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Abstract

Stochastic resonance (SR) is a phenomenon whereby small amounts of additive noise

can greatly enhance the performance of a non-linear signal processing system. It is

well known that many sensory systems are non-linear in nature and the phenomenon

of SR has been widely studied in them. Perhaps one underexplored area of research

is the visual system, in particular the retina and this project aims to explore to what

extent SR is or could be utilised in the retina.

The thesis is organised as follows: In chapter one I look at the historical develop-

ment of SR from its conception as an explanation of the periodic occurrence of ice ages

to applications in sensory systems. The structure of the retina is explored in chapter

two and I explain why SR might be expected to occur in visual systems. The mathe-

matics of the problem is detailed in chapter three, showing why SR arises in systems

containing a threshold type non-linearity. The phenomenon is extensively studied

experimentally in chapter four, with many different stimuli being tested. These are

broadly organised into two types of task, detection and discrimination, with each stim-

ulus carefully designed to probe a different aspect of the phenomenon. In the final

chapter overall conclusions are drawn, the scope for future work is explored, including

the description of a retina model and the possibilities for practical applications are

raised.

The thesis contains novel receiver operating characteristic (ROC) curves, used to

demonstrate that SR can occur in systems containing a threshold type non-linearity.

I go on to show that noise can be used to enhance the perceptibility of some signals.

However, this enhanced perception is shown to be limited to low level visual tasks.
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Chapter 1

Introduction

1.1 What Is Stochastic Resonance?

Stochastic resonance (SR) is a phenomenon whereby small amounts of additive

noise can significantly enhance the performance of a non-linear signal processing sys-

tem. The phenomenon has been extensively studied and comprehensive reviews are

given by McNamara and Wiesenfeld [27] and Gammaitoni et al. [14]. In order to

exhibit SR a system should have three basic properties: a non-linearity, usually a

barrier or threshold1; a coherent signal, for example a periodic signal; and a source

of additive noise. Such a system is shown below (figure 1.1).

To understand how the phenomenon works, consider the double well (bistable)

potential system shown in figure 1.2 (a) and imagine that some form of detector

reports the position of the particle (as being either in the left well, L, or the right

well, R) at a specified time. The system has two stable states at ±s and an unstable

state at 0, so that a particle released into the system will come to rest in one of the

stable states. The potential of the particle at any position x is given by U(x). Once

the particle has come to rest it will not move unless acted on by an external force.

If a weak periodic force is applied to the system the particle will move up and down

1Bezrukov and Vodyanoy [5, 6]have modeled SR in a threshold free system (an example of which

is a voltage dependent ion channel), where pulses are dependent exponentially on the signal, creating

the non-linearity

13



Signal

    +

Noise

Non-linear receiver Classifier

Yes

No

Figure 1.1: Schematic diagram of a non-linear signal processor. The receiver converts

the input (signal + noise) into a form used by the classifier. The classifier makes

decisions, yes-signal present or no-signal absent, based on what it receives.

the sides of its well. If the force is strong enough, the particle will jump the barrier

(that is the unstable state) periodically, at odd integer multiples of the period, and

will spend some time in each of the stable wells. At regular intervals the position of

the particle is recorded giving rise to a sequence of the form LLRR... as in figure 1.2

(b), from which the frequency of the periodic signal can be recovered. The height of

the barrier will provide information about the minimum amplitude of signal required

to surmount it.

Consider now the case when the signal is too weak to push the particle over the

barrier. In the absence of other effects, the particle will bob about in its well. The

receiver will record the same position (LLLLLL... for example) and the detector will

not be able to classify the signal. If enough noise is added to the system, it may in

cooperation with the signal push the particle over the barrier. Since the noise and

the periodic signal work together to cross the barrier, peaks in the signal will still

correspond to crossings and frequency information can again be recovered. However,

the noise must lie within a particular (relative to the signal and the barrier) range:

too weak and it will not aid the particle in crossing the barrier, too strong and the

crossings will not correspond to the peaks of the periodic signal.

Frequency information can be recovered from the response recording by use of

Fourier analysis. The first task is to compute the discrete Fourier transform of the

recording at discrete values of the frequency. The power spectral density (PSD) at

each frequency can be calculated as twice the square of the Fourier transform at that

14



-s +s0

U(x)(a)

(b)

L L R R

Figure 1.2: (a) The double well potential. (b) A particle placed in the double well

will cross the barrier when the periodic signal (above) reaches its peak. An example

of a signal recording is shown under each double well.

frequency. The PSD provides the distribution of power over frequency in the recorded

response. If a periodic signal is detected it will show as a peak in the PSD at the

frequency of the signal.

Another example of a system, often found in neuronal circuits, that exhibits SR

is an excitable system. Unlike the double well, this system has a single rest state

and an unstable excited state that is reached by crossing a barrier. An example of

an excitable system is shown in figure 1.3. The system has an inbuilt threshold and

monitors (over time) whether an input crosses this threshold. If, when the receiver is

looking at the input it lies above the threshold, a pulse is emitted (see figure 1.3 (b)

15



(a) (b) (c)

Figure 1.3: An excitable system. (a) A periodic signal lying below the threshold. (b)

If pure noise is added to a system, threshold crossings are random and no information

is contained in the pulse train (above). (c) If the noise and signal are both added to

the system the threshold crossings and hence the pulse train correspond to peaks of

the signal and frequency information can be recovered.

and (c)). If, on the other hand, the input lies below the threshold, no pulse is emitted.

The pattern of pulses can be used by the detector to determine frequency information

about the signal. Again, when the whole signal lies below the threshold, no pulses are

emitted and it will not be detected. If noise is added to this sub-threshold signal it

may push the input above the threshold, this is most likely to happen at the peaks of

the signal. Information about the signal frequency is contained in the emitted pulse

train and can be recovered by the detector.

Although it appears that we are performing a little magic or getting something

for nothing, possibly even contravening certain information theoretic forms of the

second law of thermodynamics [52], this is not the case. What SR does provide is a

method of improving the performance of a pre-existing non-linear system, which is

itself counter intuitive, since the non-linearity has often been introduced as a method

of suppressing low level (again relative to the signal) noise in an inherently noisy

signal2.

2In their paper [2], Apostolico et al. describe a system where adding noise to an above threshold

signal caused residual SR effects. This was extended by Stocks [51] who demonstrated SR in systems

with significantly suprathreshold signals, which can outperform systems built to a standard design.
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1.2 It All Begins With Climate Change

The theory of stochastic resonance evolved from the marrying of two ideas used to

explain the periodic occurrence of ice ages. The theory was developed independently

in the early 1980’s by two groups: Nicolis and Nicolis [34, 33], and Benzi et al. [4, 3].

In fact it is Benzi who gave the phenomenon its name, saying [4]

our approach indicates the possibility of a new type of resonance, namely

stochastic resonance between a deterministic external forcing of a climatic

model and a stochastic internal mechanism.

He justifies the name, saying [4]

The word resonance is appropriate because if the noise is too small there

is no correlation between the jumping time and the periodic change of the

insolation. The same is true if the noise is too strong.

It was known that ice ages occurred periodically with the same frequency as the

variation in the eccentricity of the Earth’s orbit. This variation was however weak

and insufficient to cause ice ages [33]. A rival theory proposed that pseudorandom

fluctuations in oceanic conditions and solar radiation (called the internal mechanism

by Benzi) were the cause. The genius was to combine the two theories giving rise to

a new area of research, the theory of stochastic resonance.

The theory pictures the Earth’s climate as a double well potential (see 1.1), with a

cold ‘ice age’ state and warmer ‘temperate’ state being the stable solutions. These are

separated by an unstable barrier lying along the 10K temperature difference between

the stable states. At any time the Earth’s temperature varies slightly as it moves up

and down the sides of the well. Every 50, 000 years the Earth’s orbit reaches its most

elongated state, and the Earth is at its closest position to the Sun. The increase in

heat energy, combined with the natural peaks in radiation (the sun spot cycle has

an 11 year periodicity and is the most probable cause of this noise [33]) provides

enough energy to jump the barrier into the alternative well, where it will remain until

astronomical conditions again favor a jump.
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1.3 Applications of Stochastic Resonance

Since its conception SR has found applications in all areas of science. The first field

where its properties were tested was electronics. When later applied to the naturally

non-linear neuronal circuits found in biological systems research into SR “took off”.

Below I review some historically important examples of SR.

1.3.1 Electrical and Optical Applications

The Schmitt Trigger

The first demonstration of stochastic resonance was carried out by Fauve and

Heslot [12] in 1983 using an electrical circuit called a Schmitt trigger. The output of

the circuit can be likened to a double well potential [12, 27, 14]. A diagram of the

circuit and its response is shown in figure 1.4 below. The following explanation of

V

V
0

-V
0

V
01

-V
01 v

i

-

+

v
i

V
0

B

A

R
1

R
2

(a) (b)

V
E

Figure 1.4: (a) A circuit diagram for the Schmitt Trigger. (b) A representation of the

response of the system, the loop is indicative of a hysteresis effect.

the Schmitt trigger and how it was used to demonstrate SR is based on that given by

Fauve [12] and uses his notation.

The Schmitt trigger operates by comparing its + and − inputs. Suppose initially

that the input to the negative terminal vi is less than V01. It is clear from figure 1.4

(b) that the output of the system is V0. Now, if vi is increased, the output will remain

V0 until vi = V01 when the output will switch to −V0 where it will stay with further

18



increases in vi. Suppose now we decrease vi, the output will continue to be −V0 until

vi = V02 = −V01 when the output will again switch back to V0.The values V01 and

V02 can be thought of as thresholds, since changing the value of vi doesn’t affect the

output until it (vi) crosses one of these values. Notice that the thresholds are not

equal and the system exhibits hysteresis (memory), so that when vi lies between ±V01

the output may take a value of either +V0 or −V0. Thus, the system has two stable

states and must overcome a barrier (or threshold) to switch between them.

In order to demonstrate SR, Fauve initially applied white noise to the inverting

(−) terminal, so that the output switched randomly between +V0 and −V0. The

power spectrum was lorentzian in shape, with no discernable peak. Next he applied

a time-dependent voltage VE to terminal B (figure 1.4), which was fed back through

the positive terminal. This had the effect of increasing and decreasing the threshold

voltages V01 and V02. The voltage alone was insufficient to enable jumping between

the two states. However, when the amplitude of the noise was increased, switching

did occur. Fauve found that the power spectrum of the output showed a sharp peak

at the frequency of the periodic voltage VE. He furthermore found that noise of a

particular variance produced a greater difference between the power spectrum at the

forcing frequency and a neighboring frequency, thus demonstrating SR.

The Bistable Ring Laser

The next demonstration of SR used a bistable ring laser [28, 27, 14], a model of

which is developed in [54]. The system uses a laser whose beam is forced to travel

in a ring by the use of (at least three) mirrors. The beam can be forced to travel in

either a clockwise or counterclockwise direction around the ring by a signal. Noise

can also be added to the system to induce random switching. The system can be

likened to a double well potential who’s output (the direction of travel of the beam)

is similar to that of the Schmitt trigger (see 1.4 (b)). Again, the system experiences

hysteresis with an area where, for a particular amplitude of input (signal plus noise),

the beam can potentially travel in either direction and must overcome a barrier to

change direction.

The results of McNamara et al. [28] show a peak in the PSD at the signal frequency

and a peak in the signal to noise ratio (SNR) for a non-zero noise, demonstrating SR.
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These results were reinforced by Vemuri and Roy [54] in their model.

1.3.2 Biological Applications

Crayfish Mechanoreceptors

In 1993 Douglass et al. [10] were the first group to demonstrate SR in sensory

neurons. They (surgically) isolated single mechanoreceptor neurons from crayfish

tailfins, along with the associated nerve roots and abdominal ganglions, and immersed

them in crayfish saline. The neuron was mounted vertically on an electromagnetic

motion transducer activated by the sum of a signal and a random noise. In crayfish,

mechanoreceptors are responsible for transducing the movements of small hairs into

signals (spikes) that propagate along the nerve. Douglass carefully chose the most

effective signal which, unlike in many SR experiments, was presented slightly above

threshold. The group recorded spike trains similar to those shown in the upper half

of figure 1.3 from which interspike interval histograms (ISIHs) and PSDs could be

calculated.

ISIHs calculated by Douglass for three noise amplitudes are shown in figure 1.5.

The ISIH’s assess the coherence of spiking activity with signal frequency. The results

show an increased coherence between ISIH peaks and integer multiples of the stimulus

period T0 (the first five multiples of T0 are marked with arrow heads), for an optimum

noise level see figure 1.5(b). For no noise the spike rate was low see figure 1.5(a) and

higher (than optimum) noise levels gave rise to increased randomisation of the peaks

see figure 1.5(c). Douglass also measured a significant enhancement in the PSD at the

signal frequency for non-zero noise. When the noise was increased, the magnitude

of this peak was reduced. The group showed noise-induced signal enhancement in

ten out of the eleven mechanoreceptor cells tested. They concluded that they had

demonstrated that biological systems had the ability to use SR and they raised the

question of whether organisms had evolved to exploit SR.

Paddle Fish Feeding Behavior

The question of whether organisms had evolved to exploit SR was answered in

1999 by Russell et al.[45, 32] in their study of paddle fish feeding. Paddle fish are
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Figure 1.5: ISIH’s measured by Douglass for the crayfish mechanoreceptor (a)with

no noise peaks of ISIH are of low magnitude (b) with an optimum amount of noise,

peaks in ISIH correspond to integer multiples of the signal period (c) when noise is

increased beyond the optimum, peaks in ISIH no longer coincide with the period of

the signal. Reproduced from Douglass [10]

weakly electric fish that live in the rivers of North America where muddy water limits

visibility. Instead of using visual cues they sense their prey, the zooplankton Daphnia,

electrostatically.

In this experiment Russell recorded the feeding patterns of paddle fish via a video

camera. Using a pair of electrodes noise was added to the water surrounding both the

fish and its prey, Daphnia, which themselves provide the ‘signal’. The study showed

that the paddle fish fed from a wider area when an optimal amount of noise was

added to the system, compared to both the control, when no noise was added, and

the case when high (above optimal) noise was added.

The paper [45] suggests that paddle fish have evolved to use the noise produced

by the sum of signals from individual Daphnia in a dense swarm to highlight the

presence of a single Daphnia emitting its own signal.
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Stochastic Resonance and Hearing

The possibility of SR in auditory (and visual cortex) neurons was first raised by

Longtin [23]. He compared interspike interval histograms (ISIH) outputs from a

Schmitt trigger, stimulated by a periodic signal and random noise, with those recorded

from an auditory nerve fibre from a monkey. The similarity of the two results sug-

gested the possibility of SR in auditory systems.

In the human ear, rows of hair cells spiral up the cochlea, and movement of these

hairs causes a hearing sensation. A sound of particular frequency will stimulate hairs

in a specific region of the cochlea, carrying frequency information to the processing

areas of the brain. These hairs are subject to Brownian motion, a random movement,

creating a natural form of noise. Gebeshuber [15] modeled the effect of this noise

on frequency information transmitted in pulse trains. She showed an increase in

information when noise was added to a periodic signal. Jaramillo and Wiesenfeld [19]

demonstrated that, for extracted frog hair cells, the noise level that produced a peak

in the SNR corresponded to the level of naturally occurring Brownian motion in the

hair cells. This again suggests that hearing apparatus may have evolved to exploit

SR.

Psychophysics (see 4.1) experiments on human subjects were carried out by Zeng

et al. [59]. The experiments measured detection thresholds on normal hearing and

cochlea implant subjects and showed a reduction in threshold with added noise. This

reduction was more significant in cochlea implant observers suggesting that noise

should be added to improve performance of these implants.

Morse and Evans [30] have studied the effect of noise on vowel coding in cochlea

implants and showed that the addition of an optimal level of noise gave rise to the

greatest enhancements of the key features of a vowel. Moss et al.[31] have suggested

that the addition of noise to cochlea implants may be the first practical application

of SR.

1.3.3 Stochastic Resonance in Vision

Historical Development

There has been little study on the role of noise in the visual system. Early work

includes that of Rovamo et al. [43, 44] where the contrast detection threshold (CDT) of
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a sinusoidal signal was measured while varying various parameters (viewing distance,

angle and signal luminance etc.) both in the presence and absence of externally added

noise. They were not looking for SR and did not demonstrate it. However, this is not

surprising since they used only a single example of noise (of a given mean amplitude)

and other SR studies have shown a need for the fine tuning of noise.

The first study to look specifically for SR in the visual system was that by Si-

monotto [48], this work examined the effect of time varying noise on feature detection.

Subjects were shown a series of strips of decreasing contrast, each containing the same

noisy signal and were asked to identify the strip where the feature first disappeared.

This contrast was taken to be the threshold for that particular noise intensity. In all

ten noise intensities were tested. The results suggest a significant SR effect (see figure

1.6) which shows a reduction in threshold with added noise.

Figure 1.6: Threshold against added noise. Reproduced from Simonotto [48]

The experiment of Simonotto, while intriguing, does not follow an accepted psy-

chophysics protocol. Observers can see all the information (stimuli) at once and may

use differing criteria to judge whether they can see a feature. In other words, Si-

monotto relied on an observer making a consistent judgement, without testing this

consistency. Because of this, it is difficult to draw conclusive evidence for SR from

this experiment or to make comparisons between its results and the results of later

experiments.

A more comprehensive study was carried out by Blackwell [7]. She used a two
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alternative forced choice (2AFC) method, where an observer is forced to choose be-

tween two options, to measure the effect of static noise on the CDT of sinusoidal

gratings of various frequencies. Blackwell’s results show that noise had a facilitatory

effect on detection for low (<10 cpd) frequency sinusoids. Furthermore for subjects

whose CDT’s were relatively high (compared to the other subjects in the study), a

wider range of noise contrasts were seen to be facilitatory.

Blackwell extended her research to look at filtered noise. When the noise was high

pass filtered she showed lower CDT at low sinusoid frequencies and when the signal

was low-pass filtered she showed reduced CDT for high frequencies. Blackwell did

these experiments to eliminate the well-documented [1] phenomenon of sub-threshold

summation as an explanation for SR. Sub-threshold summation is a consequence

of the existence of independent spatial frequency channels in early perception and

explains why the superposition of two subliminal stimuli may—if the two have similar

harmonic content—be perceived as a supra-threshold signal at the shared spatial

frequency. Blackwell also suggests that SR may, at least in part, be explained in

terms of reduced observer uncertainty [38] about when the stimulus is present.

More Recent Research

A current area of research has focused on demonstrating SR within the brain. This

work focuses on the visual system, but bypasses the eyes by presenting the signal to

one eye and the noise to the other. The two inputs remain separate until they meet

at the optic chiasm within the brain. Thus, any improvement in detecting the signal

in the presence of the noise must arise from some function within the brain.

Results were initially reported by Mori and Kai [29], where they recorded a peak

in the PSD of brain wave recordings for an optimum amount of non-zero added noise,

for all five subjects in their study.

The phenomenon reached the popular press [18] with a review of the work of

Kitajo et al. [20]. This work enhanced that of Mori and Kai by comparing the results

of psychophysics experiments (see 4.1) for the above case of presenting the signal to

one eye and noise to the other, with the case of presenting the signal and noise to

the same eye. Their results likewise showed an increase in detecting the signal for a

non-zero noise. A comparison of the two eyed versus one eyed experiments showed

an SR effect for both cases with an increase effect for the one eyed case. This result
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suggests the possibility of SR within the retina although this is not raised by the

authors themselves.

This Project

Further to the work described in this section, this study aims to extend the work of

Blackwell to look at the detection of sub-threshold signals in both static and time-

varying noise. The work will also examine some simple discrimination tasks.
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Chapter 2

The Retina and a Simple Model of

SR

2.1 A Brief Introduction to the Retina

In order to gain an understanding of how SR might occur in the retina I feel it is

important to understand how the retina works. In this section I will describe the

various structures that compose the retina, where noise might be added and how

thresholds might act.

2.2 The Rod Pathway

Much is known about the retina, Dowling [11] refers to it as “the approachable

part of the brain”. It is divided up into distinct layers, each containing a specialised

cell (see figure 2.1). These cells have been accurately described, enabling a picture of

the passage of information (light) to be drawn.

Light traveling through the eye must pass through all the layers of the retina before

impinging on the photoreceptors (or being absorbed and discarded in the pigment

epithelium layer). Photoreceptors fall into two categories, rods active in low light

(scotopic) conditions and cones active in higher light level (photopic) conditions.

There are three different varieties of cone receptor and these generate high acuity

colour vision, while the single type of rod receptor absorbs light over the wavelength
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Figure 2.1: A diagram of a slice through the retina, showing the retinal layers and

the types of cells that compose the retina, diagram modified from [21].

range 400-700nm and maximally at 525nm, to give sensitive monochromatic vision.

Since SR is a near threshold phenomenon, in this project I will concentrate on the

low light level rod mediated system.

2.2.1 Noise

There are many reasons why noise may be present in signals transmitted through the

visual system. Firstly, noise arises in the environment, before it enters the eye light

may bounce off many objects carrying a little information of each. In order to limit

the effects of this type of noise, the visual system filters the signal it receives. This

preserves only the high frequency part of the signal, containing detailed information

about the scene. Secondly, photoreceptors may respond as though they have been

stimulated when no light has provoked them. The level of this thermal noise is low

and in daylight it is imperceptible, however in low light level conditions when just a

few photons are stimulating the retina, it can be a significant feature of the signal

reaching the brain (see 4.2.1). This can be seen as bright flashes when the eyes are

closed, the so called dark light . Since dark light is indistinguishable from real photon

activations, it cannot be eliminated from a signal. A further source of noise is due

to eye movements (microsaccades) that occur continuously without being noticeable

during normal vision, the possibility that this type of noise gives rise to SR in visual

cortex neurons is discussed by Henning et al. [17]. Finally, noise can arise at the
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synaptic connections between elements of the visual system. If small in comparison

with the signal, this type of noise can be eliminated by threshold mechanisms acting

between neurons.

2.2.2 Rods

In the retina there are around 110-125 million rods [49] Within each rod there are

many (600-1000) [49] membranous disks. These disks contain the rod photopigment

rhodopsin (109 molecules per rod [11]) which becomes bleached upon the absorption

of a photon and then transparent to light until, in time, it returns to its unbleached

state. One rod can absorb many photons, but is limited by the number of rhodopsin

molecules it contains. However, the quantity of unbleached rhodopsin is not the only

factor affecting a rods sensitivity (sensitivity = 1/threshold) as is demonstrated in

fig 2.21, taken from Dowling [11]. This sensitivity also deviates (if less significantly)

from the log-linear relationship predicted by Weber’s law 4.1.

As well as their immense photon catching abilities, Dowling [11] argues that rods

can communicate between themselves. This increases the probability of detecting a

single photon and is demonstrated by the recording of single photon absorbtions in

rods neighboring the absorber.

2.2.3 Synapses and Thresholds

The junctions between different cells are called synapses and information must

pass through them to be transferred from one cell to another. In the retina there

are two types of synapse; chemical, where neurotransmitters pass between cells, and

1Dowling’s original caption reads: Relationship between rhodopsin content and final log sensitiv-

ity of receptor potentials measured extracellularly from the skate retina (open circles), intracellularly

from toad rods (filled circles), and extracellularly from single toad rods with suction electrodes (filled

squares). All of these data systematically deviate from an exact log-linear relationship (solid line).

That is with bleaches below about 50 percent the data points fall above the line, whereas with larger

bleaches the data points fall below the line. The dashed line in the figure plots the rise of threshold

expected if the only factor limiting were the quantum-catching ability of the receptor as rhodopsin

levels are reduced.
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Figure 2.2: Relationship between rhodopsin content and rod sensitivity.

electrical, where charged ions are transmitted.

These synapses are a potential site for the introduction of noise into a signal. In

an attempt to limit this noise, transmitted signals are thresholded, that is only signals

above a certain amplitude are transmitted. The threshold determines the sensitivity

of a cell.

2.2.4 Horizontal Cells

The role of horizontal cells in the rod pathway is not entirely clear. Dowling [11]

and Malik [24] say that horizontal cells contribute to the inhibitory surround of rod

bipolars (see 2.2.5) and the rods themselves form the centre part. While Webvision

[21] in their section devoted to the rod pathway, don’t mention horizontal cells at all.

2.2.5 Bipolar Cells

Of the three types of bipolar cell found in the visual system, only one is found

in the rod pathway. The rod bipolar cell has an antagonistic centre-surround nature,

29



where a bright spot of light focussed on photoreceptors impinging on the centre of

its receptive field stimulates the cell, this signal is inhibited if the stimulus also falls

on photoreceptors feeding into the surround region (see figure 2.3). All rod bipolars

exhibit this on-centre structure, meaning they are maximally stimulated by a bright

spot covering their centre and a dark surround. This cell is perfectly suited to the

detection of grating patterns.
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Figure 2.3: The nature of response from a bipolar cell. Indicates how the graded

potential emitted from a cell is affected by the size of a spot of light exciting it.

Based on figures from [46].

2.2.6 Amacrine Cells

Rod bipolar cells do not synapse directly onto ganglion cells (although some cone

bipolars do), but instead pass information through amacrine cells. Amacrine cells

carry information horizontally through the retina and feed signals back to bipolar

cells and on to ganglion cells.

2.2.7 Ganglion Cells

Ganglion cells share the same nature as the cells that impinge on them. So ganglions

that receive input from cone bipolars have a centre-surround nature. However in the

rod pathway, where ganglions receive input from amacrine cells they inherit their

nature from these amacrine cells. They exhibit a transient response to stimulation,
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emitting action potentials at both the onset and termination of stimulation. As a

result of this they are highly sensitive to movement within the visual field.

It is the processes of the ganglion cells that leave the eye (through the optic disk)

to form the optic nerve and transmit information to the brain for further processing.

Approximately one million ganglion cells [49] form the optic nerve, this represents

a great contraction of information from the 100 million or so rods. To achieve this,

significant processing of visual signals must occur in the retina itself, before these

signals are transmitted to the brain.

2.2.8 Summary of the Rod Pathway

A summary of the flow of information through the retina is given in figure 2.4

Rod Receptor

Horizontal Cell

Rod Bipolar Cell

Amacrine Cell

Ganglion Cell

Figure 2.4: The flow of information in the retina.

2.3 A Simple Threshold Model Due to Simonotto

As part of his report on SR in the visual system, Simonotto [48] produced a set of

three images to demonstrate the effect. Following a dithering technique [55], these

show a picture where each pixel has had noise (drawn from a Gaussian distribution)

added and then has been thresholded, with an output pixel having value 0 if it lies
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above the threshold and value 1 if below. The images indicated that an optimum noise

exists, producing the clearest output image, although this is subjective. A similar set

of images has been reproduced in figure 2.5.

(a) (b) (c) (d)

Figure 2.5: A simple threshold model. (a)-(c) Images with differing amounts of added

noise, the amplitude of noise increases from left to right, passed through a threshold

non-linearity. Where max is the maximum pixel value in the original image, the added

noise was (a) 0.25*max, (b) 1.0*max and (c) 2.0*max. The original picture is shown

in (d).
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Chapter 3

Statistical Decision Theory and SR

In this chapter I will demonstrate that SR is possible (mathematically) in systems

that contain a threshold non-linearity. To do this I will introduce statistical decision

theory (SDT) which I will then apply to produce receiver operating characteristic

curves (ROC). Although the SDT behind the production of these ROC curves is

long established [9] the ROC curves themselves are a novel aspect of this thesis. All

simulations in this chapter were carried out using Mathematica [42].

3.1 Statistical Decision Theory and ROC Curves

In systems or experiments where there are large amounts of error prone data a deci-

sion maker (part of the system or an external observer) makes choices based on the

evidence he has. He must analyse the statistics of the data and the likely repercus-

sions of possible outcomes, before making a decision on what the information he has

received truly represents. This type analysis is called statistical decision theory and

is best explained by application to an experiment.

The simplest question one can ask is one that requires a yes or no answer. Imag-

ine a simple experiment where an observer is presented with a series of stimuli, a

proportion of which contain a signal, the observer is asked to indicate whether or not

the signal was present in each stimulus. For this type of experiment there are four

possible outcomes:

hit corresponding to correct identification of the signal

miss saying signal was absent when in fact it was present
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correct rejection correctly saying the signal was absent

false alarm incorrectly identifying the signal as present when it was absent

The choice of outcome is dependent on the form of the stimulus that has been pre-

sented. For example; there are only two alternatives (or states of the world [16]) for

each presentation, either the signal was present, or it was not. The outcomes related

to these presentation alternatives are given in table 3.1, from which we can derive the

State of the World Possible Outcomes

Signal hit or miss

No signal correct rejection or false alarm

Table 3.1: Relation of outcomes to states of the world

relationships

P (hit) + P (miss) = 1

P (false alarm) + P (correct rejection) = 1
(3.1)

which illustrate the interdependence of the quantities in table 3.1 and the existence

of only two independent variables, usually taken to be P (hit) and P (false alarm).

In any yes-no experiment it is desirable to increase the hit rate while reducing

the false alarm rate, however, such a strategy is not generally achievable. Instead the

observer must evaluate the costs associated with different decisions. For example, if

ten million people have to be evacuated every time a hurricane warning is raised, the

cost of raising such an alarm in error (a false alarm) is high. On the other hand,

incorrectly answering a question on an exam has a low cost relative to not answering

the question. If the cost of a false alarm is β, then a reasonable strategy would be to

maximise

α = P (hit)− βP (false alarm) (3.2)

To implement this strategy an observer must define under which conditions to identify

a positive event: he or she might, for example, choose to apply a threshold to some

summary statistic derived from the observable information. Such a threshold could

be set either by the objectives of the task (determined by the cost of a false alarm
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β in 3.2) or, arbitrarily, by the observer him/herself. Psychometric functions (see

section 4.1 can be plotted for yes-no tasks; these curves depend on the criterion used

to identify a positive event.

A useful way of analysing yes-no tasks is through receiver operating characteristic

(ROC) curves. A ROC curve is produced by plotting the probability of a hit against

the probability of a false alarm. All ROC curves begin at (0,0), the case of reporting

no signal for all stimuli and end at (1,1), the case of reporting the signal as always

being present. Intermediate points are found by applying different criteria. Guessing

or chance results, produce a curve that lies along the diagonal from (0,0) to (1,1),

while a near-perfect classifier will produce a curve joining the points (0,0), (0+δ,1−δ)

and (1,1), where δ � 1. An optimal classifier (ideal observer) will give rise to a convex

curve falling between these two lines, see figure 3.1. Here optimal [53] is meant in the
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Figure 3.1: An example of a ROC curve

sense that the hit rate is maximised for a given false alarm rate. Thus, the optimal

ROC curve gives the best possible performance of the classifier for a given signal and

noise.

In the remainder of this chapter I will explore SR analytically, using SDT to give

a fairly complete account of the effect in a simple setting.
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3.2 A Simple Mathematical Model

The basis of the work in this section is a paper by François Chapeau-Blondeau [9] in

which he formulates an expression for the PSD of a discretely sampled input (signal

plus noise) crossing a threshold non-linearity. In his paper Chapeau-Blondeau con-

siders an arbitrary periodic signal and an arbitrary noise. In order to obtain more

explicit models I will consider specific realisations of the noise and a sinusoidal signal.

I will begin by developing explicit expressions for the distributions required to sketch

ROC curves, first obtaining exact results in the case when no threshold is applied and

then a circle of approximate expressions that apply when a threshold is included. I

conclude with some numerical experiments for the latter case.

3.2.1 A Discretely Sampled System

Consider a periodic signal sampled N (where N is even) times. The sampled points

are given by

x0, x1, · · · , xN−1

The fixed time interval of the sampling process is ∆t so that the total sampling period

is given by N∆t.

Since we wish to investigate statistical problems associated with detecting a sinu-

soidal signal in background noise we need to compute the discrete Fourier transform

(DFT) X(fk) of the signal at discrete values of the frequency

fk =
k

N∆t
k = 0, · · · , N− 1

In order to do this, instead of integrating over the total time period, we sum over the

time epoch tn = n∆t (n = 0, · · · , N− 1) at which each sample was taken, to give

X(fk) =

∫ ∞

−∞
x(t)e2πifktdt

≈
N−1∑
n=0

x(tn)e2πifktn∆t

= ∆t
N−1∑
n=0

xne
2πi kn

N
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The DFT is then given by

Xk =
1√
N

N−1∑
n=0

xne
2πi kn

N (3.3)

where the factor 1√
N

is added for convenience. The inverse Fourier transform is

xn =
1√
N

N−1∑
k=0

Xke
−2πi kn

N

If the Xk are real valued, then

X−k = X∗
k

but, here we go from 0 to N-1, over one period, so we have

XN-k = X∗
k (3.4)

The power spectral density (PSD) of x, at each frequency fk = k
N∆t

(k = 1, · · · , N
2
), is then

Pk = |Xk|2 + |XN−k|2 = 2|Xk|2 (3.5)

where equation 3.4 has been used.

We will not generally be interested in the whole spectrum, but a few representative

frequencies, and so it is useful to formulate a version of 3.5 that depends only on real

valued quantities. Define

ak =
1√
N

N
2
−1∑

n=0

xn cos

(
2πn

k

N

)
and bk =

1√
N

N
2
−1∑

n=0

xn sin

(
2πn

k

N

)
(3.6)

so that for xnεR

ak + ibk = Xk

ak − ibk = XN−k

and,

|Xk|2 = a2
k + b2

k (3.7)

Now let

uk =

√
2

N

(
1, · · · , cos

(
2πn

k

N

)
, · · · , cos

(
2π

(
N

2
− 1

)
k

N

))
vk =

√
2

N

(
0, · · · , sin

(
2πn

k

N

)
, · · · , sin

(
2π

(
N

2
− 1

)
k

N

)) (3.8)
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It can be shown that the vectors uk, vk for k = 1 · · · , N
2

from an orthonormal basis

for RN . That is

uj · uk = δj,k

vj · vk = δj,k

uj · vk = 0, (3.9)

The vectors uk, vk also allow one to compute the power spectrum, since

(x · uk)
2 + (x · vk)

2 = 2
(
a2

k + b2
k

)
= 2|Xk|2

using equation 3.7.

3.2.2 A Signal Detection Task

We will be interested in detecting a sinusoidal signal with added noise, which is

passed through a step non-linearity. The result is processed using discrete Fourier

transforms to give a peak in the PSD at the signal frequency. This scheme is illustrated

in figure 3.2.

Figure 3.2: A schematic diagram for the threshold system.

To fix terms, consider the problem of distinguishing between a vector of pure noise

and a sampled signal of the sort illustrated in figure 3.3:

yj = (1− δ) cos(2πj(f0∆t)) + σ0ξj

where the ξj are noise terms with

〈ξj〉 = 0 and 〈ξjξk〉 = δj,k (3.10)
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δ
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θ

Figure 3.3: A periodic signal lying slightly below a threshold. In the calculations that

follow, θ = 1 and so A = 1− δ.

where angle braces indicate averages over realisations the noise process. Eventually

we will apply a threshold nonlinearity and sample this signal to obtain

xj = Θ(yj)

where Θ(y) is the threshold nonlinearity satisfying

Θ(y) =

 1 If y ≥ 1

0 Otherwise

But to being with, I’ll consider the somewhat simpler problem of detecting the sinu-

soidal signal by analysing the power spectrum of the yj.

3.2.3 Detecting the Signal I: no nonlinearity and Gaussian

noise

To apply statistical decision theory one needs to know something about the distribu-

tion of the entries in the power spectrum. For the sake of convenience, let us imagine

that the sampling frequency 1/∆t is a multiple of the signal frequency f , so that

f0 = fk0 = k0/(N∆t) (3.11)

for some integer 0 < k0 < N/2. In the remainder of this section we’ll also imagine

that the noise terms ξj are normally distributed with zero mean and unit variance.

Then we need only work out the distribution of the PSD at two frequencies: the

signal frequency and some other frequency, say fk1 . Consider the latter case first, we

want the expected value of

2|Yk1|2 = (y · uk1)
2 + (y · vk1)

2
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Both terms give rise to similar calculations, so consider y · uk1 :

y · uk1 =
N−1∑
j=0

yj uk1,j

=
N−1∑
j=0

((1− δ) cos(2πj(f0∆t)) + σ0ξj) uk1,j

= (1− δ)
N−1∑
j=0

cos(2πj
k0

N
) uk1,j + σ0

N−1∑
j=0

ξj uk1,j

But, the first of these sums vanishes on account of the orthogonality relations (3.9).

Simplifying further:

y · uk1 = σ0

N−1∑
j=0

ξj uk1,j

Now, as the ξj are independent and normally distributed, the dot product y · uk1 ,

which is just a weighted sum of the ξj, is also normally distributed, with mean given

by

〈y · uk1〉 = 〈σ0

N−1∑
j=0

ξj uk1,j〉

= σ0

N−1∑
j=0

〈ξj〉uk1,j

= 0

(3.12)

and variance

〈(y · uk1)
2〉 = 〈σ2

0

(
N−1∑
j=0

ξj uk1,j

)2

〉

= σ2
0

(
N−1∑
j=0

〈ξ2
j 〉u2

k1,j + 2
∑
j<m

〈ξjξm〉uk1,juk1,m

)

= σ2
0

N−1∑
j=0

u2
k1,j

= σ2
0

(3.13)

where I have used the properties of the noise (3.10) and the orthogonality relations

(3.9). Essentially identical calculations show that y ·vk1 is also normally distributed,

with mean zero and variance σ2
0. Defining

ck1 = y · vk1

dk1 = y · vk1
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we are interested in the distribution of Pk1 = c2
k1

+d2
k1

. As ck1 and dk1 are uncorrelated

(this follows from the orthogonality of uk1 and vk1) the sum of their squares has a χ2

distribution with two degrees of freedom, whose density is

gk1(ρ) =
e−ρ/(2σ2

0)

2σ2
0

(3.14)

Similar calculations apply for the channel that includes the signal, but with the

results that

ck0 = y · uk0 ∼ N((1− δ)
√

N/2, σ0)

dk0 = y · vk0 ∼ N(0, σ0)

The nonzero mean for ck0 means that the power at the signal frequency, Pk0 = c2
k0

+d2
k0

,

has a non-central χ2 distribution whose density is given by:

gk0(ρ) =
e
−(ρ+µ2)

2σ2
0 I0

(
µ
√

ρ

σ2
0

)
2σ2

0

(3.15)

where µ = (1− δ)
√

N/2 and I0(x) is a modified Bessel function of the first kind.

Signal detection strategies and ROC curves

Suppose now that one is presented with a single vector of observations yj and asked

whether it appears to contain the sinusoidal signal. If the signal is present the power

at its frequency fk0 will be drawn from the gk0 computed above. If the signal is absent,

the power at the signal frequency will be distributed in the same way as all the other

frequencies, as gk1 .

Strategies for signal detection now reduce to the choice of a cutoff φ: if, for a

particular observed yj, the power at the signal frequency exceeds this cutoff, then the

signal is said to be present, otherwise it is said to be absent. Combining this policy

with the expressions for gk0 and gk1 , it is easy to work out the probabilities required

to draw a ROC curve:

P (hit | φ) =

∫ ∞

φ

gk0(ρ) dρ

P (false alarm | φ) =

∫ ∞

φ

gk1(ρ) dρ

(3.16)

where the first line gives the probability that the observed power will exceed φ when

the signal is present and the second is the probability that it will do so by chance,
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even when the signal is absent. A ROC curve is then traced out as the image of a

function γ : [0, ∞) → [0, 1]2 with

γ(φ) = (P (false alarm | φ), P (hit | φ)) (3.17)

Figure 3.4 shows ROC curves for a variety of noise amplitudes. In the caption there,

and in the rest of this chapter, noise amplitudes will be characterised by the noise-

to-signal ratio (NSR)

η =
σ0

√
2

1− δ
(3.18)

where (1− δ)/
√

2 is the root-mean-squared amplitude of the sinusoidal signal, and σ0

is the root mean squared amplitude of the noise terms.
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Figure 3.4: ROC curves traced using equation 3.16 for a system with δ = 0.05,

N = 240 and k0 = 15. The four curves are for noise levels η = 2, 4, 8 and 16.

3.2.4 Detecting the Signal II: after the threshold

Once the threshold has been applied the signal has a markedly different character:

it assumes only the values 0 or 1. The statistical properties of the xj are thus very

different, and in some ways simpler, than those of the yj. We have chosen our signal

to be subliminal, so in the absence of noise it never crosses the threshold, xj = 0 ∀j.
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When noise is present we have

P (xj = 1) ≡ pj

= P (yj ≥ 1)

= P ((1− δ) cos(2πj(f0∆t)) + σ0ξj ≥ 1)

= P (σ0ξj ≥ 1− (1− δ) cos(2πj(f0∆t)))

= P (ξj ≥ (1/σ0) [1− (1− δ) cos(2πj(f0∆t))])

= 1− Φ((1/σ0) [1− (1− δ) cos(2πj(f0∆t))])

(3.19)

where the first line should be read as a definition of the symbol pj and Φ(x) is the

cumulative density function (CDF) for the distribution of the noise. Figure 3.5 shows

pj as a function of noise amplitude for a set of NSR ratios η.

For computational ease the noise here is uniformly distributed over an interval

−a ≤ ξ ≤ a whose size a is chosen so as to achieve the desired value of η

a =

√
3

2
(1− δ).

Note that, for very small noise amplitudes pj = 0 except for a brief interval near the

peak of the underlying sinusoidal oscillation. By contrast when the η is very large all

the pj tend to 1/2, which is simply the probability that ξj > 0.
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Figure 3.5: The probability that the xj is one as a function of time for various noise

levels η = 0.1, 1, 2, 4 and 8. Here δ = 0.05, N = 240, ∆t = 1/15 and the sinusoidal

signal has frequency f0 = 1.0. The pj are plotted with connecting line segments to

guide the eye, but are really only defined at the sampling times j∆t.

As in the previous section, we would like to work out the distribution of the entries

in the power spectrum. Here we will work with the pj defined above, and so we no
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longer need to make any special distinction between the channel corresponding to

the signal frequency and the other. Conceptually, this is straightforward: the space

of possible vectors x is simply {0, 1}N and, armed with (3.19), we can compute the

probability of each possible string of 0’s and 1’s. But this is an O(2N) process and

not remotely feasible for the sorts of signals considered above.

Fortunately, one need not resort to direct enumeration of every possible x. Instead

consider 〈a2
k〉 for some arbitrary 0 < k ≤ N/2.

〈a2
k〉 =

〈
(
N−1∑
j=0

xj uk,j)
2

〉

=

〈
N−1∑
j=0

x2
j u2

k,j + 2
∑
j<m

xjxm uk,juk,m

〉

=
N−1∑
j=0

〈x2
j〉u2

k,j + 2
∑
j<m

〈xjxm〉uk,juk,m

Now, if j 6= m, the expected value of the product xjxm is just pjpm. But the expected

value of x2
j is just pj. Indeed, < xr

j >= pj ∀r 6= 0, so the expected contribution to the

power spectrum is

〈a2
k〉 =

N−1∑
j=0

〈x2
j〉u2

k,j + 2
∑
j<m

〈xjxm〉uk,juk,m

=
N−1∑
j=0

pju
2
k,j + 2

∑
j<m

pjpm uk,juk,m

= (p · uk)
2 −

N−1∑
j=0

p2
ju

2
k,j +

N−1∑
j=0

pju
2
k,j

(3.20)

The last line provides a computationally efficient way to evaluate 〈a2
k〉 and, as the

calculations don’t depend on any special properties of uk, one can compute 〈b2
k〉 in

the same way and so obtain 〈Pk〉 .

Figure 3.6 shows a comparison between the expected power spectrum based on

(3.20) and a direct numerical experiment. Note that for very low noise levels the

power spectrum includes peaks at all the harmonics of the signal frequency: for such

weak noise the only nonzero xj correspond to the peaks in the underlying sinusoid

and so appear more like a periodic delta function. Notice also that the power at

frequencies other than the signal frequency (and its harmonics) rises steadily with

increasing noise, while the power at the signal frequency has a maximum for some

intermediate noise level. This point is illustrated more clearly in figure 3.7, which
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Figure 3.6: Expected power spectra for the same sets of parameters as illustrated in

figure 3.5. Panel (a) shows 〈Pk〉 = 〈a2
k〉+ 〈b2

k〉 computed using (3.20) while the lower

panel, (b), shows the results of averaging the spectra of 512 realisations of x. For

the latter case the spectra were computed via the DFT using Mathematica’s built-in

Fourier function. The parameters and colour scheme are the same as described in

the caption to figure 3.5.

shows the expected power at the signal frequency as a function of the noise-to-signal

ratio η: there is a peak at about η = 1.5.

ROC curves

We have computed the mean of the entries in the power spectrum, but to draw ROC

curves we need details of the distributions of the entries in the power spectrum. These

are unlikely to be well-known, or simply defined, but in this section we propose some

approximate approaches. The main ingredient is a formula for 〈P 2
k 〉 (for details, see

appendix A) which enables one to compute the variance of the entries in the power

spectrum. It agrees with simulation about as well as the formula for the mean did and

enables one to approximate the distribution of the Pk with parametric distributions.
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Figure 3.7: Expected power at the signal frequency as a function of the noise strength

η. The smooth black curve is based on (3.20) while the jagged red curve shows, for

each η the mean over 64 realisations of x. Parameters other than η are as in figure 3.5.

Figure 3.8 shows both numerically-produced densities and approximate parametric

distributions. The panels in the left column show histograms of Pk at a frequency

away from the signal peak. Each plot also includes a solid black curve showing the

density function for an exponential distribution with the same mean as the Pk. The

panels at right show the distribution of power at the signal frequency, as well as the

density for a normal distribution that has the same mean and variance as expected

for Pk.

The normal approximation appears reasonable for modest noise, though the his-

tograms appear a bit skewed to the right, but at high noise levels the approximation

is poor. However, we are primarily interested in the lower noise levels for, as figure 3.7

illustrates, it is around η = 1.5 that the power at the signal channel peaks.

Finally, the data in histograms such as those in figure 3.8 are, in themselves

very good representatives of the distribution of the power spectrum and can be used

directly to compute ROC curves. In figure 3.9 ROC curves (far right) are drawn

for simulations based on 1000 realisations of x. In the central columns the power

spectrum for a single example realisation of the process is shown both before (second

column) and after the threshold nonlinearity (third column). The first column shows

a single realisation of the input stimulus, y.
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Figure 3.8: Numerical and approximate parametric representations of the distribu-

tions for the power at the signal frequency (right column) and at a frequency away

from the signal peak (left column). The black curves are plots of the densities given

in equations 3.14 and 3.15, with mean and variance chosen to match the histograms.

The panels in row (a) come from simulations with η = 1 while those in (b) - (d) had

η = 2, 4, and 8, respectively. Histograms are based on 2048 realisations of x and the

remaining parameters are as in figure 3.5.
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Figure 3.9: ROC curves and power spectra for both linear and non linear systems with

different values of added noise. In the first column input stimuli are shown, relative

to the threshold, for different values of added noise. The second and third columns

show a single realisation of the noise, before and after the non-linearity respectively.

The final column shows ROC curves based on 1000 realisations of the noise.
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Chapter 4

Experimental Evidence for

Stochastic Resonance

4.1 Introduction: What is Psychophysics?

In order to verify experimentally the effect noise has on vision, we need a robust

way of measuring perception. The experimental methods used by neuroscientists are

long established [16, 47], and psychophysics is the name given to the science of relating

physical stimulation to perceptual events.

Psychophysics was named by its founder, Gustav Theodor Fechner (1801-1887)

(figure 4.1), in his landmark book ‘Elements of Psychophysics’ [13], which was pub-

lished in 1860 after the culmination of ten years of study. Fechner’s aim in this work

was to find the scientific relationship between mind and body. He discussed the diffi-

culties of the task, recognising that sensitivity cannot be directly measured. Only the

effects of sensitivity are apparent, in a similar way the energy of a body is inferred

only by its effect on the world. For this reason, Fechner and psychophysics since have

had to rely on recording reactions to measured stimuli. However, in 1860, nineteen

years before the electric light bulb was invented, Fechner had none of the advantages

of calibrated electrical equipment to help him, instead he used cleverly devised ex-

periments like those using the shadows cast by candles and involving the perception

of clouds, for example. His most extensive experimental work was concerned with
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Figure 4.1: Gustav Theodor Fechner (1801-1887)

the perception of weight. He worked one hour per day over a two year period lifting

weights and recording his perception of them. For this he devised three experimental

methods which have formed the basis on which future psychophysics have had to

build.

Fechner proposed a function that could be used to show the relationship between

stimulus and sensation. Today this is called the psychometric function (figure 4.2),

and it can be obtained by plotting stimulus intensity against percentage perceived.

Two quantities define the psychometric function: the threshold, below which a

stimulus cannot be reliably perceived; and the slope, which defines how sudden the

transition is between perceptible and imperceptible stimuli. Psychometric functions

can be used to compare sensitivities between different tasks.

Historically, the most important law in psychophysics relating stimuli and percep-

tion is Weber’s Law :

Theorem 1 (Weber’s Law) The difference between two stimuli is always perceived

equal if its ratio to the stimuli remains the same, regardless of how absolute size

changes.

It was Fechner who attributed this to Weber. He quotes Bernoulli’s financial example

to illustrate it:

without doubt, the gain of 1000 ducats is far more important for poor
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Figure 4.2: An example of a psychometric function

persons than for rich persons, although the amount is the same for both.

After publication of his book, Fechner turned his attention to other areas of science,

leaving his legacy of psychophysics for others to develop.

4.1.1 Psychophysics and Statistical Decision Theory

In our world of noise and uncertainty, psychophysicists were forced to ask themselves

what event or series of events must a stimulus provoke in order to be perceived. To

explore their ideas about perception they turned to statistical decision theory which

examines the statistics (both risk and uncertainty) related to an event and makes a

decision based on the most likely option.

In section 3.1 the theory was applied to simple yes-no experiments and the process

of producing ROC curves was described. While ROC curves are useful in the analysis

of psychophysics experiments, they are very expensive to measure. Each point on the

ROC curve may require hundreds of measurements and many points are required for

a smooth curve. We require a more efficient method and the two alternative forced

choice (2AFC) method provides this by eliminating the observer imposed criterion.

In a 2AFC experiment an observer is asked to make a decision between two pre-
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defined alternatives. Here, the observer must prove that they can detect a stimulus

by answering some question about it, such as the timing or spatial location of the

stimulus. The only sensible strategy for this type of experiment is to choose the most

likely alternative, that is, the observer chooses alternative A if

P (signal presented in A) > P (signal presented in B) (4.1)

and chooses alternative B if

P (signal presented in B) > P (signal presented in A) (4.2)

thus eliminating user imposed criteria. The exception to this is the case when both

alternatives are equally likely, when the observer may apply a criterion as to how to

distribute ‘guesses’ between alternatives. In the experiments devised here, however,

this should not have an effect 1. Psychometric functions can again be plotted, although

now since an observer is forced to choose between two alternatives and thus will be

correct on average 50% of the time when they cannot see the signal, the threshold is

taken at the 75% correct point. This threshold is not affected by observer imposed

criteria and can be used as a measure of perception. Thresholds or percentage correct

results can be compared between experiments or observers to analyse performance.

There are other formats for psychophysics experiments, which have been devised

to probe different aspects of perception, although in this study we will use the 2AFC

method.

4.2 Experimental Design

4.2.1 Experimental Conditions and Dark Adaptation

Stochastic resonance is believed to exploit threshold mechanisms existing early in

the retina. These thresholds control the quantity of light necessary to stimulate the

visual system and their variable nature allows for the detection of light at very low

1In threshold determination experiments: because an adaptive approach is used with half the

signals in each alternative.

In SR experiments: because half of the signals are given to each alternative for each noise level.
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light levels [50]. It is at these levels that noise may become a significant factor in

the signal reaching the brain. Perhaps the most influential type of noise is dark light

which arises as a result of the spontaneous isomerism of photoreceptorsand can be

seen as bright spots when the eyes are closed tight.

These experiments attempted to reproduce low light level conditions, where noise

could have a significant effect on a signal. To achieve this, experiments were carried

out in a dark windowless room, where the only light was provided by the computer

VDU when images were displayed.

It is well known that prolonged exposure to bright light effects visual sensitiv-

itysignificantly, as is demonstrated by the difficulty in visualising objects when walk-

ing from bright sunlit conditions into a dark room. The effect, called dark adaptation,

is a consequence of the time taken for visual pigments to regenerate from a bleached

to an unbleached state after exposure to light. It can be quantified and curves of the

recovery of sensitivity (decrease of threshold) with time, can be drawn as in figure

4.3. In this graph, the dotted line represents the adaptation of cones while the solid
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Figure 4.3: Dark Adaptation Curve, taken from [11]

line represents rod adaptation. The graph illustrates the rapid adaptation of cones to

their new conditions reaching a maximum sensitivity after about five minutes, rods

however don’t reach maximum sensitivity until thirty minutes after dark exposure.

Dowling [11] remarks that after being exposed to a bright light bleaching “virtually

all” the receptor pigment, sensitivity took more than ninety minutes to recover in

rats.
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With these factors in mind I had to consider whether to include dark adapta-

tion as a phase of the experiments. On reviewing previous work undertaken by the

Manchester group, two projects were found with similar experimental design, one of

these, carried out by Otterpohl [35] utilised dark adaptation, the other, carried out

by Palladres [36] did not. Although the results of these experiments are not exactly

comparable there do not appear to be any advantageous effects resulting directly from

dark adapting observers. In fact the results of Palladres show a significant SR effect

without its use. In view of this evidence, coupled with the fact that some of the

experiments were tedious and sometimes extremely fatiguing, the decision was made

not to dark adapt observers. Initial results (gathered for the grating experiment),

where thresholds were measured both before and at the end of an experimental SR

run, showed no apparent increase in sensitivity over the course of an experiment.

Another consequence of dark adaptation is raised by the issue of after-images.

After-images arise because of uneven bleaching of the retina, which then takes differing

times to recover. This results in an image being preserved in an area of the retina and

a reduced sensitivityto further stimuli. Dowling [11] states that adaptation to dim

intensities is complete within a minute, but in the experiments undertaken as part of

this project, images in a duo are flashed on the screen after a half second gap and even

between pairs the gap is much less than a minute (approximately two seconds), making

after-images a distinct possibility. In fact, observers reported occasionally seeing the

stimulus in both intervals of the 2AFC task, a possible consequence of this. However,

in experiments where the gap between presentations was large (the delay was caused

by the difficulty in generating the moving noise patterns, see 4.2.2), observers reported

increased difficulty in maintaining concentration. This difficulty in concentration and

the related inability to hold images in the mind for later comparison, outweighed any

issues with afterimages.

4.2.2 The Experiments

These experiments were initially devised to demonstrate SR in the human visual

system. They have been extended in an attempt to explore for which stimuli and

tasks sub-threshold signals can be detected and also the extent of this detection. The

tasks were divided into two forms; those of detection, where the aim was simply to
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detect the presence of a signal and discrimination tasks, where an observer was asked

to identify some property of the signal. We also examined whether using moving as

opposed to static noise had a differential effect. In all eight kinds of experiment were

carried out, these were divided into detection and discrimination tasks as follows:

Grating experiment

Detection Square experiment

Grating with time varying noise experiment

Triangle experiment

Single Interval Displaced Square Discrimination Experiment

Discrimination Angled grating experiment

Triangle with time varying noise experiment

Two Interval Square wave discrimination experiment

Table 4.1: Detection and discrimination experiments.

All experiments followed a 2AFC format, whereby an observer was asked to make

a decision between two alternatives. Sometimes the alternatives differed in a temporal

nature, sometimes spatial. In all experiments an equal number of each alternative

was presented. All stimuli were presented on a VDU screen and were surrounded by

a dark square frame, 20 degrees (of visual angle2) along each edge and 80% darker

than the background luminance. The frame was presented only with the stimulus,

thus providing a cue to the stimulus presentation, which alone may not have been

visible. All images were fed through the green channel of the VDU (see 4.2.3), making

the stimulus appear in differing shades of green. The screen was viewed binocularly

through natural pupils. Decisions were indicated by the use of a switch or keyboard

key.

Each experiment was divided into two parts; the first being a measurement of the

contrast detection threshold (CDT), that is the minimum contrast at which the signal

is detectable; while the second phase sought to determine the extent and magnitude

of the SR effect. For some experiments two stimuli were presented and the observer

had to choose the one with the desired property. For many of the discrimination

2The visual angle of an object on the retina is defined as the angle the object subtends to the eye
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experiments, only one stimulus was presented and the observer had to identify some

property of the signal. Here, a typical two interval experiment is described, the single

interval alternative is similar.

For the CDT task a number (typically 75) of stimulus pairs were presented in

the absence of noise. The first stimulus was presented for 500ms, then there was

a 500ms gap then the second stimulus was presented for 500ms. Only one of these

stimuli contained the signal, the other was a blank, with each pixel equal to the

average intensity of the stimulus image. A typical set of presented images is shown in

figure 4.4, where the image on the left contains the blank and the image on the right

contains a grating signal. The observer’s task was to choose which interval was most

likely to have contained the signal. The software waits for this choice to be made

before continuing with the next presentation. The signals were of differing intensity,

the magnitude of which was calculated by a Bayesian adaptive method (See [22]

and section 4.2.6) in order to provide the most information about the psychometric

function while reducing the number of presentations required for an acceptable level

of accuracy.

Figure 4.4: A typical pair of images used to determine a CDT

In the second part of the experiment, a signal was presented at a specified intensity

(typically 0.2dB) below the CDT determined in part one. Noise of the same form

was added to both signal and blank (no signal) presentations. Again, the order of

presentation was; stimulus one for 500ms, 500ms gap, stimulus two presented for
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500ms. A typical set of images for an SR experiment is shown in figure 4.5. The

observer’s task was to identify the interval which was most likely to contain the signal

(right here), the software again waits for this decision to be made before presenting

the next pair. A number of different (average) noise intensities were used, these were

linearly spaced between specified minimum and maximum values, the case of no noise

was also tested. There were many presentations, typically 40 though sometimes as

many as 100, of each noise level which were arranged randomly.

Figure 4.5: A typical pair of images used for an SR experiment

There are several differences between the single interval and double intervalforced

choice tasks. The first is the mode of presentation, which, for the single interval

task was: present the stimulus for 500ms then wait for the observer’s reply before

presenting the next stimulus. Thus, a signal is always presented. This limits the type

of perception that can be tested to discrimination tasks. The advantages of single

interval experiments are that the experiments are quicker, leading to less fatigue, and

also, the observer is not required to hold an image in memory for comparison: all the

information is presented at the same time. The main disadvantage of this method

is that an observer may miss the presentation and be forced to guess their decision,

where in a two interval task she may be able to make an informed decision based on

only one of the two presentations.

Each experiment is described in more detail below, with results given in section

4.3.
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Grating Experiment

This experiment is essentially a repeat of those carried out by Otterpohl [35] and

Pallares [36] in their demonstrations of SR. It is a two interval detection task where

the observer is asked to identify which of the two intervals contained the sine wave

grating

s (x) = sin (2πfx) (4.3)

with specified spatial frequency f . The signal is presented within a Gaussian envelope

g (r) = exp

(
−r2

2σ2

)
(4.4)

where σ is the envelope width, usually set to 4 degrees; this is designed to soften the

edges of the stimulus and help it blend with the background. The stimulus is shown

in figure 4.4 above.

In all 5 spatial frequencies were tested: 1 c/deg, 2 c/deg, 3 c/deg, 4 c/deg and

5 c/deg. 75 pairs were used to determine the CDT, which was taken to be the 75%

correct point. To test for SR 40 pairs were presented 0.2dB below the measured CDT,

for each of 9 noise magnitudes including zero.

Angled Grating Experiment

This is a discrimination task that uses the grating signal and inbuilt properties of

the visual system in order to demonstrate SR. Even in the retina, the visual system

distinguishes between lines of different orientation and passes this information onto

the brain for image reconstruction. Here, this property is used to test possibly the

simplest discrimination task, and the limits of our ability to discriminate between

lines of differing orientation.

For this single interval experiment, a grating pattern of spatial frequency 3 c/deg,

was presented within a 4 degree Gaussian envelope as described by equations 4.3

and 4.4. However, here the grating was sometimes oriented by angle θ = 90deg,

45deg, 30deg, 20deg, 15deg, 10deg, 5deg, 3deg and 2deg, where each angle was tested

individually in separate runs of the experiment. Examples of typical vertical and

angled gratings are shown in figure 4.6. The observer’s task was to say if the grating

was vertical (left on the switch or 1 on the keyboard) or off from vertical (right or 2).
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In the CDT phase of a trail, the observer was presented with 75 stimuli. For the

SR phase the signal was presented 0.2dB below the CDT, 9 noises including zero were

tested with 40 examples of each noise.

Figure 4.6: A typical pair of images used for angled grating experiment

Oriented Triangle Experiment

This was the first discrimination task tested. The results were somewhat disap-

pointing and motivated other tasks which were devised to in an attempt to discover

for what tasks SR is evident.

In this single interval task a triangle is presented that points either to the left or

right, see figure 4.7, and the observer must decide on the direction and indicate their

choice with the switch or keyboard. In different trials, different size triangles were

presented, these were 0.5 deg, 1.0 deg and 1.5 deg, where the size is defined as the

length of a side. The triangle was presented within a Gaussian envelope as described

by equation 4.4 with σ = 4 degrees, which helped to soften the noise on SR trials.

In all 75 presentations were made for CDT measurement. For the SR phase the

signal was presented 0.2dB below the CDT, 5 noise samples were tested (including

zero) with 100 examples of each noise.
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Figure 4.7: A typical pair of images used for the oriented triangle experiment

Square Detection Experiment

This detection task used the harder to perceive (relative to a grating) geometric

square shape to explore whether SR is task (detection verses discrimination) or stim-

ulus dependent. This shape is easier to detect than the triangle, because it has two

pairs of parallel sides and four corners for an observer to pick out.

For this two interval detection task, an observer was asked if a square shape

appeared in the first or second interval of the pair. Decisions were recorded with the

switch or keyboard. The size of the square was defined by the length of one of it’s

sides and in all two sizes of square were tested (1 deg and 1.5 deg) in separate runs

of the experiment. A typical square signal is shown in figure 4.8.

In the CDT phase of a trail, the observer was presented with 75 stimulus pairs.

For the SR phase the signal was presented 0.2dB below the CDT, up to 9 noises

including zero were tested with either 40, 50 or 100 examples of each noise.

Displaced Square Discrimination Experiment

This discrimination experiment uses the geometric square shape again and asks

on which side of the screen it is presented. This question of location is perceptually

easier to answer than the one of orientation in the earlier oriented triangle experiment,
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Figure 4.8: A typical square stimulus

the square shape is also easier to perceive.

In this single interval task, a square shape (1.0 deg) was presented along the

horizontal centre-line of the screen off-set from the centre by an amount (1 deg, 2

deg or 3 deg in separate trials), see figure 4.9. The observer had to indicate whether

they thought the shape appeared to the left or right of the screen, using the switch

or keyboard.

In the CDT phase of a trail, the observer was presented with 75 stimuli. For

the SR phase the signal was presented 0.8dB below the CDT (due to the difficulty

in measuring CDT), 5 noises including zero were tested with 100 examples of each

noise.

Square Wave Discrimination Experiment

The experiments in this section were motivated by the work of Campbell and

Robson [8] and Abadi and Kulikowski [1], where the now widely-accepted proposal is

made that, within the visual system, separate frequency channels exist, each detecting

only those signals that lie within a narrow range of spatial frequencies.

The experiment was designed to utilise visual system properties to distinguish

between sine and square waves. The Fourier series for the square wave of contrast C,

depicted in figure 4.10 is given in equation 4.5
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Figure 4.9: A typical pair of images used for the displaced square discrimination

experiment

Square wave
f (x) =

 −C −π
ω

< x < 0

C 0 ≤ x ≤ π
ω

Fourier series
f (x) =

4C

π
sin (ωx) +

4C

3π
sin (3ωx) +

4C

5π
sin (5ωx) + . . . (4.5)

The sine wave of contrast C is given by

g (x) = C sin (ωx) (4.6)

Now, suppose the threshold for a sinusoid of angular frequency ω is θ1, while that for

a sinusoid of angular frequency 3ω is θ3, so that

θ1: is the value of C for which C sin (ωx) becomes visible

θ3: is the value of C ′ for which C ′ sin (3ωx) becomes visible

Then:

• The square wave will become detectablewhen C = π
4
θ1. This is when the

contrast of the first harmonic reaches θ1. Note, this implies that a square wave

is more easily detected than a sinusoid of the same frequency.

• The square wave will become distinguishable from the sine wave when C =

3π
4
θ3. This is when the contrast of the third harmonic reaches θ3.
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Figure 4.10: A square wave and its fundamental frequency

For this two interval experiment two signals were presented, one in each temporal

interval. The signals were either a sine wave or a square wave3 and any of the following

four combinations were possible: two sine waves, two square waves, a sine wave then

a square wave (see figure 4.11) or a square wave then a sine wave. Each of these pairs

were equally likely and appeared in random order. The observer’s task was to say if

the signals were identical (left on the switch or 1 on the keyboard) or different.

For the CDT measurement 76 stimulus pairs were presented. In the SR experiment

7 noise levels including zero were tested with 40 examples of each level. Both signals

were presented 0.2dB below the measured CDT (taking into account that the square

wave is reduced in contrast by π
4
).

Grating with Time Varying Noise Experiment

The visual system monitors input over time, noting any changes to visual signals

that occur. If the noise on an image varies over time, it would be expected that SR

would highlight different parts of an image at different times. Integration of these

differing noisy signals could further aid vision. The following two experiments were

devised to show if time varying noise had any differential effect on perception. The

first is essentially a repeat of the grating experiment with flickering noise.

3The square wave has a fundamental frequency equal to that of the sine wave and amplitude π
4

times that of the sine wave, in order for the two signals to appear at the same contrast.
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Figure 4.11: A pair of images used for the square wave discrimination experiment,

where the first image (left here) contained the sine wave and the second (right) con-

tained the square wave.

The experiment was carried out in exactly the same manner as described above.

The spatial frequencies tested were 1 c/deg, 3 c/deg, 4 c/deg and 5 c/deg. For CDT

measurement 75 samples were used and for the SR phase 5 noise samples were tested

with 50 examples of each noise. Each stimulus was presented for 500 ms. Again

the software waited for the observer’s reply before presenting the next stimulus pair.

There were hardware restrictions on how fast the noise could be generated and this

slowed down the experiment considerably, so where for the stationary noise experi-

ment a typical SR experimental run took 16 minutes, here a run took 55 minutes,

and was therefore considerably more tiring.

Triangle with Time Varying Noise Experiment

This was a repeat of the oriented triangle experiment but used flickering noise .

4.2.3 Equipment

The following equipment was used for the experiments:

• Apple powerbook G3 233MHz laptop (with a serial port), running Denis Pelli’s

Video Toolbox software [39]
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• High resolution Sony 200sf colour monitor

• Video attenuator, to convert three 8-bit DAC channels into one 12-bit (green)

channel. This is used to increase ‘gray’ levels from 256 to 4096

• A bimodal switch (or alternatively a keyboard press), used to record decisions

• An RS-232 (model 232DA12 of B&B Electronics) 12-bit A\D data acquisition

module

• A PR-1500 Spotmeter from Photo Research, a photometer used to calibrate the

VDU

• A chin rest to ensure the observer remained stable

4.2.4 Software Review

To undertake psychophysics experiments stimuli need to be accurately drawn with

known luminance (contrast) values. Modern computers have many pixels that can

be individually set to create detailed and complicated stimuli. The process of setting

the colour on a monitor, as well as the timing of a presentation, is controlled by the

computer’s video card, which cannot be accessed directly and therefore is not easily

manipulated.

To address these issues Denis Pelli has developed a suite of freely available C rou-

tines called VideoToolbox [39, 37]. These enable the generation of calibrated colour

lookup tables that can be read by the video card and can also synchronize experiment

timings with that of the video card’s internal clock. The Video Toolbox software en-

ables a video attenuator to be used during the experiments. This attenuator is used to

combine the video card’s three colour RGB channels into a single monochrome chan-

nel of higher grayscale resolution. The software includes examples of psychophysics

experiments that can be run.

The software used for this project was written by Mark Muldoon using Denis

Pelli’s Video Toolbox software. New stimuli have been written by the author along

with new code that implements a single stimulus presentation (as opposed to the

usual two presentations).
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4.2.5 Calibration Procedure

In order to send luminance values to the computer’s video card a calibrated colour

lookup table needs to be generated. This was achieved using a suite of programs

called CalibrateMonitor within the VideoToolbox, and a photometer, the PR-1500

Spotmeter mentioned above. The photometer was focused on a central spot on the

computer monitor and then reported back the measured luminance, to create the

lookup table. The monitor was calibrated before the start of the reported experiments.

It was not calibrated again as the calibration had proved stable over a period of

many months during a previous set of experiments [35]. Additionally Pelli reports

the calibration is stable (in a comment on the file CalibrateLuminance.c)

4.2.6 Bayesian Adaptive Method for Determination of CDT

To carry out the SR experiments a contrast detection threshold (CDT) measure-

ment is required. The CDT is the contrast below which an observer cannot perceive

a signal. To determine an observer’s CDT a separate CDT experiment was carried

out immediately before each SR experiment.

A naive approach to determining CDT would be to use a staircase method: re-

duce the stimulus contrast until the observer can no longer see the stimulus (answers

incorrectly) then increase the contrast until the stimulus is again seen (indicated by

a correct answer); repeat this procedure until the difference between seeing and not

seeing is sufficiently small. There are several problems associated with this approach:

firstly, in a 2AFC experiment an observer would be correct 50% of the time even

when they cannot perceive the signal; secondly, it may take many trials to accurately

determine the threshold; and thirdly, this type of experiment makes no prediction for

the slope of the psychometric function, which is not a simple step function as this

method may suggest.

For the CDT experiments carried out under this project, a Bayesian adaptive

method is implemented as suggested by Kontsevich and Tyler [22]. The method is

reviewed in more detail in appendix B. The methodology of their approach is to look

ahead to the next trial and predict which signal contrast would provide the greatest
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confidence in the estimation of parameters that define the psychometric function.

This is achieved by finding the contrast that gives the minimum of the expected

entropy over all possible values of contrast. This test contrast is presented with the

result being used to assist in calculating the next test contrast. The results of a

typical CDT measurement experiment are shown in figure 4.12.
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Figure 4.12: A Typical CDT measurement experiment using an adaptive Bayesian

approach. In the graph: C indicates a correct answer, I an incorrect answer. After

75 trials the estimate of the CDT (see Appendix B) was 0.0036; this is shown in the

figure by the horizontal dotted line.

Although one approach suggested by Kontsevich and Tyler [22] as the most accu-

rate, is to run the experiment until the parameters are predicted to within a specified

error, they rule this out as being impracticable. They instead suggest carrying out

a fixed number (> 30) of trials, as then an experienced observer develops the ability

to predict the duration of the experiment, thus, reducing possible uncertainty caused

by a potentially endless experiment. In this project we have used this fixed number

of stimuli approach, with 75 stimuli.

4.2.7 Generating the Noise

In order to carry out SR experiments noise patterns had to be generated and added to

signals to create a stimulus. In her study Blackwell [7] states that the SR effect does
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not depend on the form of the noise. She uses log-normally distributed noise in her

experiments as this ensures that images look the same when scaled in intensity. All the

experiments described here followed Blackwell’s prescription and used approximately

log-normally distributed noise with a mean luminance equal to that of the stimulus as

a whole. In this we were motivated by Weber’s law 1—that perceptibility is a matter

of ratios: we wanted to use noise parameterised in such a way that its influence on

perception would be the same for a broad range of stimulus intensities.

Stimuli are created by modifying individual pixels in the image (or on the screen),

since these pixels are controlled individually and each has the same range of in-

tensities, they can be said to be independent and identically distributed (IID). It is

therefore sufficient to discuss how to generate the intensity (luminance) of a single

pixel, with this intensity drawn from a log-normal distribution of the prescribed mean

and variance.

Random numbers were generated using a pseudo-random number generator called

the Mersenne Twister [26]. This produces a stream of integers uniformly distributed

over the range 0 − (232 − 1) with very long cycle times (219937 − 1). These integers

are normalised, so that they are uniformly distributed on the interval (0, 1).

Pairs of uniformly distributed numbers can then be converted to normally dis-

tributed random numbers by a standard technique, the Box-Muller method, (see

appendix C for more details)

y1 = σy

√
−2 ln x2 cos (2πx1) (4.7)

y2 = σy

√
−2 ln x2 sin (2πx1)

where the x’s are uniformly distributed and the y’s have a normal distribution of mean

µy = 0 and variance σ2
y . These intensities are translated and scaled (by taking the

natural logarithm) to give a log-normal distribution of random numbers of specified

mean and variance.

While all this sounds feasible several problems arise with the implementation.

The first is concerned with displaying the full range of pixel intensities generated

by the algorithm. Real monitors are restricted to certain minimum and maximum

luminances, Lmin and Lmax. This gives rise to a maximum noise variance of

σ2 ≤
(

Lmax − Lmin

2

)2

(4.8)
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which in turn affects the statistics of the distribution. We require our noise pattern to

have a specified mean µz and variance σ2
z , which, taking into account the limitations

on pixel intensities are given by

µz =

∫ ln(Lmax)

ln(Lmin)

ey

e
−(y−µy)2

2σ2
y√

2πσ2
y

 dy (4.9)

σ2
z =

∫ ln(Lmax)

ln(Lmin)

(ey − µz)
2

e
−(y−µy)2

2σ2
y√

2πσ2
y

 dy

Given a target mean luminance µz and variance σz this pair of integrals can be solved

numerically using Newton’s method for the parameters µy and σy, which are used for

the scaling.

The second problem affecting noise generation is the long time needed to solve

equation 4.9, which makes it impossible to generate a new realisation of the noise for

each stimulus presentation. Instead a new noise pattern was generated for each noise

level and the noise pattern displayed for a stimulus of given mean noise was simply a

shuffled version of the previous pattern displayed for that noise. The shuffling took

place for 80% of the rows used to make up the stimulus, and involved interchanging

randomly selected pairs of rows. Of these swapped rows, half had their pixels flipped

from left to right. With the large number of pixels involved in making up a stimulus

all presentations looked different, but had identical statistics.

Making the Noise Move

To make the noise move in the time varying noise versions of the experiments a

new realization of the noise was used in each frame of the presentation. These new

noise patterns were created by the shuffling procedure described above (section 4.2.7).

With a frame rate of approximately 12 frames per second and a half second stimulus

presentation time, this meant 6 noise patterns were used. During the presentation

the noise appeared to flicker in a similar way to the noise on an untuned T.V. set.

4.2.8 Observers

I obtained results from three observers, a summary apears in table 4.2
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Observer Eyesight Experiments

A corrected to 20/20 Grating experiment

Female Angled grating experiment

31 years old Oriented triangle experiment

Square experiment

Displaced Square Discrimination Experiment

Grating with time varying noise experiment

Triangle with time varying noise experiment

B corrected to 20/20 Grating experiment

Male Angled grating experiment

47 years old Oriented triangle experiment

Displaced Square Discrimination Experiment

Grating with time varying noise experiment

Triangle with time varying noise experiment

C corrected to 20/20 Grating experiment

Female Oriented triangle

26 years old Square experiment

Table 4.2: Observers used for experiments

4.3 Results

Results are presented in the form of graphs of inferred probability correct against

RMS noise. The actual number of correct answers isn’t used as I wanted a probabilis-

tic measure of the chance of being correct, taking into account the 2AFC paradigm.

The inferred probability correct is taken to be the median of the posterior probability

distribution (see Appendix D). This probabilistic approach also enables error bars

to be drawn. The process used for calculating the error bars is also explained in

Appendix D.

In the plots, the CDT measured for each experiment is given under the plot symbol

in the legend at the right hand side of each graph. Also, note that some of the data

points have been displaced slightly in the ±x direction. This is to prevent symbols
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lying on top of each other and hence give a clearer picture of the results.

4.3.1 Grating Experiment

In this detection experiment the observer had to indicate which of two intervals

was most likely to contain a grating signal (see 4.2.2 above). 75 pairs were used to

determine the CDT and 40 pairs were presented for each noise level in the graphs

below. A typical experimental run took approximately sixteen minutes.

Observer A

The results for 1 c/deg were obtained three days before those for 2 c/deg and those

for 3 c/deg, 4 c/deg and 5c/deg were obtained 4 days later over a seven hour period.
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Observer A:  Grating Experiment

Figure 4.13: Observer A’s results for the grating experiment with spatial frequencies

1 c/deg, 2 c/deg, 3 c/deg. The CDT for each frequency is given below that frequency

label in the key.

Observer B

These results were obtained on separate days over a five month period.

Observer C

The results in graph 4.17 were obtained on 23rd August, 1st August and the 7th of

July 2005, while those in graph 4.18 were obtained on the 1st August and the 23rd

August. Where two experiments took place on the same day, these were carried out

consecutively.
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Figure 4.14: Observer A’s results for the grating experiment with spatial frequencies

4c/deg, 5 c/deg
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Figure 4.15: Observer B’s results for the grating experiment with spatial frequencies

1 c/deg, 2 c/deg, 3 c/deg
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Figure 4.16: Observer B’s results for the grating experiment with spatial frequencies

4 c/deg, 5 c/deg
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Figure 4.17: Observer C’s results for the grating experiment with spatial frequencies

1 c/deg, 2 c/deg, 3 c/deg
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Figure 4.18: Observer C’s results for the grating experiment with spatial frequencies

4c/deg, 5 c/deg
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Comment

With the exception of observer C’s 5 c/deg run, all experimental runs show a signifi-

cant increase in perceptibility when noise was added to the signal. In particular, for

observers A and C, the probability of a correct answer increased from less than 60%

to more than 90% for low (≤ 2 c/deg) frequency signals, with the addition of noise.

The results also show a decrease in the perceptibility of noisy signals with increasing

noise for grating frequencies 3 c/deg or more, for all observers.

4.3.2 Angled Grating Experiment

In this discrimination experiment the observer was asked to indicate whether a

presented signal was vertical or off from vertical. 75 stimuli were used to determine

the CDT and 40 stimuli were presented for each noise level in the graphs below. A

typical experimental run took approximately 22 minutes.

Observer A

The results in graph 4.19 were obtained on one day over a seven hour period, those

in graph 4.20 were obtained three days later over a eight hour period and those in

graph 4.21 were obtained on two consecutive days, seventeen days later than those in

graph 4.20.
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Figure 4.19: Observer A’s results for the angled grating experiment with angles 90,

45, and 30 degrees
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Figure 4.20: Observer A’s results for the angled grating experiment with angles 20,

15, 10, and 5 degrees
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Figure 4.21: Observer A’s results for the angled grating experiment with angles 3,

and 2 degrees

75



Observer B

The results in graph 4.22 were obtained on two days over a ten day period.
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Figure 4.22: Observer B’s results for the angled grating experiment with angles 45,

10, 5 and 3 degrees

Comment

In this experiment the task has changed from purely identifying the presence of a

signal (detection) to identifying some property of it (discrimination). It is interesting

to note that the CDT’s measured in this experiment do not differ greatly from those

measured in the grating experiment, perhaps an indication of the existence of separate

frequency channels [8, 1] .

The results presented in figures 4.19 and 4.20 show a significant increase in distin-

guishability when noise was added to the signal. The effect was much less pronounced

for a small off-set angle (3◦ and 2◦) perhaps because of the difficulty of accurately

measuring the CDT (the results are significantly above chance for the addition of a

very small amount of noise) which may result from the increased difficulty of the task

when both signals are detected by the same receptors within the retina.

4.3.3 Oriented Triangle Experiment

For this discrimination task a triangle was presented, the observer had to indicate

whether it pointed to the left or the right. 75 stimuli were used to determine the

CDT and 40 stimuli were presented for each noise level in the graphs below.
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Observer A

The results in graph 4.23 were obtained on two days, more than a month apart, while

those in graph 4.24 were obtained on separate days covering a six day period.
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Figure 4.23: Observer A’s results for the oriented triangle experiment with a one

degree triangle
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Figure 4.24: More of observer A’s results for the oriented triangle experiment with a

one degree triangle

Observer B

The result in graph 4.25 was obtained for observer B.

Observers A and C

The results in graph 4.26 were obtained for observers A and C for a 0.5 degree triangle.
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Figure 4.25: Observer B’s results for the oriented triangle experiment with a one

degree triangle
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Figure 4.26: Observers A and C, results for the oriented triangle experiment with a

0.5 degree triangle
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Comment

In this discrimination task the stimulus has changed from a simple grating pattern

(detected by the frequency channels of the visual system) to a more complex geometric

shape, a triangle. The task was to determine if the triangle pointed to the left or

the right of the screen. An indication of the difficulty of this task can be taken from

the increase in CDT. All observers also reported the increased difficulty of the task

and felt fatigued after a relatively short time experimenting. It is interesting to note

that the smaller triangles yielded a lower CDT (i.e. were more discriminable) than

the larger ones, this maybe because the corners of the larger triangles are obscured

slightly from the softening effect of the Gaussian envelope.

One problem with this experiment was the accurate measurement of CDT’s. Fig-

ures 4.23 and 4.25 appear to show good discrimination, but the zero (or very low)

noise level stimulus is also well detected (the observer was correct more than 65% of

the time). In figure 4.24 the CDT appears more accurately measured (with around

55% of answers correct) and the stimuli are correctly discriminated more often (about

15% more) when noise is added. In Figure 4.26 for the smaller triangle, observer C

shows some increased discriminability (around 10% more correct answers) while ob-

server A showed no significant increase. In none of the valid experiments does the

number of correct answers exceed 75%, the point at which we could conclude that

the observer does correctly discriminate the stimuli. Therefore, the results of this

experiment indicate that there may be a slight SR effect for the discrimination of

complex stimuli, although there is no definitive proof.

4.3.4 Square Detection Experiment

In this detection task a square shape was presented centrally on the screen in one

of two intervals. The observer had to say if the square appeared in the first or second

interval. 75 pairs were used to determine the CDT and 50 pairs were presented for

each noise level in graph 4.27, 100 pairs for the 1 degree square in graph 4.28 and

40 pairs for the 1.5 degree square in graph 4.28.
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Observer C

The results in graph 4.27 were obtained for observer C with a 1 degree square.
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Figure 4.27: Observer C’s results for the square experiment, with a 1 degree square.

Observer A

The results in graph 4.28 were obtained for observer A over a six day period.
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Figure 4.28: Observer A’s results for the square experiment, with a 1 degree and 1.5

degree square.

Comment

For this experiment the observer had to detect a square, which having two pairs of

parallel sides and four corners should be easier than the triangle to perceive. The

results do indeed show a reduction (compared to the triangle) in measured CDT.
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The experiments again show a difficulty in accurately measuring the CDT, with

that of observer C being significantly above chance. The trials involving observer A

with a 1 degree square show some improvement in detection while for the 1.5 degree

square the improvement was less substantial and almost linear with added noise.

Again, these results give an indication of an SR effect, but do not provide definitive

proof.

4.3.5 Displaced Square Discrimination Experiment

For this discriminationtask an observer was asked if a square shape was presented

on the left or right hand side of the screen. 75 pairs were used to determine the CDT

and 40 pairs were presented for each noise level in the graphs below.

Observer A

The results in graph 4.29 for the 2 degree and 3 degree displacement were obtained

on the same day over a five hour period, while those for 1 degree displacement were

obtained the following day.
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Figure 4.29: Observer A’s results for the Displaced Square Discrimination Experiment

with a one degree square and different displacements/ offsets

Observer B

The results in graph 4.30 were obtained for observer B, on a single day over a three

hour period.
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Comment

This was another discrimination task with a geometric object (a square), where this

time the task was to determine the location of the object. The measured CDT’s were

again high and the stimulus appears to be presented above threshold in all trials.

Both observers show an increase in discrimination for one offset (3 degrees for

observer A and 1 degree for B), with the other results remaining fairly flat or showing

a decrease in discriminability.

4.3.6 Square Wave Discrimination Experiment

In this experiment an observer had to discriminate between a sine wave and a square

wave. They did this by indicating whether they believed the stimuli presented in two

intervals were the same or different. Four possible combinations of stimuli were given:

two sine waves, two square waves, a sine wave then a square wave or a square wave

then a sine wave. In the CDT experiment 76 presentations were made. For the

SR experiment 40 presentations were made for each of 7 noise levels, with an equal

number of each stimuli combination for each noise.

Observers A and B

All results were gathered on one day over a period of less than one hour for each

observer.

Comment

In this experiment, the observer was supposed to detect higher frequency components

of the square wave to enable discrimination of the signals. However, the task proved

very difficult with observers becoming tired very quickly and CDT’s were elevated

from the grating experiment.

In three of the experiments (A - 1 c/deg and both of B’s results) the stimulus

appears to be presented above the actual CDT and there is no increase in discrim-

inability with noise. In observer A’s 3 c/deg experiment the stimulus seems below

threshold and there is increased discriminability, although less than 70% of the stimuli

are correctly discriminated and only one noise value gives rise to this increase. This

experiment illustrates the limitations of the SR effect in the visual system.
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Figure 4.30: Observer B’s results for the Displaced Square Discrimination Experiment

with a one degree square and different displacements/ offsets
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Figure 4.31: Observer A’s results for the square wave discrimination experiment
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Figure 4.32: Observer B’s results for the square wave discrimination experiment
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4.3.7 Grating with Time Varying Noise Experiment

This is a repeat of the grating experiment described in section 4.3.1, here a grating

was presented within a Gaussian envelope in one of two temporal intervals. The

observer had to determine which interval contained the signal. The noise used in this

experiment flickered in time. 75 pairs were used to determine the CDT and 50 pairs

were presented for each noise level in the graphs below.

Observer A

The results for 1c/deg, 3 c/deg and 5 c/deg were obtained on the same day over a

six hour period, while those for 4 c/deg were obtained three days later.
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Observer A:  Grating with Time Varying Noise Experiment

Figure 4.33: Observer A’s results for the grating with time varying noise experiment,

for spatial frequencies 1 c/deg, 3 c/deg, 4 c/deg and 5 c/deg

Observer B

Observer B’s results are shown in graph 4.34.

Comment

In this repeat of the grating experiment, time varying noise was added to the stim-

ulus. The addition of moving noise does not seem to have had an effect on CDT

measurements which remained similar to those measured in static noise experiments.

The addition of noise has had a significant effect on the detectability of grating

signals for both observers and all frequencies (with the exception of the 5 c/deg result

84



0 1 2 3 4 5 6 7

0.6

0.7

0.8

0.9

1

3

RMS Noise

In
fe

rr
e

d
 P

ro
b

a
b

ili
ty

 C
o

rr
e

ct

c/deg

0.0037

Observer B:  Grating with Time Varying Noise Experiment

Figure 4.34: Observer B’s results for the grating with time varying noise experiment,

for a spatial frequency of 3 c/deg

for observer A, which appears anomalous). The 5 c/deg experiment took place at the

end of a day where two other time varying noise experiments were carried out. The

lack of effect and anomalous shape of the curve could be due to observer fatigue. It

is also possible that the actual CDT was higher than measured, so only higher noise

variances increased detectability.

Overall, this experiment confirms an SR effect in grating detectability.

4.3.8 Triangle with Time Varying Noise Experiment

This is a repeat of the oriented triangle experiment described above, here a 1

or 0.5 deg triangle was presented that pointed either to the left or right side of the

screen. The observer had to say which way the triangle pointed. The noise used in

this experiment flickered in time. 75 stimuli were used to determine the CDT and 50

stimuli were presented for the experiment in graph 4.35 and 20 stimuli were used for

graph 4.36, for each noise level.

Observer A

Observer A’s results were collected on two days spanning a twenty two day period.

Observer B

Observer B’s results are shown in graph 4.35
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Figure 4.35: Results for observers A and B in the triangle experiment with time

varying noise, with a 0.5 degree triangle.
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Figure 4.36: Observer A’s results for the triangle experiment with time varying noise,

with a 1 degree triangle.
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Comment

The thresholds measured for the 0.5 degree triangle were similar to those measured in

the static noise experiment, although CDT measurements for the 1 degree triangles

were reduced. This experiment also suffered from the same difficulty in correctly

determining the CDT’s as the static noise experiment (an identical procedure was

used in both experiments). In an attempt to rule out lengthy experiments with

supra-threshold signals, observer A carried out no noise trials using a small number

of stimuli before undertaking the full experiment.

The results of the experiment show no discernable SR effect for observer A. Ob-

server B does show an effect with a 20% increase in the number of correct answers

which was similar to the static noise case, although here the number of correct an-

swers was closer to chance at zero noise. It is also worth noting that the results in

4.3.3 were selected from quite a large sample while observer B only undertook this

experiment once (due to time constraints and the difficulty of the experiment).

4.4 Discussion

These experiments show that while SR does occur in the retina it is a fragile phe-

nomenon. The phenomenon itself seems tied to tasks involving gratings that are of

a fairly primitive nature (that is tasks processed in the retina, like grating detection

and angled grating discrimination ). For more complicated targets (like the geomet-

ric shapes tested here) SR seems absent, or the addition of noise had only a small

effect, even when the task was low level (retinal based), identifying the position or

the presence of an object for example (see the tasks involving the square shape in

sections 4.3.4 and 4.3.5).

One thing crucial to the success of the experiments was accurate measurement of

the CDT. For grating experiments CDT’s were low (relative to other experiments)

and remained fairly stable. For more difficult tasks, where CDT’s were elevated,

they were much less stable. This is illustrated in figure 4.37 where the CDT has

been measured over time for the two types of task. As well as indicating the wide

range of measured CDT’s possible within a short space of time, this graph shows that

over the course of an experimental SR run the signal may lie significantly above or
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Figure 4.37: CDT against time for the grating and triangle experiments on observer

A

below threshold for some of the presentations, this could be a possible cause of the

saw-toothed appearance of some of the graphs.

During the course of carrying out these experiments it became apparent that some

of the tasks were far more tiring than others. The degree of fatigue appeared to be

linked to the difficulty of the task (in terms of how hard it was to correctly identify

the signal) and to a lesser extent on the duration of the experiment. This effect could

have given rise to the variability of CDT.

Perhaps an anomalous result was obtained for the square wave discrimination ex-

periment (see section 4.3.6) task. This experiment proved very difficult, with observers

reporting having “no idea” what signals were presented. Only a limited number of

experimental runs were carried out and perhaps the results would have been more

consistent with other experiments if participants had been given more practice at

identifying the different signals.
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Chapter 5

Conclusions

In this project I began by exploring the historical development of SR from a theory

to explain the periodic occurrence of ice ages to more recent applications in biological

sensory systems. The structure of the retina was described and mathematics was

used to explore why this structure might lead to SR.

The most extensive and time consuming aspect of this work was concerned with

the experimental demonstration and exploration of the phenomenon (see chapter 4).

This study showed significant increments in the detectability of grating patterns with

added noise (see 4.3.1) while also indicating the limitations of the phenomenon to

low level processes. In particular, experiments involving simple geometric shapes (see

4.3.4) showed little if any increment in detectability. When the task was changed to

a discrimination problem results continued to show little improvement (in discrim-

inability) with the addition of noise, only for the simpler grating task (see 4.3.2) did

increased discriminability occur. When the noise was made to move (see 4.3.8) some

improvement was seen, if only for one observer, despite the prolonged nature of this

experiment.

Overall, the experiments demonstrate the existence of the SR effect in the human

visual system, although they also indicate its limitation to low level visual processing.

This limits the scope for practical applications. For example, adding noise to night

vision aids would be unlikely to improve performance and as to the development of

prosthetic aids, I feel that SR would be of no assistance.

As part of this project I hoped to produce some modeling results. Several different

models were explored before the Watson model [58, 56, 57] was discovered towards
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the end of the project. We have developed a simplified version of their model which

reproduces the main processes occurring in the retina. These are sketched out in

figure 5.1. A slightly more detailed description of each of these stages is given in

appendix E.

Input

image

CSF

DoG

Channels

grating

patterns

Output
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Figure 5.1: Stages of the retina model

The work in this project is still ongoing and in the future I hope to produce some

results tying the modeling work to the experimental results.
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Appendix A

The Variance of the Power

Spectrum

In this appendix we obtain an expression for the variance of an entry Pk in the power

spectrum of the signal discussed in the later sections of chapter 3. We already have

an expression for 〈Pk〉 and so need only an expression for:

〈P 2
k 〉 = 〈(a2

k + b2
k)

2〉

= 〈(a4
k + 2a2

kb
2
k + b4

k)〉

= 〈a4
k〉+ 2〈a2

kb
2
k〉+ 〈b4

k〉

The quartic terms are, from a computational point of view, identical, but the cross

term requires separate consideration. The strategy for constructing these formulae is

much the same as that used in formula (3.20) for 〈a2
k〉: here we’ll start with (p ·uk)

4

and then add and subtract certain sums to eliminate unwanted terms and replace

them with correct ones.

A.1 Constructing formulae

The quantities we want are all powers of dot products of some vector with the entries

of a random Boolean vector. The goal is to obtain formulas for the expectation that

consist of sums of terms that, individually, look like dot products: this permits us

to compute the desired expectation in O(N) time, where N is the dimension of the

vector.
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To simplify the notation, we will refer to the vector as a and indicate its compo-

nents by aj. Also, when writing sums we will suppress the limits on the index. The

components of the Boolean vector will be xj and pj will indicate the probability that

xj = 1. Then one of the things we want to compute is 〈(a · x)4〉 or〈(∑
j

ajxj

)4〉
=
∑

j

a4
j〈x4

j〉+ 4
∑
j 6=k

a3
jak〈x3

jxk〉+ 6
∑
j<k

a2
ja

2
k〈x2

jx
2
k〉

+ 12
∑

j<k 6=l

ajaka
2
l 〈xjxkx

2
l 〉+ 24

∑
j<k<l<m

ajakalam〈xjxkxlxm〉
(A.1)

Then, using the facts that the xj are independent and that 〈xr
j〉 = pj ∀r 6= 0, we find:

〈(a · x)4〉 =
∑

j

a4
jpj + 4

∑
j 6=k

a3
jakpjpk + 6

∑
j<k

a2
ja

2
kpjpk

+ 12
∑

j<k 6=l

ajaka
2
l pjpkpl + 24

∑
j<k<l<m

ajakalampjpkplpm

We would like to compute this using sums of a special form, for which it’s handy

to define a concise notation:

ampn ≡
∑

j

am
j pn

j

Our starting point is clearly (a · p)4, but comparison with (A.1) shows that this will

include many terms with many unwanted powers of the pj. For example, we need

to replace terms of the form a4
jp

4
j with ones of the form a4

jpj. This is a fairly easy

matter, involving adding a correction of the form

−a4p4 + a4p = −
∑

j

a4
jp

4
j +

∑
j

a4
jpj

A more typical correction is the one required to replace terms of the form a3
jakp

3
jpk

(where j 6= k) with ones of the form a3
jakpjpk. The product (a3p3)(a1p1) generates

many of the terms we want to remove, but it also produces a new, unwanted, contri-

bution a4p4. Similarly, (a3p1)(a1p1) generates most of the desired replacement terms,

but also produces a spurious contribution of a4p2. Thus the complete correction for

terms of the form a3
jakp

3
jpk is∑

j 6=k

a3
jakpjpk −

∑
j 6=k

a3
jakp

3
jpk =

{
(a3p1)(a1p1)− a4p2

}
−
{
(a3p3)(a1p1) + a4p4

}
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Expected fourth powers of dot products

Similar tedious, but essentially straightforward considerations allow one to formulate

corrections for all the offending terms. Simplifying the result yields:

〈(a · x)4〉 = (a1p1)4 + (a2p2)2 − 7(a4p2) + 12(a4p3)− 6(a4p4)− 12(a3p2)(a1p1)

+ 8(a3p3)(a1p1) + 6(a1p1)2(a2p1) + 3(a2p1)(a2p1)

− 6(a2p2)[(a1p1)2 + a2p1)] + 4(a1p1)(a3p1) + a4p1

(A.2)

Expected products of pairs of squared dot products

In much the same way, one can also obtain an expression for the expectation of the

cross term. Generalising the notation in a natural way:

〈(a · x)2(b · x)2〉 = ((p1a1)2 − p2a2 + p1a2)((p1b1)2 − p2b2 + p1b2)

− 7(p2a2b2) + 2(p2a1b1)2 + 12(p3a2b2)− 6(p4a2b2)

− 6(p2ab2)(p1a1) + 4(p3a1b2)(p1a1) + p1a2b2 − 4(p2a1b1)(p1a1b1)

+ 2(p1a1b1)2 + 2(p1a)(p1a1b2)− 6(p2a2b)(p1b1) + 4(p3a2b1)(p1b1)

− 4(p2a1b1)(p1a1)(p1b1) + 2(p1a2b1)(p1b1) + 4(p1a1)(p1a1b1)(p1b1)

(A.3)

A.2 Verifying the results

Although the original assembly of correction terms was done by hand, using reasoning

of the sort sketched in the previous section, we also tested these expressions with

automatic symbolic computations in Mathematica. First, one needs to be able to

generate vectors of distinct symbols. The following fragment does this job.

vectorOfSymbols[n_, baseStr_] :=

Table[Symbol[baseStr <> ToString[j]], {j, 1, n}] ;

A typical application is

In[454]:= vectorOfSymbols[3, "a"]

Out[454]:= {a1, a2, a3}
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We then wrote a function to generate the desired expressions by direct means,

computing, for example (a · p)4 for symbolic vectors and replacing powers of pk
j with

pj in the result. The function that does this is defined by

targetExpression[a_, p_] := Module[

{k, targetExpr},

targetExpr = Expand[(a.p)^4] ;

For[k = 1, k Length[p], ++k,

targetExpr = targetExpr /. p[[k]]^2 -> p[[k]] ;

targetExpr = targetExpr /. p[[k]]^3 -> p[[k]] ;

targetExpr = targetExpr /. p[[k]]^4 -> p[[k]] ;

] ;

Return[targetExpr] ;

] ;

Finally, we tested the main function, which is called expectedFourthPowerOfDotProduct

and is based on (A.2), with the following sequence:

In[500] := a = vectorOfSymbols[4, "a"] ;

In[501] := p = vectorOfSymbols[4, "p"] ;

In[502] := Simplify[

targetExpression[a, p] -

expectedFourthPowerOfDotProduct[a, p]

]

and got the result

Out[502] := 0

establishing that expectedFourthPowerOfDotProduct worked correctly. Although it

is sufficient to do this test for vectors of four symbols—four is large enough that repre-

sentatives of every possible pattern of term are generated—we also did tests for vectors

of 6 and 8 symbols. The companion function expectedProductofSquaresOfDotProducts

was tested in a similar way.
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Appendix B

Implementation of Bayesian

Adaptive Method

This appendix gives an overview of how the Bayesian adaptive method was imple-

mented to determine CDT in the experiments reported as part of this thesis. The

method is the one used by Kontsevich and Tyler [22]

The psychometric function is given by

Ψλ (x) = (1− δ)− (0.5− δ) e−( x
α)

β

(B.1)

where λ = (α, β) gives the assumed threshold (α) and slope (β) of the psychometric

function, x is the contrast of the stimulus presented and 2δ is the probability of lapse

used to account for an observer answering incorrectly even though he perceives the

stimulus correctly. This function tends to 0.5 (50% correct) for low contrasts and

(1− δ) for high contrasts.

For the CDT experiments α, β and δ were varied uniformly across the ranges

log (0.001) ≤ log (α) ≤ log (1) 61 points

0.5 ≤ β ≤ 4.0 31 points (B.2)

0.1 ≤ δ ≤ 0.03 5 points

These parameters are used to calculate a look-up table of conditional probabilities

p (result|λ, x) where

p (correct|λ, x) = Ψλ (x) (B.3)

p (incorrect|λ, x) = 1−Ψλ (x)
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A prior probability distribution P0 (λ) is set to an initial value. The Bayesian adaptive

method then utilises the following steps

1.) For each test contrast x, calculate the probability of getting response r

pt (r|x) =
∑

λ

p (r|λ, x) pt (λ)

2.) Use Bayes rule to estimate the posterior probability of each psychometric func-

tion

pt (λ|x, r) =
pt (λ) p (r|λ, x)

pt (r|x)

3.) Estimate the entropy of the pdf over the space of psychometric functions

Ht (x, r) = −
∑

λ

pt (λ|x, r) log (pt (λ|x, r))

4.) Estimate the expected entropy for each test contrast x

E [Ht (x)] = Ht (x, correct) pt (correct|x) + Ht (x, incorrect) pt (incorrect|x)

5.) Find the contrast x that has the minimum expected entropy E [Ht (x)]

6.) Run trial with contrast xt+1 to get response rt+1

7.) Let the posterior probability (step2) that corresponds to the completed trial

become the new prior over the hypothesis

Pt+1 (λ) = Pt (λ|xt+1, rt+1)

8.) Find a new estimate for the psychometric function based on Pt+1 (λ) i.e.

λt+1 =
∑

λ

λPt+1 (λ)

9.) Repeat from step one until the specified number of trials has been carried out.
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Appendix C

Creating Normally Distributed

Noise From Uniformly distributed

Noise

This explanation is based on the one given in section 7.2 of [41]. We have uniformly

distributed x’s and wish to generate normally distributed y’s. Usually this is done by

selecting an x

x = F (y) =

∫ y

0

p (y) dy (C.1)

and inverting to find y (i.e. y = F−1 (x)), see figure C.1.

The pdf for the normal distribution is

p (y) = e
−y2

2 (C.2)

which is not integrable, however, the product

p (y1) p (y2) = e
−(y2

1+y2
2)

2 (C.3)

is integrable by a change to polar coordinates r, θ such that

y1 = r cos θ (C.4)

y2 = r sin θ

The cumulative density function (CDF) is then given by

F (x1x2) =
∫ 2π

0

∫ r
σ

0
ue−

u2

2 dudθ

= 2π
[
−e−

u2

2

] r
σ

0

= 2π

(
1− e−

r2

2σ2

)
(C.5)
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Figure C.1: Illustration of the transform method for generating normal deviate from

a uniform deviate. A uniform deviate x is chosen between 0 and 1, the corresponding

y on the definite integral curve is the normal deviate. Based on diagram 7.2.1 of [41].

So generate random variables (x1 x2) ∈ (0, 1) x (0, 1) and think of x1 as a random

angle

x1 → 2πx1 ≡ θ (C.6)

and x2 as a value of the CDF for r

x2 =

(
1− e−

r2

2σ2

)
1− x2 = e−

r2

2σ2

ln (1− x2) = − r2

2σ2

r2 = −2σ2 ln (1− x2)

r = σ
√
−2 ln (1− x2)

but (1− x2) is also uniform in (0,1), so

r = σ
√
−2 ln x2 (C.7)

we have

y1 = r cos θ = σ
√
−2 ln x2 cos (2πx1) (C.8)

y2 = r sin θ = σ
√
−2 ln x2 sin (2πx1)

where the y’s are normally distributed and the x’s are uniformly distributed.
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Appendix D

Bayesian Estimation of Frequencies

In this section Bayes theorem is used to calculate the probability of achieving k correct

answers in a 2AFC experiment with N trials1. The probability of a correct answer, p

is assumed to be greater than 1
2
, since an observer has a 50% chance of being correct

if she guessed.

Let:

p be the probability of a correct answer

k be the total number of correct answers

N be the number of trials

D represent the data, k correct for N trials

H represent the hypotheses, or assumptions about p

Then Bayes theorem states that

P (H|D) =
P (D|H) P (H)

P (D)
(D.1)

The parts of equation D.1 have standard names:

P(H|D) is the posterior distribution over the parameters

P(H) is the prior distribution over the hypotheses

P(D) is the prior over the data

Consider two cases:
1Note that in this analysis, the only variable is whether the signal is present, or not. Each noise

level is treated as a separate experiment
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D.1 Case I - Make no assumptions about p

As each experiment can be thought of as a Bernoulli process , we have

P (D|H) = pk (1− p)N−k

(
N

k

)
= pk (1− p)N−k N !

k! (N − k)!
(D.2)

The probability of a correct answer, p, can take any value in the range 0 ≤ p ≤ 1,

no value being more likely than another. To preserve area one under the curve of the

prior over the hypotheses (see figure D.1), set

P (H) = 1 (D.3)

P(H)

p0 1

1

Figure D.1: The prior distribution over the hypotheses

Now2,

P (D) =

∫
all hypotheses H

P (D|H) ρ (H) dH =
1

N + 1
(D.4)

where ρ(H) is the pdf of H. Using Bayes theorem D.1, we have

P (H|D) = pk (1− p)n−k (N + 1)!

k! (N − k)
(D.5)

A plot of the posterior distribution for k = 13, N = 20, is given below.

Now consider the more interesting 2AFC case when

D.2 Case II - p lies in the range 1
2 ≤ p ≤ 1

In the psychophysics experiments of this project, an observer is always presented a

signal and is asked some question about it, for which there are two possible answers.

2k can take values from 0−N all of which are equally likely, so 1 = (N + 1)P (D)
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Figure D.2: The posterior distribution.

When the observer can not see the signal she is forced to guess. The probability of a

correct answer, p, when guessing, is 1
2
. On the other hand, when the observer is able

to use some of the information contained in the signal 1
2

< p ≤ 1.

Now, the prior over the hypothesis becomes

P (H) = 2 (D.6)

to preserve area 1 under the curve of P (H). Since the experiments still constitute a

P(H)
2

0 1 p0.5

Figure D.3: The prior distribution over the hypotheses, with the restricted range of

probabilities 1
2
≤ p ≤ 1

Bernoulli process, equation D.2 remains unchanged. This gives rise to

P (D) =

∫ 1

1
2

2pk (1− p)N−k (N)!

k! (N − k)!
dp (D.7)

so

P (H|D) =
pk (1− p)n−k∫ 1

1
2
pk (1− p)N−k dp

(D.8)

101



which can be calculated numerically using Mathematica [42]. Below (figure D.4) is a

plot of the posterior distribution for the case k=13, N=20, with the restricted range

of probabilities 1
2
≤ p ≤ 1

0.2 0.4 0.6 0.8 1

1

2

3

4

P(H|D)

p

Figure D.4: The posterior distribution with the restricted range of probabilities 1
2
≤

p ≤ 1

It is possible to calculate the integral D.8 using Mathematica, although the inte-

grand becomes singular when N and k are large. In practice the calculation is not

feasible for N > 50. Instead the (built in) Beta and incomplete Beta functions

B (m, n) =

∫ 1

0

um−1 (1− u)n−1 du B (p; m, n) =

∫ p

0

um−1 (1− u)n−1 du

can be used by re-writing D.8 in terms of them.

D.3 Error Bar Construction

The next task is to find the 90% confidence interval and construct error bars for the

SR results. To do this, the values of p for which the area under the graph of the

posterior probability (for a particular number, k correct) equals 0.05 (5%) point and

0.95 (95% point) are found. These form the range of the error bars. The point plotted

as the inferred probability correct is then the value of p for which the area under the

posterior probability curve equals 0.5 (50%) point. This will not correspond to the

mid-point of the error bar as the curve is not symmetric (see figure D.4).
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Appendix E

Watson’s Model of Early Vision

E.1 The Model

This model is based on those developed by Watson et al. [58, 56, 57] that were

evaluated using the Model Fest data set. These models closely resemble the early

visual system and have been developed over several years. The different stages of the

model are shown in figure E.1 and described below in greater detail.

E.1.1 Input

The input to the model is a small (2◦x2◦)1 grayscale image which could be either a

high frequency grating pattern, or a simple shape.

E.1.2 Contrast sensitivity Filter

A difference of Gaussians (DoG) mask is then applied to the input image. The DoG

is chosen because its shape best replicates the centre-surround nature found in certain

cells in the retina[25]. Watson [57], who tested several forms of contrast sensitivity

function (CSF) , suggests it is not the most representative for the visual system as a

whole, instead recommending use of a log-sensitivity interpolation mask. As here the

aim is to model the retina as closely as possible, so we use the DoG.

1where ◦ means degrees of visual angle
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Figure E.1: Watson’s model for early vision: the input is a greyscale image with unit

contrast. The contrast sensitivity function (CSF) is implemented as an orientation-

independent filter in the spatial frequency domain and the result of this stage is fed

through a bank of 88 filters whose impulse responses are Gabor wavelets. The 88

filtered results are then pooled and the Lβ norm of their summed results is used to

estimate a contrast detection threshold (CDT).

The DoG is given by

SDoG (f ; f0, f1, a) = exp

[
− f

f0

2]
− a exp

[
− f

f1

2]
(E.1)

where, the parameters f0, f1 define the widths of two gaussians and a defines the

degree of overlap. These parameters are found by fitting a DoG curve to a measured

CSF, where each point of the measured CSF is found using the same procedure as

was used for measuring the contrast threshold in the grating experiment (see section

4.2.2).

E.1.3 Channels

The filter bank in figure E.1 consists of 8 filters at each of 11 spatial frequencies.

The frequencies are spaced uniformly in log from a maximum of 30 cpd down to a

minimum of (30 / 32) cpd. At each fixed frequency there are two basic forms of filter

Fj,k,1(x, y) = λj cos(2πfj(x cos θk + y sin θk))e
−(x2+y2)/σ2

j

Fj,k,2(x, y) = λj sin(2πfj(x cos θk + y sin θk))e
−(x2+y2)/σ2

j
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Here λj is a frequency-dependent normalization constant that will be discussed further

below while the θk determine the orientation of the grating and are one of 0, π/4, π/2

or 3π/4. The parameter σj is related to the frequency by

σj =
2b−1

√
2fk

and the bandwidth parameter b = 1.4. Choosing the parameter for the Gaussian

envelope in this frequency-dependent way means that the Gabor wavelets look like

scaled versions of each other, independent of frequency.

E.1.4 Pooling

The outputs of the filter bank are combined via an Lβ norm to produce an estimated

threshold for the input image: Watson refers to this step as “Minkowski pooling” If

we say that the output of the channel defined by Fj,k,l has pixel values rj,k,l,x,y, where

x and y range over the width and height of the image, respectively, then the estimated

threshold is

Θ =

(
11∑

j=1

4∑
k=1

2∑
l=1

∑
x,y

∆x ∆y |rj,k,l,x,y|β
)−1/β

(E.2)

where ∆x and ∆y are the dimensions of a pixel.

Frequency-dependent normalization

The normalization constant λj is chosen in such a way as to yield a net response—in

the sense of the multiple sum over responses in (E.2)—of 1.0 when the 8 filters at a

given frequency are applied to an image consisting of Fj,0,1 scaled to have unit contrast.

The idea behind this normalization is to concentrate the frequency dependence of the

model in the initial, CSF stage.
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