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Abstract

In this thesis we study non-linear dynamical systems on complex domains. Although

the systems we consider are mathematical abstractions, our motivation is to gain in-

sights into neurobiological systems. The mathematical techniques we employ concern

analysis on a particular class of fractal sets. This theory allows one to construct a

Laplacian and to study the spectrum and eigenfunctions given a variety of boundary

conditions. This thesis uses these results to define and study the cable equation and

the FitzHugh-Nagumo system on the Sierpinski Gasket.
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Chapter 1

Introduction

Before the 20th century, mathematical intuition was bound up with ideas of continuity

and smoothness. The development of calculus in the 17th century was built on this

intuition and proved to be so spectacularly successful that in many of the applied

sciences differentiability almost took the role of an axiom. However, by the early

20th century, many examples of objects or functions with peculiar properties had

been created. In 1872 Karl Weierstraß found a function that is continuous everywhere

yet nowhere differentiable. In 1904 Helge von Koch gave a geometric definition of a

similar function: his famous Koch curve (see Figure 1.2).

By far the most important (although not the most visually appealing) of these

non-classical sets is an uncountable subset of the unit interval (in fact there is a

bijection between it and the unit interval) which has zero Lebesgue measure. This

set was first described by Cantor in 1883. The Cantor set is constructed from the

unit interval by removing a sequence of open intervals. Let E0 be the interval [0, 1],

the set E1 is obtained by removing the open middle third of E0 so E1 = [0, 1
3
]∪ [2

3
, 1].

Removing the middle third of each of these two intervals produces E2 and so on.

The set Ek thus consists of 2k intervals of length 3−k. The Cantor set can then be

thought of as the limit of the sets Ek as k → ∞. In the late 19th and early 20th

centuries mathematicians such as Poincaré, Klein, Fatou and Julia had investigated

14



Chapter 1: Introduction

E0

E1

E2

E3

E7

Figure 1.1: The approximating sequence E0, E1, E2, E3 and E7 to the Cantor Set.

iterated functions of the complex plane and found several examples of such complex

sets. However, without the aid of computer graphics, they were unable to see the

beauty of the objects they had created.

For a long time the irregular sets described here were often disregarded as patho-

logical counterexamples and certainly were not thought of as a class of objects on

which a general theory could be developed. The change in this point of view is

due to the mathematician Benôıt Mandelbrot. While working for IBM in the early

1960s he worked on an astonishing number of seemingly unrelated problems: noise

on telephone lines, game theory, linguistics, economy and turbulence to name just a

few. In 1962 Mandelbrot became interested in a problem related to the fluctuation of

prices on the stock exchange. Classical theories dictated that short term fluctuations

were largely random whereas long term fluctuations reflected the fundamental laws of

economy. Mandelbrot discovered that the sequence of price changes was independent

of scale: there was no statistical difference between the short term and long term

fluctuations. On the basis of this, Mandelbrot was able to develop a mathematical

model that could simulate very realistic stock exchange price fluctuations.

Soon afterwards, Mandelbrot concerned himself with the problem of noise in

telecommunications lines at IBM. All such lines are subject to random fluctuations

and if this noise fluctuates above a certain threshold, some information can be lost,

creating an error. The engineers at IBM noticed that the errors seemed to arrive in

clusters, separated by quiet intervals of variable length. Upon further inspection of

a batch of errors, it was noticed that these too are made up of smaller batches also

15



Chapter 1: Introduction

separated by quiet periods without error and so on. Mandelbrot discovered that at

every timescale, the relationship of errors to clean transmission remained constant.

Again, therefore, he had found scale invariance in a seemingly unrelated physical

phenomenon.

Mandelbrot turned to other data from geophysical origins and in 1968 he published

a paper discussing the length of the coastline of Britain [51]. The paper discusses

the research published by Lewis Fry Richardson [3] on how the measured lengths of

coastlines are dependent on the scale of measurement. Mandelbrot was finding the

same notion running through his research into so many diverse and unrelated areas:

self-similarity.

A self-similar object is one that contains copies of itself at different levels of magni-

fication. These copies may be exact versions of the original object or an approximate

or distorted version. Exact self-similarity is seen predominately in mathematical ob-

jects constructed by deterministic methods, such as the Cantor set. Many natural

phenomena exhibit approximate self-similarity, whereby as the object is observed at

different scales one sees structures that are recognisably similar but not identically

so. For example, the leaf of a fern looks similar to the original fern. Sometimes

self-similarity is not visually obvious, however there may be certain properties that

are preserved across scales. This property is known as statistical self-similarity.

Mandelbrot claimed that many real world phenomena are not collections of smooth

Euclidean shapes and are much better represented by irregular self-similar objects.

Mandelbrot brought these objects together for the first time and coined the term

“Fractals” from the Latin fractus meaning “fragmented and irregular” as a name

for them [52, 53]. Mandelbrot pioneered the use of fractals to model a wide variety

of scientific phenomena including the shapes of mountains, clouds and coastlines;

the structure of plants, blood vessels and lungs; galaxy clusters. A new area of

mathematics – Fractal Geometry – became a part of applied mathematics.

Much of the work that has been carried out in Fractal Geometry has been con-

16



Chapter 1: Introduction

cerned with computing certain quantities which can be used to characterise fractals,

the most important being that of dimension. We are all happy with the notion that a

point has (Euclidean) dimension zero, a line is 1-dimensional, a plane 2-dimensional

and so on, but what about the dimension of fractal objects? Fractal dimension is a

quantity that gives us an indication of how completely a fractal appears to fill space as

one observes the object on finer and finer scales. There have been many suggestions

given as to what is a suitable definition of fractal dimension, the most important of

which being the Hausdorff dimension, see, for example [17] (sometimes referred to

as the Hausdorff-Besicovitch dimension). This fundamental idea was proposed by

Hausdorff (1919) and subsequently developed by Besicovitch (1935).

The Hausdorff dimension of a set F ⊂ R
n is calculated by considering the number

of sets U ⊂ R
n, whose diameter is at most δ, required to cover F . If {Ui} is a

countable collection of sets with diam(Ui) ≤ δ ∀ i that cover F , then we call {Ui} a

δ-cover of F . Now for any s ≥ 0 and any δ > 0 we define

Hs
δ(F ) = inf

{ ∞
∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}

, (1.1)

where |Ui| is the diameter of the set Ui. We then define the s-dimensional Hausdorff

measure of a set F ⊂ R
n to be

Hs(F ) = lim
δ→0

Hs
δ(F ). (1.2)

This limit exists for any F ⊂ R
n, although as δ decreases, the infimum in equation

(1.1) increases so the limiting value may be ∞. For any F , Hs(F ) is non-increasing

as s increases from 0 to ∞. In fact, if s < t we have

Ht
δ(F ) ≤ δt−sHs

δ(F ), (1.3)

which implies that (letting δ →0) if Hs(F ) < ∞ then Ht(F ) = 0. There exists a

critical value of s, dimHF such that

Hs(F ) = ∞ s < dimHF,

Hs(F ) = 0 s > dimHF.
(1.4)

17



Chapter 1: Introduction

This critical value of s, dimHF is called the Hausdorff dimension of F .

The Hausdorff has the following desirable properties:

Open Sets: If F is an open subset of R
n, then dimHF = n.

Smooth Sets: If F is a smooth m-dimensional manifold, then dimHF = m.

Monotonicity: If E ⊂ F , then dimHE ≤ dimHF .

Countable Stability: dimH

(
⋃∞

i=1 Fi

)

= sup1≤i≤∞ dimHFi.

Countable Sets: If F is finite or countable, then dimHF = 0.

Although the Hausdorff dimension is technically the best definition of a fractal

dimension, it has the disadvantage of being difficult to compute. There are, however,

different definitions of fractal dimensions that are easy to calculate. One of the most

widely-used is the box counting dimension, dimB. The box counting dimension of a

non-empty set, F ⊂ R
n is given by

dimBF = lim
δ→∞

log Nδ(F )

− log δ
, (1.5)

where Nδ(F ) is the smallest number of sets of diameter at most δ which cover F .

The box counting dimension shares many properties with the Hausdorff dimension

although there are some disadvantages. For example, countable sets can have non-zero

box counting dimension.

Now we introduce the notion of the similarity dimension of a set F , dimSF . This

is only meaningful for a small class of fractals, however it is easy to compute and for

strictly self-similar objects, the value of dimS agrees with that of dimH and dimB.

It is worth noting here that all fractal objects exhibit self-similarity, yet not all self-

similar objects are fractals. The simplest example of a self-similar set is that of a

line. We may break this into two self-similar intervals each looking exactly like our

original line that may be magnified by a factor of two to yield our original line. In

general, we can break a line segment into N self-similar pieces each scaled by a factor

18
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of 1
N

. Similarly a square and a cube may be decomposed into N2 and N3 self-similar

copies respectively, each scaled by 1
N

. We see that in all these cases there is a nice

power law relation between the number of pieces the object is broken into, N , and

the scaling factor, S. If F is a line segment, or a square, or a cube etc. then

N =
1

SdimSF
, (1.6)

where dimSF = 1, 2, 3 for the line, square and cube respectively. Equivalently we

have

dimSF =
log N

log 1
S

, (1.7)

and we see that in the case of the line, the square and the cube the value of the

similarity dimension dimSF agrees with the Euclidean dimension.

Now, we shall calculate dimS for a fractal set. We consider the Koch curve which

is constructed iteratively as follows. Begin with a straight line of unit length, E0.

To produce E1 remove the middle third of E0 and replace it with two sides of an

equilateral triangle that each have the same length as the remaining lines on each

side. We now repeat this procedure, taking each of the resulting straight line segments,

removing the middle third and so on, see Figure 1.2. The self-similarity of the Koch

curve is immediately apparent. We see that the whole curve comprises four copies of

the original, each one third the size. From (1.7) the similarity dimension of the Koch

curve (KC) is therefore

dimSKC =
log 4

log 3
≈ 1.2619. (1.8)

A similar calculation can be made on the Cantor set (CS) to give

dimSCS =
log 2

log 3
≈ 0.6309. (1.9)

From a mathematical point of view, a fractal is defined to be an object whose similarity

dimension exceeds its topological dimension.

In recent years it has been realised that many physiological and biological systems

have no characteristic length or time scale, i.e. they have fractal properties. As an
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E0

E1

E2

E3

K

Figure 1.2: The approximating sequence E0, E1, E2, E3 and the Koch Curve.
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example, consider the behaviour of the heart. The human heart’s natural healthy

rhythm is described as the “regular sinus rhythm”. In fact, it is anything but “regu-

lar”. The intervals between consecutive heartbeats normally fluctuate in a complex,

apparently erratic manner, even in individuals at rest [37]. An ECG showing the

meanderings of heart rate over a thirty minute period looks roughly the same as a

graph that covers just three minutes – the heartbeat is self-similar. Interestingly, this

randomness is an indication of a healthy heart: diseased hearts show more regular

heartbeats [28].

Another physiological structure that is known to behave in a fractal manner is

the neuron or nerve cell. The neuron responds to stimuli applied to its dendrites

by opening and closing ion channels in its axon. This causes an electrical signal to

propagate down the axon, which can, in turn, stimulate the dendrites of impinging

neurons. Fundamentally, a neuron is a threshold device: if the stimulus is large

enough, the neuron responds, if not, it does not. Thus, the output of a neuron is a

discrete spike-train, which can be measured as a time series. In [23], it was shown

that the interspike interval of some neurons in the auditory cortex of the cat was

essentially independent of the resolution of the timescale.

In this thesis, we shall be mainly concerned with naturally-occurring objects whose

structure is fractal. A particular characteristic of fractal objects is the very large sur-

face to area (or volume) ratio. In many biological situations surface area is of crucial

importance and all the distributive systems of the human body – cardiovascular, res-

piratory, lymphatic, digestive and excretory – display fractal characteristics. As an

example, consider the structure of the lung, which is a branching structure. The

trachea (or windpipe) branches into two bronchi, which in turn branch into smaller

and smaller bronchioles eventually ending at the alveoli where the exchange of oxygen

and carbon dioxide takes place. In order to maximise efficiency, the surface area of

the lung must be as large possible. In fact, the surface area of a human lung is as

large as a tennis court. The structure of the bronchial tree has been analysed using
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fractal techniques [72, 66] and it has been shown that the average dimensions of the

bronchial tubes decays according to a power law rather than exponentially as had

previously been thought.

Another example of fractals occurring in nature is the structure of certain types

of fungi and bacteria. An example of this are the soil bacteria streptomyces that

produce many different kinds of antibiotics. The life-cycle of the streptomyces is

complex: initially the bacterium consists of a single free spore. The spore germinates

growing long, branching filaments known as hyphae. A typical hypha consists of

a tubular wall which surrounds, supports and protects the cells that compose the

hypha. Hyphae do not grow through cell division as animal, plant or yeast cells, but

by extending their cells. When a single cell has become a longer tube, a wall called a

septum grows to produce two separate cells, the second having a nucleus copied from

the first. This process of elongation and separation repeats producing a network of

hyphae known as the mycelium. The unusual growth process of the hyphae leads to

the mycelium having a geometrically complex structure.

An approach to quantifying the branching of the mycelia relies on fractal geom-

etry. Obert et al [57] have applied fractal techniques to calculate the box counting

dimension of mycelial structures. This can be used to quantify the extent to which the

mycelia permeate the space in which they grow. Obert et al analysed photographs of

various mycelia: that is, they studied planar projections of objects that grow in two-

or three-dimensional space.

The structure of a young mycelium was found to be a mass fractal, where the

interior contains gaps and so the whole of the object is treated as a fractal. As

the mycelium develops, the hyphae grow and gradually fill the interior. Now the

mycelium is treated as a surface fractal, where only the boundary of the object is

fractal. To distinguish between these two different types of fractal structure, two dif-

ferent box counting methods were applied. The box mass dimension of the mycelium

(M), dimBMM , considers the whole mass of the mycelium, whereas the box surface
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dimension, dimBSM , just considers the boundary.

In the case where the mycelial structure is a mass fractal, the two methods give

dimBMM = dimBSM . For a surface fractal, dimBSM describes the surface irregular-

ities, whereas dimBMM gives the dimension of the embedding space (d = 2 in this

case). The fractal dimension is then defined to be the value of dimBSM in both cases.

Obert et al showed that fractal geometry is a suitable technique to describe some bi-

ological growth patterns and that the fractal dimension of the mycelium increases

during growth up to a value of 1.5.

Many other biological objects display fractal properties, including the patterns of

blood vessels, DNA sequences and, as we shall now discuss, the branching structure

of the dendritic tree of neurons. Not only does the neuronal spiking pattern follow

fractal behaviour, as we have seen, but the structure of dendritic tree is geometrically

complicated and self-similar. This is another example of how the body uses fractal

structures to be as efficient as possible: the small nerve fibres and massive surface

area means the greatest number of neurons can be packed into the brain and each

nerve cell can connect with as many neurons as possible. It is in this context that

much of this thesis will be concerned.

We have seen how many natural objects are well-described by fractals, so the

question we wish to ask is “How can we model the dynamical processes that occur

on them?” For example, the air flow in the respiratory system, the blood flow in the

cardiovascular system, the transportation of moisture and nutrients in the mycelium

of the streptomyces and the conduction of an action potential in neurons are all

examples of natural processes on a fractal structure. We are therefore interested

in modelling dynamical processes on fractal sets with a view to understanding how

the complexity of the structure affects well-known processes such as reaction and

diffusion.

The basic question is “what is the analogue of diffusion on such objects?” We

begin with the problem of how to define a “Laplacian” on an object that is not
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smooth enough to define differential operators on from a classical viewpoint. This

problem was first tackled by physicists in the 1970s, when it was suggested that

fractals may represent the geometrical features of percolation clusters. This led to

the calculation of the spectral dimensionality and other physical characteristics of

fractals. The spectral dimension, ds is an exponent describing the scaling of the

density of states with the energy on a fractal.

The fractal most commonly considered is the Sierpinski Gasket (SG). This is

constructed from an equilateral triangle, subdividing it into four smaller triangles

and removing the open central triangle. Repeating this process to infinity we arrive

at the Sierpinski Gasket. The first progress from a mathematical point of view came

when Kusuoka, [50], and Goldstein, [26], independently constructed Brownian motion

on the Sierpinski Gasket by considering a sequence of random walks on the graphs

that approximate SG. Under a certain scaling these random walks converge to a

diffusion process on SG.

In 1989 Jun Kigami proposed a direct definition of a Laplacian on the Sierpinski

Gasket [43]. This so-called analytical approach considers a sequence of graphs approx-

imating SG and the Laplacian on the Sierpinski Gasket is then the renormalised limit

of the graph Laplacians. This approach gives rise to a natural and direct definition

of a Laplacian on the Sierpinski Gasket using Dirichlet forms. It is also possible to

describe harmonic functions, Green’s functions and solutions of Poisson’s equations.

Later this approach was extended to define Laplacians on a class of fractals called

post-critically finite (p.c.f.) self-similar sets [44]. With the definition of a Laplacian

now in place it is possible to study dynamical processes involving diffusion on objects

that can be approximated by p.c.f. fractals. The book [48] gives a detailed descrip-

tion of the approach and progress made so far in the area of Analysis on Fractals.

In this thesis we shall mainly be considering the case of the Sierpinski Gasket and

looking whether the complex geometry has any consequences in the dynamics of these

processes. With a definition of a Laplacian on SG in place we can solve numerically
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differential equations involving second order spatial derivatives.

This thesis is organised as follows. In Chapter 2 we begin by discussing the

theory of iterated function systems, which are often used to generate self-similar sets

deterministically. We introduce the Sierpinski Gasket and use this as an example

throughout the chapter to illustrate the theory. Following the approach of Kigami

we discuss the geometry of self-similar sets and introduce the notion of a self-similar

structure to give a topological definition of self-similar sets. We then give a definition

of what is meant by a post-critically finite (p.c.f.) self-similar set: the class of self-

similar set on which the theory has been developed. We then go on to describe

harmonic functions and their properties on p.c.f. self-similar sets and give a pointwise

definition for the Laplacian on the Sierpinski Gasket, which is the rescaled limit of

the Laplacians on the graph approximations to SG. Finally, we consider another p.c.f.

self-similar set called Hata’s tree-like set, which geometrically resembles the dendritic

tree of a neuron and show that the methods applied for SG do not give such nice

results in the case of Hata’s tree-like set.

In Chapter 3 we consider the eigenvalues and eigenfunctions of the m-harmonic

difference operators on the graph approximations to SG (The Laplacian on SG is

simply the renormalised limit of the harmonic difference operators as m → ∞). We

consider two cases: Dirichlet boundary conditions and Neumann boundary condi-

tions. In both cases the spectrum can be completely determined: the eigenvalues of

the level m approximation to SG can be related to those on the level m− 1 approxi-

mation by a decimation procedure and the eigenfunctions can be computed via a local

extension algorithm. In the Neumann case we find that in order for us to be able to

apply the decimation method, we must sacrifice the orthogonality of the Laplacian

eigenfunctions. A way around this problem is to introduce the notion of a fractafold

called the double of the Sierpinski Gasket. Finally we talk about the existence of

localised eigenfunctions of the Laplacian on the Sierpinski Gasket.

In Chapters 4 and 5 we shall be considering two mathematical models describing
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physiological phenomena. The first model is the linear cable equation, which describes

the passive propagation of electrical signals in nerve cells. Secondly we shall consider

the FitzHugh-Nagumo system, which is a more sophisticated reaction-diffusion system

accounting for the excitable nature of nerve cells or cells in cardiac tissue. In both of

these cases, we look for those properties which owe their origin to the fractal nature

of the domain. Finally, in Chapter 6, we summarise the results of this research and

provide some concluding remarks.
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Fractals and Laplacians

2.1 Iterated Function Systems and Self-Similar Sets

Many self-similar sets can be generated by a class of mathematical systems which

combine notions of randomness and determinism in an interesting way. These systems

were first studied by Hutchinson in 1981 [36] and were later given the name iterated

function system (IFS) by Barnsley [8]. Currently the most complete theory of IFSs

concerns transformations of a complete metric space, (X, d), which are in some sense

contractive. The basic theory begins with the following definition:

Definition 2.1. A hyperbolic iterated function system consists of a complete metric

space (X, d) and a finite set of contraction mappings {fi}N
i=1 with respective contrac-

tivity factors si, 0 < si < 1, i = 1, 2, . . . , N . The contractivity factor for the IFS is

then s = max{s1, . . . , sN}.

Weaker ideas of contractivity can be employed, for example contractions-on-average

[15], but for the purposes of this thesis we shall deal entirely with hyperbolic IFSs.

We can think of self-similar sets as closed and bounded subsets of the set X, so we

introduce the associated space of non-empty, compact subsets of X, H(X). This set,

when endowed with the Hausdorff metric h forms a complete metric space. Consider
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an IFS {fi}N
i=1 acting on (X, d), we define the map F :H(X) → H(X) by

F (A) =
N
⋃

i=1

fi(A) ∀ A ∈ H(X). (2.1)

The following theorem establishes the existence of a unique attractor for the IFS and

suggests how to compute such a set.

Theorem 2.2. Let {fi}N
i=1 be an IFS on the complete metric space (X, d) with con-

tractivity factor s. Then the map F defined in (2.1) is a contraction mapping on

(H(X), h) with contractivity factor s. It then follows from the Contraction Mapping

Theorem that F has a unique fixed point, K ∈ H(X), satisfying

K = F (K) =
N
⋃

i=1

fi(K) (2.2)

and is given by

K = lim
i→∞

F i(U) (2.3)

for any U ∈ H(X). K is called a self-similar set with respect to the IFS {fi}N
i=1.

As an example of Theorem 2.2 consider the following collection of maps of the

plane:

fi(x) =





0.5 0

0 0.5



x + bi, i = 1, 2, 3, (2.4)

where x ∈ R
2, b1 = (0, 0)T , b2 = (1

2
, 0)T , b3 = (1

4
,
√

3
2

)T . The unique fixed point of

this IFS satisfying K = f1(K)∪ f2(K)∪ f3(K) is the famous Sierpinski Gasket (SG).

In Figure 2.1 we illustrate the convergence implied by Theorem 2.2 for the case of

two compact sets. The figure shows a sequence of images of a circle (which could be

interpreted as the circle or the closed disc) and of a square (with similar choice of

interpretation) under repeated action of the map F .

In this thesis we are concerned with the construction of differential operators, in

particular a Laplacian operator, on a certain class of self similar sets. We use the

Sierpinski Gasket as an example to illustrate the approach. For this purpose the
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Figure 2.1: Generating the Sierpinski Gasket when the initial set is (a) a circle, and

(b) a square.
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Sierpinski Gasket is approximated by a sequence of graphs. We use standard graph

notation: the level m graph approximation to the Sierpinski Gasket consists of a set

of vertices (or nodes), Vm, and a set of edges, Em, and is denoted by Γm = {Vm, Em},
see Figure 2.2. We begin our graph sequence with the zero level approximation to

the Sierpinski Gasket, Γ0, which consists of the nodes V0 = {P1, P2, P3}, the three

vertices of an equilateral triangle1 and the edges between them. Subsequent sets of

vertices are then obtained inductively by

Vm+1 =
3

⋃

i=1

fi (Vm) . (2.5)

Clearly by Theorem 2.2 the set of vertices alone will converge to SG as m → ∞.

However, since we shall use the analogue of finite difference methods to approximate

derivatives on self similar sets, we require a notion of adjacency. We therefore specify

that adjacent vertices are joined by an edge. We can think of the set of edges as a

subset of the set of all ordered pairs of vertices Vm×Vm. For two vertices V i
m, V j

m ∈ Vm,

we have

(V i
m, V j

m) ∈ Em ⇐⇒
(

fk(V
i
m), fk(V

j
m)

)

∈ Em+1 for k = 1, 2, 3.

That is: vertices in Vm+1 are joined by an edge if and only if their preimages in Vm

under any of the contractions fi are joined by an edge. With this in mind, we shall

use the following notation to denote that two vertices on the graph Γm are joined

by an edge: x∼
m

y, and we say vertices x and y are neighbours on Γm. The set V0 is

referred to as the boundary of SG. We note that Vm and Em contain 3
2
(3m + 1) and

3m+1 elements respectively and that limm→∞Vm = K. We shall adopt the following

notation: the graph Γm comprises 3m order-m (or minimal) triangles and we refer to

the vertices that are common to neighbouring order-m triangles as (order-m) junction

points.

1Actually, P1, P2, P3 can be chosen to be any three non-colinear points in the plane without

altering the theory.

30



Chapter 2: Fractals and Laplacians

Figure 2.2: The approximating sequence Γ0, Γ1, Γ2 and the Sierpinski Gasket.

The set of vertices Vm becomes dense in the Sierpinski Gasket in the sense that

for any point x in K and any ε > 0 we can choose some suitably large m such

that the ε-neighbourhood of x contains a point in Vm. Continuous functions on the

Sierpinski Gasket are then uniquely determined by their restrictions to the Vm.

Consider the structure of a self-similar set K; it is clear that K satisfies

K =
N
⋃

i=1

fi(K) =
N
⋃

i=1

fi

(

N
⋃

j=1

fj(K)

)

=
N
⋃

i=1

N
⋃

j=1

fi ◦ fj(K). (2.6)

Since maps of the IFS {fi}N
i=1 are contracting, continuous maps, we have a decreasing

nested sequence of compact sets:

K ⊃ fi(K) ⊃ fi ◦ fj(K) ⊃ . . . i, j = 1, 2 . . . , N, (2.7)

and the limit of such is non-empty. In fact, the limit of this sequence is a single point,

the coordinates of which depend on the particular sequence of maps applied. We can
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f3(K)

f1(K)

f1(K) ∩ f3(K)

P1 P2

P3

Figure 2.3: The overlap of f1(K) and f3(K) is a single point.

think of such a sequence of maps as an infinite sequence of symbols and that this

constitutes the address of the limiting point. Although every point in K corresponds

to at least one symbol sequence (i.e. has an address), it is possible for two different

symbol sequences to give rise to the same point. For example, consider the red point

in Figure 2.3. This point can be thought of as either the image of the point P1 under

the map f3, or the image of the point P3 under the map f1, so the corresponding

symbol sequence could begin with either a 1 or a 3.

A way to formalise this idea is to consider the space of symbol sequences. We shall

refer to a sequence of m symbols as a word of length m. This idea is fundamental to

the understanding of the topological structure of self-similar sets.

Definition 2.3. Let ΣN = {w1w2w3 . . . : wi ∈ {1, 2, . . . , N}, i ∈ N} be the collection

of infinite words in N symbols. Then ΣN is called the shift space in N symbols.

It is often useful to consider words of finite length, which we formally define as follows:

32



Chapter 2: Fractals and Laplacians

Definition 2.4. For m ≥ 1, WN
m = {w1w2 . . . wm : wi ∈ {1, 2, . . . , N}} is a word of

length m in N symbols. Then, we define

WN
∗ =

⋃

m≥0

WN
m

to be the set of all finite words in N symbols. We also define the empty word, WN
0 = ∅.

From this point onwards, we shall drop the superscript N when using Σ, Wm, and

W∗. Using the above definitions, we state the following summary Theorem:

Theorem 2.5. For w = w1w2 . . . wm ∈ W∗, set fw = fw1
◦ fw2

◦ · · · ◦ fwm
and

Kw = fw(K), where K is the self-similar set with respect to the contractions {fi}N
i=1.

Then for any ω ∈ Σ the map π : Σ → K defined by

{π(ω)} =
⋂

m≥1

Kω1ω2...ωm

is a continuous surjective map and ∩m≥1Kω1ω2...ωm
contains only one point.

A nice property of the map π can be seen by considering shift maps on Σ, which we

define here.

Definition 2.6. For k ∈ {1, 2, . . . , N}, we define the map σk : Σ → Σ by σk(w1w2w3 . . .) =

kw1w2w3 . . .. Also, we define the shift map, σ : Σ → Σ, by σ(w1w2w3 . . .) =

w2w3w4 . . ..

The map π plays an important role in our analysis. We can think of π as a map that

takes words in Σ to points on our self-similar set K and every point in K can be

represented in this way. Since π(Σ) is a non-empty compact set Theorem 2.2 implies

that π(Σ) = K.

The procedure defined in Theorem 2.5 converges to a single point because we are

considering backward iteration: as we add a new symbol to our word, the correspond-

ing contraction is applied first and the previous sequence acts upon this set. If, on

the other hand we were to consider forward iteration, the process would not converge

33



Chapter 2: Fractals and Laplacians

since each new symbol added to the sequence determines the final contraction applied.

Forward iteration defines a dynamical process on K which is stochastic. Given any

x ∈ K, this can move to one of N new points in K according to which of the maps

fi is applied. This is also known as a random iteration procedure and leads to an

ergodic process. The forward and backward iteration of random (Lipschitz) functions

is considered in [15].

Clearly, for any i ∈ {1, 2, . . . , N},

{π ◦ σi(w)} =
⋂

m≥1

Kiw1w2...wm
=

⋂

m≥1

fi(Kw1w2...wm
) = {fi ◦ π(w)}. (2.8)

Moreover, if we define ẇ = www . . . for w ∈ W∗, w 6= ∅ then by Theorem 2.2 and

Theorem 2.5 π(ẇ) is the unique fixed point of fw. This idea can be extended to give

π(v1v2 . . . vkẇ) = fv(pw),

where v1v2 . . . vk ∈ W∗ and pw is the fixed point of fw. Since periodic sequences are

dense in Σ, given a suitable topology (see [48]), we have

K = {pw : w ∈ W∗, w 6= ∅}.

Throughout this thesis we will use the following notation to refer to subsets of SG: if

w is a word of length m, then Kw is an order-m subgasket.

Now we introduce the notion of self-similar structure to give a topological def-

inition of self-similar sets and also give a definition of post critically finite (p.c.f.)

self-similar sets, to which the analysis presented here can be applied.

Definition 2.7. Let K be a compact metrisable topological space and let S be a finite

set. Also, let fi, i ∈ S be a collection of continuous injections from K to itself. Then

(K,S, {fi}i∈S) is called a self-similar structure if there exists a continuous surjection

π as defined in Theorem 2.5.

Most commonly we think of a self-similar structure as being (K, {1, 2, . . . , N}, {fi}N
i=1)

where {f1, f2, . . . fN} are injective contractions.
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Definition 2.8. Let L = (K,S, {fi}i∈S) be a self-similar structure. We define

CL,K =
⋃

i,j∈S,i6=j

(fi(K) ∩ fj(K)) .

Then CL = π−1(CL,K) is called the critical set of L and PL = ∪n≥1σ
n(CL) is called

the post critical set of L. Also, we define V0(L) = π(PL).

We can think of CL,K as being the set of overlapping points when we apply each of

the maps {fi}i∈S to K and take the union of the resulting sets. Then the critical set

is the set of words in Σ that, when the map π is applied, result in the set CL,K . Also,

the post critical set is the set of all possible pre-images of the critical set. The above

definitions of the critical and post critical sets let us introduce the key notion of a

p.c.f. self-similar structure. We say that a self-similar structure L = (K,S, {fi}i∈S)

is p.c.f. if and only if the post critical set is finite.

Once again, let us consider our continuing example of the Sierpinski Gasket. We

have that

L = (SG, {1, 2, 3}, {fi}3
i=1) (2.9)

with the fi as defined in (2.4) is a self-similar structure. It is easy to see that π(j̇) = Pj

is the unique fixed point of fj, j = 1, 2, 3. Let the vertex midway along the edge

between Pi and Pj be qk where i 6= j 6= k ∈ {1, 2, 3}. The set of overlaps is given by

CL,SG = {q1, q2, q3}, (2.10)

and the critical set and post critical set are

CL = {12̇, 21̇, 13̇, 31̇, 23̇, 32̇},

PL = {1̇, 2̇, 3̇}.
(2.11)

Clearly, PL is a finite set and so the self-similar set SG is indeed post critically finite.
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2.2 Energy and Harmonic Functions on the Sier-

pinski Gasket

We begin our discussion of harmonic functions on p.c.f. self-similar sets by considering

the classical case of harmonic functions of R
2. Consider a bounded, connected and

open domain in R
2 denoted by Ω. We define the boundary of Ω by ∂Ω, and the

corresponding closed set Ω̄ is given by

Ω̄ = Ω ∪ ∂Ω.

Then a function u ∈ C2(Ω) ∩ C(Ω̄) is said to be harmonic in Ω if

∆u = 0 for all (x, y) ∈ Ω,

where ∆ is the Laplacian on R
2. Here, u ∈ C2(Ω) means that all partial derivatives

of u up to second order are continuous in Ω. A harmonic function u with given

boundary values has the following properties: u attains its maximum and minimum

on the boundary, u is uniquely determined by the values on the boundary, and u

minimises the energy for all functions f that share the same boundary values, where

the energy of a function f is defined to be

E(f) =

∫

|∇f |2. (2.12)

The above properties can also be made to hold for harmonic functions on the

Sierpinski Gasket. However, we have not yet defined what is meant by the Laplacian

on Sierpinski Gasket so we must work backwards. We will define first of all what we

mean by a harmonic function, u, on SG and later show that it satisfies the condition

∆u = 0. The theory of harmonic functions on p.c.f. self-similar sets was developed by

Kigami, see [45, 43, 44]. We shall adopt his approach here and begin by introducing

the harmonic difference operator on the graph Γm.
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Γ0 Γ1

u(P1) = a u(P2) = b

u(P3) = c

ũ(P1) = a ũ(P2) = b

ũ(P3) = c

ũ(q1) = xũ(q2) = y

ũ(q3) = z

Figure 2.4: The harmonic extension from Γ0 to Γ1.

Definition 2.9. Let l(Vm) = {f |f :Vm → R} and define the map Hm : l(Vm) → l(Vm)

by

(Hmf)(x) =
∑

x∼
m

y

(f(y) − f(x)), (2.13)

where f ∈ l(Vm) and x ∈ Vm.

Consider the level m graph approximation to SG (or indeed any p.c.f. self-similar

set) and a function f ∈ l(Vm) defined on the graph. We define the graph energy of f

to be

Em(f) =
∑

x∼
m

y

(f(y) − f(x))2
, (2.14)

however, these energy forms are not related to each other for different m. Given

a function f on Vm, there are many extensions of f onto Vm+1 but only one that

minimises the energy. We denote this energy-minimising extension f̃ and call it the

harmonic extension of f . We would like the following consistency condition to hold:

Em+1(f̃) = cmEm(f), (2.15)

where cm is a renormalisation factor.
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To calculate cm consider a function u defined on V0 where the boundary vertices

P1, P2, P3 take the values a, b, c respectively, see Figure 2.4. We want to extend the

function u to V1, where the values of the extension ũ at the nodes qi, i = 1, 2, 3 ∈ V1\V0

are chosen so that the energy is minimised. Calculating E1 from equation (2.14) and

minimising with respect to ũ at q1, q2 and q3, we find that the values of the harmonic

extension ũ at nodes q1, q2, q3 are given by

4x = b + c + y + z,

4y = a + c + x + z,

4z = a + b + x + y.

(2.16)

We see that the value of ũ at the interior node qi, i = 1, 2, 3 is the average of the

value of the function at the four neighbours of qi. Equations (2.16) lead us to give a

definition of a harmonic function on the Sierpinski Gasket.

Definition 2.10. The function u ∈ l(Vm) is said to be harmonic on Γm if, for every

interior node, the value of u at node x is the average of the values of u at the four

neighbours of x. That is:

u(x) =
1

4

∑

x∼
m

y

u(y). (2.17)

Equations (2.16) can be rearranged to give an explicit expression for ũ(qi) in terms

of the boundary values a, b, c.

x =
2

5
b +

2

5
c +

1

5
a,

y =
2

5
a +

2

5
c +

1

5
b,

z =
2

5
a +

2

5
b +

1

5
c.

(2.18)

Equations (2.18) give the “2
5
− 1

5
” rule for determining the values of the harmonic

extension ũ on V1 for given boundary values. In fact, the self-similarity of the gasket

means that the harmonic extension can be seen as local and therefore the same result
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holds for all harmonic extensions from Vm to Vm+1. A nice way to describe this

harmonic extension algorithm is in the following form.










u(FwP1)

u(FwP2)

u(FwP3)











= Aw1
· · ·Awm











u(P1)

u(P2)

u(P3)











, (2.19)

where the Ai, i = 1, 2, 3 are matrices given by

A1 =











1 0 0

2
5

2
5

1
5

2
5

1
5

2
5











, A2 =











2
5

2
5

1
5

0 1 0

1
5

2
5

2
5











, A3 =











2
5

1
5

2
5

1
5

2
5

2
5

0 0 1











. (2.20)

Using the harmonic extension algorithm we can express the energy E1 in terms of

the boundary values a, b, c and we find that c1 = 5
3
c0. In general the renormalisation

constant is

cm =

(

5

3

)m

c0, (2.21)

and for simplicity we take c0 = 1. Then we have

E1(ũ) =
5

3
E1(ũ) = E0(u), (2.22)

and in general

Em+1(ũ) =

(

5

3

)

Em+1(ũ) = Em(u). (2.23)

We will now go on to state some theorems regarding harmonic functions on SG

and their properties.

Theorem 2.11. Given any three numbers a, b, c, there exists a unique harmonic

function u on the Sierpinski Gasket satisfying u(P1) = a, u(P2) = b, u(P3) = c.

Proof of Theorem 2.11 can be found in [76].

Theorem 2.12 (The Maximum Principle). If a harmonic function defined on

the Sierpinski Gasket K, attains the maximum value in the interior K \V0 of K, then

u is constant throughout K.
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The following proposition summarises the basic results from [43] concerning the reno-

malised energy E and harmonic functions on K:

Proposition 2.13. For any continuous function f on K, the sequence E(f) is mono-

tonically increasing and so

E(f) = lim
m→∞

Em(f)

is well-defined and

E(f) = 0 ⇔ f is constant.

We denote by dom(E) the set of continuous functions for which E(f) < ∞.

For a harmonic function u, the energy remains constant over all levels, in fact

Em(u) = E(u) for all m.

2.3 Defining the Laplacian on the Sierpinski Gas-

ket

The theory of harmonic functions on SG described in Section 2.2 extends to allow us

to define what is meant by the Laplacian operator on the Sierpinski Gasket in the

sense of Kigami (see [43] for the SG case or [44] for the general case of p.c.f self-similar

sets). We can define a Laplacian on the Sierpinski Gasket via the weak formulation

for the Poisson problem:

∆f = g. (2.24)

The weak solution satisfying (2.24) is given by

∫

∇f · ∇v dx = −
∫

gv dx (2.25)

for all functions v in a suitable test space. On the Sierpinski Gasket, the analogue of
∫

∇f · ∇v dx is given by the energy form E(f, v) and we must also choose a suitable
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measure µ to play the role of dx on the right hand side of (2.25). We consider the

standard self-similar probability measure:

µ =
2

∑

i=0

1

3
µ ◦ F−1

i . (2.26)

We can now give a formal definition of the (Kigami) Laplacian on the Sierpinski

Gasket:

Definition 2.14. A function f ∈ dom(E) is in the domain of the Laplacian, dom(∆)

and ∆f = g if and only if there exists a continuous function g such that

E(f, v) = −
∫

gv dµ, (2.27)

for all suitable test functions v ∈ dom(E) that vanish on the boundary.

It is also possible to define the Laplacian ∆ by the pointwise formula

∆f(x) = lim
m→∞

3

2
5m

∑

x∼
m

y

(f(y) − f(x)) (2.28)

for any nonboundary vertex x. Note that it is indeed true that a function u is harmonic

as defined in Section 2.2 if and only if ∆u = 0 with ∆ defined by (2.28). We can also

define normal derivatives at the boundary points:

∂nf(x) = lim
m→∞

(

5

3

)m
∑

x∼
m

y

(f(y) − f(x)) . (2.29)

The formulae defined in (2.28) and (2.29) make it possible for us to define PDEs

involving second order spatial derivatives and to solve them numerically. The simplest

idea is to semi-discretise the problem (the analogue of the method of lines) by using

the formula (2.28) as a discrete approximation to the Laplacian. The resulting ODE

system can be solved by a suitable numerical technique. This technique was used

in [14] for the heat and wave equations on SG. The analogue of the finite element

method has also been developed on the Sierpinski Gasket using spline spaces, see [25]

and [68]. A clear overview of the method, the programs used and the results can be

found at [24].
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2.3.1 Physically-Motivated Derivation

From a physical point of view we can see where the coefficient 3
2
5m comes from in

(2.28) by considering the gasket as a system of point masses connected by springs of

strength k, as discussed in [76]. We assume that the masses move only perpendicular

to the plane in which the gasket lies. This has been called the “Sierpinski Drum”.

In Euclidean space, the vibration of a surface can be modelled by the wave equa-

tion:

M
∂2u

∂t2
= k ∆ u on Ω, (2.30)

where u(x, y, t) gives the position at time t, M is the mass of the surface, and the

domain Ω is the surface of the drum. We can construct the analogue of equation

(2.30) on our sequence of graph approximations to SG. Then in the limit as m → ∞
we will model the vibration on the Sierpinski Gasket. Let Mx,m be the point mass

at node x on Γm, and let the pair (x, y) denote the spring joining node x to node y.

Then, using Hooke’s law, the resultant force on node x at time t will be the sum of

all forces of springs connected to x. We write

Fx,t = −
∑

x∼
m

y

km(u(x, t) − u(y, t)), (2.31)

and so for each node x we may write the equation of motion as

Mm,x

d2

dt2
u(x, t) = km (Hmu)(x), (2.32)

with (Hmu)(x) as defined by (2.13). The problem remains as to what are suitable

values of Mm,x and km.

The Mass Distribution

We are assuming that the mass, M , of the Sierpinski Gasket is uniformly distributed.

Therefore, we divide Γm into 3m order m, or minimal triangles. Each minimal triangle
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has mass 1
3m M . From this it is clear that we can define the point masses by

Mm,x =







2
3m+1 M, x ∈ Vm \ V0,

1
3m+1 M, x ∈ V0,

(2.33)

since the interior nodes receive contributions from two minimal triangles, while the

boundary nodes only receive contributions from one minimal triangle.

The Spring Constant

To obtain the appropriate value for the spring constant km we must first consider the

properties of Hookian springs in series and in parallel. In fact, using such springs in

series and parallel produces effective springs with force constants which look like the

parallel and series laws for combining electrical resistances. We find that two springs

combined in parallel with force constants k1 and k2 behave like a single spring with

force constant

keff = k1 + k2.

Similarly, the same two springs joined in series act as a single spring with force

constant given by
1

keff

=
1

k1

+
1

k2

.

Now consider the point masses and springs arranged as the zero level graph approx-

imation to the Sierpinski Gasket where each spring has spring constant k0. Arranged

in this manner the three springs act as a single entity and we can find the force

constant of the spring by using the analogue of the star-triangle transformation for

electrical resistances: the effective force constant of three Hookian springs arranged

as a triangle, each with spring constant k is the same as the effective force constant

of three springs arranged as a star, where the spring constant of each spring is 3k, see

Figure 2.5. Using the star-triangle transformation and the rule for springs in series,

we see that the three springs arranged as the triangle behave as a single spring with
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k

k k

3k 3k

3k

Figure 2.5: The star-triangle transformation for Hookian springs.

spring constant

keff =
3

2
k0. (2.34)

Next we consider the Γ1 approximation to SG, where each spring has spring con-

stant k1. Once again, by applying the star-triangle transformation and the rule for

springs in series, we see that the system behaves as a zero level approximation to the

gasket where the spring constant of each spring is given by (see Figure 2.6)

keff =
3

5
k1. (2.35)

Comparing (2.34) and (2.35) we see that the spring constants are related by k1 = 5
3
k0.

In general we have for every m ≥ 0,

km+1 =
5

3
km. (2.36)

With k0 = k this becomes

km =

(

5

3

)m

k. (2.37)

Now we have found suitable values for the mass distribution Mm,x and the spring

constant km, we can substitute these values into our equation of motion (2.32) for the
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k

k

k

k

kk

k k

k

3
5
k

3
5
k

3
5
k

Figure 2.6: The Γ1 system of springs can be reduced to the Γ0 system with related

spring constants.

system to obtain the following equations:

M
d2

dt2
u(x, t) =

3

2
5mk(Hmu)(x) for x ∈ Vm \ V0,

M
d2

dt2
u(x, t) = 3 × 5mk(Hmu)(x) for x ∈ V0.

(2.38)

Taking the limit as m → ∞ we arrive at the wave equation describing the surface

vibration of the Sierpinski Drum. Comparing equations (2.38) and (2.30) we see that

the Laplacian on the Sierpinski Gasket can indeed be defined by

∆u(x) = lim
m→∞

3

2
5m(Hmu)(x), (2.39)

for vertices x ∈ Vm \ V0.

2.4 Other p.c.f. Self-Similar Sets

In Chapter 1 we discussed how many naturally occurring objects can have fractal

structure. Although these objects are only approximately self-similar, they are well-

approximated by exactly self-similar sets generated by deterministic processes. Many
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of the biological and physiological examples we considered in Chapter 1 share a self-

similar tree-like structure, such as the dendritic tree of a neuron and the bronchial

tree in the lung.

The Sierpinski Gasket has been a useful example in the development in the theory

of Analysis on Fractals. However, a major application of this area of mathematics

is to model dynamical processes on approximations to naturally occurring objects.

For this purpose, the Sierpinski Gasket is not the best choice of self-similar set to

consider. Ideally, we would like to model these processes on a p.c.f. fractal tree. An

example of such a self-similar set is the tree-like set which was first defined by Hata

[27]. Hata’s tree-like set is defined as follows: Let X = C. Set

f1 (z) = cz

f2 (z) =
(

1 − |c|2
)

z̄ + |c|2
(2.40)

where c ∈ Z and |c| < 1, |1 − c| ∈ (0, 1). If we let A = {t : 0 ≤ t ≤ 1} ∪ {tc : 0 ≤ t ≤
1}, then f1(A) ∪ f2(A) ⊃ A. Hence if

Am =
⋃

w∈Wm

fw(A)

then {Am}m≥0 is an increasing sequence and the self-similar set K = ∪m≥0Am is

shown in Figure 2.7. Referring to Definition 2.8 we see that for the Hata Tree, we

have

CL,K ={|c|2},

CL ={112̇, 21̇},

PL ={12̇, 2̇, 1̇}.

The boundary of the Hata Tree is defined as V0(L) = {0, 1, c}. We would like

to construct a Laplacian on the Hata Tree in an analogous way to the case of the

Sierpinski Gasket. According to Kigami’s theory we can calculate the energy of each

of the graph approximations to Hata’s Tree via the formula defined in equation (2.14)
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Figure 2.7: The approximating sequence Γ0, Γ1, Γ2 and a random iteration procedure

converging to Hata’s tree-like set. Here we have taken c = 0.4 + 0.3
√
−1.
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so that for a function u ∈ l(V0) we have

E0(u) = {u(0) − u(1)}2 + {u(0) − u(c)}2. (2.41)

We wish to find an extension of u to V1 that minimises the energy. Once again,

this harmonic extension is denoted by ũ and we would like to find a renormalisation

constant cm such that

Em+1(ũ) = cmEm(u). (2.42)

We proceed by calculating E1 and minimising with respect to x and y. We find that

3x = a + b + y,

y = x,
(2.43)

so that an explicit expression for the values of ũ at the points V1 \ V0 is

x = y =
1

2
(a + b). (2.44)

and the energy is given by

E1(ũ) =
1

2
{ũ(1) − ũ(0)}2 + {ũ(c) − ũ(0)}2. (2.45)

Clearly, in this case, there is no nice counterpart of the harmonic extension algorithm

that we found for the Sierpinski Gasket and there is no constant c such that E1 = cE0.

In fact the values of ũ at the newly generated points are just the average of the values

at the neighbouring boundary points. If we were to carry on in this manner, we

would see that, as m increases, the harmonic functions will become constant along

the branches and the energy will become zero.

This problem occurs due to Kigami’s notion of boundary. For a fractal tree, a

more natural notion of boundary would be to define the set of boundary points as

those points that are the tips of the branches. So, as m increases, the set of boundary

points grows also. Thus, for the Hata Tree, K, the set of boundary points would

actually be an uncountable set. The addresses of such points would be all symbol

sequences not in the critical set CL ending in 2̇.
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The necessary development would require the separation of the notions of bound-

ary and the post-critical set and would be a major departure from the theory we

have described here. The rest of this thesis will be concerned with understanding the

consequences of the complexity implied by defining nonlinear PDEs on the Sierpinski

Gasket and so this issue will not be addressed further.
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Spectrum and Eigenfunctions of

the Laplacian on the Sierpinski

Gasket

3.1 Introduction

Now that we have a definition for a Laplacian operator on the Sierpinski Gasket, we

are able to study the eigenvalue problem

−∆v = λv. (3.1)

The spectrum of the Laplacian on SG was first studied by the physicists Rammal

and Toulouse, [60], [59]. Subsequently Shima [64] and Fukushima and Shima [20]

completely determined the eigenvalues and multiplicities of the harmonic difference

operator Hm in the case of both Dirichlet and Neumann boundary conditions. The

numerical computation of such eigenvalues was also presented in [14].

Definition 3.1. If the function v that solves the eigenvalue problem (3.1) also satisfies

the condition

v|Γ0
= 0
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then the eigenfunction v is called a Dirichlet eigenfunction (D-eigenfunction for short)

of −∆. Similarly, if v satisfies the condition

∂nv(x) = 0 ∀ x ∈ Γ0,

where ∂n is the normal derivative defined in equation (2.29), then v is called a Neu-

mann eigenfunction (N-eigenfunction) of −∆.

We specialise to the case of the Sierpinksi Gasket in the plane (N = 3 in [64]

and [20]) and work with our graph approximations to the Sierpinski Gasket: Γm =

{Vm, Em} ⊂ R
2, m = 0, 1, 2, . . .. In this section, we will begin by considering the

m-harmonic difference of a function f at a non-boundary vertex x ∈ Vm as defined

in (2.13). The Laplacian on the Sierpinski Gasket is simply defined to be the renor-

malised limit of Hm, according to (2.28) as m → ∞.

Consider the discrete eigenvalue problem:

−∆mvm = λmvm (3.2)

where ∆m is the graph Laplacian defined on Vm, defined in terms of the harmonic

difference operator

(Hmf)(x) =
∑

x∼
m

y

(f(y) − f(x)) (3.3)

for all non-boundary vertices x (see equation (2.13)). Until now, we have only defined

harmonic differences on interior nodes and have not considered what happens at

the boundary vertices Pi, i = 1, 2, 3. In the following sections we will describe the

spectrum of Hm in the case of Dirichlet and Neumann boundary conditions.
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3.2 Eigenvalues of the Laplacian on the Sierpinski

Gasket

3.2.1 Eigenvalues of −H0
m (Dirichlet Boundary Condition)

First, let us consider Dirichlet conditions at the boundary. We define the linear

operator

(H0
mf)(x) =







(Hmf)(x) if x ∈ Vm \ V0

0 if x ∈ V0

. (3.4)

We see that −H0
m can be written as a

(

3
2
(3m − 1) × 3

2
(3m − 1)

)

sparse matrix.

To begin with, we consider the eigenvalues of

−H0
1 =











4 −1 −1

−1 4 −1

−1 −1 4











. (3.5)

We find that there is an eigenvalue equal to 2 which occurs with single multiplicity.

Corresponding to this is the eigenfunction

v1
1(x) =







1 for x ∈ V1 \ V0,

0 otherwise
. (3.6)

Also, there is an eigenvalue equal to 5 which occurs with multiplicity 2. The corre-

sponding eigenfunctions in this case are v1
2 and v1

3 and are given by:

v1
k(x) =



















1 for x = qk−1,

−1 for x = q3,

0 otherwise

k = 2, 3. (3.7)

We denote the set of eigenvalues of −H0
m by Am and so A1 = {2, 5, 5}.

Given the self-similar nature of SG, there exists a natural decimation procedure,

which enables us to relate eigenvalues of −H0
m to those of −H0

m−1. Consider the
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x2

XXX1X1

x1

Z3

Z2

XX3
XX2X2

Z1

x3

z1z2

z3

X2
X3

X1

Z1

Z3

Z2

Γ2 Γ1

Figure 3.1: The nodes considered for the decimation procedure.

eigenvalue problem for the vertices circled in the left hand part of Figure 3.1 and

define the vectors

v(X) =











v(X1)

v(X2)

v(X3)











, v(x) =











v(x1)

v(x2)

v(x3)











, (3.8)

and the matrices

A =











−4 1 1

1 −4 1

1 1 −4











, M =











0 1 1

1 0 1

1 1 0











. (3.9)

We assume here that v(X) is known and we wish to relate the eigenvalue problem on

Γ2 to that on Γ1, that is, we wish to find the values of v(x1), i = 1, 2, 3 in terms of

the values v(X i), i = 1, 2, 3.

The eigenvalue problem restricted to these vertices on Γ2 is then

Av(x) + Mv(X) = −λIv(x), (3.10)

where I is the 3 × 3 identity matrix. System (3.10) can be solved to obtain an
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expression for v(x) in terms of v(X):

v(x) = −(A + λI)−1Mv(X)

=
1

(λ − 5)(λ − 2)











2 4 − λ 4 − λ

4 − λ 2 4 − λ

4 − λ 4 − λ 2











v(X).
(3.11)

Similar relationships exist for expressing v(zi) in terms of v(Zi), i = 1, 2, 3 in the upper

uncircled subgraph of Γ2 (see Figure 3.1) and similarly with the remaining unlabelled

subgraph.

Equation (3.11) describes how the value of the eigenfunction at the nodes xi ∈
Vm \ Vm−1 can be expressed purely in terms of the value of the function at the nodes

Xi. This means that, given an eigenfunction of −H0
m−1 with eigenvalue λ, we can

extend this to an eigenfunction of −H0
m with eigenvalue λ′. The relationship between

the eigenvalues λ and λ′ can be found by comparing the eigenvalue problem for a

point X1, for example, common to both V1 and V2. We have on Γ1:

−4v(X1) +
(

v(X2) + v(X3)
)

+
(

v(Z2) + v(Z3)
)

= −λv(X1), (3.12)

and on Γ2:

−4v(X1) +
(

v(x2) + v(x3)
)

+
(

v(z2) + v(z3)
)

= −λ′v(X1). (3.13)

Using equation (3.11) and its analogue for v(zi) we can express
(

v(x2) + v(x3)
)

and
(

v(z2) + v(z3)
)

in terms of {v(Xi)} and {v(Zi)} respectively and substitute these

values into equation (3.13), which can be written in the form

−4v(X1) +
(

v(X2) + v(X3)
)

+
(

v(Z2) + v(Z3)
)

= −λ′(5 − λ′)v(X1). (3.14)

Comparing this with equation (3.13) we see the relationship between λ and λ′ is a

quadratic:

λ = λ′(5 − λ′), (3.15)
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and we note that equation (3.15) is not invertible.

The results of this decimation procedure can be summarised by the following

proposition [64]:

Proposition 3.2 (Decimation Method). Let l0(Vm) = {f ∈ l(Vm) : f(Pi) = 0, i =

1, 2, 3} be the collection of real-valued functions on Vm that are zero on the boundary.

1. If −H0
mv = λmv for v ∈ l0(Vm), λm 6= 6, then v|Vm−1

∈ l0(Vm−1) and

−H0
m−1(v|Vm−1

) = λm(5 − λm)v|Vm−1
.

2. If −H0
m−1v = λm(5 − λm)v for v ∈ l0(Vm−1) and λm 6= 2, 5, 6, then there exists

a unique extension ṽ ∈ l0(Vm) of v such that

−H0
mṽ = λmṽ.

Proposition 3.2 says that the restriction of an eigenfunction of −H0
m with eigen-

value λm 6= 6 to Vm−1 is an eigenfunction of −H0
m−1 with eigenvalue λm−1 = λm(5 −

λm). Also, an eigenfunction of −H0
m−1 with eigenvalue λm−1 = λm(5 − λm), λm 6=

2, 5, 6 can be uniquely extended to an eigenfunction of −H0
m with eigenvalue λm.

The exclusion of the eigenvalue 2 in the second part of Proposition 3.2 is clear since

2 ∈ Am only for m = 1. It less simple to explain the exclusion of 6 in part one of the

proposition and 5 and 6 in part two of proposition 3.2.

The eigenvalues of −Hm
0 that are calculated by the decimation procedure do not

form the complete spectrum of the harmonic difference operator. The following propo-

sition accounts for the existence and multiplicities of the remaining eigenvalues.

Proposition 3.3. 6 is an eigenvalue of −H0
m with multiplicity 3

2
{3m−2×3m−1−1}.

5 is an eigenvalue of −H0
m with multiplicity 3

2
{3m−1 − 2 × 3m−2 + 1}.

For a proof of the first part of Proposition 3.3 see [64]. The multiplicity of the

eigenvalue equal to 5 then follows since it will be equal to the difference between the
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v = 0
v = +1
v = −1
v = +2

v2
6,1 v2

6,2 v2
6,3

Figure 3.2: The three eigenfunctions of −H0
2 with eigenvalue λ = 6.

number of vertices of the graph Γm and the number of eigenvalues of −H0
m deduced

from the decimation procedure and Proposition 3.3.

Consider the eigenvalue λ = 6. This first occurs when m = 2 with multiplicity

three. We shall denote the three eigenfunctions corresponding to this eigenvalue

by v2
6,i, i = 1, 2, 3. The values of these three eigenfunctions are shown in Figure

3.2 and it is easy to check that they are linearly independent. We also note that

the v2
6,is all satisfy both Dirichlet and Neumann boundary conditions. This family

of three eigenfunctions on Γ2 gives rise to nine eigenfunctions on Γ3 that also have

eigenvalue λ = 6. These eigenfunctions are constructed as follows. We take each of

our eigenfunctions on Γ2, v2
6,i, i = 1, 2, 3 and for each one, we take each of the maps

of our IFS, fj, j = 1, 2, 3. The support of our eigenfunction on Γ3 will be the nodes

x ∈ V3 whose address begins with the symbol j. The eigenfunction will take the value

zero at all other vertices. The value of our eigenfunction at a node x ∈ V3 is then the

value of v2
6,i, i = 1, 2, 3 at the pre-image of x under the map fj. This construction is

illustrated in Figure 3.3.

According to Proposition 3.3 there exist a further three eigenfunctions of −H0
3

with eigenvalue λ = 6. Three such eigenfunctions are shown in Figure 3.4 and are

denoted by v3
6,i, i = 10, 11, 12. Once again the v3

6,is form a linearly independent set and
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v = 0

v = +1

v = −1

Figure 3.3: An eigenfunction on Γ3 with eigenvalue λ = 6 that is constructed from

an eigenfunction on Γ2, also with eigenvalue λ = 6.

satisfy Dirichlet-Neumann conditions. It is this property that allows us to construct

eigenfunctions corresponding to λ = 6 on subsequent graph approximations to SG in

this manner.

As m increases we can continue in this way to completely determine the eigen-

functions of −H0
m with eigenvalue λ = 6 given that we know those of H0

m−1. There

will be 3
2
{3m − 2 × 3m−1 − 3} eigenfunctions that come from contracting each of the

eigenfunctions with λ = 6 on Γm−1 onto the three order-one triangles of Γm. The

remaining three eigenfunctions are the analogues of those shown in Figure 3.4, where

the non-zero values are pulled towards the junction points q1, q2, q3 as m increases.

We can tell a similar story to determine the eigenfunctions of −H0
m corresponding

to the eigenvalue λ = 5. On Γ1, the eigenvalues corresponding to λ = 5 are given by

equation (3.7), however this is a special case, so, again we begin at m = 2. There

are three eigenfunctions of −H0
2 with eigenvalue λ = 5, which we call v2

5,i, i = 1, 2, 3.

These are shown in Figure 3.5. Again, these three eigenfunctions are all linearly

independent. However, only v2
5,1 satisfies Dirichlet-Neumann conditions, so, when
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v = 0

v = +1
v = −1
v = +2
v = −2

v3
6,10 v3

6,11 v3
6,12

Figure 3.4: The three remaining eigenfunctions of −H0
3 with eigenvalue λ = 6.

v = 0
v = +1
v = −1

v2
5,1 v2

5,2 v2
5,3

Figure 3.5: The three eigenfunctions of −H0
2 with eigenvalue λ = 5.
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v = 0

v = +1

v = −1

v3
5,1

Figure 3.6: The eigenfunction v3
5,1.

constructing eigenfunctions corresponding to λ = 5 on Γ3, we only construct three

eigenfunctions whose support is confined to each of the three order-one triangles of

Γ3. Again, Proposition 3.3 tells us that there are a further three eigenfunctions of

−H0
3 with eigenvalue λ = 5. These are the analogues of those on Γ2 shown in Figure

3.5.

Consider the Dirichlet-Neumann function v2
5,1. We can think of this as a ring,

of alternating sign around the central hole, but set back one row of nodes. An

analogue of this eigenfunction exists for every Γm, which we always refer to as vm
5,1.

As m → ∞ the support of this eigenfunction converges towards the nodes surrounding

the central hole. The eigenfunction v3
5,1 is shown in Figure 3.6. The construction of

the eigenfunctions of −H0
m corresponding to the eigenvalues 5 or 6 is one of many

possible approaches1.

We now define the map Φ(λ) = λ(5 − λ) and its inverse

φ±(λ) = Φ−1(λ) =
5

2

(

1 ±
√

1 − 4

25
λ

)

.

1In a recent publication, Strichartz , [69], outlines an alternative method
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Figure 3.7: The Decimation method used to calculate the eigenvalues (and multiplic-

ities) of −H0
m.

This, together with Proposition 3.2 leads us to the decimation diagram shown in

Figure 3.7. The spectrum of the harmonic difference operator on Γ6 is shown in

Figure 3.8.

In summary, to calculate the eigenvalues and eigenfunctions of −H0
m, we begin

with the Γ1 approximation to the Sierpinski Gasket. The eigenvalues and eigenfunc-

tions of −H0
1 are A1 = {2, 5, 5} and {v1

k}, k = 1, 2, 3 respectively. Each v ∈ {v1
k} with

eigenvalue λ ∈ A1 can be extended in two ways, which we shall refer to as the posi-

tive and negative extensions v+ and v−, to eigenfunctions of −H0
2. The corresponding

eigenvalues are given by λ+ = φ+(λ) and λ− = φ−(λ). At vertices x ∈ V1 ∩ V2 we

have v+,−(x) = v(x) and the value of v+,−(x) at vertices x ∈ V2 \ V1 is obtained

by substituting λ+ or λ− as appropriate into equation (3.11). By this procedure we

obtain six of the twelve eigenfunctions of −H0
2. The remaining six eigenfunctions

correspond to the eigenvalues that are not calculated by the decimation method, the

values and multiplicities can are obtained using Proposition 3.3. The corresponding

eigenfunctions are constructed using the method outlined earlier in this section.

Once the complete set of eigenvalues and eigenfunctions of −H0
2 has been com-
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Figure 3.8: The Spectrum of H0
6.

puted we use the same method to extend these eigenfunctions to some of those of

−H0
3. Note that when extending eigenfunctions corresponding to eigenvalue λ = 6,

only the positive extension is taken. The extension of v1
1 to Γ6 using φ− each time is

shown in Figure 3.9. Figure 3.10 shows one of the three eigenfunctions of −H0
6 with

eigenvalue
(

φ−(5)
)5

, where the power 5 denotes the map φ− composed five times.

3.2.2 Eigenvalues of −Hm (Neumann Boundary Condition)

We now consider Neumann conditions at the boundary nodes. We begin by defining

the following linear operator:

(Hmf)(x) =







(Hmf)(x) if x ∈ Vm \ V0

2
∑

x∼
m

y(f(y) − f(x)) if x ∈ V0

. (3.16)

Note that, for the boundary vertices, we multiply the corresponding rows in −Hm by

a factor of two. This effectively allows us to treat the boundary vertices as interior

vertices (i.e. assuming that every x ∈ Vm has exactly four neighbours). We can
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Figure 3.9: The eigenfunction of −H0
6 with eigenvalue λ =

(

φ−(2)
)6
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Figure 3.10: An eigenfunction of −H0
6 with eigenvalue λ =

(

φ−(5)
)5
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therefore use the decimation procedure once again to fully determine the spectrum

of Hm. We denote the set of eigenvalues of −Hm by Bm and we see that B1 =

{0, 3, 3, 6, 6, 6}. The eigenfunction corresponding to the zero eigenvalue is given by

v1(x) = 1 x ∈ V1. (3.17)

The eigenvalue 3 corresponds to two eigenfunctions, which are given by

vk(x) =











































1 x = qk,

−1 x = q1,

2 x = P1,

−2 x = Pk,

0 otherwise,

(3.18)

for k = 2, 3. The eigenvalue 6 corresponds to three eigenfunctions, given by the

following function:

vi,j(x) =



















1 x = qα, α 6= i, j,

−1 x = Pi or Pj,

0 otherwise,

(3.19)

where i, j = 1, 2, 3, i < j. Once again, the eigenvalues and eigenfunctions of −Hm

can be obtained from those of −Hm−1 using the decimation method described in

Proposition 3.2. As with the Dirichlet case, the decimation procedure does not give

the complete spectrum of Hm. The following proposition accounts for the existence

of the remainder of the eigenvalues of Hm:

Proposition 3.4. 6 is an eigenvalue of −Hm with multiplicity 3
2
{3m −2×3m−1 +1}.

5 is an eigenvalue of −Hm with multiplicity 3
2
{3m−1 − 2 × 3m−2 − 1} + 1.

This leads us to the decimation diagram shown in Figure 3.11 which describes the

eigenvalues and multiplicities of the eigenvalues of the operator −Hm. The spectrum

of −H6 is shown in Figure 3.12. Once again, eigenvalues and eigenfunction of −Hm

can be found by extending the eigenfunctions of −H1 as in the Dirichlet case. We
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Figure 3.11: The Decimation method used to calculate the eigenvalues (and multi-

plicities) of −Hm.
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Figure 3.12: The Spectrum of −H6.
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Figure 3.13: An eigenfunction of −H6 with eigenvalue λ =
(

φ−(φ+(6))
)3

.

note that in the Neumann case however, there always exists a constant eigenfunc-

tion vm
1 (x) corresponding to the zero eigenvalue. Figures 3.13 and 3.14 show two

eigenfunctions of −H6. The eigenfunction plotted in Figure 3.13 is one of six with

eigenvalue
(

φ−(φ+(6))
)3 ≈ 0.0289. The eigenfunction plotted in Figure 3.14 is one of

three with eigenvalue
(

φ−
(

(φ+(6))2
)

)3

≈ 0.0468.

3.2.3 Properties of the Eigenvalues of −∆

We have now considered the spectra of the harmonic difference operators in the cases

of both Dirichlet and Neumann boundary conditions. However, when defining the

Laplacian on the Sierpinski Gasket, we saw how the graph Laplacians were not related

to each other unless they were scaled according to the renormalisation factor 3
2
5m.

Therefore, the spectrum of the Laplacian on the Sierpinski Gasket is the renormalised

limit of the spectra of the harmonic differences H0
m or Hm.

Many properties of the spectrum of the Laplacian on the Sierpinski Gasket have
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been described [59, 64, 20], and also for the general case of p.c.f. self-similar sets

[49, 46, 65]. In [20] it was shown that for the SG case the eigenvalues of −∆ are

non-negative, of finite multiplicity and the only accumulation point is ∞ in both the

Dirichlet and Neumann cases.

In [49] if is proved that there exists ds > 0 such that

0 < lim inf
x→∞

ρ(x)x− ds

2 ≤ lim sup
x→∞

ρ(x)x− ds

2 < ∞, (3.20)

where ds is the spectral exponent (ds = log 9
log 5

for the Sierpinski Gasket), and ρ(x) is

the eigenvalue counting function or integrated density of states defined by

ρ(x) = ♯{k|k is an eigenvalue of − ∆ with k ≤ x} (3.21)

with either Dirichlet or Neumann boundary conditions. Fukushima and Shima [20, 64]

showed that for the Sierpinski Gasket, a strict inequality holds in equation (3.20).

An analogue of Weyl’s theorem for Laplacians on Euclidean spaces has also been

established, see [49].
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Since in this thesis we are concerned with solving differential equations that model

certain biological and physiological processes, the notion of the size of our domain

becomes important. So far, we have only approximated the Sierpinski Gasket by a

sequence of graphs with no definition of size or length scales. We address this issue

here.

Let Vm be the vertex set of the order-m graph approximation to SG. We embed

Vm into R
2 so that each node can be represented in cartesian coordinates by the pair

(x, y). We define V
(0)
m to be the vertex set whose boundary points are the vertices of

an equilateral triangle with each side having unit length and P1 is fixed at the origin.

Then we define

V (n)
m = 2n V (0)

m , n = 0, 1, 2, . . . (3.22)

for m = 0, 1, 2, . . .. Then Γm is the embedding into R
2 of the order-m graph approxi-

mation to SG, whose side length is 2n.

In the limit as m → ∞, we similarly define

K(n) = 2n K, n = 0, 1, 2, . . . (3.23)

and

K(∞) =
∞
⋃

n=0

K(n). (3.24)

So K(∞) can be thought of as an infinite Sierpinski Gasket. We also denote by ∆
(n)
m

the Laplacian on V
(n)
m , and similarly ∆(n) denotes the Laplacian on K(n). From [20],

we have the following proposition.

Proposition 3.5. λ is an eigenvalue of −∆ (= −∆(0)) iff 1
5n λ is an eigenvalue of

−∆(n).

Proposition 3.5 says there is a bijection between the spectra of two differently

sized gaskets: as the length of the side of the gasket increases by a factor of 2, the

magnitude of the eigenvalues decreases by a factor of 5. We shall assume here that

this same scaling relation holds on the finite approximations Γm.
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3.3 A Problem with Hm... and a Solution

When defining the harmonic difference operator with Neumann boundary conditions,

we multiplied the rows corresponding to the boundary vertices by a factor of two in

order to ensure that the decimation method could be used to calculate the spectrum

of Hm. In this thesis we are interested in the solution of certain partial differential

equations formulated with Neumann boundary conditions on the Sierpinski Gasket.

A powerful tool for solving such PDEs is that of Fourier analysis, which exploits

the orthogonality of eigenfunctions of the Laplacian in Euclidean space. Clearly, the

harmonic difference matrix defined in Section 3.2.2 is not symmetric and therefore

the eigenfunctions of −Hm do not form an orthogonal set.

Let us now define the following harmonic difference operator with Neumann

boundary conditions on the Sierpinski Gasket:

(HN
mf)(x) =







(Hmf)(x) if x ∈ Vm \ V0

∑

x∼
m

y(f(y) − f(x)) if x ∈ V0

. (3.25)

From a physical point of view the harmonic difference operators defined in equations

(3.16) and (3.25) do not differ. Their spectra and eigenfunctions however are not

identical. Since HN
m is a symmetric matrix, its eigenfunctions will be orthogonal.

There is a disadvantage in that we cannot use the decimation procedure to determine

the spectrum of HN
m. This must be computed numerically.

The spectra of Hm and HN
m and the difference between the eigenvalues are shown

in Figure 3.15. We see that in the limit as m → ∞ the two spectra appear to

converge apart from in certain areas, where the difference remains constant. This

result is disappointing since we would like the advantage of being able to calculate the

spectrum via the decimation method and to have an orthogonal set of eigenfunctions

when carrying out numerical simulations.

A way around this problem is to introduce the notion of a fractafold. A fractafold,

which is the fractal analogue of the concept of a manifold in Euclidean space, was
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Figure 3.15: The difference between the spectra of Hm and HN
m, for m = 4, 5, 6.
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P3

Figure 3.16: The second order approximation to the double of SG.

introduced by Strichartz [67]. We consider a specific example of a fractafold based

on the Sierpinski Gasket known as the double of SG, see Figure 3.16. The double of

SG consists of two copies of SG that are glued together at the three boundary points.

We can construct a harmonic difference operator on the double of SG in exactly the

same manner as we have done for the Sierpinski Gasket. In the fractafold case, we

have the advantage that every vertex is now a true interior vertex with exactly four

neighbours so the decimation method can be used to determine the spectrum and,

since the harmonic difference operator is symmetric, the eigenfunctions do indeed

form an orthonormal basis.

3.4 Localised Eigenfunctions of the Laplacian on

the Sierpinski Gasket

The eigenvalues and eigenfunctions of the Laplacian on the Sierpinski Gasket are

quite different from those of Laplacians on Euclidean domains. In particular, there
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exist localised eigenfunctions: a non-zero eigenfunction which vanishes on some open

subset of the gasket. The existence of localised eigenfunctions of the Laplacian on

the Sierpinski Gasket was first suggested by Rammal and Toulouse [60]. Here, we

summarise the basic results, see [7] or Chapter 4 in [48] for a detailed description in

the case of general p.c.f. self-similar sets.

We begin by defining the notion of a pre-localised eigenfunction.

Definition 3.6. A function u is called a pre-localized eigenfunction of −∆ if u is an

eigenfunction of −∆ and u satisfies both Dirichlet and Neumann boundary conditions

(u is a DN-eigenfunction) for some eigenvalue λ.

For the case of SG, it is easy to find DN-eigenfunctions. In fact every eigenfunction of

the harmonic difference operator −H0
m with eigenvalue equal to 6 or a descendent of 6

under the map φ satisfies Dirichlet-Neumann conditions. We then have the following

Lemma:

Lemma 3.7. For w ∈ W∗, define uw by

uw(x) =







u(f−1
w (x)) x ∈ Kw

0 otherwise
.

If u is a pre-localised eigenfunction of −∆m with eigenvalue λ, then uw is an eigen-

function of −∆m+|w| with eigenvalue 5|w|λ and support in Kw.

Lemma 3.7 says that given a pre-localised eigenfunction on Γm (clearly we must have

m ≥ 2) we can construct a localised eigenfunction on Γm+n for any n ≥ 1 whose

support is confined to an order n subset of our graph.

As an example, let us consider the eigenfunctions of −∆0
5. The first DN-eigenfunction

we arrive at corresponds to the eigenvalue

λ =
3

2
× φ

(3)
− (φ+(6)) ≈ 673.125.

This is our pre-localised eigenfunction u. To construct a localised eigenfunction on

Γ6, we choose one of the maps of our IFS, in this case we choose f3, so the support
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Figure 3.17: The extension of a pre-localised eigenfunction on Γ5 to Γ6 under the map

f3.

of our localised eigenfunction will be those nodes x ∈ V6 whose address begins with

a 3, and the value of our localised eigenfunction at these nodes will be precisely the

value of u at the pre-image of x under f3. This is shown in Figure 3.17.

In [47], Kigami divided the eigenvalue counting function into two parts. He let

ρW (x) denote the eigenvalue counting function corresponding to the localised eigen-

functions and ρF (x) denote the eigenvalue counting function corresponding to the

non-localised eigenfunctions. It was found that as x → ∞, ρW (x) ≈ x
ds

2 , whereas

ρF (x) ≈ xκF , where κF < ds

2
. The localised eigenvalues therefore dominate.

Localised eigenvalues also have physical implications in that there are solutions to

the heat or wave equation on the Sierpinski Gasket whose support remains in a small

part of the gasket.
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The Cable Equation

4.1 Introduction

The human brain is the most complex structure known to man. All of our movements,

thoughts and abilities are determined by this organ, so it is no surprise that its

extraordinary anatomy and properties are the focus of the research of many scientists.

We focus here on the building block of the brain: the nerve cell, or neuron. We are

interested in how electrical signals propagate along sequences of such cells. To be able

to understand this process we must first familiarise ourselves with the structure and

physical properties of individual nerve cells. A neuron consists, as almost all cells do,

of a cell body (or soma) and a nucleus that contains all the genetic information of the

cell. However, the structure of a neuron is tailored to aid its function by means of

two additions: the axon is a long cylindrical extension of the neuron which transmits

electrical signals away from the cell, and the dendritic tree which extends out from

the nerve cell to receive signals from impinging axons.

Neurons are an example of excitable cells and exhibit threshold behaviour. Under

rest conditions the neuron remains at a roughly constant rest state. If a weak stimulus

is applied, the cell is briefly disturbed but quickly returns to the rest state. If a

stronger, super-threshold stimulus is applied the neuron’s state undergoes a large
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excursion before returning to the rest state.

Remarkably accurate mathematical models have been devised as a result of well-

developed experimental techniques and good experimental data. In this and the next

chapter, we shall consider the question how do potentials spread in a dendritic tree

or an axon? There have been many mathematical models developed in answer to

this question, which range greatly in their detail and accuracy. In [70], Tuckwell

describes and analyses the principle mathematical models that have been developed

for neurons.

The simplest models capable of predicting the quantitative behaviour of nerve

cells are known as single compartment or point neuron models. This type of model

was introduced by Lapicque in 1907 and considers the whole cell by a single repre-

sentative circuit. The problem with this kind of model is that we cannot address

questions concerning the effects of input position or the interaction between inputs at

various points on the surface of the cell. We are also unable to see how the branching

point in the dendritic tree or axon affects the integration of an input. So, rather than

considering a neuron as a single lumped circuit, we model the dendritic or axonal

branches as long, cable-like structures. It is for this reason that we call the mathe-

matical analysis of how impulses propagate along this type of structure in neurons

cable theory.

The application of cable theory to dendritic neurons began when scientists who had

been researching into nerve function found it necessary to interpret the experimental

data obtained from individual neurons. Originally the cable equation was applied to

the conduction of potentials in an axon by Hodgkin and Rushton in 1946 [34] and it

was later applied to dendritic trees in neurons by Rall in 1962 [58]. Cable theory is

concerned with how synaptic inputs propagate from the dendritic tree to the soma,

how these inputs interact with one another and how the placement of an input on a

dendritic tree affects its functional importance to the neuron. Since the structures

concerned are so narrow in comparison to their length, variations in the membrane
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potential in the radial direction are negligible compared to those in the axial direction

and so we can measure the membrane potential as a function of two variables only: the

distance along the cable x and time t. We wish to solve our problem for the membrane

potential V . It is important to note here that cable theory only realistically models

passive processes in neurons where the input currents are neither large enough nor

close enough together to cause an action potential to fire.

4.2 Derivation of the Cable Equation

4.2.1 Definition of Parameters

In order to derive the cable equation, we assume that the neuronal cable is a uniform

cylinder, of radius a, of conducting fluid (axoplasm), separated from the external

medium (which also has conducting properties) by the cell membrane. The mem-

brane itself has an electrical resistance and capacitance. The cable is split up into

compartments or segments of infinitesimal length as shown in Figure 4.1. We will

assume that the following three types of current occur:

1. Current flow through the cell membrane. This is split into contributions from

the capacitance and the conducting properties of the membrane, Ic and IM

respectively and we must remember that, by convention, membrane currents

are defined to be positive outwards (as opposed to currents from an electrode,

which are positive inwards).

2. Current flow in the axial direction along the interior of the segment, I.

3. Current flow in the axial direction along the exterior of the segment. It does

not affect our derivation if we ignore this current. So, for simplicity, we will set

this to zero.

We now go on to define some important membrane parameters.
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Vi−1 Vi Vi+1

Ii−1 Ii Ii+1

2a

Ic
IM

∆xi−1 ∆xi ∆xi+1

Figure 4.1: This figure shows three segments of our neuronal cable, length ∆x, radius

a, along with the currents we shall be considering.

• The axial current along the interior of the segment is subject to a resistance

known as the Specific Axial Resistance RL. This is the resistance to current

flowing along a 10mm long segment of cable with a 10mm2 end surface area.

The inverse of this quantity is the Specific Axial Conductance, denoted by GL.

• There is also a resistance to the current flowing through the neuronal membrane.

This is known as the Specific Membrane Resistance RM and is defined to be

the resistance of a 10mm2 patch of membrane. The inverse of RM is GM , the

Specific Membrane Conductance.

• We must also consider the capacitance of the membrane. The Specific Mem-

brane Capacitance, CM is defined to be the capacitance of a 10mm2 patch of

membrane and is usually treated as constant.

Now that we have defined these specific membrane parameters, we can define their

counterparts for our segment of cable.
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Specific Membrane Capacitance CM ≃ 10nF/mm2

Radius of Cable a ≃ 2µm

Specific Axial Resistance 1KΩmm ≤ Ri ≤ 3KΩmm

Specific Membrane Resistance 1MΩ ≤ Rm ≤ 10MΩ

Table 4.1: Typical Values for the Specific Membrane Parameters

• The axial resistance of our segment will be RL multiplied by the length of the

segment ∆x and divided by the cross-sectional area, so we have

rL =
∆x

πa2
RL and gL =

πa2

∆x
GL.

We see that these definitions make sense because increasing the cross-sectional

area will increase the conductance, while increasing the length of the segment

will reduce it.

• The resistance and conductance across the membrane will be proportional to

the surface area of the segment, provided that we assume that the ion channels

are evenly distributed over the surface of the segment. Therefore, the larger the

surface area, the higher the conductance. This gives us our definitions for the

membrane resistance and conductance:

rM =
RM

2πa∆x
and gM = 2πa∆xGM

• Similarly, the total membrane capacitance is also proportional to the surface

area of the segment and so we have membrane resistance and conductance:

cM = 2πa∆xCM .

For biologically realistic neurons, Table 4.1 gives appropriate values. The values for

the Specific Membrane Resistance vary considerably for different neurons and for

different excitation levels and times within a single cell.
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Inside

Outside

Ii−1 Ii Ii+1
Vi−1 Vi Vi+1

IM
i−1

Ic
i−1 IM

i
Ic
i IM

i+1
Ic
i+1

Figure 4.2: The equivalent electrical circuit to Figure 4.1.

4.2.2 Derivation of the Cable Equation

To derive the cable equation, focus on the central segment of cable in Figure 4.1

and consider the current flow between this segment and its two neighbours and the

external medium. The point where two or more segments meet is called a node and

we say that the length of the segment of cable beginning at node i is ∆xi and the

current entering this segment from the previous segment in the axial direction is Ii.

The membrane potential at node i is defined to be Vi. The equivalent circuit to Figure

4.1 is shown in Figure 4.2.

The voltage at node i is given by Ohm’s law, which tells us

Vi = Vi−1 − IirL = Vi−1 − Ii

RL∆xi

πa2
(4.1)

so that

∆Vi = Vi − Vi−1 = −Ii

RL∆xi

πa2
. (4.2)

We can rearrange (4.2) and take the limit as ∆xi → 0 to give us the expression for
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the axial current Ii:

Ii = −πa2

RL

∂Vi

∂xi

. (4.3)

We now apply Kirchoff’s Current Law at node i, which says that the current entering

a node must equal the current leaving the node. This yields

Ii = IM
i + Ic + Ii+1 (4.4)

and, similarly

∆Ii = Ii+1 − Ii = −IM
i − Ic. (4.5)

Again, using Ohm’s law and the time derivative of the equation for a capacitor we

can write

−IM
i = − Vi

rM

= −2πa∆xi

Vi

RM

(4.6)

and

−Ic = −cM

∂Vi

∂t
= −2πa∆xiCM

∂Vi

∂t
, (4.7)

which, when substituted into 4.5 gives us

∆Ii

∆xi

= −2πa
Vi

RM

− 2πaCM

∂Vi

∂t
. (4.8)

In the limit as ∆xi → 0 (4.8) gives us an expression for the spatial derivative of the

axial current at node i

∂Ii

∂xi

= −2πa

(

Vi

RM

+ CM

∂Vi

∂t

)

. (4.9)

We can obtain an equivalent expression for this derivative by differentiating (4.3) with

respect to xi. This is
∂Ii

∂xi

= −πa2

RL

∂2Vi

∂x2
i

. (4.10)

Equating equations (4.9) and (4.10) then gives us

∂2Vi

∂x2
i

=
2RL

a

(

Vi

RM

+ CM

∂Vi

∂t

)

. (4.11)
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Here we have assumed that the radius of the cable a is independent of x. Finally,

multiplying (4.11) through by aRM

2RL

and dropping the nodal subscripts yields the cable

equation
aRM

2RL

∂2V

∂x2
= V + RMCM

∂V

∂t
. (4.12)

4.2.3 Space and Time Constants

The product RMCM , which multiplies the time derivative on the right hand side of

(4.12) is a quantity with units of time, called the membrane time constant, τM =

RMCM . The membrane time constant is independent of area (since RM and CM

have reciprocal dependencies on the surface area of the membrane) and sets the basic

timescale for changes in the membrane potential. We can see that this is the case

if we suppose that our segment of cable is space-clamped at uniform voltage V0 at

time t = t0, so that ∂2V
∂x2 = 0. In this case, the distribution of voltage along the cable

remains uniform for all time following the release of the voltage-clamp, and the cable

equation (4.12) reduces to

V + τM

dV

dt
= 0. (4.13)

This linear first order ODE, together with the initial condition V (t0) = V0 is easily

solved to give the solution

V (t) = V0 exp

(

− 1

τM

(t − t0)

)

. (4.14)

We see that in this case the potential decays exponentially with time constant τM at

every point along the cylinder following the release of the voltage-clamp.

The constant aRM

2RL

in equation (4.12) also has a physical interpretation. If we think

about applying a constant trans-membrane current at some point on our segment of

cable. Then, after sufficiently long time the voltage will become a function of the

axial distance, x, only and ∂V
∂t

→ 0. This corresponds to a steady state, and at this

steady state the PDE (4.12) reduces to the ODE

aRM

2RL

d2V

dx2
= V, (4.15)
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the general solution of which is given by

V = A exp

(

√

2RL

aRM

x

)

+ B exp

(

−
√

2RL

aRM

x

)

. (4.16)

The constants A and B in (4.16) are determined by the boundary conditions. The

simplest case to consider is that of an infinite cable, extending from −∞ to +∞.

Let’s assume that at x = 0, the voltage is clamped to V = V0. In this case we require

V (−∞) = V (+∞) = 0

and thus for x ≥ 0 we have A = 0 and B = V0. Similarly, for x ≤ 0 we have A = V0,

B = 0. We define by

λ =

√

aRM

2RL

(4.17)

the electrotonic length of a cable of radius a. So, in the case of an infinite cable, the

general solution of equation (4.15) is given by

V (x) = V0 e−
|x|
λ . (4.18)

It is now clear why λ is called a length-constant, it determines the voltage attenuation

with distance: λ is the distance along a cable at which a constant applied voltage will

decay to 1
e

of its original value.

Expressed in terms of the space and time constants τM and λ, the linear cable

equation becomes

λ2∂2V

∂x2
= V + τM

∂V

∂t
. (4.19)

4.3 The Solution of the Cable Equation on the

Sierpinski Gasket

The structure of dendrites is extremely complex, consisting of (often several) compli-

cated trees. It therefore seems natural to model this complex structure as a fractal
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and use this as our domain on which to solve the cable equation. We are, however,

limited in our choice of fractal domain as the theory of analysis on fractals has thus

far only been developed in the case of p.c.f. self-similar sets. Ultimately a p.c.f. frac-

tal tree such as Hata’s tree-like set would be an excellent choice to model a dendrite.

However, the application of the formalism described in previous chapters to the Hata

Tree seems to miss important features that might be expected to hold for a reasonable

model. These limitations appear to be such that we lose nothing by working with the

Sierpinski Gasket and so we shall use this as our complex domain on which to solve

the cable equation. In this section we shall solve equation (4.19) on the Sierpinski

Gasket.

Our purpose here will be relatively straightforward. The cable equation is a linear,

dissipative dynamical system where the dissipation is due to transmembrane effects

as well as axial resistance. From an engineering point of view we might study such a

system by looking at its response to a sharp temporal pulse. (There is a huge literature

on this (see [13])– however mathematically this is essentially a way to compute the

Green’s function for the system.) So, in this chapter we consider the cable equation

on the Sierpinski Gasket as a linear input/output system by applying a sharp pulse

near to one boundary point of the gasket, and observing the response near the other

boundary points. We shall do this for Dirichlet (voltage-clamped) and Neumann (zero

current flow at the boundaries) boundary conditions – this will allow us to distinguish

some of the effects of membrane dissipation and axial dissipation.

We shall be interested in finding numerical results which are independent of the

graphical approximation to the Sierpinski Gasket. We shall use the correctly scaled

Laplacian discussed earlier – however the spatial form of the input spike is something

that we must deal with. Näıvely, we might imagine constructing a spatial delta

function to represent spatial localisation of the input spike. Here, however, we shall

do something very simple – we shall apply an initial stimulus of magnitude 1 to the

vertices neighbouring the boundary point P1. If we imagine how this projects onto
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the eigenfunctions of the Laplacian, we can understand that this will change as the

order of the graphical approximation changes. The following will be an investigation

of how to find behaviour which becomes independent of the graphical approximation

– we do this by finding a way to scale the magnitude of the input spike.

4.3.1 Dirichlet Boundary Conditions

Let us now consider the discrete cable equation on the Sierpinski Gasket

λ2∆0
mVm = Vm + τM

∂Vm

∂t
, (4.20)

where Vm is a vector containing the value of the voltage at the vertices of Γm. We are

interested in the solution to equation (4.20) subject to Dirichlet boundary conditions

where the initial condition takes the form of a stimulus, amplitude 1, applied at

the two neighbours of the boundary point P1. We fix the voltage to be zero at the

boundary nodes so that current can flow out from these nodes. We can write the

solution to (4.20) in the form

Vm =
∑

j

cj(t)F
m
j , (4.21)

where the Fm
j s are solutions to the discrete eigenvalue problem on Γm,

∆0
mFm

j + km
j Fm

j = 0, (4.22)

subject to Dirichlet boundary conditions, and the cjs are time-dependent constants

given by

cj(t) = Fm
j · Vm(t). (4.23)

Substituting (4.21) into (4.20) we see that the cjs satisfy the following first order

ODE:
dcj

dt
= − 1

τM

(λ2km
j + 1)cj, (4.24)

the solution of which is given by

cj(t) = cj(0) exp

(

−(λ2km
j + 1)

τM

t

)

. (4.25)
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We can therefore write the solution to the discrete cable equation (4.20) as:

Vm =
∑

j

cj(0) exp

(

−(λ2km
j + 1)

τM

t

)

Fm
j . (4.26)

All the eigenvalues km
j are positive so the solution will decay exponentially. The

Fourier mode corresponding to the smallest eigenvalue will decay at the slowest rate

so, assuming a generic initial condition, after a sufficiently long time, we expect

the solution of the cable equation to be of the form of the ground state Dirichlet

eigenfunction of −∆0
m (see Figure 3.9).

We solve equation 4.20 on Γm using a suitable numerical scheme (the solutions

presented here were obtained using the Matlab solver ode23, which uses an explicit

Runge-Kutta method). For all numerical calculations the values for the time and

length constants are chosen to be τM = 10 and λ2 = 1
3
. The numerical solution when

equation (4.20) is solved on Γ6 along with the initial condition is shown in Figure 4.3.

We note that in Figure 4.3(d), the solution of the cable equation is of the form of the

ground state Dirichlet eigenfunction. This form, however, is only apparent on a small

scale due to the current flowing out at the boundary nodes and the cell membrane.

How does the level of approximation to the Sierpinski Gasket affect the solution

of cable equation on SG? To see this, we solved equation (4.20) on Γm, m = 3, 4, 5, 6

where in each case the initial condition is a stimulus, amplitude 1, applied at the two

neighbours of the boundary node P1. The average voltage of the neighbours of the

other boundary points P2 and P3 was then observed and is plotted against time in

Figure 4.4. We notice that as the order of our graph approximation increases, the

voltage attained at the neighbours of the boundary points P2 and P3 decreases.

To investigate this we consider the form of the solution of equation (4.20), which

after a sufficiently long time is given by

Vm(t) = c1(0) exp

(

−λ2km
1 + 1

τM

t

)

Fm
1 , (4.27)

where Fm
1 is the eigenfunction of −∆0

m with the smallest eigenvalue km
1 . We are

interested in the average voltage of the two neighbours of P2 (or P3), given an ini-
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Figure 4.3: The solution of the discrete cable equation (4.20) on Γ6 with Dirichlet

boundary conditions.
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Figure 4.4: The average voltage of the neighbours of the boundary point P2 obtained

by solving the cable equation with Dirichlet boundary conditions, subject to an initial

stimulus, amplitude 1, at the neighbours of the boundary point P1.

tial stimulus applied at the two neighbours of P1. Due to symmetry, the value of

the ground state Dirichlet eigenfunction is equal at all the neighbours of the three

boundary points, we call this value Fm
1 (N). Similarly we let V m

N (t) denote the average

voltage of the two neighbours of P2 at time t. From (4.23) we see that c1(0) = 2Fm
1 (N)

and we therefore write

V m
N = 2Fm

1 exp

(

−λ2k1 + 1

τM

t

)

Fm
1 (4.28)

= 2
(

Fm
1 (N)

)2

exp

(

−λ2km
1 + 1

τM

t

)

, (4.29)

so

ln V m
N = ln 2

(

Fm
1 (N)

)2

− λ2km
1 + 1

τM

t = Cm − amt. (4.30)

Figure 4.5 shows ln Vm against time for the tails of the plots in Figure 4.4 for different

order approximations to the gasket and, as expected from equation (4.30), we see four

straight lines that appear to be parallel and equally-spaced. The gradient of the lines

in Figure (4.5), given by −am is in fact independent of m since as m increases, the
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Figure 4.5: A log plot of the the average voltage of the neighbours of the boundary

point P1 against time.

value of km
1 tends to a constant ≈ 16.816. The fact that am → a as m increases

accounts for the lines being parallel.

The intercept of the lines in Figure 4.5, given by Cm, however does depend on the

order of approximation. We have

Cm = ln 2
(

Fm
1 (N)

)2

= ln 2 + 2 ln Fm
1 (N) (4.31)

and so we would like to know how Fm
1 (N) changes with m. As m increases, we find

that the ratio between Fm−1
1 (N) and Fm

1 (N) approaches 5√
3
. Then for large enough

m, we have

Fm
1 (N) ≈

√
3

5
Fm−1

1 (N) (4.32)

and therefore

Fm
1 (N) ≈ A

(√
3

5

)m

, (4.33)

where calculation shows that A ≈ e−0.3094. This gives us the following expression for

Cm:

Cm ≈ ln(2A2) + m ln

(

3

25

)

. (4.34)
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Figure 4.6: Here, the input is scaled by a factor of
(

25
3

)m
, and we see that the output

is now independent of the level of approximation of the gasket

By considering the difference between Cm−1 and Cm we find that the distance between

neighbouring lines in Figure 4.5 is ln
(

25
3

)

and

Cm ≈ Cm−1 − ln

(

25

3

)

= C0 − m ln

(

25

3

)

. (4.35)

Taking the exponential of equation (4.30) then gives us the solution to equation (4.20),

which is given by

Vm(t) ≈ A

(

3

25

)m

exp

(

−λ2k1 + 1

τM

t

)

(4.36)

and so, if we scale our input according to
(

25
3

)m
, we should expect to see that the

output values become independent of the order of the graph approximation of the

Sierpinski Gasket. This is indeed what happens, and is shown in Figure 4.6.

4.3.2 Neumann Boundary Conditions

We once again consider the discrete cable equation (4.20) on the Sierpinski Gasket and

we repeat the numerical calculations from Section 4.3.1, this time imposing Neumann

conditions at the boundary points. This is the equivalent of a segment of neuronal

cable with sealed ends so no current can escape through the boundary nodes, only
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through the cell membrane due to its capacitance and conducting properties. Once

again the initial condition takes the form of a localised stimulus, amplitude one,

applied this time at the boundary point P1.

The solution of equation (4.20) is given by equation (4.26) so we expect that after a

long enough time, the solution will be of the form of the eigenfunction of the Laplacian

(with Neumann boundary conditions) with the smallest eigenvalue. In the Neumann

case there is always a zero eigenvalue that corresponds to a constant eigenfunction. We

therefore expect to see the voltage diffuse to some spatially independent average value

and slowly fall as current escapes through the membrane. The numerical solution of

equation (4.20) is shown in Figure 4.7 and we see that this is indeed the case.

As in the Dirichlet case, we compare the output values obtained by solving the

cable equation on Γm, m = 3, 4, 5, 6 for a consistent initial condition as shown in

Figure 4.8 and once again, we find it necessary to scale the input. Equation (4.27)

tells us that after a sufficiently long time the solution of equation (4.20) will be given

by

Vm(t) = c1(0) exp

(

− t

τM

)

Fm
1 , (4.37)

where Fm
1 is the eigenfunction of −∆m (subject to Neumann conditions at the bound-

ary) corresponding to the zero eigenvalue. In its normalised form the value of Fm
1 at

every vertex x ∈ Vm is

Fm
1 (x) =

1
√

♯(Vm)
=

1
√

3
2
(3m + 1)

, (4.38)

and, (4.23) tells us that

c1(0) =
1

√

3
2
(3m + 1)

. (4.39)

We are interested in the voltage attained at the boundary point P2 (which will be

equal to that at P3 due to symmetry) and after long enough time this is given by

V m
P2

=
1

3
2
(3m + 1)

exp

(

− t

τM

)

. (4.40)
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Figure 4.7: The solution of the discrete cable equation (4.20) on Γ6 with Neumann

boundary conditions.
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Figure 4.8: The voltage at the boundary point P2 obtained by solving the cable equa-

tion with Neumann boundary conditions, subject to an initial stimulus, amplitude 1,

at the boundary point P1.

Taking the natural logarithm of equation (4.40) we obtain

lnVm
P2

= − ln

(

3

2
(3m + 1)

)

− t

τM

, (4.41)

which is in the form of a straight line lnVm
P2

= Cm − at. We have

Cm = ln

(

2

3

)

− ln (3m + 1) ≈ ln

(

2

3

)

− ln (3m) , (4.42)

provided 3m ≫ 1. The difference between Cm−1 and Cm is approximately ln(3) and

the expression for Cm is then given by

Cm ≈ Cm−1 − ln(3) = C0 − ln(3m), (4.43)

and so

Vm(t) ≈ A

(

1

3

)m

exp

(

− t

τM

)

. (4.44)

In this case, we see that scaling the input by a factor of 3m should give a constant

output that in independent of the level of approximation to SG. The results of this

are shown in Figure 4.9 and we see that, as m increases, the output voltage is indeed

becoming independent of m. We notice that in this case, the convergence is slower

due to the condition that we must have 3m ≫ 1.
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Figure 4.9: The voltage at the boundary point P2 obtained by solving the cable equa-

tion with Neumann boundary conditions, subject to an initial stimulus, amplitude

3k, at the boundary point P1.

4.3.3 Conclusion

We have found that, as the order of the graphical approximation to the Sierpinski

Gasket increases, we must provide an increasingly large voltage spike in order to

observe the same asymptotic behaviour. Moreover, the way that this voltage input

scales depends on the boundary conditions. Effectively, we have been looking at the

projection of the initial spike (always of magnitude 1 applied at the vertices which are

the neighbours of P1) onto the eigenfunction corresponding to the smallest magnitude

eigenvalue of the Laplacian given Dirichlet or Neumann boundary conditions.

In the case of Dirichlet boundary conditions, current can leak from the system

both at the boundaries and through the membrane. While for Neumann boundary

conditions we see the effects of the membrane alone. In this latter case, if we were

to let τM → ∞ we would see the initial pulse decay to a constant voltage which is

uniform across the whole gasket. This constant is related to the average value, over

all the nodes, of the initial input voltage. The scaling is then simply a matter of

allowing for the increasing size of the approximating graph.
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In this chapter we have established that we are seeing sense, that our linear PDE on

the Sierpinski Gasket behaves in a reasonable way. In fact, we know that it is possible

to observe some unusual behaviour also. For example, if our original disturbance

took the form of one of the localised eigenfunctions of the Laplacian, discussed in

Chapter 3, we expect that the resulting voltage distribution would remain localised

while it decays. If we construct an orthogonal set of eigenfunctions for Neumann

boundary conditions, then, because the constant function is always an eigenfunction,

any localised eigenfunction must also have zero mean value. Thus the decay of a

localised eigenfunction can be thought of as a mutual cancellation of its negative and

positive voltage variations. Such behaviour takes place with no information reaching

as far as the boundary of the Sierpinski Gasket. This is the dissipative analogue of the

“hearing the shape of a drum” paradox. In particular, we note that such behaviour

makes boundary value inverse problems likely to be ill-posed.
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FitzHugh-Nagumo Type Models

5.1 Introduction

In the previous chapter, we modelled the conduction of electrical impulses in neural

tissue using the linear cable equation. The drawback of modelling such propagation

using the cable equation is that it omits the essential feature that neurons are ex-

citable. In this chapter we consider simple models of excitable neural systems. On a

Euclidean domain, it is known that such systems can support various forms of wave

solutions. We are interested in the solutions that exist when the system is solved on

the Sierpinski Gasket; we wish to know if the geometrical complexity of the domain

manifests itself in the phenomena that arise.

5.2 Excitable Media

An excitable medium can be considered as a continuum of coupled excitable elements

whose dynamics behave nonlinearly and which interact with each other by a diffusion

process. Excitable media have the ability to support undamped propagating waves of

excitation: as each element is perturbed over some threshold value, it in turn excites

its neighbours at a rate determined be the diffusion coefficient (a passive property of
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the medium), and how quickly the diffused species of the excited element rises (an

active property of the medium). Excitable systems occur in many different contexts,

but they are all characterised by the following properties: each excitable element

has a rest state which is stable for small perturbations. An impulse that exceeds a

certain threshold value can, however, trigger a significant excursion before eventually

returning to the rest state. After such a response, the medium becomes refractory;

that is: it cannot undergo another excursion until it recovers full excitability.

We now give some examples of excitable systems, the wave solutions of which

often give rise to complex spatial patterns. Travelling waves are commonly observed

in chemical systems, the most well-studied being the Belousov-Zhabotinsky (BZ)

reaction [18], where two-dimensional patterns have been observed [74, 75]. In a phys-

iological context, the best known example is that of the propagation of an action

potential along the axon of a nerve cell. Similar phenomena are also observed in

cardiac tissue.

A general form of excitable media model is represented by the interaction of two

variables: a fast excitation variable u and a slow recovery variable v. These variables

interact locally according to the differential equations du
dt

= f(u, v), dv
dt

= g(u, v). The

model is therefore given by the following pair of reaction diffusion equations:

ε
∂u

∂t
= ε2∆u + f(u, v)

∂v

∂t
= εδ∆v + g(u, v),

(5.1)

where ε is a small positive parameter, which represents the time scale distinction

between the dynamics of the fast and slow variables u and v. The parameter δ is the

ratio of the diffusion coefficients of the two variables.

Much work has been carried out on the study of wave propagation in excitable

media based on equations of the form of (5.1) in one, two and three spatial dimensions.

Singular perturbation methods have been used to analyse such wave solutions in two

main cases: firstly, when δ = 0, the recovery variable does not diffuse in space, which

is characteristic of pulse propagation in neural fibres and secondly, when δ ≈ 1, which
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is characteristic of activity waves in the BZ reaction (see [39] and [71] and references

therein for a summary of important work on singular perturbation theory in these

cases).

The existence of spiral waves in the two dimensional case has proved to be of

great interest due to its relevance to fibrillation in cardiac tissue [40, 10, 35, 16].

More recently, the three dimensional counterpart of the spiral wave, the scroll wave,

has been studied and the singular perturbation methods used to understand spiral

waves have been extended to the three dimensional case, [54], [55].

5.3 Hodgkin-Huxley Theory

In one spatial dimension, the best known example of an excitable medium is that of

the nerve cell or neuron. Our understanding of this theory today is due chiefly to the

experiments on the giant squid axon by the physiologists Hodgkin and Huxley, the

results of which were presented in a series of papers [33, 30, 29, 31, 32].

The cell membrane of a nerve cell consists of two layers of fat molecules, which

are separated by an insulating gap. When a neuron is at rest, the concentrations of

various ions differs between the interior and the exterior of the cell. These differing

ionic concentrations give rise to a net voltage across the membrane, commonly referred

to as the membrane potential. The membrane potential for most neurons at rest

typically lies between -50mV and -90mV, so the interior of the cell is negatively

charged with respect to the exterior. This separation of charge creates a capacitance

effect and so the basic model for a cell membrane is based on that of a capacitor:

C
dV

dt
=

dQ

dt
, (5.2)

where C is the capacitance of the membrane, V is the potential across the mem-

brane and Q is the charge. A key assumption of Hodgkin and Huxley was that the

membrane, under certain conditions, can become permeable to sodium and potas-

sium ions. Therefore, the total current flowing across the membrane is made up from
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contributions from the capacitance and ionic currents. This can be written as:

I(t) = C
dV

dt
+ Ii, (5.3)

where Ii is split into contributions from the flow of sodium and potassium ions and a

leakage current:

Ii = INa + IK + IL. (5.4)

Each contribution can be written as

Iγ = gγ(V − Vγ), γ ∈ {Na,K,L}, (5.5)

where gγ (gγ(0) = 0) is a function giving the voltage dependence of the conductance

of the membrane to the ion in question and Vγ is the potential at which there is no

net flux of the ion across the membrane. Equation (5.3) then becomes

I(t) = C
dV

dt
+ gNa(V − VNa) + gK(V − VK) + gL(V − VL). (5.6)

Hodgkin and Huxley hypothesised that the ionic conductances, g, can be written

in terms of the maximum conductances g and the gating variables for the opening

and closing of the ion channels. We therefore have

gNa = ḡNam
3h,

gK = ḡKn4.
(5.7)

The dynamics of the gate variables m,n, h are assumed to follow kinetics governed

by equations of the form

dw

dt
= αw(V )(1 − w) − βm(V )w, w ∈ {m,n, h}, (5.8)

where α and β are functions of the voltage V chosen by Hodgkin and Huxley to fit

the experimental data. Taken together, equations (5.3) and (5.8) represent the four

dimensional Hodgkin-Huxley model for nerve impulse propagation.
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5.3.1 The FitzHugh-Nagumo Model

In the mid 1950s, FitzHugh sought to reduce the Hodgkin-Huxley model to a two

variable model for which phase plane analysis applies. His general observation was

that the gating variables n and h have slow kinetics relative to m and that for Hodgkin

and Huxley’s parameter values, n + h is approximately constant. This lead to a two

variable model in V and n. A further observation due to FitzHugh was that the V -

nullcline had the shape of a cubic function and the n-nullcline could be approximated

by a straight line. The model, originally proposed by FitzHugh in 1961 [19] and

subsequently developed by Nagumo and his coworkers in 1962 [56] is known as the

FitzHugh-Nagumo (FHN) system. In dimensionless form the FHN system is written

as follows:

du

dt
= u(1 − u)(u − α) − v + I

dv

dt
= ε(u − γv),

(5.9)

where u represents the fast variable (membrane potential), v represents the slow

variable (sodium gating), α, γ and ε are constants with 0 < α < 1 and ε ≪ 1

(accounting for the slow kinetics of the sodium channel) and I is an applied electrical

stimulus. Many different forms of the FHN system exist, [63] gives many of the

popular versions along with a conversion between them.

A typical phase portrait for the system (5.9), when I = 0, is shown in Figure 5.1.

From Figure 5.1 we see how the FHN system exhibits excitable behaviour. If the

initial condition is less than the threshold value α, then the potential returns quickly

to the unique fixed point at the origin. If, however, the initial condition is perturbed

above the threshold, then the potential undergoes a large excursion before returning

to the rest state.

We have discussed how an excitable medium comprises a continuum of coupled

excitable cells. We therefore need to add some spatial dependence into our problem.

The FHN model can then be written as a system of two coupled partial differential
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Figure 5.1: A typical phase portrait for the system (5.9).

equations:

∂u

∂t
= d∆u + u(1 − u)(u − α) − v + I

∂v

∂t
= ε(u − γv),

(5.10)

where the term d∆u represents the propagation of the potential u at a rate determined

by the diffusion coefficient d. We note that diffusion is not added to the equation

governing v, since this represents the voltage-dependent opening and closing of the

sodium channels and is not assumed to have spatial dependence. A comparison

between this model and the cable equation studied in Chapter 4 (see equation (4.12))

shows that the term v−u(1−u)(u−α) replaces the linear term in the cable equation

which represents the membrane leakage current (and of course the FitzHugh-Nagumo

equation models the dynamics of the sodium gating).

The system (5.10) looks like system (5.1) under a rescaling of the spatial coordinate

and with δ = 0. In one spatial dimension, equations of this form are used to model
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nerve impulse propagation and in two spatial dimensions, equations of this form can

model excitation in cardiac tissue.

5.4 The Heart as an Excitable Medium

The heart is essentially an electromechanical pump consisting of four chambers: the

two upper atria and the two lower ventricles. The function of the right side of the

heart is to collect deoxygenated blood from the body and circulate it to the lungs.

Once reoxygenated, the blood flows to the left side of the heart, from where it is

pumped to the rest of the body. The cardiac cycle consists of two main actions:

systole and diastole. The term systole is synonymous with contraction of a muscle

and comprises two phases: atrial systole, where both atria contract at the same

time forcing blood into the ventricles (known as atrial kick); and ventricular systole,

where the subsequent contraction of the ventricular muscle pumps blood out into

the body. This contracting phase is followed by complete cardiac diastole, where the

heart relaxes in preparation for refilling.

The mechanical action of a heart beat is governed by underlying electrical activity.

Each of the chambers of the heart is composed predominately of muscular tissue called

myocardium. The myocardium is special because, unlike other muscles, it can conduct

electricity, like nerve cells. Cardiac muscle is myogenic, meaning that it stimulates its

own contraction without requiring an electrical impulse. A single cardiac cell, if left

without input will rhythmically contract at a steady rate. If a number of cardiac cells

interact, the contraction of the first will stimulate the second and so on. In this way,

rhythmic sequences of electrical pulses propagate through the myocardium, triggered

by stimuli that spread from the sinoatrial node, sometimes referred to as the heart’s

natural pacemaker. As is the case with nerve cells, this wave of excitation is called

an action potential.

Action potentials differ in different portions of the heart, both qualitatively and
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in duration. The governing processes are,however, the same and are outlined here.

At rest, the myocardial cell has a resting membrane potential of around −90mV, due

to differing ion concentrations on either side of the cell membrane. The arrival of a

stimulus increases the membrane potential and causes voltage-gated sodium channels

to open. Positively charged Na+ ions then enter the cell, increasing the membrane

potential further, thus causing more sodium channels to open. This is an auto-

catalytic process and causes a sudden, fast influx of sodium ions, which is known as

fast depolarisation. Soon after they open, the sodium channels close. The potential

now saturates as the outward movement of potassium ions (K+) is balanced by the

inward movement of calcium ions (Ca2+) through their respective ion channels. The

potassium channels remain open well after the calcium channels have closed, the

continuing efflux of K+ ions repolarises the cell and the potential returns to its resting

value.

The Modified FHN System

The system we consider here is a modified form of the FitzHugh-Nagumo Equations

proposed in [21]:

ut = ∇2u + ε−1u (1 − u)
(

u − v+γ

α

)

vt = u3 − v.
(5.11)

Initially, let us consider the spatially independent case:

dX

dt
= ε−1X (1 − X)

(

X − Y +γ

α

)

dY

dt
= X3 − Y.

(5.12)

System (5.12) has fixed points satisfying

Y = X3, X(1 − X)
(

X − X3−γ

α

)

= 0, (5.13)

and we note that these fixed points correspond to spatially uniform fixed points of

the PDE system (5.11). Clearly, there will be two fixed points at (0, 0) and (1, 1) and
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steady states is reduced to three.

Figure 5.2: The nullclines of the modified FHN system. The red curves show dX
dt

= 0

and the blue curves show dY
dt

= 0.

either one or three more, corresponding to the roots of the cubic X3 − αX + γ = 0.

Whether this cubic will have one root or three roots depends on the values of the

parameters α and γ. The transition from one case to the other occurs when the

second turning point (minimum) of the curve touches the X- axis, i.e. when

3X2 − α = 0 ⇔ Xmin =

√

α

3

We have two cases:

X3
min − αXmin + γ > 0 ⇒ one root,

X3
min − αXmin + γ < 0 ⇒ three roots,

(5.14)

giving us either three or five fixed points. The nullclines for both of these cases are

shown in Figure 5.2.
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5.5 Wave Solutions of a Modified FitzHugh-Nagumo

System-Euclidean Domain

We have discussed how a super-threshold stimulus on an excitable medium can elicit

a wave of excitation travelling from the initiation site. The remainder of this chapter

will be concerned with various types of travelling wave solutions of the system (5.11)

that exist and the initial conditions that give rise to them. We restrict ourselves to

the second case in (5.14), where α and γ satisfy:

γ <
2√
3

α
3

2 . (5.15)

We shall therefore fix α = 0.75, γ = 0.06 and let ε vary as a bifurcation parameter.

For the numerical calculations reported in the chapter, the system is solved using

an analogue of the method of lines: we semi-discretise the problem replacing the

Laplacian by the standard five point difference formula in the case of a Euclidean

domain and our standard discrete Laplacian in the SG case. The resulting ODE

system is then solved, subject to Neumann boundary conditions and a suitable initial

condition, using the Matlab solver ode23.

We consider here the effects of applying super-threshold stimuli to a homogeneous

excitable medium. The refractoriness of the medium affects pulse propagation in that

pulses generally travel forwards towards previously unexcited tissue. The numerical

simulations here are carried out on the square domain Ω = [0, 50] × [0, 50] with

Neumann boundary conditions. This box size has been chosen to be large compared

with the length scale over which u diffuses in the scaled unit time.

5.5.1 Planar Wave Fronts in Two Dimensions

The first case we shall consider is that of a planar wave. To initiate a planar wave,

we excite the whole of the left hand side of the domain. The Neumann conditions at

the boundary cause the wave to propagate to the right and it is well known that this
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wave will propagate across the domain at a constant velocity. Figure 5.3 shows the

propagation of such a wave. In this case we took ε−1 = 14.

It is possible to calculate the wave speed of the planar wave shown in Figure 5.3

numerically. We consider the values of the potential u along the lower edge of our

domain. Figure 5.4 shows the propagation of the wavefront as a function of the spatial

coordinate at discrete time intervals. At different instances in time, the position of

the wavefront can be identified by locating the greatest negative difference in the

values of u. Figure 5.5 shows the location of the wavefront as a function of time. This

appears to be a straight line indicating that the planar wave does propagate with

constant velocity. The wave velocity is denoted by c̃ and is given by the gradient of

the curve in Figure 5.5. We find that the plane wave propagates across our domain

at a velocity

c̃ ≈ 2.17 (5.16)

Later on in this chapter, we shall be comparing the velocities of wave propagating

across Euclidean domains and the Sierpinski Gasket. It therefore makes sense to

normalise the wave speed by dividing by the linear size of our domain. This gives us

c̃N ≈ 0.043. (5.17)

The velocity of waves propagating in an excitable medium can be found approxi-

mately using asymptotic analysis. This is a well-studied problem, see [71], and usually

considers a pair of reaction-diffusion equations of the form:

εut = ε2 ∇2u + f(u, v)

vt = ε δ∇2v + g(u, v),
(5.18)

where u and v take values in [0, 1]. Equations (5.11) can be reduced to the same form

as equations (5.18) by setting δ = 0 and choosing a suitable rescaling. We therefore

rescale space according to X =
√

εx and seek travelling wave solutions of the the form

u(X, t) = u(z), v(X, t) = v(z), z = X − ct. This represents a pulse with fixed wave
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Figure 5.3: The potential, u, plotted for a planar wave initiated by putting u above

the threshold at the left edge of the domain. A movie of this figure can be found on

the accompanying CD, named FHNMov1.avi.
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Figure 5.4: The position of a planar wave for discrete times.

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

35

40

45

Time

P
os

it
io

n
of

th
e

w
av

ef
ro

n
t

Figure 5.5: The position of the wavefront as a function of time.
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u
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Figure 5.6: Schematic diagram showing the form of u and v in the travelling frame.

form travelling to the right with speed c. Ahead of the pulse, the variable u remains

at rest. At the wave front, z = 0, the value of u increases rapidly to the excited state

and returns to rest at z = z1 < 0. Figure 5.6 shows the form of the wave solutions

we are seeking in the travelling frame.

In the travelling coordinate system, equations (5.11) become

ε2uzz + εcuz + u (1 − u)
(

u − v+γ

α

)

= 0

cvz + u3 − v = 0.
(5.19)

Since ε is small, the first equation in (5.19) will remain in equilibrium provided

f(u, v) = u (1 − u)
(

u − v+γ

α

)

≈ 0 and so we expect that the solution trajectories

will stay close to this curve, apart from points where they may jump from branch to

branch. In this case the first and second derivatives of u with respect to z will be

large. The condition f(u, v) = 0 has, for our parameter values, four branches:

1. u = 0 ⇒ ∂tv = −v.

This equation has a globally attracting fixed point at v = 0.
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2. u = 1 ⇒ ∂tv = 1 − v.

This equation has a globally attracting fixed point at v = 1.

3. u = v+γ

α
⇒ ∂tv = 1

α3 (v + γ)3 − v.

For our chosen values of α and γ, this has two solutions in the region of inter-

est. The first solution (smaller value of v) being stable, and the second being

unstable.

For our purposes there are two relevant branches: u = 0, which we shall call u−; and

u = 1, or u+.

We consider the problem in three regions: ahead of the wave front, z > 0; during

the pulse, z1 < z < 0; and behind the wave back, z < z1. The two outer solutions

must then be matched to the inner solution.

Ahead of the Wave Front

For z > 0 the medium is at rest and excitable so we have:

u = 0,

cvz = v,

lim
z→∞

v = 0,

v(0) = v0.

(5.20)

We note that v = 0 is an unstable solution of the second of equations (5.20) and so,

in order to satisfy the condition that v → 0 as z → ∞, we must have v(0) = v0 = 0.
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Behind the Wave Back

After the pulse has propagated through the medium it returns to the rest state and

so for z < z1, we have

u = 0,

cvz = v,

lim
z→−∞

v = 0,

v(z1) = v1.

(5.21)

During the Pulse

During the pulse, the medium is in the excited state giving the following:

u = 1,

cvz = v − 1,

v(z1) = v1,

v(0) = v0 = 0.

(5.22)

Matching Inner and Outer Solutions

At z = z1 and z = 0, the solution is discontinuous and so we introduce a boundary

layer where we can match the solutions in the inner and outer regions. To do this,

we introduce a stretched coordinate ξ = z
ε
, then equations (5.19) become

u′′(ξ) + cu′(ξ) + u (1 − u)
(

u − v+γ

α

)

= 0

cv′(ξ) + ε(u3 − v) = 0.
(5.23)

For matching at z = 0, we require:

lim
ξ→∞

u(ξ) = u− = 0,

lim
ξ→−∞

u(ξ) = u+ = 1.
(5.24)
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Conditions (5.24) are simply reversed to match the solutions at z = z1. Setting

v(0) = 0 and neglecting terms of order ε gives us a single second order ODE in u:

u′′ + cu′ + u(1 − u)(u − γ

α
) = 0. (5.25)

Setting u′ = w yields the first order system:





u′

w′



 =





w

−u(1 − u)(u − γ

α
) − cw



 , (5.26)

subject to boundary conditions u(−∞) = 1, u(∞) = 0.

System (5.26) has three steady states, namely (u∗, w∗) = (ui, 0), ui ∈ {0, γ

α
, 1}.

To analyse the system, we linearise it about these three steady states:





u′

w′



 ≈





0 1

3u2 − 2u(1 + γ

α
) + γ

α
−c





∣

∣

∣

∣

∣

∣

(u∗,w∗)





u

w



 (5.27)

and we find that they are (for c > 0) a saddle, a stable focus or node (depending on

the values of c, α and γ) and a saddle respectively. If

c2 > 4

(

γ

α
−

(γ

α

)2
)

then the fixed point will be a stable node, otherwise, it will be a stable focus.

When c = 0 the system is Hamiltonian and the potential is given by:

V (u) =

∫

f(u, 0) du = u2

(

−1

4
u2 +

1 + γ

α

3
u − γ

2α

)

.

In this case there exists a homoclinic orbit of the saddle at the origin which encircles

the fixed point at ( γ

α
, 0), which is a centre. A small, positive perturbation of c leads

to this orbit being broken and the saddle at the origin will connect to the stable focus

at ( γ

α
, 0). If the value of c is increased further, both saddles will connect to the fixed

point at ( γ

α
, 0), see Figure 5.7. There exists a unique value of c, c∗ which separates the

two cases mentioned above. For this value of c there is a heteroclinic orbit connecting

the saddles at the origin and at (1, 0). This heteroclinic orbit describes the change
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Figure 5.7: Phase portraits of the system (5.26) for different values of c.

of the potential from the rest state to the excited regime and back again. That is, it

provides the matching between solutions in the inner and outer regions.

An approximate value for c∗ can be found using a shooting method. System (5.26)

is solved numerically with initial condition equal to (1, 0) perturbed with a small

amount of the eigenvector corresponding to the unstable eigenvalue of the matrix in

equation (5.27) evaluated at (u∗, w∗) = (1, 0). Using this method, the value of c∗ is

found to be c∗ ≈ 0.5657. In terms of our original spatial variable x, the wave speed

is given by:

c̃ =
c√
ε
. (5.28)

Let us compare this to the wave speed we calculated numerically earler in this section

given in equation (5.16). With ε−1 = 14, equation (5.28) gives us

c̃ =
√

14 c∗ ≈ 2.1166. (5.29)

The asymptotic analysis therefore gives us a reasonable approximation to our com-

puted wave speed.

5.5.2 Curved Wave Fronts in Two Dimensions

Let us now consider the effect of applying a localised stimulus to the domain. This

is the equivalent of exciting a single cell or group of neighbouring cells. In this case a
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wave of excitation moves out as an expanding circle, called a target pattern. Figure

5.8 shows the evolution of a target wave generated by solving system (5.11) when the

initial condition is a stimulus, amplitude 1, applied at the centre of the domain. The

target pattern is destroyed as it collides with the boundary of the domain. Target

waves are produced by the simplest of excitations. When analysing the propagation

of such waves, however, the effect of curvature must be taken into consideration.

The analysis of the wave speed of curved wave fronts was first carried out by

Zykov, [78, 77] in the case when δ = 0, and by Keener [41, 42] when δ ≥ 0. The wave

speed of a curved wave front is given by the relation (up to order ε):

N = c + εK (5.30)

Here, N is the normal velocity and c is the wave speed of a planar wave propagating

across the domain. The curvature of the propagating wavefront is given by K. If

the wave front is curved away from its direction of propagation, then K < 0. If the

curvature is in the direction of propagation, then K > 0. The correction term εK is

only meaningful if K >> 1, however if K = O(1) then the wave can be treated as

planar. Equation (5.30) is given in dimensionless form. If the variables are considered

in terms of physical units, equation (5.30) reads:

N = c + DK, (5.31)

where D is the diffusion coefficient of the fast variable u (the product DK does indeed

have dimensions of a velocity).

Clearly in the case of target patterns, the curvature only affects the wave speed

close to the initiation site. As the wave expands away from the central region of

excitation, the (negative) curvature becomes negligible and the wave speed increases

to that of a planar wave. There are, however, certain types of curved wavefront for

which the curvature plays an important role in determining the wave speed.
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Figure 5.8: The propagation of a target wave resulting from a stimulus applied to the

centre of the domain. A movie of this figure can be found on the accompanying CD,

named FHNMov2.avi.
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5.6 Wave Solutions of a Modified FitzHugh-Nagumo

System-Sierpinski Gasket

We have seen how waves of excitation can propagate across a homogeneous excitable

medium. In this section we are concerned with whether similar solutions exist if the

medium in question is geometrically complex and we shall investigate the similarities

and differences that exist between the Euclidean and fractal cases. Here we shall

solve system (5.11) numerically using the same method and parameter choices as in

Section 5.5.

Once again we must choose the domain to be sufficiently large so that the size of

our wave (the distance between the wavefront and the waveback) is small compared

to the size of the domain. We therefore choose to work on an approximation to SG

whose sidelength is 32 = 26 units. In addition, we choose our order of approximation

to be m = 6. This level of approximation is high enough to reasonably represent the

gasket, yet small enough to make numerical simulations relatively fast. We donate

this domain by Γ6
6.

As opposed to the Euclidean case, a planar wave on the Sierpinski Gasket could

propagate in two ways: from an edge towards the opposite corner, or from a corner

to an edge. Figures 5.9 and 5.10 show the propagation of such a wave in both of the

above cases. The wave in Figure 5.9 was initiated by setting u = 1 along the left

hand edge of the gasket, whereas in Figure 5.10 the boundary point P3 and its two

nearest neighbours were excited.

A Numerical Estimate of the Wave Speed

In [1] and [2] a different discretisation of the Sierpinski Gasket is considered and

a numerical estimate for the wave speed of planar wave solutions to an excitable

reaction-diffusion system is obtained. The system studied is known as the Rinzel-

Keller (RK) model [62], in which the cubic reaction term of the FHN system is replaced
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Figure 5.9: The potential, u, plotted for a planar wave, resulting from setting u = 1

along the edge between the boundary points P1 and P3. A movie of this figure can

be found on the accompanying CD, named FHNMov3.avi.

0 10 20 30
0

5

10

15

20

25

30
t = 0

0 10 20 30
0

5

10

15

20

25

30
t = 4

0 10 20 30
0

5

10

15

20

25

30
t = 8

0 10 20 30
0

5

10

15

20

25

30
t = 12

Figure 5.10: The propagation of a planar wave, resulting from setting u = 1 at the

boundary point P3 and its two neighbours. A movie of this figure can be found on

the accompanying CD, named FHNMov4.avi.
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Figure 5.11: The wave profiles of a planar wave propagating across Γ6
7.

by a piecewise linear approximation. Here we use a similar method to calculate the

wave speed of a planar wave solution of the modified FHN system (5.11) propagating

across our graph approximations to the Sierpinski Gasket.

In order to obtain a numerical estimate for the wave speed of a planar wave

propagating across the Sierpinski Gasket, we solve the system (5.11) on Γm for m =

4, 5, 6, 7 and 8. We initiated a planar wave by exciting a small number of nodes in

one corner of Vm (for m = 4, 5, 6 the point P3 and its two neighbours were excited,

for m = 7, 8 it was necessary to excite P3 and its five nearest neighbours for a planar

wave to propagate), the wave then propagates to the opposite edge. As the wave

propagates we look along one side of the gasket (where we number the nodes from

1 to 2m + 1) and consider the wave profiles at different instances of time. The wave

profiles in the case where m = 7 are shown in Figure 5.11.

At a number of different instances of time, we identify the wavefront by locating

the position along the side of Γm where the difference in the value of u at two adjacent

nodes is greatest. Figure 5.12 shows the position of the wavefront as a function of time
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proximation is 8.9025

Figure 5.12: The nodal position of the wavefront (blue) and a linear least squares

approximation (red) plotted as a function of time.

117



Chapter 5: FitzHugh-Nagumo Type Models

for m = 4, 5, 6, 7. We see that the position of the wavefront appears to change linearly

with time and this suggests that the planar wave does indeed propagate across Γm at

a constant speed. We note here that the curves plotted in Figure 5.12 do not appear

as straight lines. This is probably due to the wave speed and the sampling times not

being synchronised. The velocity of the wave is found from the gradient of the lines

plotted in Figure 5.12. Since the wave speed depends on the order of approximation

to the gasket, we divide by the number of nodes on one side of Γm. We carried out

similar calculations for a plane wave travelling across the gasket from an edge towards

the opposite corner. Figure 5.13 shows this normalised wave speed as a function of

m in both these cases. We see that, as m increases, the speed of propagation tends

to a constant value. For a wave travelling from a corner to an edge we have

cN ≈ 0.069, (5.32)

and for a wave travelling from an edge to a corner, we have

cN ≈ 0.075. (5.33)

In both the Euclidean and Sierpinski Gasket cases, the phenomena seen here are

comparable. The two wave forms are structurally similar and behave in the same way,

propagating at a constant velocity. We can normalise the wave speed in the Euclidean

case by dividing by the number of nodes along one edge of the domain. This gives us

a normalised wave speed of c̃N ≈ 0.042. The two wave speeds are similar, although

planar waves appear to propagate faster across the fractal medium.

We have found, therefore, a qualitative and quantitative distinction between the

propagation speeds of such travelling waves on the Euclidean domain and on the

Sierpinski Gasket. Qualitatively, we find that there are (at least) two wave speeds

on the Sierpinski Gasket, depending upon the propagation direction. Quantitatively,

both of these speeds differ from that found in the Euclidean case. A possible route

to understanding these differences would be to consider the linear wave equation
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Figure 5.13: The normalised wave speed as a function of the level of approximation,

m for a wave propagating from a corner to an edge (blue) and from an edge to a

corner (red).
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on the Sierpinski Gasket. This has been studied numerically in [14] and the wave

speed has been shown to be infinite in this case. For our problem, however, the wave

velocity is determined by the nonlinearity of the reaction kinetics. It might be useful

therefore to set up an analogous asymptotic analysis on the Sierpinski gasket. This is

an interesting but open problem as there is currently no well-defined definition of first

order derivatives on p.c.f. self-similar sets apart from the normal derivative defined

in Chapter 2. Another possible approach to understanding wave speeds might be

to formulate the problem in weak form since we have used Dirichlet forms on the

Sierpinski Gasket when defining the Laplacian.

5.7 Spiral Waves Solutions of a Modified FitzHugh-

Nagumo System

5.7.1 Spirals Waves in the Myocardium

Electrical signals propagate through normal heart tissue in successive waves of elec-

trical activity. Usually these impulses travel sufficiently quickly so that each cell

will respond only once. These waves normally occur approximately once every 0.8s.

Under certain conditions these planar waves can form or propagate abnormally, lead-

ing to arrhythmia. There are many different forms of cardiac arrhythmia of varying

severity, one of the most frequently occurring and dangerous being so-called reentrant

arrhythmias, caused by waves of excitation that repeatedly pass through the same

tissue, forming a spiral. The mechanisms of the onset and stability of such spiral

waves is the subject of extensive and ongoing investigation.

Spiral waves are waves of excitation that travel around a central, non-excitable core

re-exciting themselves. For this reason spiral waves are also referred to as reentrant

waves. The formation of a spiral wave involves the generation of a semi-infinite

wavefront in the plane. Since there are more excitable cells adjacent to the end of the
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wavefront, the free end travels more slowly and curls back on itself to form a spiral.

There are several possibilities as to how these broken waves can form, for example, if a

propagating wave meets an obstacle such as a large vessel or a scar. Another possible

cause of spiral waves is that impulses might propagate more slowly in certain areas

of the heart. When part of the impulse arrives late, it is treated as a new excitation

which can then spread backwards.

Ventricular tachycardia (VT) is one of many cardiac arrhythmia believed to be

caused by a spiral-shaped reentrant wave front. VT is characterised by a fast heart-

beat as spiral waves oscillate quickly with a period of about 0.2s. Although not

generally life-threatening in itself, VT often directly precedes the onset of ventricular

fibrillation (V-Fib), which, if not treated immediately, results in death. V-Fib oc-

curs when a spiral wave becomes unstable and degenerates into a chaotic pattern of

many small waves. During fibrillation the ventricles quiver and writhe rather than

contacting in unison, and so fail to pump blood around the body.

We can simulate a spiral wave on the domain Ω = [0, 50] × [0, 50] with Neumann

boundary conditions by solving the system (5.11) with initial condition consisting

of a broken planar wave. In order to obtain the initial condition, a planar wave is

simulated and allowed to propagate for a short time. Then we simply set u = v = 0 in

the upper half of the domain and allow the wave to continue to propagate. Figure 5.14

show the potential u for such a wave when ε−1 = 14 and the consequent formation of

the spiral wave.

Let us now look at the effect of the initial condition on the type of wave solutions

arising. If, instead of truncating the wave in the middle, we set more or less of the

plane to take zero value, we see that a spiral wave still forms but note that the centre

of the spiral depends on where we set the plane wave to zero. Figure 5.15 illustrates

this when the upper three quarters of the plane has been reset to u = v = 0.

Here, we have given a very brief overview of the existence of spiral waves in

excitable media. A more detailed investigation of the circulation of excitation waves
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Figure 5.14: The potential, u, plotted for a rotating spiral wave. The initial condition

in this case is a broken planar wave. A movie of this figure can be found on the

accompanying CD, named FHNMov5.avi.

Figure 5.15: The potential, u, plotted for a skewed spiral wave. The initial condition

in this case is a broken planar wave.
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in two-dimensional excitable media is given by Zykov in [79]. For a review of the

singular perturbation theory, [71] gives an overview of the general approach as well

as a detailed analysis in the case of waves propagating in two spatial dimensions,

including both target patterns and spirals rotating around a central hole or core.

The stability of rotating spiral waves has also proved to be of interest. In [5,

6] Barkley has carried out a linear stability analysis of such waves and shows that

the transition between waves rotating rigidly around a circular core and so-called

modulated rotating waves – whose tip paths meander – occurs via a Hopf bifurcation.

Later work by Biktashev and Holden [9, 11] and by Nicol et al [4] has developed

the theory of this meandering process in terms of the continuous symmetries of the

system.

Spiral Break-up

It is widely accepted that the degeneration of ventricular tachycardia into ventricular

fibrillation occurs when a spiral wave propagating in the myocardium spontaneously

breaks up into many smaller excitation waves propagating in an erratic manner. The

mechanism underlying spiral break-up is not well-understood although a possible

cause [22] is that the wave front is slowed down by the refractoriness of the tissue

ahead of the wave. The repolarisation wave (wave back) continues propagating at its

original speed and therefore collides with the excitation front, causing it to break up.

In the model given in equations (5.11), whether a spiral wave will continue rotating

or break up depends on the value of the parameter ε−1. For given values of a and γ,

there exists some critical value ε−1
c such that for ε−1 < ε−1

c spiral break-up occurs.

One can intuitively see why this is the case for two reasons. Firstly as ε−1 decreases

the planar wave speed c̃ slows, which may account for the collision of the wave front

and wave back as described above. Secondly, as ε−1 decreases, the role of diffusion in

the system becomes dominant over that of the reaction kinetics. Figure 5.16 shows

the process of spiral break-up. The initial condition here is the same as in Figure
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Figure 5.16: The potential, u, plotted for the break-up of a spiral wave. The initial

condition in this case is a broken planar wave. A movie of this figure can be found

on the accompanying CD, named FHNMov6.avi.

5.14, however, here we have taken ε−1 = 12.5.

The calculation of the precise value of ε−1
c for which spiral break-up occurs is

difficult. In [21], Mischaikow and coworkers introduce a new technique to measure

the spatial-temporal complexity of patterns using algebraic topology. The system

they used to illustrate this method is given by equations (5.11). They solved this on

the domain Ω = [0, 80] × [0, 80] with Neumann boundary conditions and the plotted

the solutions for the potential u. The parameters α and γ were fixed at α = 0.75,

γ = 0.06 and ε−1 varied. In order to obtain a clear contrast between the excited and

non-excited regions, the data were thresholded so that every point (xi, yj) for which

u(xi, yj) ≥ 0.9 (indicating the excited region) was shaded black, producing a complex

pattern. Since the evolution in time of the excited region is of interest, Mischaikow

et al represented the excited region by a set of voxels:

E = {Vi,j,k|u(xi, yj, tk) ≥ 0.9} ⊆ R
3, (5.34)
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where Vi,j,k is the voxel corresponding to the (i, j)th pixel at discrete time k. They

then took time slices of the excited region. Let

Tn,b = {Vi,j,k ∈ E|n ≤ k ≤ n + b}. (5.35)

Then, for fixed b, the time evolution of the pattern is given by the map from Tn,b to

Tn+1,b.

The topological complexity of such patterns can be quantified using algebraic

topology. In particular, the topological features of the set Tn,b can be partially char-

acterised by calculating the Betti numbers βi(Tn,b). Essentially, β0 gives the number

of connected components of a set, β1 gives the number of tubes (corresponding to

target waves), and β2 gives the number of enclosed cavities. Since, in this case, they

consider a three dimensional example (two spatial dimensions and time) βi = 0 for

i ≥ 3.

Mischaikow et al have developed computer algorithms for the computation of the

homology of cubical sets [38] meaning that the Betti numbers of such complicated

patterns can be calculated. For the excitable media example discussed here, they

find that β2 is zero. This is due to the refractoriness of the medium: once exited,

a region cannot be re-excited for some time afterwards. In order for a closed cavity

to exist, an expanding target wave would have to change direction, which is clearly

impossible. They also find that β0 is piecewise constant and small which, again, is

intuitively reasonable. The behaviour of β1, however, proves to be more interesting.

The value of β1 changes as tubes are created or destroyed. This behaviour occurs

during the break-up of spiral waves. In the fourth frame of Figure 5.16 (t = 30) we

see that a tube has been created.

Mischaikow et al considered the time series

B(10) = {β1(m)|m = 1, 2, . . . , 10000} (5.36)

for different values of ε−1 (the subscript 10 indicates the width of the time slice). The
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Figure 5.17: Mean values of the time series B(10) (squares), and the mean values of

the time series B(100)(dots), as functions of ε−1.

mean of β1, β̄1 was then plotted as a function of ε−1, see Figure 5.171. We see that,

as ε−1 increases through some critical value, β̄1 decreases to zero, where it remains.

This result is interesting since the Betti numbers are non-negative integers so if their

mean is zero then all the β1 in the time series must be zero, so the excited region of

the domain contains no tubes. It is therefore possible to determine the critical value

of ε−1 for which spiral wave solutions of the modified FHN system become unstable

and undergo spiral break-up. This critical value, ε−1
c , was found to be between 12.5

and 12.625 so that for ε−1 > ε−1
c spiral waves are stable and for ε−1 < ε−1

c spiral

waves are unstable and undergo break-up.

1Reprinted figure with permission from [21]. Copyright 2004 by the American Physical Society.
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5.7.2 Spirals on the Sierpinski Gasket

Spiral Waves

The work of Mischaikow et al demonstrates the generation of non-trivial topological

structures on a Euclidean domain – that is, topology generated by the dynamics

rather than the structure of the domain. What can be seen in this system in the case

of a non-simply connected domain? In particular, what happens on the Sierpinski

Gasket where the topology is extremely complex?

To compute an analogue of the spiral wave on the Sierpinski Gasket we simulate

a planar wave as in Figure 5.9 and allow it to propagate for a short time before

initiating a spiral by truncation. This is done by setting u and v to zero in the lower

left order-one triangle K1. Figure 5.18 shows an analogue of a spiral wave on the

Sierpinski Gasket after the initial plane wave was allowed to propagate until t = 5

before being truncated. This is a wave, of fixed amplitude, which travels round the

central triangular hole. This wave, unless disturbed, appears to propagate without

changing in velocity or form.

We can think of this kind of wave as a sequence of plane waves, which propagate

across subgaskets. For example, consider Figure 5.18 at t = 4. The node q1 can be

thought of as being excited sufficiently to initiate a wave which propagates across

the subgasket K2 (in this configuration the subgasket K3 is in a refractory state).

When the wave reaches the base of K2 it is annihilated (reflection is prevented by

the refractoriness so the local dynamics on the base nodes simply cycle back to the

fixed point (u = 0, v = 0)). However, diffusion couples the vertex q3 to the subgasket

K1 so the dynamics at this vertex initiate a planar travelling wave which propagates

across K1. This process is thus repeated in the cyclic sequence of subgaskets K1 →
K3 → K2 → K1 → · · · giving a stable analogue of a spiral wave.
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Figure 5.18: The potential, u, plotted for the analogue of a spiral wave. The times

shown are after the truncation of a planar wave, propagating for 5 time units. A

movie of this figure can be found on the accompanying CD, named FHNMov7.avi.
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Figure 5.19: The position of the planar wave at t = 4.5.

Hints of Complexity

We now examine the second type of spiral wave seen in Section 5.7.1, that is, when

the initial planar wave is not truncated in its centre so the resulting spiral wave

becomes skewed. To replicate this result on the Sierpinski Gasket, we follow the same

procedure as in the case of the regular spiral. However, as well as setting u and

v to zero in K1, we also prescribe zero values on K31. Now the wave can not only

propagate forwards in its original direction, it should also be able to travel backwards.

To initiate the wave in this instance, we allow the initial planar wave to propagate

until the maximum value of the potential has travelled exactly one quarter of the way

across the gasket so it has just entered K32 and K12. This happens at t = 4.5. The

wave profiles for u and v in this case are shown in Figure 5.19. Then we truncate the

wave as described and allow the wave to continue across the domain. The evolution

of this wave at discrete time intervals is shown in Figure 5.20. Now we see that the

wave does indeed propagate backwards into the region that was reset to zero (compare

Figure 5.20 with Figure 5.18).

In this case we effectively have a number of small planar waves propagating in

different directions around the central hole of each order-one subgasket. These waves
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Figure 5.20: The potential, u, plotted for the analogue of a spiral wave. The times

shown are after the truncation of a planar wave, propagating for 4.5 time units. A

movie of this figure can be found on the accompanying CD, named FHNMov8.avi.
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split into two at the junction points between the order-two subgaskets. At time t = 10

we see two waves have entered K1 from different directions. Due to the Neumann

boundary conditions and the fact that the parts of the gasket behind these waves are

in recovery, these waves are annihilated. This leaves us with two wave fronts that,

at t = 14, are in a similar position on the gasket to those at t = 4. By defining unit

time as the time taken for an excitation front to propagate over a fixed region of the

gasket, it can be shown that the wave propagation in this case becomes periodic after

an initial transient.

The behaviour of the wave shown in Figure 5.20 can be interpreted as follows.

The analogue of a spiral wave is propagating around the central hole of the order-

one triangle K3. Each time this wave meets one of the junction points q1 or q2, other

plane waves are initiated which propagate across K1 and K2. When these plane waves

collide, they die out. With the correct choice of initial condition and value of ε, it

should be possible to initiate spiral waves that travel around the central hole of any

order-m triangle of the gasket, Kw, |w| = m. At each order-m junction point, plane

waves will propagate into the neighbouring subgaskets. The ultimate fate of these

waves could be that they destroy each other as is the case here, however, there is

clearly the possibility of much more complex interactions.

This behaviour is reminiscent of certain patterns seen in the “Game of Life” in-

vented by the mathematician John Conway in 1970. Life is an example of a cellular

automaton and is played on a grid of square cells. Each cell is in one of two states

– alive or dead. The evolution of the game from an initial configuration of cells then

depends on a particular set of rules.

The Game of Life is one of the simplest examples of a system that exhibits “emer-

gent complexity” (for more information on Life and examples of many patterns that

occur, see [73]). One of the most interesting patterns seen in Life is that of a glider –

a small pattern which repetitively rearranges itself and, in doing so, moves across the

grid. There also exist so-called “glider guns”, which emit gliders at regular intervals.
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It is possible to arrange the Game of Life so that the gliders interact to perform com-

putations. In fact, it has been shown (see [61]) that the Game of Life can emulate a

universal Turing machine: anything that can be computed via an algorithm can be

computed with Conway’s Game of Life.

We have seen that there in a sense in which the solution of the FHN system on the

Sierpinski Gasket can behave like a cellular automaton: a spiral wave travels around

K3 and periodically gives rise to propagating plane waves in a way that suggests an

analogy with glider guns. With this observation comes the possibility that reaction-

diffusion systems on the Sierpinski Gasket might be capable of complex computational

tasks.

Unstable Behaviour

For our next simulation we consider the same situation but this time we allow the

plane wave to propagate a little bit further across the gasket before truncating. Figure

5.21 shows this when the initial planar wave is truncated at t = 5. Now we see different

behaviour. Initially, as we expect, the wave propagates forward in its original direction

and backwards into K31, which has been reset to zero. However, shortly after this

has occurred, this part of the wave appears to propagate in two directions, back into

K32, producing an extra small plane wave. As we proceed in time, pairs of these small

plane waves collide and destroy each other. Eventually, we are left with a single wave

of excitation which travels around the central hole as we saw in Figure 5.18.

The unusual behaviour seen here occurs around the junction point between K31

and K32 between times t = 0 and t = 4. To investigate this behaviour further, we

consider the junction point between K31 and K32 and three vertices close to it. We

label these vertices a, b, c and d, see Figure 5.22. We are interested in how the values

of u and v change with time at these nodes and in how this differs to the behaviour

seen in the previous simulation. We therefore consider the phase trajectories in both

cases at each of these nodes. We plot u against v for times between t = 0 and t = 4
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Figure 5.21: The potential, u, plotted for the analogue of a spiral wave. The times

shown are after the truncation of a planar wave, propagating for 5 time units. A

movie of this figure can be found on the accompanying CD, named FHNMov9.avi.

133



Chapter 5: FitzHugh-Nagumo Type Models
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Figure 5.22: The location of the nodes we are interested in, a, b, c and d.

since this is the time interval in which this interesting behaviour occurs.

Figure 5.23 shows the phase space for the nodes a and b (nodes that have initially

been reset to zero) in both cases. Similarly, Figure 5.24 shows the phase space for the

nodes c and d (initially in the excited state). In both of these figures, the left hand

column shows the first case where the initial planar wave is truncated at t = 4.5, and

the right hand column shows the case where the planar wave is truncated at t = 5.

The red dots indicate the initial values.

Figures 5.25 and 5.26 show the values of u and v against time in each of these

cases. We see that there is a marked difference between the left and right columns

of these figures, although this difference is far more pronounced when comparing the

vertices c and d in the two cases.

We begin by considering the nodes a and b. Initially, these nodes have been reset

to zero and are at rest. Two of the neighbours of b, however, are in the excited state.

Very quickly the diffusion causes u to rise rapidly, exciting node b. Soon afterwards,
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Figure 5.23: The phase space for t = 0 to t = 4 for the nodes a and b. In the left had

column the planar wave has been truncated at t = 4.5. In the right hand column the

planar wave has been truncated at t = 5.
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Figure 5.24: The phase space for t = 0 to t = 4 for the nodes c and d. In the left had

column the planar wave has been truncated at t = 4.5. In the right hand column the

planar wave has been truncated at t = 5.
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hand column the planar wave has been truncated at t = 5.
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a is also excited. The phase portraits for these nodes are exactly as we would expect:

the increase in u activates v, which begins to increase soon afterwards. The increase

in v then inhibits u, which plateaus and then begins to decrease as v reaches its

maximum. The decrease in u also causes v to decreases and both variables return to

the rest state at the origin. The behaviour seen here is essentially the same in both

cases, although, when the plane wave is truncated at a later time, the value of u at

nodes neighbouring b is lower so the diffusion takes a longer time to push b above the

threshold.

Now we consider the nodes c and d. Initially these nodes are in the excited state so

we would expect the u and v values at these nodes to return directly to the rest state

at the origin. This, however, is not the case. When the planar wave is truncated at

t = 4.5, we see the trajectories make a small loop before beginning to return to rest.

In the case where the plane wave is truncated at a later time the nodes in question

seem to become re-excited rather than returning to rest. Again, the onset of this

behaviour is explained in terms of diffusion. Since initially node c has a neighbour

that has been reset to zero, the diffusion quickly decreases the value of u at this node.

This implies that when the dynamics come into play, the initial value is in a different

area of the phase space.

For our parameter values, the reaction kinetics of the system are such that, in

the absence of diffusion, there is a fixed point at (u, v) ≈ (0.823, 0.557), which is an

unstable focus. So, when the diffusion initially shifts the value of u, the trajectories

follow this orbit, forming a loop before returning to the rest state. Figure 5.27 shows

the nullclines and the vector field of the system without diffusion and two possible

phase trajectories accounting for the behaviour of node c in Figure 5.24. In the first

case we considered, the loop is small and the node quickly returns to the rest state.

In the second case, the node undergoes a larger excursion, and therefore takes a much

longer time to return to the rest state. This is why we see such different behaviour

in the two cases considered here.
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Figure 5.27: A comparison between actual phase trajectories (with diffusion) and the

vector field of the diffusionless FHN system.

We first recall that, if the value of v at a node is high, then the node is refractory

and therefore not susceptible to re-excitation. In our first case, since the loop is small,

node c is re-excited quickly. By the time node d is recovered, node c has returned to

the rest state and does excite node d. In our second case, however, by the time node

d has recovered, node c is still in the excited state. This causes a wave of excitation

to be initiated from node c in the clockwise direction. We can see this in Figure 5.28

where we plot the (u, v) values on node c against the value of v on node d. In the

right hand plot we see that large values of u(c) can be found when v(d) is small. This

is in marked contrast to the left hand plot.

Spiral Break-up on the Sierpinski Gasket

It is not obvious what is meant by spiral break-up on the Sierpinski Gasket as our

domain is full of holes. We can, however, study the effects of reducing the parameter

ε−1. Recall that on the Euclidean case, it was shown that spiral break-up occurs for

values of ε−1 less than some ε−1
c ≈ 12.5.
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Figure 5.28: The relationship between the state of node c and the recovery variable

on node d.

We begin by repeating the simulation shown in Figure 5.18, this time with ε−1 =

12.5. We note here that prior to truncation, the planar wave propagated with ε−1 = 14

for 5 time units to ensure the same initial condition for the two simulations. The wave

propagation in this case is shown in Figure 5.29. We see that when the wave has passed

through the junction point q1 it seems to be reflected back again into K3 as well as

continuing to propagating in its original direction. This behaviour is reminiscent of

that seen in Figure 5.21.

As in that case, we can consider the phase space at this node for times t = 0 to

t = 10. The trajectories once again form a loop before returning to the rest state. This

gives the neighbouring node behind the wave front (node n) enough time to recover

before being re-excited by the node q2, thus initiating a wave in the anticlockwise

direction. The phase space at node q2 is shown on the left of Figure 5.30. The

relationship between the value of v at node n and u(q2) and v(q2) is shown on the

right of Figure 5.30.

This demonstrates that a similar dynamical process accounts for the production
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Figure 5.29: The initial condition here is a plane wave reset to K1 = 0 after propagat-

ing until t = 5. ε−1 = 12.5. A movie of this figure can be found on the accompanying

CD, named FHNMov10.avi.
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Figure 5.30: The left hand plot shows the state of node q1 and the right hand plot

shows this state in relation to the value of the recovery variable at node n.

of a reflected wave in both this case and that described earlier (see Figure 5.21). The

underlying mechanism is, however, different. In the present case, the extra diffusion

makes it far less useful to compare the actual local phase space trajectory with the

vector field of the FitzHugh-Nagumo system. However, if we compare trajectories for

the two cases we see that analogous things are happening.

We have demonstrated how a local effect can disturb the simple patterns that

result from travelling waves on the Sierpinski Gasket. More generally, however, there

is a great potential for complex behaviour in this system. For example, we see in

Figure 5.31, that contrary to expectation, the regular oscillation shown in Figure

5.20 is preserved when ε−1 is reduced. A further reduction of ε−1, however, gives the

complicated spatio-temporal patterns shown in Figure 5.32. This suggests that global

behaviour on the gasket such as the mutual destruction of counter propagating waves

can lend extra stability in some circumstances. Clearly we have just begun to scratch

the surface here.
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Figure 5.31: The initial condition here is a plane wave reset to K1 = 0 and K31 = 0

after propagating until t = 4.5. ε−1 = 12.5.
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Figure 5.32: The initial condition here is a plane wave reset to K1 = 0 and K31 = 0

after propagating until t = 4.5. ε−1 = 12. A movie of this figure can be found on the

accompanying CD, named FHNMov11.avi.
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Conclusions and Further Work

In this thesis we have considered a number of dynamical processes that, in real life, can

be seen to be occurring on domains that are spatially complex. The recent advances

in the area on Analysis on Fractals mean that we are now able to define differential

operators on a class of such sets. We can, therefore, solve PDEs modelling such

processes on these domains with a view to understanding how the spatial complexity

affects the phenomena seen.

We began by giving a review of the literature concerned with defining Laplacians

on p.c.f. self-similar sets, primarily the Sierpinski Gasket. We then discussed the

properties of the eigenvalues and eigenfunctions of the Laplacian on SG. In particu-

lar we described the decimation procedure (unique to the Sierpinski Gasket), which

relates the eigenvalues and eigenfunctions of different order graph approximations to

SG to each other. This was carried out for the Laplacian on SG with both Dirichlet

and Neumann boundary conditions. We have also discussed the existence of localised

eigenfunctions, which do not exist in the case of a Euclidean domain, and shown how

to construct such functions. The main part of this thesis has been concerned with

solving neural models on the Sierpinski Gasket. Our starting point was the linear

cable equation which we then extended to a more sophisticated system.

When studying the cable equation in this context we see phenomena that arise
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purely from the complexity of the domain (since this is a linear system). In the cases

of both Dirichlet and Neumann boundary conditions, we have derived a scaling law,

which enables us to see asymptotic behaviour that is independent of the order of

approximation to the Sierpinski Gasket.

Since the cable equation is only relevant for passive processes in neurons we then

introduced a system of equations, which provides a good qualitative model of the

behaviour of excitable media such as nerve fibres and cardiac tissue. This is known

as the FitzHugh-Nagumo system. In the case of a Euclidean domain we discussed the

types of solutions that exist and gave a brief overview of research carried out in this

area, including using an asymptotic analysis to determine the wave speed of travelling

wave solutions of this system. We then carried out an analogous analysis where the

domain is the Sierpinski Gasket. We saw that the gasket can support travelling waves,

which (qualitatively at least) behave in a similar fashion to those seen in the Euclidean

case. We then calculated the velocities of waves propagating across SG numerically

and showed, interestingly, that the Sierpinski Gasket can support at least two different

wave speeds.

We have discussed the existence of spiral waves on a Euclidean domain and how

the break-up of these waves propagating in cardiac tissue can cause the onset of

certain cardiac arrhythmia. Again, we have computed an analogy of a spiral wave on

the Sierpinski gasket and investigated its behaviour. We have found that a “spiral

wave” on the Sierpinski Gasket is just a cyclic sequence of planar waves propagating

over subgaskets. This is a nice result, as we do not need to consider the effects of

curvature of the wavefront. We have also seen how complex behaviour can arise,

which is unique to the solution of the system on the Sierpinski Gasket. In particular

we have seen phenomena which are reminiscent of behaviour seen in certain cellular

automata.

As a result of the research carried out to produce this thesis, many questions

arise which suggest further work that may be done. In Chapter 2, we discussed
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Hata’s tree-like set, which, initially seemed like a good choice of domain when solving

neural systems on p.c.f. self-similar sets. We found, however, that Kigami’s notion

of boundary gave rise to harmonic functions that became trivially constant over the

whole tree. We would therefore like to be able to construct a p.c.f. fractal tree whose

boundary is identified as the tips of the branches. We must be able to uniquely

identify the boundary points in this case. It may then be possible to apply this

theory to certain fields of neuroscience.

Recently, research has been carried out by Broomhead and coworkers, [12], on the

development of an iterated function system approach to signal processing. They have

studied the effect of driving the cable equation with a random sequence of pulses and

shown that this model has a unique attractor. A similar analysis could be carried

out on the Sierpinski Gasket. Here, the spectrum of the Laplacian might be expected

to enter the expression for the Hausdorff dimension of the attractor in an interesting

way.

When considering the FitzHugh-Nagumo system on the Sierpinski Gasket, we feel

that there are many possible directions in which this could go. We feel we have only

investigated a small sample of the phenomena which may arise in this context. We

have seen lots of complex behaviour and managed to account for the existence of

some of this. It would be advantageous to set up an analogous asymptotic theory

of wave velocities on the Sierpinski Gasket, however this would require knowledge of

first order derivatives on SG, which have yet to be defined. A possible application of

solving the FitzHugh-Nagumo system on the Sierpinski Gasket may be to use this as a

cellular automaton that can carry out computations. Further investigation would be

required as to the level of complex behaviour that can been seen in the FHN system

such as spiral waves travelling around smaller subgaskets and giving rise to glider

analogues.
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