bounds of 2 can differ from T- by at most a factor 2"-. To
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complete our description ofthe behaviour ofthese bounds we show that these extreme
over- and underestimation factors can be attained.

Consider the parametrised matrix [27] (see also [18, p. 167], [30, p. 31])

T,(O diag (1, s,

--C --C C

-c --c

!1
c=cos(0), s=sin (0), 0<0<r/2.

It is easily verified that T,(O)= (t) satisfies the inequalities (6.I)---as equalities in
fact. A short computation shows that the upper triangular matrix T(O)= (a;) is
given by

{ l--j, =j,
aiJ= -Jc(’t- 1)j-i-, <j.

Thus as 0---) 0, s"-T,,(O)- ---> (0, 0, 0, x), where x= (2 "-2, 2 "-t, 1, 1) r, and
hence for small enough 0

2n-I
Z. (0)-’ll,.2,oo,F t..----"

This is a worst-case example for the lower bound in (6.8).
For the upper bounds consider U,,(O) (u:) defined by

u 1)-- to, j> + 1.

The inverse U,,(O)- (o) is given by. Is- i=j,
s-c(c 1)-i-, <j;

thus as 0---, O, sn-lgn(o) -1 (0, O, ..., O, ) where y=(O, O, ..., 0, 1, l) r. Hence
for small enough 0

U, O ,,,F lu..I
yet

w(u(o))-’ll IIM(U(O))-II
2,- 2-

T,,(O)-’

so the upper bounds are too big by a factor of order 2-. This is a worst-case example
for the upper bounds in (6.8).

6.3. The LINPACK algorithm. The question of the reliability of the LINPACK
condition estimator has been answered by Cline and Rew [7] who give several
examples of parametrised matrices for which the LINPACK condition estimate can
underestimate the true condition number by an arbitrarily large factor. The counter-
examples given in [7] were designed for the LINPACK "PA LU" routine SGECO,
but some of them are also applicable to STRCO (see 3).
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The following example is adapted from [7, Example C].

U(X)= X- -2X-2 X=>3.

U(X)-’= X 2X-’- X U(X)-I I1-- 2X- 2X-.
For this matrix Algorithm 3.2, with weights w; - 1, yields y (3 + 2X -2, 2X-, 1) and
hence gives the estimate

u(x)- I1 -- Ilyll 3 + 2x-.
Furthermore x U(X)-Ty (3 + 2X-, 5 + 2X--, 2 + 12X- + 4X -4) so Algorithm 3.1
applied to U(X)T, using Algorithm 3.2 with w-- on the first step, estimates

U(X)-II, Ilxll ,/IlYll - 2.5 1.25X- + O(X-);
this is the estimate returned by STRCO (ignoring rounding errors).

Both estimates, then, are too small by a factor of order X, where X can be
arbitrarily large. Note that the simple lower bound (2.1) is of the correct order of
magnitude here!

For the choice of weights wg 1/Itiil Algorithms 3.1 and 3.2 yield estimates for
U(X)- which are of the correct order of magnitude. We do not know of a counter-

example to these algorithms for this choice of weights (the counter-example for
w 1/[t,I in [7, Example D] is not applicable in our setting of triangular matrices).

Consider now Algorithm 3.2 applied to triangular matrices T satisfying inequal-
ities (6.1). Observe that Algorithm 3.2 returns a vector y with Yn---i t’ln, SO that
IlYlI >-- Itn[ -. It follows from Theorem 6.2 that Algorithm 3.2 cannot underestimate
T- Iloo by more than a factor 2"-. Whether or not this worst case can be attained is,

to our knowledge, an open question. (Algorithm 3.2 performs well on the matrices
T,(O) and U,(O) of the previous section.) It is natural to ask whether the lower bound
of Algorithm 3.1 also is bounded below by tnl - when T satisfies inequalities (6.1);
this, too, is an open question (it is the second stage ofthe algorithm which complicates
matters).

6.4. The convex optimisation algorithm. The author has constructed the follow-
ing counter-example for Algorithm 5.1.

Ii X/(I+X) -X/(I+
U(X)= 1/(1 +;X) X/(1 +X) X>--O.

0

-X
U(X)-I 0 + X -X U(X)-I II1 + 2),.

0 0

In Algorithm 5.1, with starting point x n-l e,

=U(X)-Ix=(1,1,1)r/3=x,

(=(1,1,1) r,
z= U(X)-r(= (l, l,1) r.

Ilzll zrx so the algorithm terminates on the first step, the starting point x being a
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local maximum point for fin (5.1) (since y 0 for all j). The estimate 7 IlYlI
is too small by a factor of order , where , can be arbitrarily large. Note that, once
again, the simple estimate (2.1) is of the correct order of magnitude here. If the
starting point x is changed to Dx, where D diag (+_ ), then replacing U(X) by DU(X)
maintains the counter-example.

7. Numerical experiments. In this section we report on some numerical experi-
ments designed to test the main condition estimators described in 2-5. A valuable
feature ofthe experiments is that they compare the performance of different condition
estimators on the same matrices.

The condition estimators employed are summarised in Table 7.1. The Fortran
subprograms SBGRAD, PROBAB and UPPEST were written by the author. STRCO
is from LINPACK [11] and SIGMAN is documented in [43].

TABLE 7.1

Fortran subprogram

STRCO
SBGRAD
PROBAB
SIGMAN
UPPEST

2
2

Type of bound

Lower
Lower
Lower
Lower
Upper

Implementation of:

Algorithms 3.1 and 3.2.
Algorithm 5.1 with starting point x n-t e.
Algorithm 4. with the parameter values in (4.6).
Look-behind algorithm (3).
Algorithm 2.1.

Three different types of test matrix were used. In each test upper triangular
matrices T nn were generated by computing the QR decomposition (1.3) ofvarious
matrices A e"", for n 10, 25, 50. Each test was performed both with and without
the use of column pivoting in the QR decomposition.

Test (see Table 7.2). The elements ofA e "" were chosen as random numbers
from the uniform distribution on [- 1, (this type ofmatrix was used for test purposes
in [5], [6], [20], [35]). Fifty matrices were generated for each n. We note that this type
of matrix tends to be quite well conditioned: over the whole test the minimum,
maximum and average values of r2(A) were 8.7, 4.2 x 104 and 7.4 x 10 -, respectively.

TABLE 7.2
Test 1. No pivoting. (Similar results obtained with column pivoting.)

n 10 25 50

STRCO
SBGRAD
PROBAB
SIGMAN
UPPEST

.22/.60 .18/.51 .11/.50

.76/.99 .67/.99 .67/.98

.62/.78 .35/.74 .36/.70

.88/.99 .81/.99 .57/.97

.18/.43 .19E-1/.56E-1 .14E-2/.44E-2

Test 2 (see Tables 7.3-7.8) and Test 3 (see Tables 7.9 and 7.10). In these tests we
used random matrices A ["" with preassigned singular value distribution {ri}.
Random orthogonal matrices U and V were generated, using the algorithm of [41 ],
and A was formed as the product A U;Vv, where ; diag (r;). For each value of
n and each ;, 50 matrices were obtained by varying U and V. Following Stewart [41
we chose singular values having the exponential distribution

Test 2: cri O i, < < ’/

being used to determine IIA- 112 T-l I1-, and the "sharp-break" distribution.
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TABLE 7.3
Test 2: STRCO. No pivoting. (Similar results

obtained with column pivoting.)

k: n= 10 25 50

10
103
106
109

.29/.46 .24/.30 .17/.23

.29/.56 .20/.33 .19/.26

.46/.76 .20/.46 .22/.35

.68/.86 .24/.55 .23/.40

TABLE 7.4
Test 2: SBGRAD. No pivoting. (Similar results

obtained with column pivoting.)

kz n 10 25 50

10
103
106
109

.50/.89 .52/.85 .44/.84

.60/.98 .59/.92 .50/.90

.84/1.0 .57/.98 .53/.95
1.0/1.0 .55/.98 .49/.94

TABLE 7.5
Test 2: PROBAB. No pivoting. (Similar results

obtained with column pivoting.)

k2 n 10 25 50

10
103
106
109

.54/.77 .64/.77 .68/.77

.38/.77 .40/.71 .54/.70

.52/.78 .36/.72 .47/.70

.56/.78 .51/.74 .50/.70

TABLE 7.6
Test 2: SIGMAN. No pivoting. (Similiar results

obtained with column pivoting.)

k2 n= 10 25 50

10
103
106
109

.74/.94 .79/.91 .83/.91

.86/.99 .76/.93 .72/.89

.96/1.0 .57/.96 .68/.90
1.0/1.0 .66/.98 .65/.91

TABLE 7.7
Test 2: UPPEST. No pivoting.

k2 n 10 25 50

10
103
106
109

.15/.32 .40E- 1/.71E- .70E-2/. 11E-I

.50E-2/.50E- .18E-3/.97E-3 .26E-5/.90E-5

.46E-3/.16E-1 .35E-5/.57E-4 .36E-8/.30E-7

.50E-4/.90E-2 .27E-6/.13E-4 .11E- 10/.91E-9
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TABLE 7.8
Test 2: UPPEST. Column pivoting.

k2 n 10 25 50

10
10
10
109

.30/.47 .80E- 1/. 13 17E- 1/.27E-

.11/.23 .56E-2/. 13E- 19E-3/.46E-3

.74E-1/.20 12E-2/.44E-2 .18E-4/.42E-4

.73E-1/.21 .85E-3/.28E-2 .24E-5/.97E-5

TABLE 7.9
Test 3: STRCO. No pivoting. (Similar results

obtained with column pivoting.)

k2 n 10 25 50

10
103
106
109

.56/.64 .42/.49 .35/.40

.82/.98 .80/.97 .86/.97
1.0/1.0 1.0/1.0 1.0/1.0
1.O/l.O 1.O/1.O 1.O/l.O

TABLE 7.10
Summary ofresults for Test 3, with and without pivoting.

r(k2, n) denotes minimum ratio.

SBGRAD

PROBAB
SIGMAN
UPPEST

r(k2, n)= 1.0 throughout, except r(10, 25)= .97,
r(10, 50)= .99 (both no pivoting).
.51 <- r(k2, n) _-< .61 throughout.
r(k2, n) 1.0 throughout.
r(k2, n)= 1.0 throughout.

Test 3" t7 0"2 O’n_ > r,,- IIA-II
A selection of the results is shown in Tables 7.2-7.10. The numbers quoted

are the ratios EST/IIT-II <-1 for the lower bounds and [[T-II/EST <-1 for the
upper bounds, where EST is the computed estimate of T- for the norm defined in
Table 7.1. The first number in each pair is the minimum ratio over the 50 matrices
and the second is the average ratio. The results are rounded to two significant figures,
so a ratio of 1.0 implies that the estimate had at least 2 correct figures.

With the exception of the estimator UPPEST in Test 2, for all estimators in all
tests the results for column pivoting showed no significant differences to those for no
pivoting and so the column pivoting results are omitted (in fact, corresponding
average ratios and minimum ratios differed in most cases by no more than. 1).

Comments on the results. (1) In these tests, the quality of the estimates returned
by STRCO, SBGRAD, PROBAB and SIGMAN is quite insensitive to n, and to
whether or not column pivoting is used in the QR decomposition. On the other hand,
in Test 2, the estimates provided by UPPEST worsen markedly as n or r2 increases,
and are appreciably sharper if column pivoting is used (see Tables 7.7, 7.8).

(2) The singular value distribution in Test 3 is clearly a particularly favourable
one for all the condition estimators except PROBAB, many of the estimates having
some correct figures.

(3) The results for STRCO confirm the generally accepted belief that the
LINPACK condition estimator performs very reliably in practice, producing good
order-of-magnitude condition number estimates [5]-[7], 11 ], [35], [41 ].
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(4) SBGRAD performed extremely well in these tests, producing estimates
generally sharper than those of STRCO. We monitored the number of iterations used
by SBGRAD (see Algorithm 5.1). In 2570 of the 2600 cases, only two iterations were
required, the remainder requiting three iterations; this concurs with the results
reported in [20].

(5) PROBAB returned very reliable order-of-magnitude condition number esti-
mates, and the underestimation ratio seemed insensitive to the type of matrix. The
inequality IIT-II2 _-< O(n, r), (see Algorithm 4.1) was found to be satisfied in every
case.

(6) SIGMAN performed extremely well, returning overall the best worst-case
behaviour (see Table 7.11) and roughly equal best (with SBGRAD) average behaviour.

TABLE 7.11
Minimum ratios over all the tests.

STRCO
SBGRAD
PROBAB
SIGMAN
UPPEST

.11

.44

.35

.57

.I1E-10

(7) The quality of the upper bounds provided by UPPEST clearly depends
strongly on the singular value distribution of the matrix (compare Tables 7.7 and
7.10). In the tests where column pivoting was used (so that the inequalities (6.1) were
satisfied) the ratios were in every case several orders of magnitude larger than the
worst case 2 -" (see 6.2).

(8) There is much empirical evidence to suggest that when column pivoting is
used in the QR decomposition it is very rare for the simple lower bound (2.1) to be
more than ten times smaller than T-llz [11, p. 9.25], [22], [41], [42] (although the
underestimation ratio can be as small as 2 -", as shown in 6.2). In our tests the
smallest ratio observed for this estimate when column pivoting was used was. 19.

8. Conclusions. Finally, we review and comment on the condition estimators
discussed in the previous sections.

First, consider the upper bounds of2. The bounds (2.6) and (2.7) are very crude,
and are mainly of theoretical interest. Algorithm 2.1 requires n2/2 flops and provides
a smaller upper bound than Algorithm 2.2 or Karasalo’s algorithm (Lemma 2.2).
Although these last two algorithms require only O(n) flops, they perform n2/2
comparisons; it is reported in [22] that this makes their actual computational cost
similar to that of Algorithm 2.1 on one particular "serial" computer, for n-< 100. It
seems that Algorithm 2.1 is, in general, the most cost-effective of the upper bound
algorithms.

Our tests confirm that the LINPACK condition estimator (Algorithms 3.1 and
3.2) is very reliable in practice, despite the existence of counter-examples (see 6.3).
In view of the accumulated experience with the LINPACK estimator [5]-[7], [11],
[35], [41], one can confidently expect it to return an estimate within a factor 10 of
the true 1-norm condition number in practice.

The convex optimisation algorithm (5) appears, from our tests and those in [20],
to produce estimates generally sharper than those of the LINPACK algorithm, at a
similar computational cost. The fact that Algorithm 5.1 may terminate at a point that
is not a local maximum point (see 5), and the existence of a counter-example (see
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6.4), do not seem to affect adversely the practical performance. This algorithm is
clearly an attractive alternative to the LINPACK algorithm.

The probabilistic estimates described in 4 are of a different flavour than the
other condition estimates: intuitively, the choice of a random fight-hand side vector
that is independent of the coefficient matrix is perhaps a little displeasing. However,
Algorithm 4.1 performed well in our tests, with the probabilistic inequality being
satisfied in every case, and so it merits consideration if a 2-norm estimator is required.

The 2,norm look-behind estimator incorporates a more sophisticated strategy
than that in Algorithm 3.2, and thus is more expensive than the LINPACK algorithm.
The excellent performance of the implementation SIGMAN in the tests of 7 seems
to justify the expense, and makes this algorithm very appealing if sharp 2-norm
condition estimates likely to have correct digits are desired.

Since the four lower bound condition estimators discussed above all provide good
order-of-magnitude estimates in practice, the choice of which estimate to use is likely
to be influenced mainly by the norm of interest and by the availability of software.
Only the LINPACK estimator is widely available in a program library at the time
of writing. However, Algorithms 4.1 and 5.1 are relatively easy to "code up" (the
2-norm look-behind estimator is more difficult).

A noteworthy feature of Algorithms 4.1 and 5.1 is that they require only the
ability to solve linear systems involving the coefficient matrix; access to the individual
matrix elements is not required. This property could be advantageous in applications
where the coefficient matrix is given implicitly, for example, in the form A B-1C.

Although the upper bound of Algorithm 2.1 can be appreciably less sharp than
the lower bounds, the upper bound is worth computing for two reasons. First, being
an upper bound for the condition number it can be used to provide a rigorous bound
for the norm of the error in a computed solution, not only in the linear equations
problem (see 1) but also in several other problems for which perturbation bounds
involving T-Ill are available [17], [21], [23], [43]. Second, a pair of upper and lower
bounds carries with it an intrinsic reliability test: if the ratio of the two bounds is of
order 1, then necessarily either bound provides a good estimate of the condition
number. Even if the ratio of the bounds is not of order 1, a small upper bound verifies
well-conditioning of the matrix, and a large lower bound detects ill-conditioning of
the matrix.

TABLE 8.1
Summary.

Estimate Norm Type of bound Cost Reliable?

Inequality (2.1)
Algorithm 2.1
Algorithm 3.1/3.2 (LINPACK)
2-norm look-behind algorithm
Algorithm 4.1 (probabilistic)

Algorithm 5.1 (convex
optimisation)

1, 2, oo, F

2
2

Lower
Upper
Lower
Lower
Strict lower
bound and upper
bound with given
probability
Lower

n2/2 flops
5n2/2 flops
5/’/2 flops
Ell to sn
flops

2n or 3n
flops in
practice

No**
Yes
Yes
Yes

Yes

For an n x n triangular coefficient matrix.
Reliable for T satisfying inequalities (6.1).
The quality of the estimate depends strongly on the singular value distribution of the matrix.
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We conclude by giving, in Table 8.1, an informal summary ofthe main condition
estimates described here. In the summary the term "reliable" is used to mean that the
condition estimate is usually within a factor 10 of the true condition number.
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