Yy
er

The Universit
of Manchest

MANCHESTER

1824

Algorithms for Cholesky and QR Factorizations,
and the Semidefinite Generalized Eigenvalue
Problem

Lucas, Craig

2004

MIMS EPrint: 2007.5

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

ALGORITHMS FOR CHOLESKY
AND QR FACTORIZATIONS,
AND THE SEMIDEFINITE
GENERALIZED EIGENVALUE
PROBLEM

A THESIS SUBMITTED TO THE UNIVERSITY OF M ANCHESTER
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF SCIENCE AND ENGINEERING

2004

Craig Lucas

Department of Mathematics

Contents

Abstract 11
Declaration 13
Copyright 14
Acknowledgments 15
1 Introduction 16
1.1 Basic Definitions oo 16
1.1.1 Definitions in Linear Algebra 16

1.1.2 Matrix Types oo 17

1.1.3 The Determinant 19

1.1.4 Vector Norms, 19

1.1.5 Matrix Norms o000 20

1.1.6 Floating Point Numbers 22

1.2 Eigenvalue Problems, 23
1.2.1 The Standard Eigenvalue Problem 23

1.2.2 The Hermitian Eigenvalue Problem 24

1.2.3 Deflation.o oo 25

1.2.4 Similarity oo 25

1.2.5 Definiteness oL 26
1.2.6 The Generalized Eigenvalue Problem 27

1.2.7 The Symmetric Semidefinite Generalized

Eigenvalue Problem 28

1.2.8 Kronecker Canonical Forms for Matrix Pencils 29

1.3 Matrix Transformations 30
1.3.1 Congruence Transformations 30
1.3.2 Unitary Transformations 31

1.4 The QR Factorization 32
1.4.1 Computing the QR Factorization 32
1.4.2 The Blocked @R Factorization. 38

1.5 Rank Revealing Decompositions 40
1.5.1 The Pivoted QR Factorization 41
1.5.2 The Complete Orthogonal Decomposition 42
1.5.3 The Spectral Decomposition 43
1.5.4 The Singular Value Decomposition 45
1.5.5 The LDLY Factorization 45
1.5.6 The Cholesky Factorization 47

1.6 The BLAS and LAPACK 47
1.6.1 Blocked Algorithms and the BLAS 47
1.6.2 LAPACK 50
1.6.3 The Choice of Block Size in our Codes. 50

1.7 The Computing Environment 51
1.8 Performance Profiles 0000 52
The Pivoted Cholesky Factorization 53
2.1 Imtroductiono 53

2.2
2.3
2.4
2.5
2.6

2.7
2.8

The
3.1
3.2

3.3

3.4

A Level 2 Gaxpy Algorithm, 55

A Level 2 Pivoted Gaxpy Algorithm 56
LAPACK’s Level 3 Algorithm 99
A Level 3 Pivoted Algorithm 60
Numerical Experiments 62
2.6.1 Speed Tests 63
2.6.2 Backward Error Tests and Rank Detection 65
Checking for Indefiniteness 68
Conclusions Lo 68

Symmetric Semidefinite Generalized Eigenvalue Problem 70
Introductiono L 70
A General Method 73
3.21 StepOne 73
322 StepTwo 74
3.23 Step Three, 74
3.24 StepFour 76
3.25 Summaryl 78
Existing Methods o oL 78
3.3.1 Fix and Heiberger’s Algorithm 78
3.3.2 Parlett’s Algorithmo 79
3.3.3 Cao’s Algorithmo 79
3.3.4 The QZ Algorithm 79
3.3.5 The MDR Algorithm 82
3.3.6 The GUPTRI Algorithm 83
Options for Rank Revealing Decompositions 85
341 B=X,DXI 86

3.5

3.6
3.7

342 AQ =X,DXT 87

343 AV =XDZy 87
344 Callingssgep.m. 88
3.4.5 Operation Count of our Algorithm 89
Numerical Experiments 91
3.5.1 Industrial Example 92
3.5.2 Regular Pencil Examples, 93
3.5.3 Nonregular Pencil Examples 97
Conclusions Lo 101

The Symmetric Indefinite Generalized

Eigenvalue Problem o000 103
3.71 StepOne 103
3.7.2 Step Two 104
3.73 Step Three L 105

Updating the ()R Factorization and the Least Squares Problem 107

4.1
4.2

4.3

Introduction Lo Lo 107
Updating Algorithms, 109
421 Deleting Rows oo 110
4.2.2 Alternative Methods for Deleting Rows 114
423 Adding Rows 120
4.2.4 Deleting Columns L. 131
4.2.5 Adding Columns 138
Error Analysis 148
4.3.1 DeletingRows 0oL 149
432 AddingRows L. 150
4.3.3 Deleting Columns 150

4.3.4 Adding Columns
4.4 Numerical Experiments 0L,
441 Speed Testso
4.4.2 Backward Error Tests
4.5 Conclusions L L
4.6 Software Available o0
4.6.1 LINPACK
4.6.2 MATLAB
4.6.3 The NAG Library
4.6.4 Reichel and Gragg’s Algorithms

4.6.5 What’s new in our algorithms

5 Summary

Appendices

A Code for the Pivoted Cholesky Factorization
Al lev2pchol.f
A2 lev3pchol.f

A3 blasdmax.val.fo,

B Testing Code for the Cholesky Routines
B.1 cldchkaa.f.

B.2 cldchkpo.f.

164

167

167
167
175
184

C MATLAB Code for the Symmetric Semidefinite Generalized

Eigenvalue Problem
C.l ssgep-m
C.2 1gdgtlt.m oo

203

C3 gendata.m 212

D Code for Updating the QR Factorization 215
D.1 delcols.f o . . 215
D.2 delcolsq.f L 219
D.3 addcols.f 222
D.4 addcolsq.f 227

Bibliography 232

List of Tables

1.6.1 Level 1, 2 and 3 BLAS operations and the flops and memory

references required.o 48
2.6.1 Speedups of our codes compared with LINPACK code. 65
2.6.2 Comparison of normwise backward errors. 67
2.6.3 Errors in computed rank for DCHDC. 67
3.4.1 Options for rrdl in ssgep.m. 86
3.4.2 Options for rrd3 in ssgep.m. 87
3.4.3 Options for rrd4 in ssgep.m. 88
3.4.4 Flops compared with computation time of RRDs. 90
4.4.1 Normwise backward error for ||U||p order 100. 160
4.4.2 Normwise backward error for |U||p order 1le+9. 160

List of Figures

1.6.1 BLAS flop rate on IBM RS6000/590.

2.6.1 Comparison of speed for different n.
2.6.2 Speed ratio of pivoted codes over LAPACK codes for the full

rank case.,

3.5.1 Performance profile for maximum backward error, (7, A), of

computed finite eigenvalues and eigenvectors.

Lol
>
(@)
o,
o
@)
=

3.5.2 Performance profile for the relative residual, p(
puted finite eigenvalues and eigenvectors.
3.5.3 Performance profile for condition number, x9(U), of overall trans-
formation matrix U. 0oL
3.5.4 Performance profile for maximum backward error, (7, A), of

computed finite eigenvalues and eigenvectors.

kol
>
(@)
o,
o
@)
=

3.5.5 Performance profile for the relative residual, p(
puted finite eigenvalues and eigenvectors.
3.5.6 Performance profile for condition number, x9(U), of overall trans-

formation matrix U. Note the last two lines are coincident. . .

4.4.1 Comparison of speed for DELCOLS with k£ = 1 for different m. .
4.4.2 Comparison of speed for DELCOLS with £ = n/2 for different m. .

4.4.3 Comparison of speed for DELCOLS for different p.

49

. 102

. 153

154

4.4.4 Comparison of speed for ADDCOLS with £ = 1 for different m. . . 156

4.4.5 Comparison of speed for ADDCOLS with k£ = n/2 for different m. . 157

10

Abstract

We consider algorithms for three problems in numerical linear algebra: com-
puting the pivoted Cholesky factorization, solving the semidefinite generalized

eigenvalue problem and updating the QR factorization.

Fortran 77 codes exist in LAPACK for computing the Cholesky factoriza-
tion (without pivoting) of a symmetric positive definite matrix using Level
2 and 3 BLAS. In LINPACK there is a Level 1 BLAS routine for comput-
ing the Cholesky factorization with complete pivoting of a symmetric positive
semidefinite matrix. We present two new algorithms and Fortran 77 LAPACK-
style codes for computing this pivoted factorization: one using Level 2 BLAS
and one using Level 3 BLAS. We show that on modern machines the new
codes can be many times faster than the LINPACK code. Also, with a new
stopping criterion they provide more reliable rank detection and can have a

smaller normwise backward error.

The generalized eigenvalue problem Ax = ABz in the case where A and B
are real and symmetric and B is positive semidefinite is considered. We present
an algorithm for solving this problem that has a potentially smaller operation
count than existing methods and requires no further restrictions on A and B.
The eigenvalues of the problem are classified as finite or infinite. Nonregular

matrix pencils, where the eigenvalues can take any value, are also discussed and

11

a deflation strategy is given. We include a MATLAB code for our algorithm

and give some numerical experiments.

We also treat the problem of updating the QR factorization, with appli-
cations to the least squares problem. Algorithms are presented that compute
the factorization A = éﬁ{ where A is the matrix 4 = QR after it has had a
number of rows or columns added or deleted. This is achieved by updating
the factors) and R, and we show this can be much faster than computing the
factorization of A from scratch. We consider algorithms that exploit the Level
3 BLAS where possible and place no restriction on the dimensions of A or the
number of rows and columns added or deleted. For some of our algorithms we
present Fortran 77 LAPACK-style code and show the backward error of our

updated factors is comparable to the error bounds of the QR factorization of

A.

12

Declaration

No portion of the work referred to in this thesis has been submitted in sup-
port of an application for another degree or qualification of this or any other

university or other institution of learning.

The material in Chapter 2 and Appendix A is based on the technical report
‘LAPACK-Style Codes for Level 2 and 3 Pivoted Cholesky Factorizations’, Nu-
merical Analysis Report No. 442, Manchester Centre for Computational Math-
ematics, February, 2004 (http://www.ma.man.ac.uk/MCCM/). The report is
also LAPACK Working Note 161 (http://www.netlib.org/lapack/lawns/).

13

Copyright

Copyright in text of this thesis rests with the Author. Copies (by any process)
either in full, or of extracts, may be made only in accordance with instructions
given by the Author and lodged in the John Rylands University Library of
Manchester. Details may be obtained from the Librarian. This page must form
part of any such copies made. Further copies (by any process) of copies made
in accordance with such instructions may not be made without the permission

(in writing) of the Author.

The ownership of any intellectual property rights which may be described
in this thesis is vested in the University of Manchester, subject to any prior
agreement to the contrary, and may not be made available for use by third
parties without the written permission of the University, which will prescribe

the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploita-
tion may take place is available from the Head of the Department of Mathe-

matics.

14

Acknowledgments

The following people all contributed to the writing of this thesis. I am extremely

grateful to all of them.

My supervisor Nick Higham shared his expertise and guided me through the

writing process, without him it would not have been possible.

Sven Hammarling gave me much advice and support. I had many useful ex-

changes with him and he taught me a lot about scientific programming.

Francoise Tisseur made many helpful suggestions throughout my three years

as a PhD student.
Volker Mehrmann made useful comments on the material in Chapter 3.

The company of my fellow students Michael Berhanu, Gareth Hargreaves and

Anna Mills was both helpful to my work and a welcome distraction from it.
Chris Paul supplied fast and detailed I'T support when I needed it.

Finally, Glenn whose constant encouragement was integral to the completion
of this work. His love, affection and humour enabled me to switch off and relax

when I needed to. This thesis is dedicated to him.

15

Chapter 1

Introduction

We start by giving some definitions and background theory which we use
throughout this thesis. Some of the material is this section is based on material

in [14], [24], [29], [30], [41], [50] and [51].

1.1 Basic Definitions

1.1.1 Definitions in Linear Algebra

e A set of vectors S = {ai,...,a,} € R™ is linearly independent if the

linear combination
n
E o;a;, o; €R
i=1

being zero implies all the a; are zero. Otherwise, if a nontrivial (o; #
0,7 = 1:n) combination of the a; is zero then the vectors in S are said to

be linearly dependent.

e The set of all linear combinations of S is called the span of S, that is

span{ay,...,a,} = {znzﬁiai B €]R}.
i=1

16

If the vectors in S are linearly independent and b € span(S), then b is a

unique linear combination of the a;.
e The range of a matrix A is defined by

ran(A) = {y € R" : y = Az for some z € R"}.

e The null space of A is defined by

null(4) = {z € R™ : Az = 0}.

e If the matrix A = [a; ...a,] is a column partitioning then

ran(A) = span{ay,...,an}.

e The rank of a A is defined by
rank(A) = dim(ran(A)),

where dim is the dimension, the number of linearly independent vectors,

of ran(A).

o If for A € Rm*n

rank(A) < min(m,n),

then A is rank deficient.

1.1.2 Matrix Types

e The matrix AT € R"*" is the transpose of A. If the (i, 7) element of A is

aij, then the (4, 7) element of AT is aj;.

e The matrix A* € C" " is the conjugate transpose of A. 1If the (i,)
element of A is a;j, then the (7,j) element of A* is @;;, where a;; is the

conjugate of a;.

17

A matrix A € R™" is symmetric if A = AT and A € C"*" is Hermitian

if A= A"

The identity matriz I, € R™*™ is a matrix which has ones on the diagonal

and zeros elsewhere. The vector e is the kth column of I,,.

A matrix Q € R™" is orthogonal if QTQ = I, where I is the identity

matrix and Q € C"*" is unitary if Q*Q = 1.

A matrix A € C**" is upper triangular if a;; = 0, © > j. Similarly if
a;; = 0, j > 4 then the matrix A € C**" is lower triangular. If the
diagonal elements of an upper (or lower) triangular matrix are all 1, then

the matrix is said to be unit upper (or lower) triangular.
A matrix A € C™", m # n, is upper trapezoidal if a;; =0, 7 > j.
A matrix A € C™" is upper Hessenberg if a;; =0, ¢ > 5+ 1.

A permutation matriz is a permutation of the identity matrix, where
either the rows or columns are a permutation of those in I,,. The effect
of multiplying a matrix from the left by a permutation matrix is the
reordering of the rows of that matrix. Multiplying from the right reorders

columns.

If AX =XA=1, for A, X € R then X is said to be the inverse of
A and is denoted A™'. If A™! exists then rank(A4) = n and it is said to

have full rank and be nonsingular, else it is singular.

A block matriz is a matrix regarded as consisting not of individual ele-
ments but of blocks of elements. Many of the above definitions extend to

block matrices.

18

1.1.3 The Determinant

The determinant of an n-by-n matrix A € R**" is defined in terms of order

n — 1 determinants by

n

det(A) = Z(—l)j+la1jdet(141j)a

j=1
where A;; is an (n — 1)-by-(n — 1) matrix obtained by deleting the first row

and jth column of A. In the 1-by-1 case
det(a) = a.

If the determinant of A is nonzero then this implies A is nonsingular and vice
versa.

The determinant of an upper (or lower) triangular matrix is the product of
the diagonal elements. The determinant of a block upper (or lower) triangular

matrix is equal to the product of the determinants of the individual diagonal

blocks.

1.1.4 Vector Norms

Norms are a means of obtaining a scalar measure of the size of a vector or
matrix.
Vector norms are functions || - || : C* — R and satisfy the vector norm

axioms:
e ||z|]| > 0 for all zx € C*, and ||z|| = 0 if and only if z = 0.
e ||kz| = |k|||z|| where k € C, z € C".

e ||z +y| <|z|| + ||y|| for all z,y € C™ (triangle inequality).

19

The Holder p-norm is defined as

n 1/p
lllp = (Z |3?i\p> , p>1
i=1

This definition gives the three most popular vector norms:
n
lzlls =) lail,
i=1

n 1/2
|zl = (Z\lﬂ?) = (z*z)"?, (Buclidean Length),
i=1
ol = o il

The vector 2-norm is invariant under orthogonal or unitary transformation,

that is
Q|3 = 2*Q*Qz = z*z = ||z]}3,

for orthogonal or unitary matrix Q.

1.1.5 Matrix Norms

Matrix norms are functions || - || : C™*" — R and satisfy the matrix norm

axioms:
e ||A|| >0 for all A € C™*" and ||A|| = 0 if and only if A = 0.
o ||kA|l = |&|||A|| where k € C, A € C™*".
e |A+ B| < ||A]| + ||B|| for all A, B € C™*".

Common matrix norms for A € C™*™ are the Frobenius norm, defined as

m n 1/2
|AllF = (ZZ\%’F))

i=1 j=1

and the subordinate matrix norms defined as

A
1Al = max 1421
2 Tl

20

for given vector norms on C™ in the numerator and C" in the denominator.

Three useful subordinate matrix norms are:

m

|All; = max Z lai;| (maximum column sum),
1<j<n P

IAll = (p(A*A))Y? = omax(A), (spectral norm),
n
Al = lrgzzgnzl laij| (maximum row sum),
iz
where the spectral radius

p(A) = max{|A| : det(A — A\I) = 0},

and omay(A) is the largest singular value of A, see Section 1.5.4.

A matrix norm is consistent if
|AB]| < [|A]|||B]]-

All the above matrix norms are consistent.
The Frobenius and 2-norm are invariant under orthogonal and unitary

transformation, that is, for orthogonal or unitary matrices U and V/,
[UAV]]z = [[All; and |JUAV|r = [|A]lF.

The definition of subordinate matrix norms can be generalized by allowing

different vector norms, so we have

| Az
A = max
” ”C!,/J’ 20 ||-T||a

The matrix condition number, kq5(A), of a nonsingular matrix A is defined in

terms of these generalized subordinate norms

Kop(A) = lim sup (

20124y s<el AAlla,p

[(A+AA)"! — A_1||B,a>
ell A7 15,a '

21

And by [29, Thm. 6.4], equivalently

kap(A) = [[AllaslA " ls,0-

The condition numbers measures the sensitivity of the inverse of a matrix

to perturbations in the data.

1.1.6 Floating Point Numbers

A floating point number system F' C R is a subset of the real numbers of the
form

y==+m x 7,

for mantissa m, base (3, precision ¢t and exponent range emin < € < €4, 1his
representation is employed by all modern computer systems.
For fl(z) denoting an element of F' that is nearest to z, we have the fol-

lowing theorem [29].

Theorem 1.1.1 If x € R lies in the range of F' then
[
fllz)=2z(14+0), |oj<u= 55 . O

Thus the real number x can be approximated by an element in F' with a
relative error of u, which we call the unit roundoff.

An operation involving floating point numbers, such as addition, subtrac-
tion, multiplication and division we call a floating point operation or flop.

Throughout this thesis we quote only the highest order for flop counts.
That is, if an algorithm requires 3n® + 2n? flops to compute, we say only that
this requires 3n® flops. This as because for large n, usually the case we are
interested in, the 2n? term is not significant compared to the higher order

term.

22

We say that fl(z) overflows if

[fl(z)| > max{[y| : y € F}

and underflows if
0 < |[fl(z)] < min{|y|: 0 #y € F}.

If the number system consists of all real numbers we have the concept of
exact arithmetic, since every real number can be represented, and the unit
roundoff is zero.

A phenomenon that can arise in floating point arithmetic is cancellation
error. It is the extreme loss of significant digits when two floating point num-
bers, that are nearly equal, are subtracted. See [29, Sec. 1.7] for an example.
In practice computations can often be performed in an order that reduces or

avoids cancellation error.

1.2 Eigenvalue Problems

1.2.1 The Standard Eigenvalue Problem

fAeC™, 2#0€C"and A € C, then we call the problem
Ar = Mz (1.2.1)

the standard eigenvalue problem. The scalar A is an eigenvalue and z is a
corresponding eigenvector.
If we write (1.2.1) as
(A= Az =0,
then we see that x is in the null space of the matrix A — AI, which therefore

has to be nonempty. Equivalently

det(A — \) = 0,

23

and this degree n polynomial is called the characteristic polynomial. We can

write this in factored form
det(A—A)=(A=XA)A =) ... (A= o),

where the \; are the eigenvalues of (1.2.1). Some of the \; may be repeated,

SO we write
det(A = AI) = (A= X)™ (A = Xg)™ ... (A = \p)™,

where the)TZ are distinct and m; is the algebraic multiplicity of)TZ-, with > . m; =
n. The eigenvalue)TZ also has a geometric multiplicity, which is the maximum
number of linearly independent eigenvectors, or, equivalently, the dimension of
the null space of A — Xil.

An eigenvalue with algebraic multiplicity 1 is a simple eigenvalue. If A; has
algebraic multiplicity greater than its geometric multiplicity then the matrix
and the eigenvalue we describe as defective. Defective matrices have less than

n linearly independent eigenvectors.

1.2.2 The Hermitian Eigenvalue Problem

If A € C**" is Hermitian (or real and symmetric) we call the eigenvalue problem

the Hermitian (symmetric) eigenvalue problem.

Theorem 1.2.1 (Schur Decomposition) If A € C"*" then there ezists a

unitary matriz QQ € C**™ such that
RAQ™ =T,

where U 1s upper triangular. O

24

If we apply Theorem 1.2.1 to Hermitian A and take complex conjugates of
U then
U* = (QAQ™)" = (@")"A"Q" = QAQ" = U.
So U is both upper triangular and Hermitian and is therefore diagonal.
If we write AQ = QU, then from (1.2.1), the columns of @) are linearly
independent eigenvectors and the Uj; are eigenvalues. Since U* = U then the
eigenvalues of the Hermitian (or real and symmetric) eigenvalue problem are

real. We then have the following theorem.

Theorem 1.2.2 (Spectral Decomposition) If A € C"*" is Hermitian then

there exists a unitary matriz (Q and a diagonal matriz A € R™*™ such that

QAQ* = A. O

1.2.3 Deflation

The determinant of a block upper triangular matrix is equal to the product
of the determinants of the individual diagonal blocks. Then if we seek the

eigenvalues of a block upper triangular matrix U, we have
det(U — M) = [[det(Us; — AJ).

Thus the problem can split into smaller subproblems which can be solved in-

dependently. We call this process deflation.

1.2.4 Similarity

If A e C™" and Y € C" is nonsingular, then B = YAY ! is said to be

stmilar to A.

25

Theorem 1.2.3 If A € C**" and B € C"*" are similar, then they have the

same eigenvalues.

Proof. If) is an eigenvalue of A with corresponding eigenvector z, then

for nonsingular Y € C**"
B(Yz)=YAY 'Yz =Y Az = \(Y2),

so A is an eigenvalue of B with corresponding eigenvector Yz # 0. 0

1.2.5 Definiteness

A Hermitian matrix is said to be positive definite if
z*Az >0, for any x # 0,
and positive semidefinite if the inequality is not strict.

Theorem 1.2.4 If A € C"*" is Hermitian and positive definite all its eigen-

values are real and positive.

Proof. Since A is Hermitian it has real eigenvalues and if x is an eigenvector
of A then

0 <z'Az =2x"dz = ANz"z) = A > 0. 0

Similarly, A > 0 if A is positive semidefinite.
We define negative definiteness and negative semidefiniteness in a analogous
way. If a matrix is neither positive semidefinite nor negative semidefinite we

describe it as indefinite.

26

1.2.6 The Generalized Eigenvalue Problem

The generalized eigenvalue problem is of the form
Az = A\Buz, (1.2.2)

where A, B € C*"*", A\ € C is an eigenvalue and x # 0 € C" a corresponding
eigenvector. Equivalently, A is an eigenvalue if det(A — AB) = 0.

If B is nonsingular we can write B~'Ax = Az or AB~'y = \y, y = Bz
which are standard eigenvalue problems. We note that AB™' = B(B™'A)B™!
is similar to B~'A so the problems share the same eigenvalues.

We call the matrix A — AB a matriz pencil, and an eigenvector x is a null
vector of the pencil. This matrix pencil is nonregular if det(A — AB) = 0 for
all A, else it is regular.

We can write (1.2.2) as
fAx = aBz, \=a/p. (1.2.3)

This is a convenient notation that allows us to describe all eigenvalues of (1.2.2).
If B = 0 we describe the eigenvalue as infinite. If B is singular then the null
vectors of B will be eigenvectors corresponding to infinite eigenvalues. If A and
B share a common null space, Az = Bx = 0,z # 0, then (A — aB)z = 0 for
all o and 8 and the pencil is nonregular. A non-empty intersection of the null
spaces of A and B is a sufficient but not necessary condition for the pencil to

be nonregular: for example A and B in the pencil
1 00 0 1 0

A-AB=1]0 0 0[—=X]0 0 1
0 0 1 0 0 O

have no null vectors in common but the pencil is nonregular.
If 3 # 0 then the eigenvalue is finite, with o = 0 corresponding to a

zero eigenvalue. We note that if A is singular then the null vectors of A are

27

eigenvectors corresponding to zero eigenvalues, provided they are not also in
the null space of B, as then o and S could take any value.

As with the standard eigenvalue problem, for a single eigenvalue we describe
the maximum number of corresponding linearly independent eigenvectors as its
geometric multiplicity. And the number of times an eigenvalue is repeated we
call its algebraic multiplicity. An eigenvalue whose algebraic multiplicity ex-
ceeds its geometric multiplicity is a defective eigenvalue and a pencil containing
one or more defective eigenvalues is a defective matriz pencil.

We can determine the o and /5 in (1.2.3) by the following theorem.

Theorem 1.2.5 (Generalized Schur Decomposition) If A, B € C"*"

then there exist unitary matrices @ and Z such that
Q*AZ=A, Q*BZ =8, (1.2.4)
where A and B are upper triangular. 0

Applying Theorem 1.2.5 to our pencil we have

n

det(A — AB) = det(QZ") [[(ass — Aba), (1.2.5)

i=1
where a;; and b;; are the diagonal entries of Aand B respectively. If a;; = b; =0
for at least one 7, then the pencil is nonregular. Conversely, the pencil is only

nonregular if there is such an a;; and b;;.
If the pencil is regular then (1.2.5) shows that there are n eigenvalues that

are either finite or infinite.

1.2.7 The Symmetric Semidefinite Generalized

Eigenvalue Problem

If for
fAx =aBz, \=a/p, (1.2.6)

28

A, B € R™" are symmetric and one is semidefinite we call the problem the

symmetric semidefinite generalized eigenvalue problem.

1.2.8 Kronecker Canonical Forms for Matrix Pencils

The Kronecker Canonical Form (KCF) is given by the following theorem.

Theorem 1.2.6 (The Kronecker Canonical Form) If A,B € C™" then

there exist matrices P € C™*™ and Q) € C"*™ such that

[A — AB;

P A - \B)Q =

Ay — ABs

A, — \B, |

(1.2.7)

1s block diagonal, where r < m and the blocks A; — \B; take one of the following

four forms
[v— A 1
Ji(y) =

[T —A

Nj -
[—A 1

Lj -
i —A

1
Y= Al
e, j=1,2
e ¢Ut) i =0,1,2...

29

e, j=1,2...

LT = e CUtIXI - 5=0,1,2.... O
)\

i 1
The J;(7y) blocks give the finite eigenvalues y. The number of times a J;(7)
block appears gives the geometric multiplicity of the eigenvalue. The sum of
the orders of these blocks gives the algebraic multiplicity for a particular +.

The N; blocks give the infinite eigenvalues, with the number of N; blocks
giving the geometric multiplicity for infinite eigenvalues.

The L; blocks are called right singular blocks, and the LJT blocks are called
left singular blocks. Together they define the nonregular structure of the ma-
trix pencil. Note an Ly block has zero rows and an LI zero columns. The
interpretation of this is for X € C**™ and Y € C(r—1)x*(»-1)

o]

e

Y

Ly
Cao [11] shows that the KCF of a pencil when A and B are symmetric and

B is positive semidefinite consists only of blocks of the following forms:

Ji(y)=v=2A, Ni=1-0
10 0 1

N2: - A y LQ andLg.
0 1 0 0

1.3 Matrix Transformations

1.3.1 Congruence Transformations

The transformation YV <+ @Q*X(@Q, with () nonsingular, we call a congruence

transformation. These transformations have two important properties when

30

applied to a matrix pencil. Firstly, symmetry is preserved, taking the conjugate

transpose of the transformed pencil we have
(Q(A-AB)Q)" =Q"(A—-AB)"(Q")" = Q" (A - AB)Q.
Also, eigenvalues are preserved, the pencils are equivalent.

Theorem 1.3.1 Let A, B € C"*" be Hermitian and Q) be nonsingular. Then if
A is an eigenvalue of the matrixz pencil A—AB then it is also an eigenvalue of the
transformed pencil Q*(A— AB)Q. Also, if x is an eigenvector corresponding to
X in A—A\B then y = Q 'z is the corresponding eigenvector in the transformed

pencil.

Proof. If A and z are an eigenvalue and corresponding eigenvector of the

pencil A — AB then
Q" AQ(Q'z) = Q" Az = \Q"Bx = A\Q"BQ(Q'x)

and \ and Q~'z are an eigenvalue and corresponding eigenvector of the trans-

formed pencil. 0

1.3.2 Unitary Transformations

If @ € C™™ is unitary (or real and orthogonal) we call the transformation
Y «+ Q*XQ a unitary (or orthogonal) similarity transformation. This trans-
formation clearly has the same properties as a congruence transformation.
The fact that the Frobenius and 2-norm are unitarily invariant has advan-
tages for unitary transformations. Consider a matrix X which has errors in the

form of a perturbation matrix, £. If we apply the orthogonal transformation

Y +F«+ QN (X +E)Q,

31

then

IFll: = 1Q"EQll2 = |Ell: and ||Fllr = [|Q"EQ|lr = || E|r.

The errors in the transformed matrix have the same norm as the error in the

original matrix.

1.4 The QR Factorization

For A € R™" the QR factorization is given by
A=QR, (1.4.1)

where () € R™*™ is orthogonal and R € R™*" is upper trapezoidal.

1.4.1 Computing the QR Factorization

We compute the QR factorization of A € R™*" m > n and of full rank, by

applying an orthogonal transformation matrix @ so that
Q"A=R,

and () is the product of orthogonal matrices chosen to transform A to be the
upper triangular matrix R.
One method uses Givens matrices to introduce zeros below the diagonal

one element at a time. A Givens matrix, G(i,j) € R™*™ is of the form

i J
7 -
C S 7
G(i,j) = I
—s c j
i I]

32

where ¢ = cos(f) and s = sin(f) for some 6, and is therefore orthogonal.

For z € R, if we set

Z; —Tj
c: 7’ 8: 7’
2 2 2 2
\/ TP T \/ % + 75

then for G(i,7) 'z =y,

cx; — sr; k=1,
Yy=4 0 k=17,
T, k #1, 7,
so only the 7th and jth elements are affected. We can compute ¢ and s by

the following algorithm. All the algorithms in this thesis are presented in a

MATLAB-like pseudo code.

Algorithm 1.4.1 This function returns scalars ¢ and s such that

T
© 3 al _ |9 , where a,b, and d are scalars, and s*> +c*> = 1.
-5 ¢ b 0

function [c, s] = givens(a, b)

ifb=0
c=1
s=0
else
if abs(b) > abs(a)
t=—a/b
s=1/V/1+1
c=st
else
t=-b/a
c=1/V/1+
s=ct
end
end

Here the computation of ¢ and s has been rearranged to avoid possible overflow.

33

Now to transform A to an upper trapezoidal matrix we require a Givens
matrix for each subdiagonal element of A, and apply each one in a suitable

order such as
Gn,n+1)"...Gm-1,m)*G1,2)"...Gm-1,m)TA=QTA=R,

which is a QR factorization. For example for m = 6 and n = 4, with a +

denoting a nonzero entry:

+ + + + + + + +
+ + + + + + + +
A= + + + + G(5_,G>S)T + + + + G(ﬂ)T
+ + + + + + + +
+ + + + + + + +
+ + + + 0 + + +
+ + + + + + + +
0 + + + 0 + + +
Gp™ 1 0 4+ + 46T [0+ 4+ + | GeyT
0 + + + 0 + + +
0 + + + 0 + + +
0 + + + 00 + +

Q
-
=
OOOOO+
© oo 4+ 4+ +
© o 4+ + + +

This strategy is adopted in the following algorithm.

Algorithm 1.4.2 This algorithm computes the R factor of a Givens QR fac-
torization of a matriz A € R™*"™, m > n, overwriting the upper triangular part
of A with the nonzero elements of R.

34

for j=1:n
fori=m:—1:5+1
[c, s] = givens(A(i — 1,7), A(%,7))
A(i—1,j) = cA(i — 1,) — sA(3, 5)
c s

A(i—1:4,j+1:n) = [—5 .

] At —1:4,5+ 1:n)

end
end

Note we do not compute quantities we know are zero. Also, the matrix
@ is not formed but applied implicitly. We can store ¢ and s and if @ is
required to multiply another matrix, say, we can do this in a similar way to
Algorithm 1.4.2. Tt is possible to encode ¢ and s in a single scalar (see [24, Sec.
5.1.11]), which could then be stored in the eliminated a;;.

The primary use of Givens matrices is to eliminate particular elements in a
matrix. A more efficient approach for a QR factorization is to use Householder
matrices which introduce zeros in all the subdiagonal elements of a column
simultaneously.

Householder matrices, H € R"*", are of the form
H=I-m" 1=—,

where the Householder vector, v € R", is nonzero. It is easy to see that H is
symmetric and orthogonal. If y and z are distinct vectors such that ||y||2 = [|2]|2

then there exists an H such that
Hy=z.

We can determine a Householder vector such that

o)=L

35

where € R*!, and « and 3 are scalars. By setting

o o
v = + €1. (142)
T z ||,
We then have
«o o
H =+ €1,
z T ||,
that is
o
B=7F
T 1llo

In we choose the sign in (1.4.2) to be negative then £ is positive. However, if
[a zT]is close to a positive multiple of e1, then this can give large cancellation
error. So we use the formula [40]

o —|[[e ="l _ —llll3

at|le 2]l a+lla 2T]]

n=a-|la o] =

to avoid this in the case when v > 0. This is adopted in the following algorithm.

Algorithm 1.4.3 For a € R and x € R*™' this function returns a vector

1
v € R*™! and a scalar T such that v = [U} 1s a Householder vector, scaled so

1
o(1) =1 and H = [I—T [v} [1 UT]] is orthogonal, with H [j] = [ﬁ},
where B € R.

function [v, 7] = householder(a, x)
s = ||l=[l3
V=2
ifs=0
7=0
else
t=vaZ+s
% choose sign of v
ifa<0
voone=aoa—1
else

36

v_one = —s/(a +t)
end
T = 2v_one?/(s + v_one?)
v=v/v_one
end

Here we have normalized v so v;1 = 1 and the essential part of the Householder
vector, v(2:m), can be stored in z.
Thus if we apply n Householder matrices, H;, to introduce zeros in the

subdiagonal columns one by one, we have the QR factorization
H,.. HHA=QTA =R,
and the H; are such that their vectors v; are of the form

vi(l:j—1) = 0,
Uj(j) = 1

vi(j+1:m) : as v in Algorithm 1.4.3.

This leads to the following Householder Q)R factorization algorithm.

Algorithm 1.4.4 This algorithm computes a Householder QR factorization
of a matriz A € R™"™ m > n, overwriting the upper triangular part of A with
the nonzero elements of R. @ is not formed explicitly. The essential part of
the Householder vectors are stored in the subdiagonal of A.

forj=1:n
[v,7(j)] = householder(A(j,), A(j + 1:m, j))
A(j,5) = AG,j) - T(G)AG,) + vTAG + L:m, 7))
if j <n
A(jim,j+1:n) = A(j:im,j+ 1:n)—
() [1 TN (1 WT]A(Gm, j+ 1:n))
end
A(j+1:m,j) =w
end

37

The algorithm requires 2n?(m—n/3) flops. The essential part of the House-
holder vectors are stored in the subdiagonal, and we refer to) being in factored
form. If Q) is required to be applied to another matrix, it can be applied as in
Algorithm 1.4.4.

If @ is to be formed explicitly we can do so with the backward accumulation

method by computing
(Hy...(Hp o(H, 1Hy))).

This exploits the fact that the leading (j — 1)-by-(j — 1) part of H; is the
identity.

Algorithm 1.4.5 This algorithm forms the orthogonal matriz Q € R™*™ of
the QR factorization as Algorithm 1.4.4, with the essential part of the House-
holder wvectors stored in the subdiagonal of A and the vector T from Algo-
rithm 1.4.4.
RQ=1
for j =n:—1:1
v=A(j+ 1:m,j)
Qjzm, j:m) = Q(j: m, j:m)—
(H1 "I (1 WT1Q3:m, j:m))
end

1.4.2 The Blocked QR Factorization

A blocked algorithm acts on a blocked matrix. We discuss the benefits of this in

Section 1.6.1. We derive a blocked Householder Q) R factorization as follows [45].

Theorem 1.4.1 We can write the product of p Householder matrices, H; =

T

I — 70, as

H\Hy...H,=1-VTV",

where

Vi
V= [’1)1 Vo ... Up] =
Va

38

and Vi € RP*P s lower triangular and T is upper triangular.

Proof. The proof is inductive. For p = 1 we have T' = 7; which is an upper

triangular matrix. Now assuming it is true for p — 1, we have
HHy...H, ,=1-VTVT,
SO

H\H,...H, \H, = (I-VTVH(I -1vv))

p'p°p

_ T T T T
= I - TyUp0p — VTV +TpVTV (R0

p
[TVT — TpTVTUpU;
= I—-[V] .
B Tpvp
T —, VT, | [VT
= I-[V v, 0
| 0 T vg

With this representation of the Householder vectors we can derive a blocked
algorithm. At the kth step we apply Algorithm 1.4.4 to the first p columns of
A only, for some block size p. When the current block has been factorized we
apply I — VTTVT, the product of the p Householder matrices, to update the

trailing matrix. This leads to the following algorithm.

Algorithm 1.4.6 This algorithm computes QT A = R € R™", m > n, using
a blocked method with block size ny, overwriting the upper triangular part of A
with the nonzero elements of R.

for k=1:ny:n

% Check for the last column block

jb = min(ny,n — k + 1)

forj=k:k+j5b—-1
[v,7(j)] = householder(A(j,j), A(j + 1:m, j))
% Update trailing part of current block only
A(j,7) = A7) — T(G)AG,) + 0T AG + 1:m, 7))
iftj<k+jb—-1

A(G:m,j+L:k+jb—1)=A(G:m,j+ 1:k+jb—1)—

39

P W1 0T AGim, G+ 1k 4+ jb— 1))
end
V(i) =1
V(i+1m,j)=wv
end
% If we are not in last block column
% build T and update trailing matrix

itk+jb<n
forj=k:k+jb—1
% Build T
ifj=k
T(1,1) =7(5)
else

T(l:j—k,j—k+1)=—7)T(1:j —k,1:5 — k)
*V (j:m, k:j —)TV (j:m, 5)
TG—k+1,j—k+1)=1())
end
end
% Update trailing matrix
A(k:m,j+1:n) = A(k:m,j + 1:n)
~V(k:m,k:k+ jb— 1)T(1: b, 1: jb)"(V (k:m, k: k + jb— 1)
*«A(k:m,j+1:n))
end
end

1.5 Rank Revealing Decompositions

A rank-revealing decomposition (RRD) for a symmetric matrix A € R**" takes

the form

A=XDXT,

where X € R" " is well conditioned and D € R"*" is diagonal. For a general

matrix C € R™*"™ an RRD takes the form

C=XGZ,

40

where X € R™"™ and Z € R"™" are well conditioned and G € R™*" is
trapezoidal or diagonal. The diagonal elements of D and G are arranged in
decreasing order of absolute value.

We let 1 denote a tolerance used to define negligibility of matrix elements.
In floating point arithmetic n will usually be some multiple of the unit roundoff,

u. That is, for
G G

0 Ga

D= :

[Dl 0

, and G =
0 D,

then if
[Def| < and [|Gaof <7,

for some norm, we set them to zero. If the order of D, and Gy is as large
as possible, the dimension of D; or GG is the rank of the matrix. In exact

arithmetic we could set n = 0.

1.5.1 The Pivoted (QR Factorization

A pivoted factorization involves the swapping of rows and/or columns to order
elements in the factors. This helps to decide rank. The pivoting is represented
in the factorization by a permutation matrix.

We can factor a rank deficient matrix, A € R™*" by using a pivoted QR
factorization

A= QRPT, (1.5.1)

where) € R™*™ is orthogonal, P € R"*" is a permutation matrix and R €

R™*"™ is of the form
Ri1 Rio

0 0

where R;; € R™*" is upper triangular and r is the rank of A. R satisfies

R=

min(j,r)
e > z Tz?ja j=k+1ln, k=1:r,
i=k

41

and

711 > |rog| > -+ > |rpe| > 0.

The column pivoting strategy is, at the kth stage, to ensure
o (k= m) 1o = max|laf® (k: m)|,
Jj>k

that is we permute the column with the largest norm to the leading position
from the trailing matrix A®=Y(A(k:m, k:n).

Note that since |Qz||? = ||z||3 for any orthogonal matrix @, then for Qz =
yeR"

ly@:n)llz = llzl3 — i

and so the new column norms used for pivoting need not be completely recal-
culated.

The algorithm requires 4(mnr + m?r) — 2r?(3m/2 + n) + 5/3r3 flops. For

references for rank revealing QR algorithms see [14] and [29].

1.5.2 The Complete Orthogonal Decomposition

After the pivoted QR factorization of A € R™*" of rank r we have

s n—r

AP e [Ry R
mﬂ«[o OJ’

where R;; is upper triangular. We can further reduce R by eliminating R,
with Householder matrices.

We find r» Householder matrices such that

—T
R’{l Rll
Hr ce H1 T - ,

42

where Ri; is upper triangular. Then we have

A = Q(RH...HNH,...H PT

Ry 0O
— V,
0 0
= QUV, (1.5.2)

where V = H, ... H; P, which is the complete orthogonal decomposition.
The algorithm requires 4(mnr +m?r) —r?(3m+7n) — 5/3r® +4/3n® — 4n’r

flops.

1.5.3 The Spectral Decomposition

For symmetric A € R"*™ we can perform the spectral decomposition (Theo-
rem 1.2.2)
A=QAQT, (1.5.3)

where () is orthogonal and contains the eigenvectors of A and A is diagonal
and contains the eigenvalues of A, which we will order according to

‘)\11‘ 2 ‘)\22‘ 2 2 |)‘rr| > |/\r—|—1,r—|—1‘ == Oa

where 7 is the rank of A.
There are many ways algorithmically that we can compute a spectral de-

composition. The most popular method for symmetric matrices, employed by
LAPACK [1] and MATLAB [36], is to first reduce the matrix A to tridiagonal

form by a symmetric Householder QR factorization so that

Q,{AQI = T7

where T is a tridiagonal (and symmetric) matrix. If any off diagonal elements

are zero the problem can be deflated into smaller subproblems, if not it is said

43

to be unreduced. The unreduced matrix is then diagonalized by a shifted QR

iteration to give
Q;TQsy = A,

where QQQl = Q in (153) .
The shift is a process whereby convergence is accelerated by computing the
QR factorization of A — il instead of A, where y is an approximate eigenvalue,

giving the iteration

T® —ul = QR

THD = RQy+ pl,

T*+1) is similar to T®) since RQ, + pl = QY (QuR + ul)Q, = QET®Q,, and
the T*+1)’s converge to A. See [24, Alg. 8.3.3] for details and discussion on
the choice of p.

The algorithm tends to order the eigenvalues in A algebraically. Ordering
the eigenvalues by absolute size is achieved by a trivial permutation of A and
correspondingly). A decision on rank can then be made by deciding which
values of)\, can be taken as zero.

The algorithm requires an average of 9n® flops to compute the eigenvalues
and @, but depends on the amount of iterations required.

The divide and conquer algorithm [19] gives an alternative way of solving
the tridiagonal problem. It repeatedly divides the tridiagonal matrix into two
halves, solves the eigenproblems of each half, and joins the solutions together.

The eigenvalues and eigenvectors can be computed with 4n3 flops. This
‘best’ figure we use in this thesis for comparing flop counts with other algo-

rithms.

44

1.5.4 The Singular Value Decomposition

Theorem 1.5.1 (Singular Value Decomposition (SVD)) For A € R**"

there exist orthogonal matrices

U = [up,-..,up| € R™™ and
Vo= [v,...,v,) € RV
such that
UTAV = diag(o, ...0,) € R™", (1.5.4)

where p = min(m, n) and
01209220

If A e C**™ then the same relation applies with unitary U and V.
The o; are the singular values of A and the vectors u; and v; are the ith
left singular vectors and the ith right singular vectors respectively.

In exact arithmetic if
01220, >0p41 =" --=0,=0,

then the rank of A is r.
The Golub-Reinsch algorithm for the SVD requires 4m?n + 8mn? + 9n3
flops, we use this figure for comparing flop counts with other algorithms. For

further details see [24].

1.5.5 The LDLT Factorization

The LDLT factorization of a symmetric matrix A € R"*" takes the form

PAPT = LDL", (1.5.5)

45

where P € R is a permutation matrix, L € R™" is unit lower triangular,
and D € R"*" is block diagonal, with blocks having dimension 1 or 2.
The factorization is computed as follows. Suppose we can find a permuta-

tion II such that

_ E C*
ITAIT" = :
n—s C B
where FE is of order 1 or 2 and nonsingular. We can then factorize
I 0 E 0 I, ECT
[TAIT" =
CE™' I, 0 B-CECT| |0 I,

Repeating the process recursively on B—CE'C7T gives the factorization. The
algorithm requires n/3 flops plus the permutation overhead.
The permutations I, and whether s =1 or 2 can be determined by several

different methods. Two such methods are:

e Partial Pivoting due to Bunch and Kauffman [8], where at each stage
only two columns need to be searched and only O(n?) comparisons are

required.

e Rook Pivoting due to Ashcroft, Grimes and Lewis [2], which is similar to

partial pivoting but has an iterative stage.

See [29] for further details and an error analysis.
We can reduce the block diagonal matrix D to diagonal form by applying

a spectral decomposition to each 2-by-2 block in D, if
D = diag(Dll, D22, ceay Dpp)

for p blocks and Dj; is either a single entry or a 2-by-2 block, then we factor
the 2-by-2 blocks

46

where 5,1 is diagonal and we have

Q = diag(Q11, Qa2 - - -, Qpp)

where ()1 is either 1 or a 2-by-2 block corresponding to the dimension of the

D;;, and so we have finally
A=LQDQTLT, (1.5.6)
where D is diagonal, containing the 1-by-1 D;; or the 2-by-2 D;;.

See Appendix C for 1qdqtlt.m, a MATLAB implementation.

1.5.6 The Cholesky Factorization

We look at this factorization in detail in Chapter 2.

1.6 The BLAS and LAPACK

1.6.1 Blocked Algorithms and the BLAS

All modern computers operate a memory hierarchy, with the fastest to access
being registers where the actual computation is done down to the disk which

is the slowest to access. From fastest to slowest we have
registers — cache — memory — disk.

Data must move through the levels of memory to be used in the registers.
Moving between levels at the bottom of the hierarchy can be slower than the
arithmetic in the registers. Thus our algorithms must be designed to exploit
this structure, minimizing the amount of data movement. We would like to

reuse data in the cache as much as possible.

47

The Basic Linear Algebra Subprograms (BLAS) [32], [20], [18] are Fortran
and C library routines for carrying out common linear algebra operations, and
optimized versions are available for specific computer architectures. They are

organized into three levels.

e Level 1 - Vector operations, such as inner products and scalar/vector

multiplication.

e Level 2 - Matrix-Vector operations, such as solving triangular systems

and matrix/vector multiplication.

e Level 3 - Matrix-Matrix operations, such as solving triangular systems

with multiple right-hand sides and matrix/matrix multiplication.

Thus we would like to organize our algorithms so we can call these optimized
subroutines. In fact, it is highly desirable that our algorithms exploit the Level

3 BLAS. Consider the three related operations
y=ax+y, y=Ar+y, C=AB+C,

where A, B,C € R**", z,y € R* and o € R. Table 1.6.1 shows the amount of

flops and memory references required for these operations.

Table 1.6.1: Level 1, 2 and 3 BLAS operations and the flops and memory
references required.

Operation BLAS Level | flops (f) | memory references (m) | f/m
y=ar+y Level 1 2n 3n+1 2/3
y=Ax+vy | Level 2 2n? n? +3n 2

C=AB+C | Level 3 on? 4n? n/2

It is clear that Level 3 operations can have a much higher ratio of flops to

memory references than lower level BLAS operations, thus reducing the data

48

movement overhead. This is illustrated in Figure 1.6.1 which shows the speed

of the three operations in Table 1.6.1 on an IBM RS6000/590.

250
200} .
//
3 150+ / 1
(77} /
a /
o /
e /
= 100t ! --— Level 1 BLAS
—— Level 2 BLAS
- - - Level 3 BLAS
50]
0 - | | | |
0 100 200 300 400 500

Size of Vectors and Matrices

Figure 1.6.1: BLAS flop rate on IBM RS6000/590.

The Level 3 operation peaks at nearly 250 Mflops/sec. The maximum
theoretical machine speed is 264 Mflops/sec. The Level 2 operation peaks at
nearly 150 Mflops/sec and the Level 1 operation below 50 Mflops/sec. The
plot shows the common phenomenon of speed increase for larger matrices.

We seek to write blocked algorithms like the blocked Q)R factorization in
Section 1.4.2. Algorithm 1.4.6 involves more Level 3 BLAS operations and less
Level 2 BLLAS operations than the unblocked version, Algorithm 1.4.4, but does
require more flops. In this case this was achieved by delaying the update of the
trailing matrix until we had factored a whole column block. Thus by Figure 1.6.1
we would expect to achieve more Mflops/sec and an overall shorter computation
time for the factorization, as the additional flops are negligible compared to

the speedup the plot implies.

49

Also in blocked algorithms a whole block may be held in the cache memory
while it is used, negating the need to move the data from main memory and
potentially decreasing computation time.

The block size (np in Algorithm 1.4.6) must still be decided. The choice is
dependent on the individual algorithm and the computer hardware it is to run

on, but is typically 32 or 64.

1.6.2 LAPACK

LAPACK [1]is a library of Fortran 77 routines for common problems in numeri-
cal linear algebra. They include routines for solving linear systems of equations,
least squares problem, eigenvalue problems and matrix factorizations.

The library is built on the BLLAS routines as much as possible, helping to
make in portable. In particular the Level 3 BLAS are exploited as much as
possible.

The codes we present in Chapter 2 and Chapter 4 are written in the style
of LAPACK.

1.6.3 The Choice of Block Size in our Codes.

The code in this thesis is written to fit into the LAPACK library. Thus the
block size is intended to be returned by the LAPACK routine ILAENV, which
performs this task. It is assumed that an installer of LAPACK will have suffi-
cient knowledge of the system to amend the values in ILAENV where necessary.

If a user wishes to use the routines in this thesis and does not have LA-
PACK installed on their system, then they can remove the call to ILAENV and
specify the block size explicitly in the source code of the routine. If the user

is experienced in using the BLAS on their system than the choice of block size

a0

may be obvious. However, if this is not the case the user is advised to start

with a value of 32 and reach an optimum figure for their system empirically.

1.7 The Computing Environment

The numerical experiments reported in this thesis were run on various PCs
running the Linux operating system. The details of the particular machines
are given in the relevant sections.

The compiler used for the Fortran code was the GNU Fortran 77 compiler,
g77, and was at version 3.2. No optimization was applied at compile time,

which is the default for this compiler. Two flags were used, namely
e Wall which turns on all warnings the compiler can give, and

e ffortran-bounds-check which checks that the code does not attempt

to reference an index of an array outside the specified bounds.

Thus, compilation of a code called code.f looked like:
g77 -c -Wall -ffortran-bounds-check code.f.

The BLAS used on the PCs was the Automatically Tuned Linear Algebra
Software (ATLAS) BLAS [3]. This was compiled on a 1.4GHz AMD Athlon
with 256 MB of memory.

When timing of code was undertaken, the code was run 3 or 4 times to
ensure consistency. The mean time is given. The PCs being used are available
for remote access, thus we need to check no other user has logged in during
a run of experiments, using computer resources and potentially slowing down
our results. Also, since the operating system is always performing a task then

a mean time will give a better estimate of the time required to run the code.

51

A task that requires a lot of computer resources may be carried out during one
particular run giving an inaccurate estimate of time.
There is no significance in repeating the runs 3 or 4 times. This was an

inconsistency of the author’s over the time this thesis was written.

1.8 Performance Profiles

A convenient way of comparing the results of different methods in computation
is performance profiles, due to Dolan and Moré [17].

Suppose we have a set of test problems, P, and a set of solvers, S. We
distinguish solvers from methods: a solver is an implementation of a method
and may not be unique. Let ¢,(p) € R measure the performance of solver s € S
on test problem p € P. This scalar measure could be typically speed, accuracy
or the flop count, and a smaller measure represents a better performance.

Define the performance ratio

ts(p)

"ps = min{t,(p) : 0 € S} -

which is the performance of solver s on the problem p divided by the best
performance across all solvers on this problem. The performance profile of

solver s is

1
number of problems

¢s(0) =

x number of p € P such that r,, <60, 6>1.

That is ¢4(f) is the probability that solver s is within a factor 6 of the best
solver on the set of test problems.

The performance profile is then generated by plotting ¢s(6) against 6 over
all solvers s. This is implemented in the MATLAB M-file perfprof.m [26].

52

Chapter 2

The Pivoted Cholesky

Factorization

2.1 Introduction

The Cholesky factorization of a symmetric positive definite matrix A € R**"

has the form

A=LL",

where L € R™" is a lower triangular matrix with positive diagonal elements.
If A is positive semidefinite, of rank r, there exists a Cholesky factorization
with complete pivoting ([29, Thm. 10.9], for example). That is, there exists a

permutation matrix P € R**™ such that
PTAP =LL", (2.1.1)

where L is unique in the form
L1 O
L= ,
Lis O

23

with L;; € R™*" lower triangular with positive diagonal elements. L satisfies

and

£112€222"'Z£rr-

A common occurrence of positive semidefinite matrices is in statistics,
namely covariance matrices. The (i,7)th element of a covariance matrix, S,
holds the sample covariance of the ith and jth random variable.

If P € R™™ holds m observations of n random variables then the sample

covariance is defined as

1 _ _ I R
Sij = (i —0)" (0 — Dj), Pr = m Zpﬂc,
=1

where p;, is the kth column of P and py is the sample mean of the kth random
variable. It can be shown, see [33] for example, that S is positive semidefinite
of rank at most m — 1. Thus the number of observations need to be greater
than the number of random variables for the covariance matrix to be positive
definite. This is often not the case.

Covariance matrices are found in many applications such as statistical signal
processing and financial modeling. The factorization of these covariance matri-
ces arise in algorithms in theses areas, and the pivoted Cholesky factorization
is therefore employed.

The factorization is also used in some algorithms solving the linear least
squares problem

min ||Az — b2, A >0,

and as a test for whether a matrix is numerically positive semidefinite or not.

o4

However, our motivation for the work in this chapter is the efficient factor-

ization of B in the symmetric semidefinite generalized eigenvalue problem
Axr=ABx, B >0,

where A and B are symmetric. This is the topic of the next chapter.

In LINPACK the routines xCHDC perform the Cholesky factorization with
complete pivoting, but it uses only Level 1 BLAS. For computational efficiency
we would like a routine that exploits the Level 2 or Level 3 BLAS.

In this chapter we describe a ‘gaxpy’ Level 2 BLAS algorithm for the pos-
itive definite case, and show how complete pivoting can be incorporated for
the semidefinite case. We describe the existing LAPACK Level 3 code and
explain why this code cannot be altered to include pivoting. We give an alter-
native Level 3 algorithm and show that this can include pivoting. The Level 3
code calls the Level 2 code for small n. Finally we report on some numerical

experiments.

2.2 A Level 2 Gaxpy Algorithm

Gaxpy stands for generalized Az plus y, and is thus a matrix-vector multipli-
cation with a vector addition. Comparing the jth columns in A = LLT we

have [24]

k=1 k=1
and therefore
j—1
k=1
Defining
j-1
v :A(a])_ L(]ak)L(ak)a
k=1

95

then if we know the first 7 — 1 columns of L then v is computable.
Now, L(1:5 — 1,7) = 0 which implies v(1: j — 1) = 0 and comparing terms
we have that
L(j.5)* = v(3),
so we have finally
L(j:n,j) = v(j:n)/v/v(j),
which leads to the following gaxpy-based algorithm.

Algorithm 2.2.1 This algorithm computes the Cholesky factorization A =
LLT of a symmetric positive definite matriz A € R**", overwriting A with L.

Set L = lower triangular part of A

forj=1:n
if L(4,4) <0

return % A is not positive definite
end
L(j,7) = v/L(5,5)
% Update jth column

ifl<j<n
L(j+1:nj)=L(j+1:n,j)—L(j+1:n,1:5—1)L(j,1: 5 — 1)T
end
ifj<n
L(j+1:n,j) = L(j + 1:n,5)/L(j, 7)
end

end

The (Level 2 BLAS) LAPACK [1] subroutines xPOTF2 use this algorithm.

It requires n®/3 flops.

2.3 A Level 2 Pivoted Gaxpy Algorithm

We can introduce pivoting into Algorithm 2.2.1, for L = (¢;;), by finding the

largest possible £;; at (x) from the remaining n — j + 1 diagonal elements and

26

using it as the pivot. We find

q= min{p : L(p,p) — d(p) = max{L(i,i) — d(z)}}, (2.3.1)

j<i<n

where d is a vector of dot products with
d(i) = L(i,1:j = 1)L(i, 1:j =)T, i =j:n, (2.3.2)

and swap rows and columns ¢ and j, putting the pivot £, into the lead position.
This is complete pivoting.

For computational efficiency we can store the inner products in (2.3.2) and
update them on each iteration. This approach gives the following pivoted gaxpy

algorithm.

Algorithm 2.3.1 This algorithm computes the pivoted Cholesky factorization
with complete pivoting PYAP = LL* of a symmetric positive semidefinite ma-
trir A € R*™", overwriting A with L. The nonzero elements of the permutation
matriz P are given by P(piv(k),k) =1, k = 1:n.

Set L = lower triangular part of A
dots(l:m) =0 % Store accumulated dot products

piv=1:n
forj=1:n
ifj7>1
dots(i) = dots(i) + L(i,j — 1)?, i=j:n
end
q= min{p : L(p,p) — dots(p) = max{L(i,1) — dots(i)}}
j<i<n

(#) if stopping criterion is met
return % computed rank of A is j — 1

end
swap L(j,:) and L(q,:)
swap L(:,j) and L(:,q)
swap dots(j) and dots(q)
swap piv(j) and piv(q)
LG, j) = L(j,j) — dots(j)
L(j,5) = V/L(3,7)
% Update jth column

o7

ifl<j<n
LG+1inj)=L(+1:n,5)— L(j+1:n,1:5— 1)L(j,1:5 - 1)T
end
ifj<n
L(j+1:n,j) = L(j + 1:n,)/ L(3, J)
end
end

The pivoting overhead is 3(r+1)n—3/2(r+1)? flops and (r+1)n—(r+1)%/2
comparisons, where 7 = rank(A).

The computed rank, 7, of A is determined by a stopping criterion at (#)
in Algorithm 2.3.1. For a positive semidefinite matrix A, in exact arith-

metic [24, Thm. 4.2.6]
Q5 :O:>A(Z,) =0, A(,Z) =0.

()

Then at the jth iteration if the pivot, which we will denote by x;;’, is less than

or equal to some tolerance, tol, then

tol > X;j.) > X(j) 1=7j+1:n,

J i)

and we set the trailing matrix L(j:n,j:n) = 0 and the computed rank is j — 1.
Three possible stopping criteria are discussed in [29, Sec. 10.3.2]. The
first is used in LINPACK’s code for the Cholesky factorization with complete

pivoting, xCHDC. Here the algorithm is stopped on the kth step if
<o, i=kn. (2.3.3)

In practice 7 may be greater than r due to rounding errors.

In [29] the other two criteria are shown to work more effectively. The first
is
®) <0, i=kn, (2.3.4)

I

ISel < ell Al or x

28

where §k = Agy — AITQAfllAlg, with A;; € R¥*F the leading submatrix of A, is

the Schur complement of A;; in A, while the second is

(k

max Xz'i) < exgll), (2.3.5)

k<i<n

where in both cases ¢ = nu, and u is the unit roundoff. The latter test is

related to (2.3.4) in that if A and S, are positive semidefinite then

1 k Il
xit = max ag ~ |All2, and, max xi ~ |5kl

We have used the latter criterion, preferred for its lower computational cost.

See Appendix A for the double precision Fortran 77 code lev2pchol.f.

2.4 LAPACK’s Level 3 Algorithm

The (Level 3 BLAS) LAPACK subroutines xPOTRF compute the Cholesky fac-
torization of a block partitioned matrix. Starting with L(®) = A, the algorithm
computes the current block column of L using the previously computed blocks
and does not update the trailing matrix. We have at the kth step
Ly Ly LY
Ly U Ly Ly |,
Ly Ly Ly
where Lg’ifl) e R({E=1m)x((k=1)m) for some block size ny, is lower triangular
and we wish to update the kth block column
Ly
Ly |,
Lg)

making Lg;) € R™>™ lower triangular and Lg’;) zero. The kth step is as follows:

29

set Lg’? =0
k 0 k=1) 7 (k—1)T
ng) = Lg2) - LgINN)Lgl)
factorize L) = LLT
if this factorization fails
A is not positive definite

else
=1
1) = 19 - 140
solve X Lg’;) = Lg];), for X
Ly = X

end

In order to add pivoting to this algorithm we would need to decide all the
pivots for the kth block column, carry out the required permutations, and
continue with the step above.

The pivot for the first column can be found by computing all the possible
diagonal elements as (2.3.1). To repeat this to find the second pivot we need
first to update the vector of dot products, which can only be achieved by
updating the first column of the kth block. So we have performed a complete
step of Algorithm 2.3.1, before we find the second pivot. Thus in determining
all the pivots for the current block column we will have formed L2(2k) and L3(2k)
by Algorithm 2.3.1. We would like an algorithm with Level 3 operations that

is independent of the pivoting.

2.5 A Level 3 Pivoted Algorithm

We can write for the semidefinite matrix A*~ € R™" and n; € R [24]
Ly 0] [Inb 0 1[Zu 0]T
ALY AV L Lw] L0 A9][Iy L,

where L;; € R%*™ and Ly € R® ™)%™ form the first n, columns of the

k—1 k—1
AR AR

Alk=1) —

(k1)

Cholesky factor L of A®=1). Now to complete our factorization of A we

60

need to factor the reduced matrix
A®) = AD [T (2.5.1)

which we can explicitly form, taking advantage of symmetry.

From this representation we can derive a block algorithm. We start with
A©® = A and a block size n,. At the kth step we apply the equivalent of n,
steps of Algorithm 2.3.1 to A%~ to form n; columns of L. We then update the
trailing matrix A*®) which is of dimension n—kn, according to (2.5.1). We then
repeat the process with A%, the factorization of which is independent of the
columns of L already formed. This is a pivoted algorithm, as Algorithm 2.3.1
acts on the whole trailing matrix.

At each step the Level 2 part of the algorithm requires (n — (k — 1)n,)n2
flops and the Level 3 update requires (n — kny)3/3 flops. The Level 3 fraction
is approximately 1 — 3n;/2n.

Algorithm 2.5.1 This algorithm computes the pivoted Cholesky factorization
with complete pivoting PTAP = LLT of a symmetric positive semidefinite

matriz A € R"™ ™ overwriting A with L, using a Level 3 update and block

size ny. The nonzero elements of the permutation matriz P are given by
P(piv(k),k) =1, k =1:n.

Set L = lower triangular part of A

€=nu

piv=1:n

fork=1:ny:n
jb = min(ny,n — k + 1) % Allow for last incomplete block
dots(k:n) =0 % Store accumulated dot products

tol = n x u * max(diag(A)) % Tolerance in stopping criterion
forj=kk+jb—-1

it >k
dots(i) = dots(i) + L(i,7 — 1), i=j:n
end
q= min{p : L(p,p) — dots(p) = max {L(3,7) — dots(i)}}
Jj<i<n

61

if L(q,q) < tol
return % computed rank of A is j — 1
end
swap L(j,:) and L(q,:)
swap L(:,7) and L(:,q)
swap dots(j) and dots(q)
swap piv(j) and piv(q)
L(j,7) = L(j, j) — dots(j)
L(j,7) = v L(5,5)
% Update jth column
ifl<j<n
LG+ 1:n,5)=L(G+1:n,j)—
L(j+1:n,1:5—1)L(5,1:5 — 1)
end
ifj<n
LG +1:m,) = LG + 10, 1)/ 1.,)
end
end
if k+jb<n
% perform Level 3 update
Lj+1lin,j+1lin)=L{j+1:n,j+1:n)—
L(j+1:n,1:5)L(j + 1:n,1:5)T
end
end

See Appendix A for the double precision Fortran 77 code 1ev3pchol.f.

2.6 Numerical Experiments

We tested and compared four Fortran subroutines:

e LINPACK’s DCHDC [21], which uses Level 1 BLAS and stopping crite-
rion (2.3.3).

e LINPACK’s DCHDC, altered to use stopping criterion (2.3.5).

62

e Animplementation of Algorithm 2.3.1, obtained by modifying LAPACK’s

DPOTF2, using stopping criterion (2.3.5): lev2pchol.f in Appendix A.

e An implementation of Algorithm 2.5.1, again using stopping criterion

(2.3.5): lev3pchol.f in Appendix A

The tests were performed on a 1400MHz AMD Athlon running Red Hat
Linux version 6.2 with kernel 2.2.22 and a Sun 167TMHz UltraSparc running
Solaris version 2.7. All test matrices were generated in MATLAB 6.5. The
unit roundoff u &~ 1.1e-16.

We test the speed of computation, the normwise backward error and the
rank revealing properties of the routines. In all cases the results for the Linux
machine are given. The results on the Sun for backward error and rank de-
tection were indistinguishable from those on the Linux machine. The timings
on the Sun were much greater than, but in proportion to, those on the Linux

machine.

2.6.1 Speed Tests

We first compared the speed of the factorization of the LINPACK code and
our Level 2 and 3 routines for different sizes of A € R"*". We generated
random symmetric positive semidefinite matrices of order n and rank r = 0.7n
by computing

A= focT, x = rand(n, 1),

=1

where the MATLAB command rand(n,1) generates a random vector, with
elements uniformly distributed on (0, 1), of length n. For each value of n the
codes were run four times and the mean times are shown in Figure 2.6.1. The

speedups of the new codes over the LINPACK code are given in Table 2.6.1.

63

700

& LINPACKs DCHDC
-0~ Our Level 2 Algorithm
600 | -=— Our Level 3 Algorithm S
500 T
S 400t o 1
2
[0]
(0]
£ 300} A
~ .
2001 Q e]
@
100{ o o 0
(KJ R _ i i
1000 2000 3000 4000 5000 6000

Dimension, n, of matrix

Figure 2.6.1: Comparison of speed for different n.

We achieve a good speedup, with the Level 3 code as much as 8 times faster
than the LINPACK code.

We also compared the speed of the unpivoted LAPACK subroutines against
our Level 2 and Level 3 pivoted codes, using full rank matrices, to demonstrate
the pivoting overhead. Figure 2.6.2 shows the ratio of speed of the pivoted
codes to the unpivoted codes. These show that the pivoting overhead is negli-
gible for large n, recalling the pivoting overhead is 3rn — 3/2r? flops, and the
unpivoted factorization is of order n3. The use of the pivoted codes instead of
the unpivoted ones could be warranted if there is any doubt over whether a

matrix is positive definite.

64

Table 2.6.1: Speedups of our codes compared with LINPACK code.

| n | 1000 | 2000 | 3000 | 4000 |5000 |6000 |

LEV2PCHOL 2.05 2.21 2.35 2.29 2.33 2.32
LEV3PCHOL 5.30 6.03 6.90 7.52 7.78 8.05

2.6.2 Backward Error Tests and Rank Detection

We tested all four subroutines on a further set of random positive semidefinite
matrices, this time with pre-determined eigenvalues, similar to the tests in [27].
The matrices were generated by setting A = QAQT where (Q was a random
orthogonal matrix computed by the method of Stewart [48] using qmult.m [35].

For matrices of rank » we chose the nonzero eigenvalues in three ways:
e Case : \i=X g =---=X_1=1, AN=a<l
e Case2: \i=1, M=X\=---=\=a<l1
e Case 3: \, =a'!, 1<i<r, a<l

Here, o was chosen to vary ko(A) = A1/,
For each case we constructed a set of 100 matrices by using every combi-

nation of:

n = {70, 100, 200, 500, 1000},
ko(A) = {1, le+3, le+6, le+9, le+12},

r = {0.2n, 0.3n, 0.5n, 0.9n},

where 7 = rank(A). We computed the relative normwise backward error

|4 — PLLTP7||,
[[All2 ’

65

Level 2 codes — LAPACK DPOTF2 vs LEV2PCHOL

11 5 T T T T
X
QO
<
o
< 14
@
e)
o
o
3 1.05
°
>
2
1 1 1 1 1
1000 2000 3000 4000 5000 6000
Dimension, n, of matrix
Level 3 codes — LAPACK DPOTRF vs LEV3PCHOL
1 8 T T T T
X
(@)
= 1.6 i
<
<
(0]
° 1.4+ i
(&)
B
5 1.2F B
=
o
1 1 1 1 1
1000 2000 3000 4000 5000 6000

Dimension, n, of matrix

Figure 2.6.2: Speed ratio of pivoted codes over LAPACK codes for the full rank
case.

for the computed Cholesky factor L and permutation matrix P. We have,
from [29, Thm. 10.22], the following upper bound

|4 — PLLTPT||,
1A]l2

< 2 (W2 + 1) + O(u?), (2.6.1)

L [Zn 0

~ c(r+ 1u
- , L €eR™, Ay = ()
Ly 0 1

—c(r+u’

and w is the unit roundoff, ¢ is a small integer constant, and from [29, Lemma

10.13],

W, < \/%(n—r)(éﬂ—l), (2.6.2)

and so there is no guarantee of stability of the algorithm for large n and r.

66

Table 2.6.2: Comparison of normwise backward errors.

n 70 100 200 500 1000
W] min | 3.58 4.39 7.91 15.12 27.11
max | 10.67 12.26 20.62 32.52 66.03
DCHDC min | 1.654e-16 | 3.654e-16 | 6.651e- 16 | 5.504e-15 | 1.933e-14
max | 3.172-13 | 1.498e-13 | 1.031e-12 | 2.823e-12 | 4.737e-11
DCHDC min | 1.707e-16 | 2.561e-16 | 4.737e-16 | 1.273e-15 | 2.687e-15

with (2.3.5) || max | 7.778e-15 | 9.014e-15 | 1.810e-14 | 7.746e-14 | 1.991e-13
LEV2PCHOL || min | 1.671e-16 | 2.526e-16 | 5.121e-16 | 1.240e-15 | 2.597e-15
max | 4.633e-15 | 9.283e-15 | 1.458e-14 | 7.290e-14 | 1.983e-13
LEV3PCHOL || min | 1.671e-16 | 2.476e-16 | 5.121e-16 | 1.271e-15 | 2.600e-15
max | 4.633e-15 | 9.283e-15 | 1.710e-14 | 8.247e-14 | 2.049e-13

There was little difference for the normwise backward errors between the
three cases and Table 2.6.2 shows minimum and maximum values for different
n. The codes with the new stopping criterion give smaller errors than the
original LINPACK code. The minimum and maximum values of ||W|| are also
given, and show that after r stages the algorithm will have produced a stable
factorization. In fact, for all the codes with our stopping criterion # = r, and
so the rank was detected exactly. This was not the case for the unmodified

DCHDC, and the error, # — r, is shown in Table 2.6.3.

Table 2.6.3: Errors in computed rank for DCHDC.

| n | 70 100 [200 [500 |1000 |
min 0 0 1 4 4
max 10 12 16 16 19

The larger backward error for the original DCHDC is due to the stopping
criterion. As Table 2.6.3 shows, the routine is terminated after more steps

than our codes, adding more nonzero columns to L.

67

2.7 Checking for Indefiniteness

The algorithm does not attempt to check if the matrix is positive semidefinite
and indeed the stopping criterion is based on A being positive semidefinite.

For example, if we supplied

10 0
A=10 0 1],
01 0

then the algorithm would stop after one step, and give the rank to be 1, whereas

A is indefinite with eigenvalues of {1,1,—1}. A check of the residual
|A— PLL"P"|],

bearing in mind (2.6.1) and (2.6.2), may allow confirmation that A is not close
to being positive semidefinite.

The user could also update the trailing matrix by (2.5.1) to give
AT = A (p 4 1 r + 1) = AP (r + 1:im,r + 1:n) — Ly, LY.

We know the diagonal elements should be ‘small’ since the algorithm stopped
after 7 steps and consequently ||A™+!|| should be negligible, but if ||A+!|| is
large then the original matrix could have been indefinite. However, if ||| is
large then it is more difficult to reach this conclusion, as there may have been
significant error growth during the factorization.

Of course, if there is serious doubt over semidefiniteness then a symmetric

indefinite factorization should be used.

2.8 Conclusions

We have presented two Fortran 77 codes for the Cholesky factorization with

complete pivoting of a positive semidefinite matrix: a Level 2 BLAS version

68

and a Level 3 BLAS version. Our tests show that our codes are much faster
than the existing LINPACK code on our test machines.

Furthermore, with a new stopping criterion the rank is revealed much more
reliably, and this leads to a smaller normwise backward error.

We propose that the double precision Fortran 77 codes lev2pchol.f and
lev3pchol.f, and their single precision and complex equivalents, be included
in LAPACK.

Appendix B contains Fortran 77 testing routines required for submission of

the codes in Appendix A to LAPACK.

69

Chapter 3

The Symmetric Semidefinite

Generalized Eigenvalue Problem

3.1 Introduction
We consider the generalized eigenvalue problem
Az = ABx (3.1.1)

in the case where A and B are real and symmetric and B is positive semidefinite.

However, our theory and algorithms extend to the complex Hermitian case.
The symmetric semidefinite generalized eigenvalue problem arises in struc-

tural engineering and commonly in vibrational analysis. A vibration analysis

requires the solution of the problem
Kx =AMz,

where K is the stiffness matrix and M is the mass matrix and is positive
semidefinite. The matrices are derived from a finite element analysis of the

vibration problem. The A are the natural frequencies and the x the normal

70

mode shapes. The solution of the generalized eigenvalue problem form the

solution of the ordinary differential equation
My(t) + Ky(t) = 0.

By considering solutions of the form

twt

y(t) = ze™",
where z is a nonzero vector we have the generalized eigenvalue problem
2 iwt iwt _ 2 _ 2 _
—we“"Mzr+ e Ky =—-w'Mxr+ Kxr =0, —w’=),

as €™ is nonzero.

Since the matrices are from a finite element analysis they can be arbitrarily
large. Dimensions of M and K in the tens of thousand are common.

The symmetric semidefinite generalized eigenvalue problem is used in an-
other structural engineering problem, including buckling analysis. They also
arise in quantum chemistry, electronic engineering and control theory.

Because the dimensions of the matrices can be very large we would like an
algorithm that is efficient as possible and exploits the symmetry of the problem.

We show how to reduce (3.1.1) by congruence transformations to a sym-
metric standard eigenvalue problem. If the pencil A — AB is nonregular we
deflate it to a regular pencil during the reduction. Our algorithm extends the
work of Fix and Heiberger [23], as generalized by Parlett [41] and Cao [11]. We
generalize the algorithm further by considering a wider choice of congruence
transformations by not limiting ourselves to orthogonal transformations.

We will see that our choice of transformations leads to an algorithm that
has many times less flops than those suggested by the authors above. Also,

the backward error of the computed solution can be as favourable as as that

71

computed with orthogonal transformations. Thus we show it is possible to
increase efficiency of existing algorithms without the lost of numerical stability.

We also compare our algorithm with other methods, neither of which exploit
the symmetry of the problem. Namely the QZ algorithm for regular matrix
pencils and the GUPTRI algorithm for nonregular pencils. We show that the
Q7 algorithm produces a solution with a smaller error than is produced by
implementations of our algorithm but requires far more flops. Also the QZ
algorithm is unsuitable for nonregular pencils. The GUPTRI algorithm that
can deal with nonregular pencils always has a larger error than our algorithm in
our experiments. Also the implementation of our algorithm with nonorthogonal
transformations produces errors comparable with those produced by orthogonal
transformations. The flops required by the GUPTRI algorithm is an order of
magnitude higher than that required by ours. The GUPTRI algorithm also
fails for some of our test problems.

Thus in the general case of nonregular matrix pencils we propose an al-
gorithm that is more efficient and can be as stable as algorithms previously
suggested.

The efficient implementation of our algorithm depends upon the algorithm
and code we developed in Chapter 2.

We give a full classification of the eigenvalues of the problem and discuss
the geometric multiplicity of the eigenvectors.

We will use the notation A, B Yy , B' to denote the transformation
A'=UTAU, B =U"BU.

If B= XDX" and X is singular then we define X such that

72

where X is nonsingular. For example, the pivoted Cholesky factorization of

Ly 0
X =1 = ,
L21 0

where L is nonsingular with dimension the rank of B, and X is singular. We

— Lll 0
X = :
Ly 1T

I 0
0 0]

For a general matrix, C, with a factorization, C' = XGZ, we form transforma-

PTBP yields a factor

define

and

R—
A PTBP X A

tion matrices in an equivalent way.

3.2 A General Method

3.2.1 Step One

First we diagonalize the symmetric positive semidefinite matrix B by comput-

ing an RRD (rank revealing decomposition)
B = deiag(Dl, DQ)XIT,

where D; € R™*™ is positive definite and Dy € R™*"2, with r; chosen min-

imally so that ||Dslls < n||D1||2 and 7 is described in Section 1.5. We set

Dy = 0. We thus transform the pencil A — AB according to

1 1
r Agl) Agz)
AT 4

T2 12 22

—-T
A, B Xy 40 pO = ,diag(D;, 0).

73

3.2.2 Step Two

We now transform D; to the identity. We define U, = diag(D; 172 I,,) and then

T1 T2

, A(Q) A(Q)
AW g Py 4@ po = HT 21 diag(I,,,0).
n AL AR
If B is positive definite then ro = 0 and we can now solve the standard eigen-

value problem

ADz =)z, =X, U,z

If B is positive semidefinite we proceed to step three.

3.2.3 Step Three

We now reduce A%) to diagonal form. Compute the RRD
Ag22) = X3(I>3X3T,

where the diagonal matrix

T3 T4
@3 _ T3 (I)H 0 ’
ra | 0 Do

where ro = r3 + 74 and 73 is chosen minimally so that |[®alls < n||P11]|2. We

set ®go = 0 and define Us = diag(I,,, X5 ") and hence transform
A@ B® Us, 46) g6

where
71 r3 T4

3 3 3
| AR AR AR
T .
A = 149" DY) o |, B®=B® =diag(l,,0),

T
m | ADT 00 0

74

and D) = ®,,.
Now if 4 = 0, the last row and column of A® is not present and we have

the eigenproblem, which we now write in (a, 8) form (A = a/f),

w, I, 0] [w
]:a[”] 52.1)
Wo 0 0 Woy

T1 T2

3 3
™ Agl) AgQ)

T
no A DY)

-1 (T
Solving for wo gives we = —Dég) A%) w, and hence we obtain the ri-by-r
symmetric eigenvalue problem
3 3) »3) 1 43)7T
ﬁ(Agl) - Agz)D§2) Agz) Jw, = aw,. (3.2.2)

Thus there are r; finite eigenvalues. There are also r, infinite eigenvalues
corresponding to S = 0. Solving (3.2.2) in this case gives w; = 0, and the wy
are arbitrary provided they are linearly independent, so we set ro wy = €; €

R™, 4 = 1: 5. The eigenvectors of the original problem are then given by
T = YITUQU?)UJ.

The eigenvectors corresponding to the infinite eigenvalues are the null vectors
of B.

If r, > 0 and AY) = 0 then det(A® — AB®)) = 0 and hence the pencil
A — AB is nonregular. On removing the last r, rows and columns we deflate
the nonregular part of the pencil and we obtain a system of the form (3.2.1)
again, which provides r; finite and rj3 infinite eigenvalues.

If neither r4 = 0 nor A%) = 0 then we proceed to step four.

75

3.2.4 Step Four

Now we transform Ag) € R > This matrix can be of arbitrary rank, so we

compute the RRD,

5 T4—T5
r G 0
Ag?é) _ X4 5 11 Z4’
ri—rs | 0 0

where G1; is diagonal or triangular and X, is required to be orthogonal to keep

B = diag(!,,,0) on transformation. This decomposition will involve some 7-

negligibility decisions during its computation. We define Uy = diag(Xy, I, 7;1),
and perform a final transformation
A®) BO) LN AW BW
where
[« 4 4 4 i
Agl) AgQ) A§3) G§4) 0 Ts .
1
A%)T Agg A%) 0 0 T :=T1 — T3
A0 = | 40T A0 D® 0 0|
G9 o o o of r
14 5 s
0 0 0 0 O T7I=T4—T5

and G\ = Gy1, DS = D) and B® = B® = diag(I,,, 0).

The last block row and column of zeros are not present if 7; = 0, and the
pencil is then regular; otherwise it is nonregular.

After removing the last block row and column of zeros, if necessary, we are
left with the following regular eigenproblem, which we again write in («,)

form,

76

F AR AR AT e [el [E 00 07w
AT AR Al o | | 0 I, 0 0| v
Bl wr @ @ =« (3.2.3)
A ALY DY o | | v 0 0 0 0f|us
a0 0 0
| Gy 4 Lvsd | 0O 0 0 0] Lvg
Solving from the bottom up gives
pvy = 0,
-1 T T
Bus = —BDy (Al v+ AL w)
-1 T
= 6D A v,
-1 T
B(Ay — AR Dy Ay Jur = av,, (3.2.4)

-1
By = G (v, — BAG vy — BARvy).

We distinguish two cases. First, § # 0: here, (3.2.4) gives rg finite eigenvalues,
vy = 0, and v3 and v, are uniquely determined by the eigenvectors v,. Second,
B = 0, and (necessarily) a # 0: from (3.2.3) it is clear that v; = 0, v = 0
and v3 and v4 are arbitrary. Therefore there are r3 + r5 linearly independent
eigenvectors corresponding to infinite eigenvalues. Our total of rg + r3 + 775
eigenvalues of (3.2.3) leaves 75 eigenvalues unaccounted for. It is not hard to

show that the determinant of the pencil in (3.2.3) is
-1 (T
+det(BGY))° det(BDSY) det(BAS) — BAY) DS AL — al,),

and hence there are 2r; + r3 infinite eigenvalues in total, corresponding to
B =0, but only r5 + r3 corresponding linearly independent eigenvectors, given
by setting

V3
= €; € RT3+7‘5’ 1 = 127"3 + Ts.
Uy

In the nonregular case we set
T
v=[0 vl vl vl 0],

7

and we have the corresponding eigenvectors of the original problem (3.1.1),

r = X;TU2U3U4U.

3.2.5 Summary

The classification of the eigenvalues provided by the algorithm can be summa-

rized as follows.

ifrs=0
The problem is regular, with r; finite and r5 infinite eigenvalues.
else
if A% =0
The problem is nonregular, with r; finite and r3 infinite eigenvalues.
else
The problem is nonregular if 77 > 0 and otherwise regular.
There are rg finite and r3 + 275 infinite eigenvalues.

end

All the finite eigenvalues are real, as they arise as the solutions of symmetric
standard eigenproblems.
Also we note that if r; < 74 and Ag‘? has full rank, then r¢ = 0 and there

are no finite eigenvalues.

3.3 Existing Methods

3.3.1 Fix and Heiberger’s Algorithm

Our algorithm is a generalization of the Fix and Heiberger algorithm [23]. Their

algorithm uses the following RRDs:

78

e Step one: spectral decomposition,
e Step three: spectral decomposition,

e Step four: QR factorization.
The QR factorization of Ag? at step four requires the conditions
ry >ry and rank(Ag)) =1y,

and therefore is not applicable to nonregular pencils.
Some numerical examples are given in [23]. They also derive error bounds

for computed eigenvalues and eigenvectors.

3.3.2 Parlett’s Algorithm

Parlett’s algorithm [41] improves on Fix and Heiberger by allowing for non-
regular pencils. The first three steps are the same but at step four the QR

factorization is replaced with the singular value decomposition

3 0

A =U v,

0 3

and with [|Xs|| < n||%1]|, X2 is set to zero, for some suitable 7.

3.3.3 Cao’s Algorithm

Cao’s algorithm [11], like ours, is a generalization of Fix and Heiberger’s al-
gorithm. Here, the only requirement is that the transformations at steps one,

three and four are all orthogonal.

3.3.4 The QZ Algorithm

The QZ algorithm of Moler and Stewart [37] computes the generalized Schur

form (1.2.4) to solve the generalized eigenvalue problem. There are three steps.

79

Step One - Reduction to Hessenberg-Triangular Form

The first step reduces A to upper Hessenberg form and B to upper triangular

form. An orthogonal matrix U is found such that, in the 5-by-5 case

UTA=

n
+
n
+
+

|
|
l
+
|

n
n
n
+
n

+
+
+
+
+

+
+
+
+
+

U'B =

+

+
+
+
0

+
+
—+
—+
+

where + represents a nonzero entry. Then zeros are introduced into A by
Givens matrices while keeping the upper triangular structure of B. Starting
with the bottom left corner A and B are multiplied by a Givens matrix from

the left such that

A, B+ G(4,5)(4,B) =

A nonzero entry is introduced in B which is immediately eliminated by multi-

S+ + 4+ +
+ 4+ + + +

+ 4+ + +
+ 4+ + +

+

+

+ + + +

+

(o e

o o 4+ +

0 O

© o 4+ + +

plying A and B with a Givens matrix from the right such that

+ 4+ + +
+ 4+ + +

+
+

+ o+ 4+ o+ + o+ 4+ o+
+ o+ o+ o+ 0 + + + +
AB+— (AB)Gr45) =+ + + + + [, |0 0 + + +
+ o+ + + o+ 00 0 + +
[0+ + + +]| [0 00 0 + |

We continue in this manner with pairs of Givens matrices applied to the pencil

until we have finally
(A — AB)Gr(4,5)Gr(3,4)Gr(2,3)Gr(4, 5)Gr(3,4)Gr(4,5),

where A is now upper Hessenberg and B is upper triangular as required.

80

Step Two - Deflation
If ag1, = 0, for some £, then we have

k n—k
A—\B = k Ay — ABi A — ABy ,
n—k 0 Agg — ABgo
and we can solve the two smaller problems A;; — AB1; and Ay, — ABys inde-
pendently.

If a zero appears on the diagonal of B, in any position, it is possible to
introduce a zero in the (n,n — 1) position of A and also chase the zero on B’s
diagonal to the (n,n) position, and thus deflate the problem. This is achieved
with pairs of Givens matrices in a similar way as used in step one. After this
process we have

A11 A12 Bll B12

A—-AB =

0 929 0 0

where Aj; is upper Hessenberg, ass # 0 is a scalar and B, is upper triangular.
We thus solve A;; — ABj; and have an infinite eigenvalue given by
A=2
0
Step Three - The (QZ Step

The QQZ step applies unitary transformations, () and Z to the deflated A—\B,
such that

Q (A= AB)Z =S — AT,

where S and 7" are upper triangular. In the real case S may only be reduced
to quasiupper triangular form. That is block upper triangular with 1-by-1 and
2-by-2 blocks. It can be reduced to upper triangular form if S is allowed to

become complex.

81

This is an iterative process. It is derived from considering one step of the
standard shifted QR algorithm on the matrix AB~!, which is never formed.
On average two iterations per eigenvalue are required. Eigenvectors can be
found by the process of inverse iteration. Further details can be found in the
original paper [37] and [24].

The are two major disadvantages of the ()7 algorithm. Firstly it does not
take advantage of any symmetry, destroying it at the first step. This means
we are not guaranteed real eigenvalues in floating point arithmetic. Secondly
the QZ algorithm in unsuitable for nonregular matrix pencils. It can fail to

identify the nonregular part of the problem [31].

3.3.5 The M DR Algorithm

In [9] Bunse-Gerstner presents an algorithm for solving the symmetric semidef-
inite generalized eigenvalue problem, the M DR algorithm.

The algorithm attempts to simultaneously diagonalize A and B and is de-
scribed as closely related to the QR algorithm for real symmetric matrices.

Firstly, the pencil is reduced to the form
AL Al 0 0
- A @ | (3.3.1)

T
Ay AR
where D%) € R™™" is diagonal and r = rank(B), by any suitable method. The

above pencil is a symmetric permutation of that produced by step one of our
algorithm.
A proof is given [9, Thm. 2.1] of the existence of a matrix which can

diagonalize (3.3.1) by congruence transformations and requires
(Ay
rank

Al
in (3.3.1), and we note that this is a strong condition.

) = rank(4!}) (3.3.2)

82

Furthermore, convergence of the algorithm is only guaranteed if Agll) is
nonsingular. This convergence condition is used in the second step of the

M DR algorithm to produce a transformed pencil of the form

o A o 0 0
A® = o | = o | (3.3.3)
0 A% 0 DS

therefore leaving A%) —)\Dg) to be solved and give the finite eigenvalues.
It is recognized in [9] that the M DR algorithm acts like the QR algo-

/ /
rithm for the symmetric eigenvalue problem Dé?l QA%) Dg)l ’

x = Az. Thus the
M DR algorithm cannot solve nonregular pencils with the convergence condi-
tion (3.3.2).

The M DR algorithm then transforms A%) to a tridiagonal matrix, 7', and

goes on to solve

(T — AD)z =0

using shifts to accelerate convergence.

3.3.6 The GUPTRI Algorithm
The Algorithm

The GUPTRI (Generalized UPper TRIangular) algorithm [15], [16] aims to
capture the structure of the Kronecker Canonical Form (KCF) (1.2.7) of the
matrix pencil. Stable computation of the KCF cannot be guaranteed as the
transformation matrices may be arbitrarily ill-conditioned. So the GUPTRI
algorithm transforms a matrix pencil to a 5-by-5 block upper trapezoidal pencil,
each diagonal block is such that its KCF consists only of one type of block.
The GUPTRI algorithm applies unitary transformations P € C™*™ and
Q € C™" to the general pencil A — AB € C™ " to generate the generalized

Schur-staircase form:

83

[Agr — ABg X X X X
0 Az — ABy X X X
P*(A-AB)Q = 0 0 Ap — A\Bp X X ,
0 0 0 A — \B; X
0 0 0 0 A — A\Bp |

where an X denotes a nonzero matrix of conformable dimensions. This is a
block upper trapezoidal matrix and the blocks are block upper trapezoidal
themselves:

Agr — ABp is such that its KCF has only L; blocks.

Az — ABy is such that its KCF has only J;(0) blocks.

Ap — ABp is such that its KCF has only J;(v), v # 0, blocks.

Ar — ABy is such that its KCF has only N; blocks.

AL — ABy is such that its KCF has only L] blocks.

There are two reductions. Firstly the pencil is reduced to RZ (Right Zero)-

staircase form and a remaining block. That is for unitary matrices U; € C"*™

and V, € C"*"

Arp — ABg X X
RZ-staircase.
0 0 A33 -)\ng

This is a achieved in a finite number of transformations. At the kth step the
number and dimension of Ly_; and Ji(0) blocks is determined, and these values
are returned by the algorithm.

The second reduction generates the LI (Left Infinity)-staircase part of the
pencil. It acts on

,U,A33 — B33 € CSXt, A— 1//1,

84

Unitary matrices U, € C¥*% and V, € C*** are found such that

AH —)\Bll X X
U;(Agg—)\ng)‘/Q - 0 AI -)\B[X
LI-staircase.
0 0 A; — A\B;,

The number and dimension of N; and L; blocks are computed and returned.
Finally, A1; — ABjy; is transformed to reveal the finite nonzero eigenvalues

using the (QZ algorithm

Q" (A1 — AB11)Z = Ap — ABp.

Deciding Rank

The GUPTRI algorithm uses the singular value decomposition to decide numer-
ical rank during the RZ and LI reductions. The algorithm uses two tolerance
values, € and gap. The numerical rank of a matrix, r, is defined for singular

values o;, 0; > 0;_1, by
On—ri1 > €0p, and Op_py1 > gap * Op_p.

If these two conditions are satisfied the rank is taken as r, and oy,...,0,_r10
are set to zero. If the second condition fails o,_, is also set to zero and the
process is repeated. If it is never satisfied then the numerical rank is not defined

for that matrix.

3.4 Options for Rank Revealing Decomposi-
tions

Our aim is to have RRDs with minimal flop count while maintaining numer-

ical stability and correctly revealing rank. The following tables list possible

85

RRDs that can be selected in a MATLAB implementation of our algorithm;
see ssgep.m in Appendix C.

Note since we are not concerned with timings we are using MATLAB’s
implementation of the RRDs. For built in functions MATLAB calls LAPACK
routines where possible. However, for the pivoted Cholesky factorization we
call cholp.m from [28]. In an implementation outside of MATLAB we would

call the codes we developed in Chapter 2.

3.4.1 B=X,DX{

At step one we perform the transformation
—-1 _—-T .
X, BX, =diag(Dy,0).

Two possible rank revealing decompositions are given in Table 3.4.1. Here

L11 0 . L11 0
L= L= .

L, 0 Ly I,
Name / Eqn. No./ | Factorization of B flops 71_1
rrdl in ssgep.m
Cholesky B = PLLTPT, L' pT
Factorization / D, =1, rin — 2r}
(2.1.1) / ’chol’
Spectral B=qQ A0 QT | an? QT

0 A,

Decomposition / D, =\
(1.5.3) / ’spec’

Table 3.4.1: Options for rrdl in ssgep.m.

86

3.4.2 AY) = X,DXT
At step 3 we perform the transformation

—

X, APX," = diag(®yy,0).

Two possible rank revealing decompositions are given in Table 3.4.2. Here L

and L are as defined above.

Name / Eqn. No./ | Factorization of A%) flops 7;1
rrd3 in ssgep.m

@_ol|M 0 |or 3 T
Spectral Ay =Q 0 A Q" 4rs Q

2
Decomposition / Déz) =N\
(1.5.3) / ’spec’
LQDQTLT AP = PTLQ {Dol lg | QTLTP, | r2r, | QTL'P
2

Factorization / D$) = D, —243
(1.5.6) / ’1d1t’

Table 3.4.2: Options for rrd3 in ssgep.m.

3.43 A% = x,Dz,
Finally at step four we wish to perform the transformation
X, AY7Z," = diag(4(?),0),

where Aﬁ) can be triangular or diagonal. Four possible rank revealing decom-
positions are given in Table 3.4.3. Here
diag(diag(RH)*l)Rn diag(diag(Ru)’l)ng
0 Ly,

87

Name / Eqn. No./ | Factorization of A%) flops YZI, 751
rrd4 in ssgep.m
Unpivoted QR Ag) = QR, 2r2(ry —14/3) 7211 =Q7,
Factorization / G =R Z, =1,
(1.4.1) / ’qr’
Pivoted QR Ag) =Q R()ll ROIZJ PT, | 4(rirars +13r5) | Xp ' = Q7,
Factorization / Gﬁ) = diag(R11) —%r%(?’% +74) 721 = PR’
(1.5.1) / ’qrp’ +373
Complete Orth. Ay =U 0 0 V, A(rirars +rirs) | Xy =U",
Decomposition / Gﬁ) =R —r2(3ry + Try) Z, =vT
(1.5.2) / *cod’ —gr
+2r3 — 4r2r
3'4 4”5
. (3) X1 0 2 2 -1 T
Singular Value Ay =U 0 =, |7 4riry + 8riry X, =U",
Decomposition / | G\%) =3 +9r3 Z, =V
(1.5.4) / *svd’

Table 3.4.3: Options for rrd4 in ssgep.m.

3.4.4 Calling ssgep.m

The call to ssgep.m takes the form [U,D,r] = ssgep(A,B,rrdl,rrd3,rrd4,

reltol,normtol). The arguments are as follows:

e A is the symmetric matrix A in Ax — ABx.

B is the symmetric matrix B in Ax — ABx.

rrd1l specifies the RRD at step one, see Table 3.4.1.

rrd3 specifies the RRD at step three, see Table 3.4.2.

rrd4 specifies the RRD at step four, see Table 3.4.3.

reltol specifies the tolerance for RRDs. The default is the unit roundoff,

u. Then in A = XDXT € R™", where the elements in D, d;;, are

88

decreasing in magnitude, d;;, © = r + 1:n, are taken as zero if
dr+1,r+1 S reltol xn * dlla

and the rank is taken as r. Similarly for A = XGZ € R™", G(r +

1:m,r + 1:n) are set to zero if

Gri10+1 < Teltol x max(m,n) * gi;.

e normtol specifies the tolerance for deciding if Ag? € R™*™ is to be

considered zero, if
||Ag?§)||F < normtol s max(ry,74) * |A®||x
then we set Ag‘? = 0. The default is u.

With the following calls we can implement the Fix and Heiberger, Parlett

and Cao algorithms described earlier:

e The Fix & Heiberger algorithm can be implemented with the call:

[U,D,r] = ssgep(A,B,’spec’,’spec’,’qr’,reltol,normtol)

e The Parlett algorithm can be implemented with the call:

[U,D,r] = ssgep(A,B,’spec’,’spec’,’svd’,reltol,normtol)
e The above is also a call to a Cao algorithm, and so is:

[U,D,r] = ssgep(A,B,’spec’,’spec’,’cod’,reltol,normtol)

3.4.5 Operation Count of our Algorithm

In this section we compare the flops of various permutations of RRDs in our

algorithm.

89

If we perform only steps one and two, that is A%) has full rank, then
performing the transformations and solving the symmetric eigenvalue problem
involve

An® + 2n’r, + 47“51)’ + 27‘%7‘2 + 47“17“3

flops. Then there are further flops to perform the RRDs at step one and three.
The RRD with the minimum and maximum flop counts are given in Table 3.4.4.

We can see that if we choose a spectral decomposition in favour of the
pivoted Cholesky factorization at step one or the LDLT at step three we have
twelve times as many flops.

There are other factors to consider such as the proportion of computation
performed by Level 2 or 3 BLAS routines. To ensure flops are a reasonable
indication of speed, we timed the LAPACK routines for the factorizations, as
well as LEV3PCHOL for the pivoted Cholesky factorization.

The tests were performed in Fortran 77 on a 2545MHz AMD Athlon running
a hybrid version of Red Hat Linux 8 and 9 with kernel 2.4.20. The times given
are an average of three timings. We generated random symmetric matrices of

dimension 1000. The timings are shown in Table 3.4.4.

RRD Flops | Time (secs)
Spectral 4n3 | 8.18
Decomposition

Cholesky n3/3 |0.85
Factorization

LDL" n3/3 | 0.50
Factorization

Table 3.4.4: Flops compared with computation time of RRDs.

The timings show that the speedup of our algorithm may not be quite as

good as the flops counts predict for the Cholesky factorization, but better for

90

the LDLT factorization.

If we perform all steps of our algorithm, but with A%) having full rank then

the transformations and solving the symmetric eigenvalue problem involve
4n® 4 412 4 21273 + 2rary + 2r6(n® 4 rirs + Tar6 + 15 + 1576 + 1573 + 277)

flops. Then there are further flops to perform the RRDs at steps one, three
and four.

The overall operation count for our algorithm depends on the rank of the
matrices we factorize. However, a worst case is approximately 18n?® flops. The
QZ algorithm requires 46n3 flops to compute the eigenvalues and eigenvectors.
The GUPTRI algorithm requires O(n*) flops in the nonregular case for which it
is used. Thus our algorithm should perform better than the QZ and GUPTRI
algorithm for speed, and the choice of RRD can decrease computation time

further. We next look at the stability of our algorithm.

3.5 Numerical Experiments

The tests were performed with MATLAB 6.5 on a 25645MHz AMD Pentium
running a hybrid version of Red Hat Linux 8 and 9 with kernel 2.4.20. The unit
roundoff u =~ 1.1e-16. The relative normwise backward error for a computed

finite eigenvalue, X, and its corresponding eigenvector, T, of Ax = ABx is

defined to be
v(@,A) = min{e : (A + AA)Z = \(B + AB)Z, 1AA|2 < €| A,
|AB||2 < €|| B2}

We evaluate this by the expression [25]

- Il
(72 = — — (3.5.1)
(MBI + 1 4]12) 13112

91

where r = AB%Z — A7 is the residual.

For an infinite eigenvalue, 8 = 0, this simplifies to

o5 || Bz||2
V(@A) = soriAT (3.5.2)
| Bll2l|Z]|2
We also use the relative residual
. AX — BXA
p(X,A) := ” IE (3.5.3)

[All2[[X Iz + [Bll2[[X Il All2

where X is a matrix of eigenvectors corresponding to finite eigenvalues and A
is a diagonal matrix of finite eigenvalues.

We present, the comparison of these errors, for finite eigenvalues, by perfor-
mance profiles. Where the computed error was less than the unit roundoff we
set it to eps/2, the unit roundoff in MATLAB.

We test two implementations of our algorithm, those that require the max-
imum and minimum flops as described above. The first implementation uses
only orthogonal RRDs so all transformations are orthogonal with the exception
of U, at step two, and we saw the advantage of orthogonal transformations in
Section 1.3.2. The second uses RRDs that are not orthogonal, using the piv-
oted Cholesky factorization, the stability of which is discussed in Section 2.6

and the LDL" factorization discussed in [29].

3.5.1 Industrial Example

This is a fluid flow problem from a dynamical analysis in structural engineering
and was taken from the Harwell-Boeing Collection available at Matrix Mar-
ket [34]. The matrices are from the ‘BCSSTRUC1’ data set and the mass
matrix, M, is ‘BCSSTM13’ and the stiff matrix, K, is ‘BCSSTK13’. The di-
mension of the matrices is 2003 and K is positive definite so step four of our

algorithm will not be performed.

92

Using default tolerances, the call
[U,D,r] = ssgep(K,M, ’spec’,’spec’,’svd’)
gave a maximum (Z,) of 8.246e-16 and for
[U,D,r] = ssgep(K,M, ’chol’,’1d1lt’, ’svd’)

a maximum 7(Z, A) of 7.607e-16. The matrices here are very well conditioned.
This was the largest data set available to the author. Also, since K is
positive definite, we generate our own test matrices to fully explore the behavior

of our algorithm and other methods.

3.5.2 Regular Pencil Examples

Here we generate some random regular pencils and compare implementations
of our algorithm with the QZ algorithm.
We construct a set of test matrices as follows:

B is set to be

QTdiag(A, Xay...y Ay, 0,...,0)Q,

where () is a random orthogonal matrix.

We construct A4 such that
T1 72
2 2
e [a2 Ay
- r ,
n | ADT 4D

where

2) . . .
. Agl) is a random symmetric matrix.

93

. A%) has full rank, we compute

AY) = Q diag(Mr, Ag,y .-, An) QT
where A # 0 and Q € R™2*" is a random orthogonal matrix.
. Ag) is a random matrix.

We chose the nonzero eigenvalues,); (and ;) , to be geometrically decreas-
ing

M=ot 1<i<r, a<l,

)

and « was chosen to vary ko = A;/)\,. See gen data.m in Appendix C.
For each case we constructed a set of 48 matrices, with n = 500, by using

every combination of:

ko(B) = {le+3, le+6, le+9, le+12},
KZQ(AQQ) = {1e—|—3, le+6, le+9, 1e—|—12},

rank of B and Ay (as %) = {30, 50, 70}.

We tested three algorithms:

e [U,D,r]

ssgep(A,B,’chol’,’1d1t’, ’qrp’)

e [U,D,r]

ssgep(A,B, ’spec’,’spec’,’svd’)
e [U,D] = eig(A,B), (the QZ algorithm)

and computed the maximum (7, X) and p()? ,K) for finite eigenvalues and
the condition number of the overall transformation matrix. We represent the
results by performance profiles.

Figure 3.5.1 shows the performance profile for the maximum ~(Z, /)\\) of

each algorithm on each test problem. For approximately 80% of the test

94

o
© —_
i;
|
I
1
\
L:L
[
St
I

Probability
o o o o
o o N »
|
\
|
|
|
-
B
|
\
|
|
| | | |

o o
W b
T T

1
|
1
I I

o
N
=

| - - Cholesky / LDL" / QRP
J --- SPEC/SPEC/SVD H

o — QZ

05 : : : :

10 10 10 10

o
.
T

~

Figure 3.5.1: Performance profile for maximum backward error, v(Z,), of
computed finite eigenvalues and eigenvectors.

problems the QQZ algorithm performed best, where the smallest error was
4.27e-16. Around 20% of the problems gave the smallest value of the maximum
v(z, X) with the implementation of our algorithm with orthogonal RRDs, shown
(SPEC / SPEC / SVD). In comparison the implementation with nonorthogonal
RRDs, shown (Cholesky / LDL" / QRP), performed poorly, never achieving
the smallest error for a particular test problem. However, the profile is very
close to that with the orthogonal RRDs for 6 > 100.

The values of p()/(: ,K) were more favourable for implementations of our
algorithm, and are shown in Figure 3.5.2. The proportion of values that were
smallest for each problem are about the same as for v(Z, /)\\) However, every
result was within a factor of 25 of the smallest.

We also measured the condition number of the overall transformation, U,

95

Probability
o o o o
w N o o

©
N
T=—T

-~ Cholesky / LDL" / QRP
' --- SPEC/SPEC/SVD |
| — Qz

0 5 10 15 20 25
0

o
.
n

Figure 3.5.2: Performance profile for the relative residual, ,0()? , K), of computed
finite eigenvalues and eigenvectors.

such that
UT(A - AB)U = AW — \BW,
which for our algorithm is
U=UUUX, ,
and

ka(U) = [UINT 2
_ _ _ 71 T
Ul U I Ts 2 01U5 211 Us 21T 21X (21X -

N

Unsurprisingly the condition of () and Z for the QZ algorithm was 1
or very close to 1. For our algorithm with the orthogonal RRDs ko(U) <

NUM121lU, M|z = +/ko(B) as the only nonorthogonal transformation matrix

96

U, = diag(D; Y 2,IT2), where D; holds the square root of the eigenvalues of
B. This gives the steps in Figure 3.5.3. Our algorithm with nonorthogonal
RRDs gave a value as large as 1e+8 and also steps up as the condition number

of B is increased.

1

I
ool Cholesky / LDL" / QRP l
| --- SPEC /SPEC /SVD | J
0.8 — Q2 |

0.7}
Z0.6[

05 el e -

Probab

0.4
0.3
0.2r
0.1r

0 1 Il Il Il
10° 10° 10* 10° 10°

Figure 3.5.3: Performance profile for condition number, x5(U), of overall trans-
formation matrix U.

The QQZ algorithm destroys symmetry so real eigenvalues are not guaran-
teed. In the above examples the (QZ algorithm returned complex eigenvalues

in 7 out of the 48 test matrices. The imaginary part was of order le-14 or

le-15.

3.5.3 Nonregular Pencil Examples

Here we generate some random nonregular pencils and compare implemen-

tations of our algorithm with a Fortran 77 implementation of the GUPTRI

97

algorithm called via a MEX interface.

We construct a set of test matrices as follows:
I, 0
0 0

With this B we can specify A so as to predict (in exact arithmetic) r;, i = 1: 7,

B =

as the transformation at step 1 will not alter the spectrum of the submatrices
of A set out below.

We construct A such that
T1 72

2 2
A= 1 Ag1) Ag2)
o T 2
n | AR AS
where

° Aﬁ) is a random symmetric matrix.
° Ag) has r3 nonzero eigenvalues and r, zero eigenvalues, we compute
Q diag(Ai, A2, ..., Ay, 0,...,0) QF,
where A\ # 0 and @ € R™*" is a random orthogonal matrix.

2 . . .
. A§2) has r5 nonzero singular values and min(r,7e) — r5 zero singular

values, we compute

Q@ diag(oy, o9y ..., 04, 0,...,0) Qo,

where ¢ # 0 and @1 € R**" @y € R™?*™ are random orthogonal

madtrices.

We chose the nonzero eigenvalues, \; (and singular values, o;) again geo-

metrically decreasing

98

where o was chosen to vary ko = A;/A,. Again n = 500.

First we set ko = 1 and

rank of B, A22 and A12 (as %) = {30, 50, 70}

and repeated this 16 times to give a set of 48 test matrices.
We tested three algorithms
e [U,D,r] = ssgep(A,B,’chol’,’1d1t’,’qrp’)
e [U,D,r] = ssgep(A,B,’spec’,’spec’,’svd’)
e The GUPTRI algorithm with default tolerances.
and again computed the maximum (7, :\\) and p(X,A) for finite eigenvalues

and the condition number of the overall transformation matrix.

|
-~ Cholesky / LDLT/ QRP

08t | |--- SPEC/SPEC/SVD
| — GUPTRI
- |
Z06f
_Q J
©
Ko !
o)
% 04f |
’I
0.2F
0
10° 10'

Figure 3.5.4: Performance profile for maximum backward error, v(Z, A), of

computed finite eigenvalues and eigenvectors.

99

The GUPTRI algorithm ’failed’ on 10 of the 48 test problems. It failed in
the sense that it gave one or more zero eigenvalues not predicted by the test
problem and also gave L; blocks with j > 0 in the KCF, contradicting the
theory of Cao [11]. This failure then affected the computation of the remaining
nonzero finite eigenvalues. On inspection some eigenvalues were close to those
computed by our algorithm, but some were not. The maximum value of (Z, 3\\)
in these cases was of order le-1. These results were omitted from the following
performance profiles.

From Figure 3.5.4 we can see the GUPTRI algorithm never achieved the
smallest maximum value for v(Z, X) Our algorithm with nonorthogonal RRDs
gave the samllest value for 100% of the problems. However, the implementation
of our algorithm with orthogonal RRDs was within a factor of 5 of the figures
for nonorthogonal RRDs.

~

The performance profile for the values of p()/(\') is shown in Figure 3.5.5.
The results here are very similar to those of (7, /):)

The condition number of the overall transformation matrix is shown in
Figure 3.5.6. For our algorithm with orthogonal RRDs we should have x5 (U) <
NUsll2)lUs]2 = v/K2(B) = 1, and indeed the value was 1 or very close to
1. Also the condition numbers of the transformation matrices returned by
GUPTRI were 1 or very close to 1. For the implementation of our algorithm
with nonorthogonal RRDs we had condition numbers as high as le+3.

We repeated the experiments with k9 = 10 and the GUPTRI algorithm
now failed 40 times out of 48. Failure of the GUPTRI algorithm to identify

the KCF is discussed in [10].

100

L L
-~ Cholesky / LDL" / QRP
0.8l - -- SPEC/SPEC/SVD |
— GUPTRI
>
= 0.6
o)
(4]
QO
o
% 0.4t
0.2}
0 1
10° 10’ 10° 10°
)

Figure 3.5.5: Performance profile for the relative residual, p()/(\' , K), of computed
finite eigenvalues and eigenvectors.

3.6 Conclusions

There is a trade-off with implementations of our algorithm. The implementa-
tion with nonorthogonal RRDs can require far fewer flops than using orthogonal
RRDs. However, the backward error is generally larger than with orthogonal
transformation matrices, although the difference is not always significant. With
the nonregular test problems the nonorthogonal RRDs implementation fared
slightly better, although this was with submatrices with a condition number
of 1. We have only tested two implementations of our algorithm and there are
many other combinations of RRD possible.

The QQZ algorithm gives the best backward error result, compared to both
implementations of our algorithm, more often for regular pencils but requires

at least three times as many flops. The QQZ algorithm also destroys symmetry

101

—

-~ Cholesky / LDLT / QRP | |
--- SPEC/SPEC/SVD i
—— GUPTRI r 1

o o
© ©
T T

Probability
© © o o o ©
[\ w B (&) ()] ~

|
1
| | | | | |

o
.
-

I

n n P R | n n P | n n P |
0 1 2 3

10° 10 10 10

Figure 3.5.6: Performance profile for condition number, x5(U), of overall trans-
formation matrix U. Note the last two lines are coincident.

and can produce eigenvalues with a small imaginary part and it cannot be
relied upon for nonregular pencils.

The GUPTRI algorithm can fail for test problems with a small condition
number and requires flops of O(n*) for nonregular pencils. The algorithm
always produced a larger error than implementations of our algorithm, and
was at least a factor of 100 greater. Thus any implementation of our algorithm
is more efficient and more stable than the GUPTRI algorithm for out test
problems. Also, GUPTRI destroys the symmetry of the problem.

In both our algorithm and the GUPTRI algorithm we are making rank
decisions. It is unclear what the effect of these are on the overall performance
of the algorithms, and this is an open question.

There are other issues we have not addressed. There may be cancellation

102

errors in forming the symmetric eigenvalue problem
Al — AQ DY Al

and Dé?_l may be ill conditioned depending on our choice of tolerance for the
RRD.

Further work is required to address and understand these problems.

3.7 The Symmetric Indefinite Generalized
Eigenvalue Problem

We briefly describe here how our algorithm can be adapted for the generalized

eigenvalue problem

Az = A\Bx (3.7.1)

in the case where A and B are real and symmetric and B is now indefinite and

may be singular. We consider the algorithm as a deflation strategy.

3.7.1 Step One

First we diagonalize the matrix B by computing an RRD
B = X,diag(Dy, D)X,

where D; € R *™ and Dy € R™*™ with r; chosen minimally so that || Ds|s <

n||D1||2. We set Dy = 0. We thus transform the pencil A — AB

T1 T2
1 1
W[a0 Ay

<7
A,B = AW BO —

[ALT 40
T2 12 22

J adiag(Dla 0)

103

Since all the diagonal elements of D; are not guaranteed to be all of the
same sign, we cannot reduce it to the identity matrix as in the semidefinite
case.

If B has full rank then r, = 0 and we can now solve the regular symmetric

indefinite eigenvalue problem
A®z = \D;z.

or the nonsymmetric standard eigenvalue problem
DtA@z =)z,

by any suitable method. If B is rank deficient we proceed to step two.

3.7.2 Step Two

We now reduce ASQ) to diagonal form. Compute the RRD
A%) = X2(I)2X2T:

where the diagonal matrix

T3 T4
@2 _ T3 @11 0 ’
ra | 0 Doy

where r9 = r3 + 74 and 73 is chosen minimally so that |[®gs|ls < n||P11]|2. We

set ®yy = 0 and define U, = diag(I,,, X5 T) and hence transform
AW B U2y 4@ p@)

where
1 T3 T4
2 2 2
T1 A§1) A§2) A§3)
T .
AD = 1A% pP o |, B®=BY =diag(D,,0),

T
| ADT 00 0

104

and D) = ®,,.
Now if r4 = 0, the last row and column of A® is not present and we have

the eigenproblem,

T1 T2

—

2 2
1 Ag1 Agz)

N

w, D, 0| |w
]:a[”] 572)
W9 0 0 Woy

2 2
2 AgQ) Dgz)
1 (T
Solving for wy gives wy = —Dg) A%) w, and hence we obtain the r;-by-r
eigenvalue problem
_ 2 2) (27! 4 (@)7T
BD; 1(Ag1) - Ag;DéQ) AgQ) Jw, = aw;. (3.7.3)

There are r; finite eigenvalues, from (3.7.3), and another 7, infinite eigenvalues
corresponding to 5 = 0.

If r, >0 and A%) = 0 then the pencil A — AB is nonregular. On removing
the last r, rows and columns we deflate the nonregular part of the pencil and
we again obtain a system of the form (3.7.2), which provides r; finite and r3
infinite eigenvalues.

If neither r, = 0 nor A%) = 0 then we proceed to step three.

3.7.3 Step Three

Now we make A%) € R *™ triangular or diagonal. We compute the RRD

5 T4—T5
r G 0
Ag? _ X3 5 11 Z3’
ri—rs | 0 0

where (17 is diagonal or triangular. This decomposition will involve some

n-negligibility decisions during its computation.

105

We define Us = diag(X; 7", I,,, Z5) and perform the transformation
A® B Us, 46 B

where A®) BG) ig

AR AR | AR Gl o BY BP0 00| s

ADT AW 1 AD 0 o BY" B o 0 0| rei=r—rs
AYT AW DY o 0], 0 0 1]000|, 1

¢ o | o 0 o 0 01000/
o oo 0o 0] | 0 0 000 r=n-n

and G14 =Gn, D 33 = Dg). The diagonal matrix D; has been made full by
the transformation.
After removing the last block row and column of zeros, if necessary, we are

left with the following regular eigenproblem,

A A Y Gy ey [BY BY 0 0] [w
T T
; A AR Ay 0 e By By 0 0| |v
T T =«
AT A8 DY 0 | | v 0 0 0 0] |wvs
¢ 0o o o]lv 0 0 00
| Uiy 1 LU4] | 4 LUg
(3.7.4)
Solving from the bottom up gives
ﬂUl = 07
Pvs = _5D§) A23 V2,
-1 T
B(AS — AR D AR v = aBv, (3.7.5)

Bos = aBPuv, — BGY (AW v, + AW wy).

We thus have another symmetric indefinite generalized eigenvalue problem,
of dimension rg, and not a standard eigenproblem as in the semidefinite case.
We can apply a recursion by restarting the algorithm with (3.7.5). This can

continue until the algorithm stops naturally solving a regular problem.

106

Chapter 4

Updating the ()R Factorization

and the Least Squares Problem

4.1 Introduction

The linear system,

where A € R™*" z € R" and b € R" is overdetermined if m > n. We can

solve the least squares problem
min ||Az — b2,
x

with A having full rank. We then have with the QR factorization A = QR and

with d = QTb,
|Az —bll; = [|QTA—Q"b|3
= ||Rz —d||;
R, 2

xr —

- {lo] L)
0 911l

= [[Riz = flI3 + llgll3,-

107

where R; € R"™" is upper triangular and f € R". The minimum 2-norm
solution is then found by solving Rz = f. The quantity ||g||2 is the residual
and is zero in the case m = n.

Each row of the matrix A can be said to hold observations of the variables
x;, © = l:n. An example of this is the data fitting problem. Consider the
function

The value b; has been observed at time t;. We wish to find the function g
that approximates the value b;. In least squares fitting we restrict ourselves to

functions of the form

g(t) = 2191 (t) + 2292(t) + - - + 20 gn(t),

where the functions g;(¢) we call basis functions, and the coefficients x; are to

be determined. We find the coefficients by solving the least squares problem

with
[g1(t) go(t) -0 galt1) T [01]
g1(ta) go(te) -+ gn(t2) by
A= -
_gl(tm) gZ(tm) e gn(tm) _ B bm J

Now, it may be required to update the least squares solution in the case
where one or more observations (rows of A) are added or deleted. For instance
we could have a sliding window where for each new observation recorded the
oldest one is deleted. The observations for a particular time period may be
found to be faulty, thus a block of rows of A would need to be deleted. Also,
variables (columns of A) may be added or omitted to compare the different
solutions. Updating after rows and columns have been deleted is also known

as downdating.

108

To solve these updated least squares problems efficiently we have the prob-
lem of updating the Q) R factorization efficiently, that is we wish to find A= @]A%,
where A is the updated A, without recomputing the factorization from scratch.

We assume that A has full rank. We also need to compute d such that
| Az — b|| = ||Rz — dJ|,

where b is the updated b corresponding to Aand d = QTE

4.2 Updating Algorithms

In this section we will examine all the cases where observations and variables
are added to or deleted from the least squares problem. We derive algorithms
for updating the solution of the least squares problem by updating the QR
factorization of Av, in the case m > n. For completeness we have also included
discussion and algorithms for updating the QR factorization only when m < n.
In all cases we give algorithms for computing @ should it be required. We will
assume that A and A have full rank.

Where possible we derive blocked algorithms to exploit the Level 3 BLAS
and existing Level 3 LAPACK routines. We include LAPACK style Fortran
77 code for updating the QR factorization in the cases of adding and deleting
blocks of columns.

For clarity the sines and cosines for Givens matrices and the Householder
vectors are stored in separate vectors and matrices, but could be stored in the
elements they eliminate. Wherever possible new data overwrites original data.
All unnecessary computations have been avoided, unless otherwise stated.

We give floating point operation counts for our algorithms and compare
them to the counts for the Householder Q)R factorization of A.

Some of the material is based on material in [4] and [24].

109

4.2.1 Deleting Rows

Deleting One Row

If we wish to update the least squares problem in the case of deleting an
observation we have the problem of updating the QR factorization of A having
deleted the kth row, a] . We can write

A(l:k—1,1:n)
A(k + 1:m, 1:n)]

A=

and we interpret A(1:0,1:n) and A(m + 1:m, 1:n) as empty rows. We define

a permutation matrix P such that

ai
T
a

PA=| A(l:k-1,1:n) | = = PQR,

A

A(k+1:m,1:n)
and if g7 is the first row of PQ then we can zero ¢(2:m) with m — 1 Givens

matrices, G(i,7) € R™™ so that
G1,2)T...Gm—-1,m)Tqg=ae,, |a|=1, (4.2.1)

since the Givens matrices are orthogonal. And we also have

?}T

G(1,2)"...Gm—-1,m)"R =

R

bl

which is upper Hessenberg, so Ris upper trapezoidal.

So we have finally

T
PA= C;I = (PQG(m—1,m)...G(1,2))(G(1,2)"...G(m —1,m)"R)
a 0 T
o Q| R
and

110

Note that the zero column below « is forced by orthogonality. Also note the
choice of a sequence of Givens matrices over one Householder matrix. If we
were to use a Householder matrix then the transformed R would be full, as H

is full, and not upper Hessenberg. We update b by computing
14
il

Algorithm 4.2.1 Given A = QR € R™", with m > n, this algorithm
computes QVTAV = R € RmUDxn yhere R is upper trapezoidal, @ 15 orthog-
onal and A is A with the kth row deleted, 1 < k < m, and d such that
|Az —b||s = || Rz — d||s, where b is b with the kth element deleted. The residual,
ld(n + 1:m — 1)||s, is also computed.

G(1,2)T...Gm —1,m)TQTPb =

This gives the following algorithm.

q" = Q(k,1:m)
if k+#1
% Permute b
b(2:k) =b(1:k —1)
end
d=Q"b
forj=m—1:-1:1
[c(4), s(4)] = givens(q(j), a(j + 1))
% Update ¢
aGi) = c(i)a(i) - s()alj +1)
% Update R if there is a nonzero row
ifj<n

R(j:j+1,4:n) = [i@) jg;] R(j:j+1,5:n)
end
% Update d
[oeld) s(h) T
d Gii+ = |) 1| ain
R=R(2:m,1:n)
d = d(2:m)

% Compute the residual
resid = ||d(n 4+ 1:m — 1)||2

111

Computing R requires 3n? flops, versus 2n?(m — n/3) for the Householder
QR factorization of A Tf @ is required, it can be computed with the following
algorithm.

Algorithm 4.2.2 Given vectors ¢ and s from Algorithm 4-2.1 this algomthm

forms an orthogonal matrix Q € Rom=Dx(m=1) gych that A = QR where A is
the matriz A = QR with the kth row deleted.

ifk#1
% Permute Q
Q2:k,1:m)=Q(1:k—1,1:m)
end
forj=m-—1.-1:2

Q(2:m,j:7+1)=Q(2:m,j:j+1) [_C

end
% Do not need to update 1st column of @

Q(Q: m,2) = s(1)Q(2:m, 1) + ¢(1)Q(2: m, 2)
Q= Q(2:m,2:m)

Deleting a Block of Rows

If a block of p observations is to be deleted from our least squares problem,
equivalent to deleting the p rows A(k:k+p—1,1:n) from A, we would like to
find an analogous method to Algorithm 4.2.1 that uses Householder matrices,
such that if H is a product of p Householder matrices then

I 0
0 Q

However as noted in the single row case, H R is full and H is chosen to introduce

A(k:k+p—1,1:n) Vv

A

PA = = (PQH)(HR) =

zeros in (Q not R. Thus in order to compute A= @E and d, we need the
equivalent of p steps of Algorithm 4.2.1 and Algorithm 4.2.2, since Givens
matrices only affect two rows of the matrix they are multiplying, and so we

have the following algorithm.

112

Algorlthm 4.2.3 Given A = QR € R™*", with m > n, this algorithm com-
putes QTA R € Rm=PXn yhere R is upper trapezoidal, Q is orthogonal and
A is A with the kth to (k+p—1)st rows deleted, 1 <k <m—p+1,1<p<m,
and d such that || Az —b||s = || Rz —d||2, where b is b with the kth to (k+p—1)st
elements deleted. The residual, ||d(n + 1:m — p)||s, is also computed.

W=Qkk+p—1,1m)

ih#£1
% Permute b
bp+1:k+p—1)=0b1:k—1)

end
d=Q"b
fore=1:p
forj=m-—1.-1:4
[C(2,7), (i, 5)] = givens(W (i,), W (i, + 1))
% Update W
. /L’j 7”]
Wi+ 1ip,j:j+1)=W(@E+1ip,j:j+1) [_ 5ol
% Update R if there is a nonzero row
ifj<n+i—1
R(j:j+1,j—i+1:n) =
Cc@,5) SGH1
[—S(i,j) C(i,j)} R(j:j+1,j—i+1:n)
end
% Update d
. [CG,j5) S(3,7) T)
d(j:j+1) = [—S(Z,j) (i,)} d(j:j+1)
end
end
R=R(p+1:m,1:n)
d=d(p+1:m)

% Compute the residual
resid = ||d(n + 1:m — p)||2

Computing R requires 3n%p + p?(m/3 — p) flops, versus 2n%(m — p — n/3)
for the Householder QR factorization of A. Note the following algorithm to

compute @ is more economical than calling Algorithm 4.2.2 p times, saving

113

3mp? flops by not updating the first p rows of @

Algorithm 4.2.4 Given matrices C and S from Algorithm 4.2.3 this algo-
rithm forms an orthogonal matriz Q € RMm=P)X(m=p) gych that A = QR where
A is the matriz A = QR with the kth to (k+p — 1)st rows deleted.

ifk#1
% Permute Q
Qp+1l:k+p—1,1:m)=Q(1:k —1,1:m)
end
fori=1:p
forj=m-1:-1:1+4+1

Qp+1m,j:j+1)=Qp+1:m,j:j+1)

end
end
% Do not need to update columns 1: p of @
Qp+1:m,i+1)=S5(1,9)Q(p+ 1:m,i) + C(5,1)Q(p + 1:m,i + 1)
@:Q(p—i—l:m,p—i—l:m)

C(i,5) S(,7)

Updating the QR Factorization for any m and n

The relevant parts of Algorithm 4.2.3 and Algorithm 4.2.4 could be used to
update the QR factorization of A in the case when m < n without any alter-

ation.

4.2.2 Alternative Methods for Deleting Rows
Hyperbolic Transformations

If we have the QR factorization A = QR € R™*", then

ATA = RTQTQR = R"R,

114

which is a Cholesky factorization of ATA. And if we define a permutation

matrix P such that

ag
o
PA=| A(l:k—1,1:n) ‘ =| _ | =PQR,
A
Ak +1:m,1:n)
where af is the kth row of A, then we have
71T 1, T
a aj
RTQTPTPQR=R'R=ATA=| "| | * (4.2.2)

A A

Thus if we find R, such that RTR = ATA, then we have computed R for
A being A with the kth row deleted. This can be achieved with hyperbolic
transformations.

We define W € R™*™ as pseudo-orthogonal with respect to the signature

matriz
J = diag(£1) € R™™
if
wrgw = J.

If we transform a matrix with W we say that this is a hyperbolic transformation.

Now from (4.2.2) we have

ATA = ATA — apal

T T
= R R— azaqy

= [RT ak]]n ! i ,
0 -1 |af

with the signature matrix

I, O
J= [] . (4.2.3)
0 -1

115

And suppose there is a W € ROHDx(+1) gych that WTJW = J with the

property _
R R

W =
al 0

is upper trapezoidal. It follows that
e~ R
ATA = [RT a|WTJW
ay,

N R
= [R" 0]J

0
= RTR,
which is the Cholesky factorization we seek.

We construct the hyperbolic transformation matrix, W, by a product of

hyperbolic rotations, W (i,n + 1) € R+Dx("+1) "which are of the form

) n+1
-7 .
c —s 1
W(,n+1)=
I
| —8 c | n+1

where ¢ = cosh(f) and s = sinh(f) for some # and ¢ — s> = 1. W(i,n +
DTJW (i,n + 1) = J, where J is given in (4.2.3).

W (i,n + 1)z only transforms the ith and (n + 1)st elements. To solve the

SR

we note that cx,,; = sx; and there is no solution for z; = x,,; # 0. If

2 x 2 problem

x; # Tpy1 then we can compute ¢ and s with the following algorithm.

Algorithm 4.2.5 This algorithm generates scalars ¢ and s such that

[¢ _8] [331] = [y] where x1, 2 and y are scalars and ¢ — s> =1,
—-s c To 0

if a solution exists.

116

1f$2:0

else
if |xo| < |21]
t=x9/21
c=1/V/1-1
s=ct
else
no solution exists
end
end

Note the norm of the rotation gets large as x; gets close to xs.
We thus generate n hyperbolic transformations such that

R R
W(mn,n+1)..W2,n+1)W(1,n+1)

0

ak
It turns out that all the W (i,n + 1) can be found if A has full rank [4].

Chamber’s Algorithm

A method due to Chambers [12] mixes a hyperbolic and Givens rotation. If we

have our usual Givens transformation on the vector z

LT

then the transformed z;, Z;, are

1 = cxq— S%9, (4.2.4)
.’i’g = 8x1 + Ccxo,
with
x1 —T2

117

Now suppose we know Z; and want to recreate the vector z, then rearrang-

ing (4.2.4) we have

xy = (sxe+I1)/c,

532 = S$1+C$2,

with

/32 2
C = _—, S = —

T 4o .

Thus we can recreate the steps that would have updated R had we added

aj to Av, instead of deleting it from A. At the ith step, for i = 1: n + 1, with

ry = R(Z,Z),
i = R(i,i),
v = ay (D),

we compute, for j = i:n + 1:

R(i,j) = (R(1,9) + sa(4))/c,
a(j) = sR(,j)+cal V().
Saunders’ Algorithm

If @ is not available then Saunders’ algorithm [44] offers an alternative to Al-

gorithm 4.2.1. The first row of

aT R1
PA=| _ | =PQ ,
A 0
can be written
T T Ry T T Ry
a, =4q = [Q1 qs] 0)

where ¢; € R*. We compute ¢; by solving

T
Rl q1 = Qg,

118

and since ||g||2 = 1 we have

= llgzlle = (1= llasll3)"2.

Then we have, with the same Givens matrices in (4.2.1),

¢
Q1
G(n—|—1,n+2)T...G(m—1,m)T[]: i1,

q2
which would not effect R. So we need only compute

Al
G(1,2)"...Gn,n+1)"] =awe, |al=1,
Ui

and update R by

’UT

G(1,2)"...Gn,n+1)"R =

R

This algorithm is implemented in LINPACK’s xCHDD.

Stability Issues

Stewart [49] shows that hyperbolic transformations are not backward stable.
However, Chamber’s and Saunder’s algorithms are relationally stable [6], [47],

that is if W represents the product of all the transformations then

oT
W'R=| _ | +E,
R
where
| E] < coull R,

and c, is a constant that depends on n.

Saunder’s algorithm can fail for certain data, see [5].

119

Block Downdating

Hyperbolic transformations have been generalized by Rader and Steinhardt as
hyperbolic Householder transformations [42].

Alternatives are discussed in Elden and Park [22], and the references con-
tained within, including a generalization of Saunders Algorithm. See also Bo-

janczyk, Higham and Patel [7] and Olskanskyj, Lebak and Bojanczyk [39].

4.2.3 Adding Rows
Adding One Row

If we wish to add an observation to our least squares problem then we need to
add a row, u7 € R”, in the kth position, k = 1:m + 1, of A = QR € R™*",
m > n. We can then write
A(l:k—1,1:n)
A= uT
A(k:m,1:n)

and we can define a permutation matrix, P, such that

_ A
PA= ,
uT
and then
QT o] R
PA= (4.2.5)
0 1 ul

120

For example, with m = 8 and n = 6 the right-hand side of (4.2.5) looks like:

o O o o o < o +
O o oc oo c<c + +
O ©ococ oo + + +
O ©ccc o+ 4+ + +

© oo+ + + + +

© o+ + 4+ + + +

@
0
@

with the nonzero elements of R represented with a 4+ and the elements to be
eliminated are shown with a &.
Thus to find A = QR, we can define n Givens matrices, G(i, j) € Rmixm+1

to eliminate u”to give

Gn,m+1"...G1,m+1)"

so we have

A= (PT

and to update b we compute

Q 0
0 1

]G(l,m+1)...G(n,m+1)> R=QR.

Gn,m+1)T...G1,m+1)T =d,

QTb] .
I
where 1 is the element inserted into b corresponding to u”. This gives the

following algorithm.

Algorlthm 4.2.6 Given A = QR € R™*"™, with m > n, this algorithm com-
putes QTA R € RmDXn yhere R is upper trapezoidal, Q 15 orthogonal and
A is A with a row, uI € R", inserted in the kth position, 1 <k <m+1, and
d such that ||Az — b||s = ||[Rz — d||», where b is b with a scalar p inserted in the
kth position. The residual, ||d(n + 1:m + 1)||o, is also computed.

121

d=Q"b

forj=1:n
[c(4), s(45)] = givens(R(j, j), u(j))
R(j,7) = c()R(5,) — s(7)u())
% Update jth row of R and u
t1=R(j,j +1:n)
12 =u(j+1:n)
R(j,j + 1:n) = c(j)t1 — s(j)t2
u(j + 1:n) = s())tl + c(4)t2
% Update jth row of d and p
11 = d(j)
12=pu
4() = e(i)t1 — s(j)e2
= s(j)tl + c(5)t2

end

~ R

o O]

J- d]
7

% Compute the residual
resid = ||d(n + 1:m + 1)||2

Computing R requires 3n2 flops, versus 2n2(m — n/3) for the Householder
QR factorization of ATt @ is required, it can be computed with the following
algorithm.

Algorithm 4.2.7 Given vectors ¢ and s from Algorithm 4-2.6 this algomthm

forms an orthogonal matrix Q € RODXm+) gych that A = QR where A is
the matrix A = QR with a row added in the kth position.

- Q 0
SetQ:[O 1]
ifk#m+1

% Permute Q

Q(l:k—1,1:n)

Q=] Qm+1,1:n)

Q(k:m,1:n)
end
forj=1:n

122

t1=Q(l:m+1,j)

12=Q(1L:m+1,m+1)

Q(l:m+1,7) =c(j)tl — s(j)t2

Q(l:m+1,m+1) =s(j)tl + c(j)t2
end

Adding a Block of Rows

To add a block of p observations to our least squares problem we add a block
of p rows, U € R®*™ in the kth to (k + p — 1)st positions, k = 1:m + 1, of

A=QR e R™™ m > n, we can then write

A(l:k—1,1:n)
A= U
A(k:m,1:n)
and we can define a permutation matrix, P, such that
- A
PA = ,
U
and
QT 0 - R
PA = (4.2.6)
0 I U

For example, with m = 8, n = 6 and p = 3 the right-hand side of Equation
(4.2.6) looks like:

O OO ©cco o oo o +
O O O © oo ococ o o + +
O O O oo oo o+ + +
O O O oo oo+ + + +
OO0 O oo o+ + + + +
O O O o=+ + + + + +

123

with the nonzero elements of R represented with a 4+ and the elements to be
eliminated are shown with a S.

Thus to find A = Qvé, we can define n Householder matrices to eliminate

U to give
R -
HnHl :R,
U
so we have
_ (.]Q _
A=|P H, ...H, | R=QR.
0 I,

The Householder matrix, H; € RM+P)*x(Mm+p) will zero the jth column of

U. Its associated Householder vector, v; € R(™+P) | is such that

v;(4) = 1, |
v;(j+1:m) = 0,
vilm+1L:m+p) = x/(rjj—l[rj; ="]ll2), where z =U(1:p,j). |
(4.2.7)
So the H; have the following structure
p— I —
hij [Bjm1 - Pjmp]
hm—l—l,j h'm—|—1,m—|—1 R hm+1,m+p
) hmipj hmipmsr - Pmipmip)

Then to update b we compute

[QTb] i
H,...H =d,

e

where e is such that Uz = e. This gives the following algorithm.

124

Algorlthm 4.2.8 Given A = QR € R™*", with m > n, this algorithm com-
putes QTA R € Rm+P)xn yhere R s upper trapezoidal, Q is orthogonal and
A is A with a block of rows, U € RP*" | inserted in the kth to (k+p—1)st
positions, 1 < k <m+1, p> 1, and d such that | Az — b||, = ||Rz — d||,
where b is b with the vector e inserted in the kth to (k+p—1)st positions. The
residual, ||d(n + 1:m + p)||2, is also computed.
d=Q%
forj=1:n

[V(1:p,), 7(7)] = householder(R(j, 1), U(1:p, /)

% Remember old jth row of R

R; = R(j,j+1:n)

% Update jth row of R

R, j:n) = (1 — 7()))RG, j:n) — 7(G)V (1:p, 5)TU (1:p, jim)

% Update trailing part if U

ifj<n

Ul:p,j+1:n)=U(1:p,j+1:n) —7(5)V(1:p, j) R,
—7(H)V(L:p,)(V(Lip, 5)"U(L:p, j + 1:n))

end

% Remember old jth element of d

d; = R(j)

% Update jth element of d

d(j) = (1 —7(j))d(5) — 7))V (L:p, 5)Te(1: p)

% Update e

e(l:p) =e(l:p) — 7(j)V(1: p, j)d;

—T()V (L:p,)V (1-p,j)T€(1:p))

SH
| — |
oW

% Compute the residual
resid = ||d(n 4+ 1: m + p)||2
Computing R requires 2n’p flops, versus 2n*(m + p — n/3) for the House-
holder QR factorization of A If @ is required, it can be computed with the
following algorithm.

Algorithm 4.2.9 Given the matriz V and vector T from Algorithm 4.2.8 this
algorithm forms an orthogonal matriz Q € RMP)X(m+p) sych that A = QR,

125

where A is the matriz A = QR with a block of rows inserted in the kth to
(k + p — 1)st positions.

Se‘c@:[%2 ?]
itk#m+1

% Permute Q
Q(l:k—1,1:m +p)
Q Q(m+1:m+p,1:m+p)

Q(k:m,1:m + p)

end
forj=1:n
% Remember jth column of Q
% Update jth column
QUi+ p,) = QUi+ p,)(1 = 7))~
Q(L:m +p,m+1:m+p)7(j)V(L:p, j)
% Update m + 1:p columns of @

Q(l:m—i—p,m—i—l:mj—p) =Q(Ll:m+p,m+1:m+p)
~7(§)QkV (L:p, §)"

—7()(QL:m~+p,m+1:m+p)V(1:p,5))V(1:p, j)"
end

This algorithm could be made more economical by noting that at the jth
stage, for 7 > m, ¢;; = 0, and avoiding some unnecessary multiplications by
zero. Also @(m—i—l:m—l—p,l:m) =0 and @(m—i— Iim+pm+1l:m+p) =1,
prior to the permutation.

Algorithm 4.2.8 can be improved by exploiting the Level 3 BLAS by using

the representation of the product of n, Householder matrices, H;, as

H\H,...H, =1-VTVT, (4.2.8)
where
Vi
V=[v vo ... wvp]= ,
Va

126

and V; € R™*™ is lower triangular and 7 is upper triangular. We can write

[Ri1 Ris Ris]
0 Ry Ros
QTA=| 0 0 Ry, (4.2.9)
0 0 0
LUy Uy Uss

where the R; are upper triangular with Ry;; € R™" and Ry, € R™ %™ and
after we have updated the first r columns, then the transformed right-hand
side of (4.2.9) looks like:

‘RS R RY)
0 Ry R

0 0 RY
0 0 0
Lo Uy Uyl

Now we eliminate the first column of Ul(g) and instead of updating the trailing
parts of R and U we update only the trailing parts of Ul(;) and the (r + 1)st
row of Rgg), which are the only elements affected in this middle block column,
and continue in this way until U5 has been eliminated. We can then employ
the representation (4.2.8) to apply n, Householder matrices to update the last
block column in one go. We have, by the definition of the Householder vectors

in (4.2.7)

Vi 0

Va Vo
where V, € RP*™ hold the essential part of the Householder vectors for the

V=) Vlzlnba ‘/2:

bl

current block column. Then

[R3] [[1,] 1 [Ras
R33 0 s R33
(1=vrv T = = | T 00 Vs .
| Uss | | LV, | | Uss |

127

T (I, = TT)Ros — TV, Uy T
R33
0
| VoT" Rys + (I — VoTTV) Uss |

This approach leads to a blocked algorithm, where at the kth stage we
factorize [RL, 0 UZL]", where Ry, € R**™ and Uy, € RP*™, then update
Rys € Rwx(n=km) and UL € RP*("=km) a5 above. And to update QTb = d we
compute
[d(1: (k — 1)ny) 1

(I, — TT)d((k — 1)ny + 1:kny) — TTVye d

d(kny +1:m) []

| VoTTd((k —)np + 1 kny) + (I — VoTTV e |

Algorithm 4.2.10 Gwen A = QR € R™", with m > n, this algorithm
computes @TAV = R € R™+)xn yhere R is upper trapezoidal, @ 15 orthogonal
and A is A with a block of rows, U € RP*™ inserted in the kth to (k+p—1)st
positions, 1 < k <m+1, p> 1, and d such that | Az — b||y = ||Rz — d||s,
where b is b with the vector e inserted in the kth to (k + p — 1)st positions.

The residual, ||d(n + 1:m + p)||2, is also computed. This is a Level 3 BLAS
algorithm with block size ny.

d=QTh
for k=1:ny:n
% Check for the last column block
jb = min(ny,n — k + 1)
Factorize current block with Algorithm 4.2.8 where
VisV(1l:p,k:k+ jb—1)
% If we are not in last block column build T
% and update trailing matrix

iftk+7b<n
for j=k:k+jb—1
% Build T
if j=k
T(1,1)=7(j)
else

128

T(l:j—k,j—k+1)=—7()T(1:5—k,1:5—k)
*V (1:p,k:j — 1D)TV(1:p, 5)
TG—k+1,7—k+1)=1())
end

end

% Compute products we use more than once

Ty =TTV (1:p,k:k+ jb—1)T

T. =Tye

Ty =TyvU(1:p,, k+ jb:n)

% Remember old d and e

dp = d(k:k+ jb—1)

€ = €

% Update d and e

dk:k+jb—1)=dy—T"dy — T,

e=—-V(1l:p,k:k+jb—1)TTd), + e
—V(lip,k:k+jb—1)T,

% Remember old trailing parts of R and U

Ry, =R(k:k+jb—1,k+ jb:n)

Uy, =U(1:p, k + jb:n)

% Update trailing parts of R and U

R(k:k+3jb—1,k+jb:n)= Ry —T"Ry — Ty

Ul:p,k+gb:in) = =V (L:p, ki k + jb— 1)TTR + Uy
—V(L:p, k:k+jb—1)Ty

end
end
~ R
A=

% Compute the residual
resid = ||d(n + 1:m =+ p)||2

We could apply the same approach to improve Algorithm 4.2.9.

Updating the QR Factorization for any m and n

In the case where m < n after m steps of Algorithm 4.2.8 we have

QT 0 Ri1 Ry
H,...H,

0 I 0 Vv

A=pT

129

where Ry; is upper triangular and V' is the transformed U(1: p, m+1:n). Thus
if we compute the QR factorization V = @y Ry, we than have
- QT 0 I, 0
A=|P" Hi...H,
0 I, 0 QF

This gives us the following algorithms to update the QR factorization for any

)E:@R

m and n.

Algorlthm 4.2.11 Given A = QR € R™"™ this algorithm computes QTA =
R € RmPxn yhere R s upper trapezoidal, Q 1s orthogonal and A is A with
a block of rows, U € RP*™ inserted in the kth to (k + p — 1)st positions,
1<k<m+1,p>1.

lim = min(m, n)
for j = 1:lim
[V(1:p,), 7(j)] = householder(R(j, j), U(1:p, /)
% Remember old jth row of R
Rk = R(],j + l:n)
% Update jth row of R
R(j,j:n) = (1 = 7(7)R(, j:n) — 7(j))V (1:p, j)TU(1:p, j:n)
% Update trailing part if U
ifj<n
Ul:p,j+1:n)=U(l:p,j+1:n)—7(5)V(1:p, j) R
—1(HV(1:p,))(V(L:p, 5) UL p, j + 1:n))

itm<n
Perform the QR factorization U(:,m + 1:n) = Qu Ry
R(m+1:m+p,m+1:n) = Ry

end

This algorithm could also be improved by using the representation (4.2.8)
to include a Level 3 BLAS part. If @ is required it can be computed with the

following algorithm.

130

Algorithm 4.2.12 Given the matrices V and Qu and vector T from Algo-
rithm 4 2.11 this algomthm forms an orthogonal matriz Q € Rm+p)x(m+p) gych,
that A = QR where A is the matriz A = QR with a block of rows inserted in
the kth to (k + p — 1)st positions.

Set@: [%2 ?]
ifk#m+1

% Permute @
Q(l:k—1,1:m +p)
Q= é(m-l—l:m—i—p,l:m—i—p)
@(k:m,l:m+p)

end
lim = min(m, n)
for j = 1:lzm

% Remember jth column of Q

Qr=Q(l:m +p,j)

% Update jth column

QL:m+p,j) =QL:m+p,j)(1 —7(j))

—Q(L:m +p,m+1:m+p)r(5)V(1:p, j)
% Update m + 1: p columns of
@(l:m—i-p,m—i-l m+p) = é(l:m—i—p,m—{-l:m—l—p)
—7(j)Qk (L:p,)"
—7())(Q(L:m +p,m+ 1:m+p)V(L:p,5))V (1:p, §)T

end
ifm<n

Q(l:m+pm+1:m+p)=Q(L:m+pm+1:m+p)Qyu
end

4.2.4 Deleting Columns
Deleting One Column

If we wish to delete a variable from our least squares problem then we have
the problem of updating the QR factorization of A where we delete the kth

column, k # n, from A, we can write

A=[Al:m,1:k—1) A(l:m,k+1:n)]

131

then
QTA=[R(1:m,1:k—1) R(l:m,k+1:n)]. (4.2.10)

For example, with m = 8, n = 6 and £ = 3 the right-hand side of Equation
(4.2.10) looks like:

oSO + + + + +

o o 0o o o o <o +
c o o o o < + +
c o oo O + + +
©c oo OO+ + + +

0
with the nonzero elements to remain represented with a + and the elements to
be eliminated are shown with a &.

Thus we can define n — k Givens matrices, G(7,7) € R™*™, to eliminate

the subdiagonal elements of QTAV to give
(Gn,n+ 1T .. Gk, k+1)TQT)A=QTA =R,

where R € R™*(n1) ig upper trapezoidal and @ € R™*™ is orthogonal, and to

update b we compute
Gn,n+1)T .. .Gk, k+1)TQTb =d.

This gives the following algorithm.

Algorithm 4.2.13 Giwen A = QR € R™", with m > n, this algorithm
computes @TZ = R e R0 yhere R is upper trapezoidal, @ s orthogonal
and A is A with the kth column deleted, 1 < k < n — 1, and d such that
|Az — bl|s = ||[Rz — d||s. The residual, ||d(n + 1:m)||s, is also computed.

d=Q"b
set R(1:m,k:n—1)=R(1l:m,k+ 1:n)

132

forj=k:n—-1
[c(4), s(7)] = givens(R(j, j), R(j + 1, 7))
% Update R

R(jij+1,j+1n—1)= [_Cij(;) 283] R(j:j+1,j+1n—1)
% Update d
brrn- |G Bl s

end

R= upper triangular part of R(1:m,1:n —1)
% Compute the residual

resid = ||d(n 4+ 1: m)||2

Computing R requires n2/2 — nk + k2/2 flops, versus 2n2(m — n/3) for the
Householder QR factorization of A If @ is required, it can be computed with

the following algorithm.

Algorithm 4.2.14 Given vectors ¢ and s from Algomthm 4.2.13 this algomthm
forms an orthogonal matrix Q € R™™ gsuch that A = QR where A is the
matriz A = QR with the kth column deleted.

forj=kn-1 -
Q(l:m,j:j+ 1) = Q(l:m,j:j+ 1) [_6(8) ig;]

end

Q=Q

In the case when £ = n then
A=A1l:m,1:k—1), R=R1:m,1:k—1), Q=Q, and d= Q"b,

and there is no computation to do.

Deleting a Block of Columns

To delete a block of p variables from our least squares problem we delete a

block of p columns, from the kth column onwards, from A and we can write

=[A(L:m,1:k—1) A(l:m,k+p:n)]

133

then

QTA=[R(1:m,1:k—1) R(L:m,k+p:n)]. (4.2.11)

For example, with m = 10, n = 8, £ = 3 and p = 3 the right-hand side of

Equation (4.2.11) looks like:

O O 0o 0o o oo o c o +
o O 0o o o o o <o + +
S oo ® O+ + +
©c oo 0 OO0+ + + +

SO OO+ + + + +

=)

with the nonzero elements to remain represented with a + and the elements to

be eliminated are shown with a ©.

Thus we can define n — p — k + 1 Householder matrices, H; € R™*™, with

associated Householder vectors, v; € R®+Y) such that

vi(lij—1) =

v;(j+p+1m) =

0,

1

Y

/(@ A)j; = 11(@Q"A);; 2”1 lle),

where z = QTA(j + 1:j +p, 5),

0.

The H; have the following structure

[1

Hj:

hy.;

hjip.;

134

jj+p

hj +p,j+p

and can be used to eliminate the subdiagonal of QTAV to give
(Hyp.. . HyQT)A=QTA =R,

where R € R"*(n—p) ig upper trapezoidal and @ € R™*™ is orthogonal, and we
update b by computing
H, ,...HQ"b=d.

This gives the following algorithm.

Algorithm 4.2.15 Given A = QR € R™", with m > n, this algorithm
computes @TAV = R € R0 yhere R is upper trapezoidal, @ s orthogonal
and A is A with the kth to (k +p — 1)st columns deleted, 1 < k < n — p,
1 < p < n, and d such that || Az—bl||5 = ||[Rz—d||5. The residual, ||d(n+1:m)||s,
1$ also computed.
d=Q%
set R(1:m,k:n —p)=R(1l:m,k+ p:n)
forj=k:n—p
[V(1:p,7),7(j)] = householder(R(j,7), R(j + 1: 5 +p, 7))
% Update R
R(j,7) = R(j,5) = T(G)R(,) = 7(5)V (L:p,))TR(j + 1: 5 +p,)
ifj<n-—p
R(j:j+p,j+Lin—p)=R(:j+p,j+1n—p)
)| y1my | (1 VORIIRG: +p. + 10—)
end
% Update d

d(j:j+p)=d(j:j +p,j+1)
1 .
—7(j _ 1 V(:p,)T d(j:5+p
O | yaap gy (1 V023710 +)
end
R = upper triangular part of R(1:m,1:n — p)
% Compute the residual
resid = ||d(n 4+ 1:m)||2
Computing R requires 4(np(n/2 —p — k) + p*(p/2 + k) + pk? flops, versus
2(n — p)%(m — (n — p)/3) for the Householder QR factorization of A. If Q is

required, it can be computed with the following algorithm.

135

Algorithm 4.2.16 Given the matriz V and vector T from Algomthm 4.2.15
this algorithm forms an orthogonal matrixz Q € R™*™ gych that A = QR where
A is the matriz A = QR with the kth to (k+p— 1)st columns deleted.

forj=kn—p
Q(l:m,j:j+p)=Q(1:m,j:j+p)
. .. 1 .
—T(J)(Q(ltm,J:J +p) [V(I:p,j)]) [1 V(1:p,j)"]

end

RQ=Q
In the case when £ =n — p + 1 then
A=A1:m,1:k—1), R=R1L:m,1:k—1), Q=@Q, and d= Qb

and there is no computation to do.

Updating the QR Factorization for any m and n

In the case when m < n we need to:

e Increase the number of steps, we introduce lim, the last column to be

updated.

e Determine the last index of the Householder vectors, which cannot exceed

m.

This gives the following algorithms to update the Q)R factorization for any m

and n.

Algorlthm 4.2.17 Gwen A = QR € R™"™ this algorithm computes QTA =
R € R™*(=P) where R is upper trapezoidal, Q 1s orthogonal and A is A with
the kth to (k+p—1)st columns deleted, 1 <k <min(m—1,n—p), 1 <p < n.

set R(1:m,k:n—p)=R(l:m,k+p:n)
lim = min(m — 1,n — p)

136

for j = k:lim
last = min(j + p, m)
[V (1:last — j,7),7(j)] = householder(R(j,), R(j + 1:last, 7))
% Update R
R(.j) = R,) = G)RG. §) — 7(G)V (1:last — , j)"R(j +1: last,)
ifj<n—p
R(j:last,j+ 1:n —p) = R(j:last,j + 1:n — p)
1
—7) [V(l: last — j,j)}
x ([1 V(1:last — 5,5)T | R(j: last,j + 1:n — p))
end
end
R= upper triangular part of R(1:m,1:n — p)

If @ is required, it can be computed with the following algorithm.

Algorithm 4.2.18 Given the matrix V' and vector T from Algorithm 4.2.17
this algorithm forms an orthogonal matriz) € R™*™ such that A = QR, where
A is the matric A = QR with the kth to (k + p — 1)st columns deleted.

lim = min(m — 1,n — p)

for j = k:lim

last = min(j + p, m)

Q(1:m, j:last) = Q(1:m, j: last)

—7(4) (Q(l:m,j:last) [V(!

1:last _j,j)b [1 V(1:last —j,5)"]

end

Q=Q

In the case when k£ > min(m — 1,n — p) then either k=n—p+lorm<n

and the deleted columns are in R;; where
Q"A=[Ry Ry,

with Ry full. There is no computation to do in either case.
See Appendix D for Fortran codes delcols.f and delcolsq.f for updating

R and @ respectively.

137

4.2.5 Adding Columns
Adding One Column

If we wish to add a variable to our least squares problem, we have the problem
of updating A = @R after adding a column, v € R™, in the kth position,

1<k<n+1, of A= QR, we can then write
A=[A(l:m,1:k=1) u A(l:m, k:n)]
then
QTA=[R(1:m,1:k—1) v R(l:m, k:n)], (4.2.12)

where v = QTu. For example, with m = 8, n = 6 and k¥ = 4 the right-hand
side of Equation (4.2.12) looks like:

o o o o o o <o +
o o o o o o + +
o o o o o + + +
(ORNORRORNORE S S
©c oo d + + + +
S <o d + + + + +
o + + + + + +

with the nonzero elements to remain represented with a +, the elements to be
eliminated are & and the zero elements that can be filled in are shown with a
D.

Thus we can define m — k Givens matrices, G(i,7) € R™*™ to eliminate

v(k + 1:m). We then have

Gk, k+1)7"...Gm—1,m)TQ")A=Q"A =R,

where R € Rmx(n+1) g upper trapezoidal and @ € R™™ is orthogonal. We

138

then update b by computing
Gk, k+1)T...G(m —1,m)TQTb=d

This gives the following algorithm.

Algorithm 4.2.19 Given A = QR € R™", with m > n, this algorithm
computes @TAV = R € R0+ yhere R is upper trapezoidal, @ s orthogonal
and A is A with a, u € R, column inserted in the kth position, 1 < k <n+1,
and d such that || Az — b||s = ||Rz — d||s. The residual, ||d(n + 1:m)]|s, is also
computed.

u=QTu

d=Q7Th

fori=m:—1:k+1
[c(7), s(i)] = givens(u(i — 1), u(7))
u(i—1) = e(D)u(i — 1) — s(i)R(i)
% Update R if there is a nonzero row
ifi<n+1

R(i—1:4,i—1:n) = [eli) S(?)}TR(i—lzi,i—lzn)

end
% Update R
. 1T

d(i — 1:7) = [eli) S(Z.)] d(i — 1:9)
end
ifk=1

R= upper triangular part of [u R]
elseif k=n+1

R = upper triangular part of [R u]
else

R = upper triangular part of [R(1:m,1:k—1) u R(l:m, k:n)]
end
% Compute the residual
resid = ||d(n + 1:m) ||

If é is required, it can be computed with the following algorithm.

Algorithm 4.2.20 Given the vectors ¢ and s from Algomthm 4.2.19 this al-
gorithm forms an orthogonal matrix Q € R™™ guch that A = QR where A is
the matrix A = QR with a column inserted in the kth position.

139

fore=m:—-1:k+1
Q(l:m,i—1:49) = Q(1:m,i — 1:4) [

end

Q=Q

Adding a Block of Columns

If we add p variables to our problem, that is add a block of p columns, U €

R™*Pin the kth to (k + p — 1)st positions of A we can write
A=[A(L:im,1:k—=1) U A(l:m, k:n)]
then
QTA=[R(1:m,1:k—1) V R(l:m,k:n)],

where V = QTU. For example, with m = 12, n = 6, k = 3 and p = 3 the
right-hand side of Equation (4.2.12) looks like:

©c O o0 o o0 o o oo o o +
o O O 0o 0o o0 o o o o 4+ +
OOBOBOMBONBONORBORORE - .
OOBOBOBONBORBORONE S - .
OO0 OO DO oD+ + + + +
ScCoocococo®® @ + + +
©c oo <c o b b+ + + +
©c oo o0od® Db+ + + + +
cocoocod &+ + + + + +

with the nonzero elements to remain represented with a +, the elements to be
eliminated are © and the zero elements that can be filled in are shown with a

®.

140

We would like an orthogonal matrix, W, such that
I 0
0 wTt

If W were the product of Householder matrices, then R would be full. Thus

QTAV — E, %% c R(m—k+1)x(m—k+1))

we use Givens matrices and generalize Algorithm 4.2.19.

Algorithm 4.2.21 Given A = QR € R™", with m > n, this algorithm
computes @TZ = R € R0+ yhere R is upper trapezoidal, @ 18 orthogonal
and A is A with a block of columns, U € R™*P inserted in the kth to (k+p—1)st
position, 1 <k <n+1, p>1, and d such that ||Az — b||, = ||Rz — d||s. The
residual, ||d(n + 1:m)||2, is also computed.

U=Q™TU
d=QT
for j=1:p

fori=m:—1:k+j
(C (i,), S(i,)] = givens(U(i — 1,), U(i, /)
% Update U
Ui —1,5) = C(6, j)U(i — 1,5) = S(i,)U i,)
ifj<p
Ui —1:4,j+ 1:p) =
Cli,j) S(i,J)]T L
o O U@ —1:2,7+1:
[_S(Z)]) C(la]) (7 p)
end
% Update R if there is a nonzero row
ifi<n+4j
R(i—1:4,0—j:n) =
[Ci,5) S(,9)

-S(1,9) C(i,j)} R(i—1:4,i— j:n)

end
% Update d
N el () BRI O%) B S
d(l_l")_[—S(i,j) C(m’)} i = 1:4)
end
end

ifk=1
R = upper triangular part of [U R]
elseif k=n+1

141

R = upper triangular part of [R U |
else

R = upper triangular part of [R(1:m,1:k—1) U R(1:m,k:n)]
end
% Compute the residual

resid = ||d(n + 1:m) ||

Computing R requires 6(mp(n-+p—m/2)—p(n/2—k/2—p/3)+kp(k/2—n))
flops, versus 2(n + p)?(m — (n + p)/3) for the Householder QR factorization of
A Tf @ is required, it can be computed with the following algorithm.
Algorithm 4.2.22 Given matrices C' and S from Algomthm 4.2.21 this algo—
rithm forms an orthogonal matrix Q € R™™ such that A = QR where A is

the matriz A = QR with a block of columns inserted in the kth to (k+p—1)st
positions.

forj=1:p
fori =m:—1:k+j
[6 S6,)
Q(lim,i—1:1) = Q(Lim,i — 1:4) | ij) Clij)
end
end
0=Q

We can improve on this algorithm by including a Level 3 BLAS part by

using a blocked Q)R factorization of part of A before we finish the elimination

142

process with Givens matrices. That is, for our example:

O O OO0 OO0 oo o o o o +
o 0o 0 o oo o o o o + +
ONNORNOCROCRNOMOMORORNORE N S =
© 060600000+ + + +
© 0 0o Dbdo+ + + + +
SCoocococo®®®+ + +
c c o oo b Db+ + + +
S oo o0odd D+ + + + +
©cc o b b b+ + + + + +

©

we eliminate the elements shown with a ® with a QR factorization of the
bottom 6 by 3 block of V' and the remainder of the elements can be eliminated
with Givens matrices and are shown with a ©. The zero elements that can be
filled in are shown with a @ and the nonzero elements to remain represented
with a 4+ as before.
For the case of k # 1,n+ 1 and m > n + 1, we have
Ryy V2 Ry
QUA=| 0 Vi Ry
0 Vs O
where Ry; € RE-DX(=1 and Ry3 € R(—k+1)x(n=k+1) are upper triangular, then

if V3, has the QR factorization Vi, = Qy Ry € R(m™*P we have

I 0 Rll ‘/12 R12
!0 o QA=| 0 Ve Ry
Y Ry 0

We then eliminate the upper triangular part of Ry and the lower triangular

part of V5, with Givens matrices which makes Ry3 full and the bottom right

143

block upper trapezoidal. So we have finally

Gk+2p—2k+2p—1)T ... Glk+p,k+p+1)TG(k, k+1)T
I, 0

|@"A=R

Gk+p—1,k+p)T

This gives the following algorithm.

Algorithm 4.2.23 Given A = QR € R™", with m > n, this algorithm
computes @TZ = R € R0 yhere R is upper trapezoidal, @ 1S orthogonal
and A is A with a block of columns, U € R™*? inserted in the kth to (k+p—1)st
position, 1 < k <n+1, p>1, and d such that ||Az — b||s = |[Rz — d||5. The
residual, ||d(n 4+ 1:m)||2, is also computed. The algorithm incorporates a Level
3 QR factorization.

U=Q"U
d=Q
ifm>n+1

% Factorize rows n + 1 to m of U if there are more than 1,
% with a Level 3 QR algorithm
Un+1:m,1:p) = QuRy
% Update d
d(n+1:m) = Q%d(n + 1:m)
end
itk <n
% Zero out the rest with Givens
forj=1:p
% First iteration updates one column
upfirst =n
fori=n+j:-1:7+1
[C(2,5), S(i, 5)] = givens(U(i — 1, 5),U(7, j))
% Update U
U(i—1,7)=C(,)U(—1,5) = S,)U(, j)
ifj<p
U@i—1:4,5+1:p) =
CG.q) SEN" e _1h s
_SG.9) Cli) UG —1:4,7+ 1:p)
end
% Update R

144

R(i — 1:i,upfirst:n) =
C(i,5) S(,)]T i
o O R(: — 1:4,upfirst:n
| Ssto) cn) - v
% Update one more column next 7 step
upfirst = upfirst — 1
% Update d

J(z‘—m):[

end

CG.j) SGN" 5.
56 o) %10
end
end
ifk=1
R= upper triangular part of [U R]
elseif k=n+1
R= upper triangular part of [R U]
else
R = upper triangular part of [R(1:m,1:k—1) U R(1:m, k:n)]
end
% Compute the residual
resid = ||d(n + 1:m)||

If @ is required, it can be computed with the following algorithm.

Algorithm 4.2.24 Given matrices Qu, C' and S and the vector T from Algo-
rithm 4.2.28 this algomthm forms an orthogonal matrix Q € R™ ™ such that
A= QR where A is the matriz A = QR with a block of columns inserted in
the kth to (k + p — 1)st positions.

ifm>n+1
Q(l:m,1:m—n)=Q(1:m,1:m —n)Qy
end
iftk<n
forj=1:p
fori=n+j:-1:7+1
1 — O i 1.0 | Cd) S(0)
Q(l:m,i—1:1) = Q(1:m,i— 1:49) _8G.5) Clij)
end
end
end
Q=Q

145

Updating the QR Factorization for any m and n

In the case where m > n, to update only the QR factorization, then we need

to consider the limits of the for loops and upstart to convert Algorithm 4.2.23.

e We introduce jstop which is the last index in the outer for loop. There
may be a situation where there are not elements to eliminate over the
full width of U. For example QTAV, form =5, n=6,k=3and p=3,
looks like:

o o o o +
© o + +
o + + +
+ + + +
+ + + +
e + + +
+ + + +
+ + + +
+ + + +

0 e 6+ & & + +

and there are no elements to eliminate in the last column of V.

e istart is introduced as the first element in the jth column to be eliminated

cannot exceed m.

e The first column to be updated for jth step may no longer be n, so

upfirst is set accordingly.

Note if m < n + 1 and k£ > n there is nothing to do and neither outer if block

is entered.

Algorlthm 4.2.25 Given A = QR € R™ ", this algorithm computes QTA =
R € R™4p) yhere R is upper trapezoidal, Q 1s orthogonal and A is A with a
block of columns, U € R™*? inserted in the kth to (k + p — 1)st position. The
algorithm incorporates a Level 3 QR factorization.

U=Q"U

ifm>n+1
% Factorize rows n + 1 to m of U if there are more than 1,
% with a Level 3 QR algorithm
Un+1:m,1:p) = QuRy

146

end
ifk<n
% Zero out the rest with Givens, stop at the last column of
% U or the last row if that is reached first
jstop = min(p,m — k — 2)
for j = 1:jstop
% Start at first row to be eliminated in current column
istart = min(n + j, m)
% Index of first nonzero column in update of R
upfirst = max(istart —j — 1,1)
for 1 = istart: —1:7 + 1
[C(la])’ S(Za])] = givens(U(i - 15.7)5 U(Zaj))
% Update U
Ui —1,7) = C)UG - 1,5) = S,)U(, 5)
ifj<p
% Update U
Ui — 14,5+ 1:p) =
CGi.d) SGA i 1i 1.
{—S(i,j) C(i,j)] U@ —1:4,7+ 1:p)
end
% Update R
R(i — 1:4,upfirst:n) =
[_0‘5%,]])) g((:,: ;))] R(i — 1:4,upfirst:n)
% Update one more column next i step
upfirst = upfirst — 1
end
end
end
ifk=1
R= upper triangular part of [U R)]
elseif k=n+1
R= upper triangular part of [R U]
else
R = upper triangular part of [R(1:m,1:k—1) U R(1:m,k:n)]
end

If @ is required, it can be computed with the following algorithm.

147

Algorithm 4.2.26 Given matrices Qu, C' and S and the vector T from Algo-
rithm 4 2.25 this algorzthm forms an orthogonal matrizx Q € R™*™ such that
A= QR where A is the matriz A = QR with a block of columns inserted in

the kth to (k + p — 1)st positions.

ifm>n+1
Q(l:m,n+1:m)=Q(l:m,n+ 1:m)Qu
end
itk<n
jstop = min(p,m — k — 2)
for 7 = 1: jstop
istart = min(n + j, m)
for + = istart: —1:j + 1

Q(Ll:m,i—1:1) = Q(L:m,i — 1:4)
end

end
end

Q=Q

C(,j)
_S(Z’])

S5(i,7)
C(i,4)

See Appendix D for Fortran codes addcols.f and addcolsq.f for updating

R and @ respectively.

4.3 Error Analysis

It is well known that orthogonal transformations are stable.

following columnwise results [29], where

cku
1—cku’

Te =
and u is the unit roundoff and c is a small integer constant.
Lemma 4.3.1 (Sequence of Givens Matrices) If

B=G,...GiA=Q"A ¢ RV

148

We have the

where G; is a Givens matriz, then the computed matriz B satisfies
QTA—B=AB, ||Abjlls < Allajll, j=1:n O (4.3.1)
Lemma 4.3.2 (Sequence of Householder Matrices) If
B=H,... HA=QTA ¢ RV
where H; is a Householder matriz, then the computed matriz B satisfies
QTA—B=AB, ||Abjlls < Amllajll, j=1:n. O (4.3.2)

This result implies that Householder transformations are less accurate by a

factor of n, but this is not observed in practice. We then have
Theorem 4.3.1 (Householder QR Factorization) If
R=Q"A
where @) is a product of Householder matrices, then the computed factor R
satisfies
QTA-R=AR, |Arills <Fmllajlls, j=1:n. O

We now give results for computing the factor R by our algorithms.

4.3.1 Deleting Rows

We have from Section 4.2.1

’UT

~

G1,2)"...Gm—1,m)"R =

R

bl

and from (4.3.1) we have for the computed quantities R and ©

! v™(5)]
7(1:n,j)

Recall that the G (i, j) are chosen to introduce zeros in Q.

R=R+ AR, ||Ar]l2 < Fmp j=1ln.

2

149

4.3.2 Adding Rows

We have from Section 4.2.3

R] _
H,...H =R, UecR™,
U
and from (4.3.2) we have
z _ 7jj ,
R=R+ AR, |1A7;|l2 < Vnp+1 l '] , j=1Ln.
U(: a]) 2

4.3.3 Deleting Columns

We have from Section 4.2.4

Hn_p...Hk[ﬁ(:,lzk—l) R(:,k+p:n)] =R,

and from (4.3.2) we have
0
AR

R=R+ AR € Rm—k+1)xn

Y

|Arilla =0, j=1k—1,

< An—k—p1)n—k+n) P (K1, 9)ll2, J=kin—p.
4.3.4 Adding Columns

We have from Section 4.2.5

Gk+2p—2,k+2p—1)...
I 0

0 Q%

where V = Q"U € R™? and from (4.3.1) and (4.3.2) we have

Glk+p—1,k+p) [R(:,1:k—1) V R(:,k:n)] =R,

0 0
é = E + 0 + , AH e R(mfn)xn’ AG € R(mfk—}—l)xn
AG
AH

150

|AHjll; =0, k=12>2j2k+p,

< Am-rpllV(n + 1:m, 5)][2, j=kik+p—1,

1AG;l. =0, j=1k—1,
~ 0
< Fnetyn | @V my)+ | ||| 2 d=kin+p.
AT’j 9
Given these results we expect the normwise backward error
14— QR
[[All2

when @ and R are computed with our algorithms to be close to that with
@ and R computed directly from A. We consider some examples in the next

section.

4.4 Numerical Experiments

4.4.1 Speed Tests

In this section we test the speed of our double precision Fortran 77 codes, see
Appendix D, against LAPACK’s DGEQRF, a Level 3 BLLAS routine for comput-
ing the QR factorization of a matrix. The input matrix, in this case Av, is
overwritten with ﬁ, and @ is returned in factored form in the same way as our
codes do.

The tests were performed on a 1400MHz AMD Athlon running Red Hat
Linux version 6.2 with kernel 2.2.22. The unit roundoff u ~ 1.1e-16.

We tested our code with
m = {1000, 2000, 3000, 4000, 5000}

and n = 0.3m, and the number of columns added or deleted was p = 100.

We generated our test matrices by populating an array with random double

151

precision numbers generated with the LAPACK auxiliary routine DLARAN. A =
@R was computed with DGEQRF, and A was formed appropriately.

We timed our codes acting on QTZ, the starting point for computing é,
and in the case of adding columns we included the computation of QTU in our
timings, which we formed with the BLAS routine DGEMM. We also timed DGEQRF
acting on only the part of QTZ that needs to be updated, the nonzero part from
row and column k onwards. Here we can construct R with this computation
and the original R. Finally, we compute DGEQRF acting on A. We aim to show
our codes are faster than these alternatives. In all cases an average of three
timings are given.

To test our code DELCOLS we first chose k£ = 1, the position of the first
column deleted, where the maximum amount of work is required to update the

factorization. We have

A=A(l:m,p+1:n), and QTA = R(1:m,p+ 1:n)
and timed:

e DGEQRF on A.

e DGEQRF on (QT A)(k:n,k:n — p) which computes the nonzero entries of

R(k:m,p+ 1:n).
e DELCOLS on QT A.

The results are given in Figure 4.4.1. Our code is clearly much faster
than recomputing the factorization from scratch with DGEQRF, and for n =
5000 there is a speedup of 20. Our code is also faster than using DGEQRF on

(QT A)(k:n, k:n — p), where there is a maximum speedup of over 3.

152

45 w
¢ DGEQRFon A _
40}| O DGEQRF on (QTA)(k:n,k:n — p) n
—£- DELCOLS on QT A 2
35+ §
30+ 1
B .
;8/ 25+ a
[%2] -
2 o0} 0 1
= :
15¢ 1
101 - i
Q -)
i O |
b _"'_"_‘%--*‘”” — i
1000 2000 3000 4000 5000

Number of rows, m, of matrix

Figure 4.4.1: Comparison of speed for DELCOLS with k£ = 1 for different m.

We then tested for k¥ = n/2 where much less work is required to perform
the updating, we have

A = [A(l:m,1:k—1) A(l:m,k+p:n)], and

QTA = [R(l:im,1:k—1) R(l:m,k+p:n)]

and timed:

e DGEQRF on (QT A)(k:n, k:n — p) which computes the nonzero entries of

R(k:m,k:n —p).
e DELCOLS on QT A,

The results are given in Figure 4.4.2. The timings for DGEQFR on A would,

of course, be the same as for £ = 1, giving a maximum speedup of over 100

153

0.9

-G~ DGEQRF on (QT A)(k:n,k:n — p)
0.8H —=— DELCOLS on QT4 /]

©

~
T
~
i

o
(o))
T
~

i

OL} 1 1
1000 2000 3000 4000 5000
Number of rows, m, of matrix

Figure 4.4.2: Comparison of speed for DELCOLS with & = n/2 for different m.

in this case. We achieve a speedup of approximately 3 over using DGEQRF on

(QTA)(k:n, k:n — p).
We then considered the effect of varying p with DELCOLS for fixed m = 3000,
n = 1000 and £ = 1. As we delete more columns from A there are less columns

to update, but more work is required for each one. We chose
p = {100, 200, 300, 400, 500, 600 700, 800}
and timed:
e DGEQRF on A

e DGEQRF on (QT A)(k:n,k:n — p) which computes the nonzero entries of

R(k:m,k:n — p).

154

12

& DGEQRF on A _
~O- DGEQRF on (Q7 A)(k:n,k:n — p)
108 —— DELCOLS on QT A 4
N A
g .
@ &
7)) 6 B u
£ -
= &
4t 1
O
- : o 1
2P - © - _
[.
D

300 400 500 600 700 80
Number of columns, p , deleted from matrix

O Il
100 200

Figure 4.4.3: Comparison of speed for DELCOLS for different p.

e DELCOLS on QTA.

The results are given in Figure 4.4.3. The timings for DELCOLS are relatively
level and peak at p = 300, whereas the timings for the other codes obviously
decrease with p. The speedup of our code decreases with p, and from p = 300
there is little difference between our code and DGEQRF on (QTA)(k: n, k:n — p).

To test ADDCOLS we generated random matrices A € R™*" and U € R™*P,

and again use

m = {1000, 2000, 3000, 4000, 5000}

n = 0.3m, and p = 100. We first set ¥ = 1 where maximum updating is

required. We have

A=[U A], and QTA=[Q"U R]

155

60 R
O DGEQRFon A _
—£- ADDCOLS on Q7 A

50

T
1

T
1

40

T
1

30

Times (secs)

T
1

20

10

(J{ — i i i
1000 2000 3000 4000 5000
Number of rows, m, of matrix

Figure 4.4.4: Comparison of speed for ADDCOLS with k£ = 1 for different m.

and timed:
e DGEQRF on A.
e ADDCOLS on QT A, including the computation of QTU with DGEMM.

The results are given in Figure 4.4.4. Here our code achieves a speedup of
over 3 for m = 5000 over the complete factorization of A.

We then tested for k = n/2, where less work is required to do the updating.
We have

A = [A(:m,1:k—1) U A(l:m,k:n)], and
QTA = [R:m,1:k—1) QTU R(1:m,k:n)]

and timed:

156

60 e
O DGEQRFon A _

~O- DGEQRF on (QT A)(k:m,k:n + p) ‘

50 —=- DELCOLS on QT4

401 -]

@ :

(&)

(6]

2 300 . :

é K

= . //Q
20+t o i

O - i

10

1000 2000 3000 4000 5000
Number of rows, m, of matrix

Figure 4.4.5: Comparison of speed for ADDCOLS with k£ = n/2 for different m.

e DGEQRF on ,ZL as above.

e DGEQRF on (Q" A)(k:m, k:n + p) which computes R(k:m,k:n + p), in-

cluding the computation of QTU for which we again use DGEMM.
e ADDCOLS on Q7 A, including the computation of QTU.

The results are given in Figure 4.4.5. Here we have a maximum speedup of
over 4 with our code against DGEQRF on A. We achieve a maximum speedup of
approximately 2 against DGEQRF on (QA)(k:m, k:n + p).

We do not vary p as this increases the work for both our code and DGEQRF

on (QTA)(k:m, k:n + p) roughly equally.

157

4.4.2 Backward Error Tests

The tests here were performed on a 2545MHz AMD Pentium running a hybrid
version of Red Hat Linux 8 and 9 with kernel 2.4.20.

Here we test our code for updating () and R; DELCOLS and DELCOLSQ for
deleting columns and ADDCOLS and ADDCOLSQ for adding columns. We did this

in the following way:

e We form a random matrix
AO =[A; U A], ||Ailr,||Az2llz, [|U]|F of order 100,
where A; € R?<k-1) 4, ¢ Rmx(n—k-p+l)] ¢ RM*P,
e We then form the QR factorization
A0) — Q(O)R(O) — Q(U) [Rl Ry RQ] ’

where R, € R R, € Rm<(n—k—ptl) R, € R™ P using the LA-

PACK routines DGEQRF and DORGQR.

e Next, for

g:[Al AQ],

we form

QU'A=[R, R,

and call DELCOLS and DELCOLSQ to update the QR factorization of Z,
forming
Z == @é - [él EQ] s

where R, € Rmx(k=1) R, € Rmx(n—k-p+1)_

158

e We now compute the QR factorization of A©® by updating @ and R. We
call ADDCOLS on
[Ri Q"U Ry]
to form R™M and then call ADDCOLSQ to form QV), so we have, in exact

arithmetic

A©® — QO RO,

We then repeat this rep times and measure the normwise backward error

”A(O) _ Q(rep)R(rep) ”2
[[All2

We use every combination of the following set of parameters:

m = 500
n = {400, 500, 600}
p = {50, 100, 150}

kE = {1,51,..., n—p+1}.

We then repeated the entire process, but with
|U||F of order 1e+9.

The results are given in Table 4.4.1 and Table 4.4.2. The error increases with
the number of repeats which is expected. However, the value is not effected
significantly by the value of ||U||r.

The smallest value of the error in every case was approximately of order

10u. The worse case was still only of order 2 x rep * u.

159

Table 4.4.1: Normwise backward error for ||U||z order 100.

rep) 50 500
Smallest error over all tests | 1.146e-15 | 1.212e-15 | 1.223e-15
Largest error over all tests | 5.031e-15 | 2.399e-14 | 1.252e-13

Table 4.4.2: Normwise backward error for ||U||r order 1e+9.

rep) 50 500
Smallest error over all tests | 8.298e-16 | 9.309e-16 | 9.576e-16
Largest error over all tests | 4.381e-15 | 2.055e-14 | 1.014e-13

4.5 Conclusions

The speed tests show that our updating algorithms are faster than computing
the QR factorization from scratch or using the factorization to update columns
k onward, the only columns needing updating.

Furthermore, the normwise backward error tests show that the errors are
within the bound for computing the Householder Q) R factorization of A. Thus,
within the parameters of our experiments, the increase of speed is not at the
detriment of accuracy.

We propose the double precision Fortran 77 codes delcols.f, delcolsq.f,
addcols.f and addcolsq.f, and their single precision and complex equiva-

lents, be included in LAPACK.

4.6 Software Available

Here we list some software that is available to update the QR factorization and
least squares problem. An ’x’ in a routine indicates more than one routine for

different precisions or for real or complex data.

160

4.6.1 LINPACK

LINPACK [21] has three routines that update the least squares problem and

the QR factorization.

e xCHUD updates the least squares problem when a row has been added in

the (m + 1)st position.

e xCHDD updates the least squares problem when a row has been deleted

from the mth position, an implementation of Saunder’s algorithm.

e xCHEX update the least squares problem when the rows of A have been

permuted.

In all cases the transformation matrices are represented by a vectors of

sines and cosines, and () is not constructed.

4.6.2 MATLAB

MATLAB [36] supply three routines for updating the QR factorization only.

e grdelete updates when one row or column is deleted from any position.
e grinsert updates when one row or column is added to any position.

e grupdate returns the factorization of A after a rank one change, that is

A=A+w", ueR" veR".

In all cases both @ and R are returned.

4.6.3 The NAG Library

The Mark 20 NAG Library [38] contains routines for updating two cases.

161

e F06xPF performs the factorization

auv” + R, = @él,

where -
R, - R, _
R = = , Rl,Rl ERan’
0 0
and
Q= QQ.

(Q is represented by vectors of sines and cosines.

e F06xQF performs the downdating problem
R, R,
0

av”

where R, R and @ are as above.

4.6.4 Reichel and Gragg’s Algorithms

Reichel and Gragg [43] provide several Fortran 77 implementations of the al-
gorithms discussed in [13] for updating the QR factorization, returning both
@ and R. In all cases only m > n is handled. The routines use BLAS like rou-
tines for matrix and vector operations written for optimal performance on the
test machine used in [43]. No error results are given for the Fortran routines,

although some results are given for the Algol implementations in [13].

e DDELR updates after one row is deleted; this algorithm varies from ours

and uses a Gram-Schmidt re-orthogonalization process.

e DINSR updates when one row is added, and is similar to our algorithm.

e DDELC updates when one column is deleted, and is similar to our algo-

rithm.

162

e DINSC updates after one column is added; this algorithm varies from ours

and again uses a Gram-Schmidt re-orthogonalization process.
e DRNK1 updates after a rank 1 modification to A.

e DRRPM updates when A is A with some if its columns permuted.

4.6.5 What’s new in our algorithms

Our contribution is:

e We deal with adding/deleting block of p row/columns, and in two of the
four cases we exploit the Level 3 BLAS. Also, the Level 2 code for deleting
a block of rows is more efficient than calling the code for deleting one row

p times.

e In the case of updating the QR factorization we place no restrictions on

m and n.

e All our codes call existing BLAS and LAPACK routines.

163

Chapter 5

Summary

We have presented new algorithms and Fortran 77 LAPACK-style codes for
computing the Cholesky factorization with complete pivoting of a symmetric

positive semidefinite matrix, namely:

e lev2pchol.f A Level 2 BLAS routine.

e lev3pchol.f A Level 3 BLAS routine.

It has been shown that these new codes can be many times faster than the
existing LINPACK code. Also, with the Higham [29] stopping criterion they
provide more reliable rank detection and can have a smaller normwise backward
error than using the existing LINPACK code.

We propose our codes should be included in a future release of LAPACK,

and have written testing code for this purpose.

The semidefinite symmetric generalized eigenvalue problem has been con-
sidered, both the regular and nonregular cases. We presented an algorithm that
can have a potentially smaller operation count than existing methods. Different
rank revealing factorizations were explored for transforming the problem and

demonstrated practically with our MATLAB M-file ssgep.m. In particular we

164

did not restrict ourselves to orthogonal factorizations as other methods have
done.

Our numerical experiments showed there is a trade-off between the num-
ber of flops and the size of the backward error of the solution. That is, the
implementation of our algorithm with orthogonal rank revealing factorizations
required more flops than using nonorthogonal rank revealing factorizations but
the normwise backward error was generally smaller.

For regular matrix pencils the normwise backward error was generally better
for the QZ algorithm than the implementations of our algorithm, but required
much more flops. As the QZ algorithm can not be relied upon for nonregular
pencils, we compared our algorithm with the GUPTRI algorithm in this case.
However, we found the GUPTRI algorithm sometimes failed and always gave
a larger normwise backward error. It also needs many times more flops than
the implementations of our algorithm. Thus, for nonregular matrix pencil our
algorithm performs better in every regard for out test problems.

There is still the open question as to the effect of the rank decisions we
make at each step of our algorithm and are made in the GUPTRI algorithm on

the final solution of the semidefinite symmetric generalized eigenvalue problem.

Updating the QR factorization with applications to the least squares prob-
lem was also treated. Algorithms were presented that compute the factorization
A= @ﬁ where A is the matrix A = QR after it has had a number of rows or
columns added or deleted.

We presented Fortran codes for a subset of these problems, namely:
e delcols.f for updating R when columns have been deleted from A.

e delcolsq.f for updating ¢ when columns have been deleted from A.

165

e addcols.f for updating R when columns have been added to A.
e addcolsq.f for updating () when columns have been added to A.

These codes, and our other algorithms, differ from previous methods as
we have exploited the Level 3 BLAS where possible. Also we have dealt with
blocks of rows and columns and place no restriction on the dimensions of A.

It was shown that our codes can be much faster than computing the factor-
ization of A from scratch with existing LAPACK routines. Also, the backward
error of our updated factors is comparable to the error bounds of the QR
factorization of A.

We propose our codes should be included in a future release of LAPACK,
with appropriate testing code to be written.

We have not written Fortran code for updating after adding rows. Also,
more investigation is needed to decide on the best approach for a practical code

for updating after rows have been deleted.

166

Appendix A

Code for the Pivoted Cholesky
Factorization

A.1 1lev2pchol.f

SUBROUTINE LEV2PCHOL(UPLO, N, A, LDA, PIV, RANK, TOL, WORK,
$ INFO)

Modified to include pivoting for semidefinite matrices by
Craig Lucas, University of Manchester. January, 2004

Original LAPACK routine DPOTF2

Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992

* X X X ¥ X ¥ X * *

. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, LDA, N, RANK
CHARACTER UPLO

. Array Arguments ..
DOUBLE PRECISION A(LDA, *), WORK(*)
INTEGER PIV(*)

*

Purpose

*

LEV2PCHOL computes the Cholesky factorization with complete

167

* X K X K X X X X ¥ * *

*

* K X X X X K X K X K X X X X ¥ X ¥ X X ¥ ¥ ¥ X ¥ ¥ * * * *

pivoting of a real symmetric positive semidefinite matrix A.

The factorization has the form

P> x A xP=10"*U, if UPLO = ’U’,

P> x AxP=L *xL’, if UPLO = 'L’,
where U is an upper triangular matrix and L is lower triangular, and
P is stored as vector PIV.

This algorithm does not attempt to check that A is positive
semidefinite. This version of the algorithm calls level 2 BLAS.

Arguments

UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.
= ’U’: Upper triangular
= ’L’: Lower triangular

N (input) INTEGER
The order of the matrix A. N >= 0.

A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A. If UPLO = °U’, the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = °L’, the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization as above. If UPLO = U the first RANK rows

of the upper triangular part contains the nonzero part of U.
If UPLO = L the first RANK columns of the lower triangular
part contains the nonzero part of L. A is unchanged if

RANK = 0.

PIV (output) INTEGER array, dimension (N)
PIV is such that the nonzero entries are P(PIV(K), K) = 1.

RANK (output) INTEGER

168

* K X X X X ¥ X K X XK X X ¥ X ¥ X * ¥ * ¥ %

The rank of A given by the number of steps the algorithm
completed. If the largest algebraic diagonal element is
zero than RANK is set to zero.

TOL (input) DOUBLE PRECISION
User defined tolerance. If TOL < O, then N*EPS*MAX(A(K,K))
will be used. The algorithm terminates after K-1 steps if
the Kth pivot <= TOL.

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

WORK DOUBLE PRECISION array, dimension (2xN)
Work space.

INFO (output) INTEGER
< 0: if INFO = -K, the K-th argument had an illegal value
= 0 algorithm completed successfully.

. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

. Local Scalars ..
DOUBLE PRECISION AJJ, DSTOP, DTEMP, EPS
INTEGER ITEMP, J, P, PVT
LOGICAL UPPER

. External Functions ..
DOUBLE PRECISION DLAMCH
LOGICAL LSAME
EXTERNAL DLAMCH, LSAME

. External Subroutines ..
EXTERNAL BLAS_DMAX_VAL, DGEMV, DSCAL, DSWAP, XERBLA

. Intrinsic Functions ..

INTRINSIC MAX, SQRT

Test the input parameters

169

*

10

INFO = 0
UPPER = LSAME(UPLO, U’)

IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, °L’)) THEN

INFO = -1

ELSE IF(N.LT.0) THEN
INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN
INFO = -4

END IF

IF(INFO.NE.O) THEN
CALL XERBLA(’LEV2PC’, -INFO)
RETURN

END IF

Quick return if possible

IF(N.EQ.0)
$ RETURN

Initialize PIV

DO 10 P =1, N
PIV(P) =P

CONTINUE

Get unit roundoff

EPS = DLAMCH(’E’)

Compute stopping value

CALL BLAS_DMAX_VAL(N, AC 1, 1), LDA+1, PVT, DTEMP)

AJJ = A(C PVT, PVT)
IF(AJJ.EQ.ZERO) THEN

RANK = 0
GO TO 80
END IF

Compute stopping value if not supplied

IF(TOL.LT.ZERO) THEN
DSTOP = N*EPS*AJJ

170

*

* ¥ ¥ X *

ELSE
DSTOP = TOL
END TIF

Set first half of WORK to zero, holds dot products

DO 20P =1, N
WORK(P) = 0
20 CONTINUE

IF(UPPER) THEN
Compute the Cholesky factorization P’ * A * P =T’ * U
DO 40 J =1, N

Find pivot, test for exit, else swap rows and columns
Update dot products, compute possible pivots which are
stored in the second half of WORK

DO 30 P =17J, N

IF(J.GT.1) THEN

WORK(P) = WORK(P) + A(J-1, P)*x2
END TIF
WORK(N+P) = A(P, P) - WORK(P)

30 CONTINUE

IF(J.GT.1) THEN
CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP, DTEMP)
PVT = ITEMP + J - 1
AJJ = WORK(N+PVT)
IF(AJJ.LE.DSTOP) THEN
ACJ, J) =AJJ
GO TO 70
END IF
END IF

IF(J.NE.PVT) THEN

Pivot 0K, so can now swap pivot rows and columns

171

* %

* ¥ * * *

40

ACPVT, PVT) = AC J, J)
CALL DSWAP(J-1, AC 1, J), 1, AC1, PVT), 1)
IF(PVT.LT.N)
CALL DSWAP(N-PVT, A(J, PVT+1), LDA,
A(PVT, PVT+1), LDA)
CALL DSWAP(PVT-J-1, A(J, J+1), LDA, A(J+1, PVT), 1)

Swap dot products and PIV
DTEMP = WORK(J)

WORK(J) = WORK(PVT)
WORK(PVT) = DTEMP

ITEMP = PIV(PVT)

PIV(PVT) = PIV(J)

PIV(J) = ITEMP
END IF

AJJ = SQRT(AJJ)
ACJ, J) =AJJ

Compute elements J+1:N of row J
IF(J.LT.N) THEN
CALL DGEMV(’Trans’, J-1, N-J, -ONE, A(C 1, J+1), LDA,
AC1, J), 1, ONE, AC J, J+1), LDA)
CALL DSCAL(N-J, ONE / AJJ, AC J, J+1), LDA)
END IF
CONTINUE
ELSE
Compute the Cholesky factorization P’ * A x P = L * L’
DO 60 J =1, N
Find pivot, test for exit, else swap rows and columns
Update dot products, compute possible pivots which are
stored in the second half of WORK

DO 50 P =J, N

IF(J.GT.1) THEN

172

50

WORK(P) = WORK(P) + A(P, J-1)*x*2
END IF
WORK(N+P) = AC P, P) - WORK(P)

CONTINUE

IF(J.GT.1) THEN
CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP, DTEMP)
PVT = ITEMP + J - 1
AJJ = WORK(N+PVT)
IF(AJJ.LE.DSTOP) THEN
ACJ, J) =AJ]
GO TO 70
END IF
END IF

IF(J.NE.PVT) THEN
Pivot 0K, so can now swap pivot rows and columns

ACPVT, PVT) = AC J, J)
CALL DSWAP(J-1, A(C J, 1), LDA, A(C PVT, 1), LDA)
IF(PVT.LT.N)
CALL DSWAP(N-PVT, A(PVT+1, J), 1, A(PVT+1, PVT),
1)
CALL DSWAP(PVT-J-1, A(J+1, J), 1, AC PVT, J+1), LDA)

Swap dot products and PIV

DTEMP = WORK(J)
WORK(J) = WORK(PVT)
WORK(PVT) = DTEMP
ITEMP = PIV(PVT)
PIV(PVT) = PIV(J)
PIV(J) = ITEMP

END IF

AJJ = SQRT(AJJ)
ACJ, J) = A1

Compute elements J+1:N of column J

IF(J.LT.N) THEN

173

CALL DGEMV(°’No tram’, N-J, J-1, -ONE, A(J+1, 1), LDA,
$ ACJ, 1), LDA, ONE, A(C J+1, J), 1)
CALL DSCAL(N-J, ONE / AJJ, AC J+1, J), 1)
END IF
60 CONTINUE
END IF
Ran to completion, A has full rank

RANK = N

GO TO 80
70 CONTINUE

Rank is number of steps completed
RANK = J - 1

80 CONTINUE
RETURN

End of LEV2PCHOL

END

174

A.2 1lev3pchol.f

The Level 3 code calls the Level 2 code when the block size is greater than n.
The block size is determined by the LAPACK function ILAENV. Note we pass
the function name DPOTRF, the existing Level 3 LAPACK routine for the full
rank Cholesky factorization, to return a suitable value.

SUBROUTINE LEV3PCHOL(UPLO, N, A, LDA, PIV, RANK, TOL, WORK,
$ INFO)

Craig Lucas, University of Manchester. January, 2004
Some code taken from LAPACK routine DPOTF2

* ¥ ¥ ¥ *

. Scalar Arguments ..
DOUBLE PRECISION TOL
INTEGER INFO, LDA, N, RANK
CHARACTER UPLO

. Array Arguments ..
DOUBLE PRECISION A(LDA, *), WORK(*)
INTEGER PIV(*)

*

Purpose

*

LEV3PCHOL computes the Cholesky factorization with complete
pivoting of a real symmetric positive semidefinite matrix A.

The factorization has the form

P> x A x P =0 U, if UPLO U,

P> x A *x P=L xL’, if UPLO LY,
where U is an upper triangular matrix and L is lower triangular, and
P is stored as vector PIV.

This algorithm does not attempt to check that A is positive
semidefinite. This version of the algorithm calls level 3 BLAS.

* K X X X X ¥ X ¥ X ¥ ¥ * *

Arguments

*

UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is stored.

* % ¥ *

175

* X X K X X K X K X K X X X X K X K X X ¥ K ¥ X ¥ X ¥ ¥ ¥ ¥ X ¥ ¥ * ¥ ¥ ¥ X ¥ * ¥ *x *

PIV

RANK

TOL

LDA

WORK

INFO

’U’: Upper triangular
’L’: Lower triangular

(input) INTEGER
The order of the matrix A. N >= 0.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)

On entry, the symmetric matrix A. If UPLO = °U’, the leading
n by n upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced. If UPLO = ’L’, the
leading n by n lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = O, the factor U or L from the Cholesky
factorization as above. If UPLO = U the first RANK rows

of the upper triangular part contains the nonzero part of U.
If UPLO = L the first RANK columns of the lower triangular
part contains the nonzero part of L. A is unchanged if

RANK = 0.

(output) INTEGER array, dimension (N)
PIV is such that the nonzero entries are P(PIV(K), K) = 1.

(output) INTEGER

The rank of A given by the number of steps the algorithm
completed. If the largest algebraic diagonal element is
zero than RANK is set to zero.

(input) DOUBLE PRECISION

User defined tolerance. If TOL < O, then N*EPS*MAX(A(K,K))
will be used. The algorithm terminates after K-1 steps if
the Kth pivot <= TOL.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).

DOUBLE PRECISION array, dimension (2*N)
Work space.

(output) INTEGER
< 0: if INFO = -K, the K-th argument had an illegal value

176

* ¥ ¥ * *

* % ¥ %

= 0 algorithm completed successfully.

. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

. Local Scalars ..
DOUBLE PRECISION AJJ, DSTOP, DTEMP, EPS
INTEGER ITEMP, J, JB, K, NB, P, PVT
LOGICAL UPPER

. External Functions ..

REAL DLAMCH

INTEGER ILAENV

LOGICAL LSAME

EXTERNAL DLAMCH, ILAENV, LSAME

. External Subroutines ..
EXTERNAL BLAS_DMAX_VAL, DGEMV, DSCAL, DSWAP, DSYRK,
$ LEV2PCHOL, XERBLA

. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT

Test the input parameters.

INFO = 0
UPPER = LSAME(UPLO, U’)
IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, °L’)) THEN

INFO = -1

ELSE IF(N.LT.0) THEN
INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN
INFO = -4

END IF

IF(INFO.NE.O) THEN
CALL XERBLA(’LEV3PC’, -INFO)
RETURN

END IF

177

*

Quick return if possible

IF(N.EQ.0)
$ RETURN

Get block size

NB = ILAENV(1, ’DPOTRF’, UPLO, N, -1, -1, -1)
IF(NB.LE.1 .OR. NB.GE.N) THEN

Use unblocked code
CALL LEV2PCHOL(UPLO, N, AC 1, 1), LDA, PIV, RANK, TOL, WORK,
$ INFO)
GO TO 110
ELSE
Initialize PIV
DO 10 P =1, N
PIV(P) =P
10 CONTINUE
Get unit roundoff
EPS = DLAMCH(’E’)
Compute stopping value
CALL BLAS_DMAX_VAL(N, A(1, 1), LDA+1, PVT, DTEMP)

AJJ = AC PVT, PVT)
IF(AJJ.EQ.ZERO) THEN

RANK = 0O
GO TO 110
END IF

Compute stopping value if not supplied

IF(TOL.LT.ZERO) THEN
DSTOP = N*EPS*AJJ
ELSE
DSTOP = TOL

178

*

* ¥ ¥ *

* ¥ X ¥ ¥

20

30

END IF

IF(UPPER) THEN
Compute the Cholesky factorization P’ * A x P = U’ *x U
DO 50 K = 1, N, NB
Account for last block not being NB wide
JB = MIN(NB, N-K+1)

Set relevant part of first half of WORK to zero,
holds dot products

DO 20 P = K, N
WORK(P) = 0
CONTINUE

DO 40 J =K, K+ JB -1

Find pivot, test for exit, else swap rows and columns
Update dot products, compute possible pivots which are
stored in the second half of WORK

DO 30 P =7J, N

IF(J.GT.K) THEN

WORK(P) = WORK(P) + A(J-1, P)*x*2
END IF
WORK(N+P) = A(P, P) - WORK(P)

CONTINUE

IF(J.GT.1) THEN
CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP,
DTEMP)
PVT = ITEMP + J - 1
AJJ = WORK(N+PVT)
IF(AJJ.LE.DSTOP) THEN
ACJ, J) =AJJ
GO TO 100

179

END IF
END IF

IF(J.NE.PVT) THEN
Pivot OK, so can now swap pivot rows and columns
AC PVT, PVT) = AC J, J)

CALL DSWAP(J-1, AC 1, J), 1, AC1, PVT), 1)
IF(PVT.LT.N)

$ CALL DSWAP(N-PVT, A(J, PVT+1), LDA,

$ A(PVT, PVT+1), LDA)
CALL DSWAP(PVT-J-1, A(J, J+1), LDA,

$ AC J+1, PVT), 1)

Swap dot products and PIV

DTEMP = WORK(J)
WORK(J) = WORK(PVT)
WORK(PVT) = DTEMP
ITEMP = PIV(PVT)
PIV(PVT) = PIV(J)
PIV(J) = ITEMP

END IF

AJJ = SQRT(AJJ)
ACJ, J) =A1]

Compute elements J+1:N of row J.

IF(J.LT.N) THEN
CALL DGEMV(°’Trans’, J-K, N-J, -ONE, A(K, J+1),

$ LDA, ACK, J), 1, ONE, AC J, J+1),
$ LDA)
CALL DSCAL(N-J, ONE / AJJ, AC J, J+1), LDA)
END IF
40 CONTINUE

Update trailing matrix, J already incremented

IF(K+JB.LE.N) THEN
CALL DSYRK(’Upper’, ’Trans’, N-J+1, JB, -ONE,

180

*

* ¥ ¥ %

* % ¥ * *

$ ACK, J), LDA, ONE, AC J, J), LDA)
END IF

50 CONTINUE
ELSE
Compute the Cholesky factorization P’ * A x P = L * L’
DO 90 K = 1, N, NB
Account for last block not being NB wide
JB = MIN(NB, N-K+1)

Set relevant part of first half of WORK to zero,
holds dot products

DO 60 P =K, N
WORK(P)
60 CONTINUE

I
o

DO 80 J =K, K+ JB -1

Find pivot, test for exit, else swap rows and columns
Update dot products, compute possible pivots which are
stored in the second half of WORK

DO 70 P = J, N

IF(J.GT.K) THEN

WORK(P) = WORK(P) + A(P, J-1)*x2
END IF
WORK(N+P) = A(P, P) - WORK(P)

70 CONTINUE

IF(J.GT.1) THEN
CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP,
$ DTEMP)
PVT = ITEMP + J - 1
AJJ = WORK(N+PVT)
IF(AJJ.LE.DSTOP) THEN

181

ACJ, J) =A1J
GO TO 100
END TIF

END IF

IF(J.NE.PVT) THEN

Pivot 0K, so can now swap pivot rows and columns

ACPVT, PVT) = AC J, J)
CALL DSWAP(J-1, A(C J, 1), LDA, AC PVT, 1), LDA)
IF(PVT.LT.N)
CALL DSWAP(N-PVT, A(PVT+1, J), 1,
AC PVT+1, PVT), 1)
CALL DSWAP(PVT-J-1, AC J+1, J), 1, A(PVT, J+1),
LDA)

Swap dot products and PIV

DTEMP = WORK(J)

WORK(J) = WORK(PVT)
WORK(PVT) = DTEMP
ITEMP = PIV(PVT)

PIV(PVT) = PIV(J)
PIV(J) = ITEMP

END TIF

AJJ = SQRT(AJJ)
ACJ, J) =AJJ

Compute elements J+1:N of column J.

IF(J.LT.N) THEN

CALL DGEMV(’No tran’, N-J, J-K, -ONE, A(J+1, K),
LDA, AC J, K), LDA, ONE, A(J+1, J),
1)

CALL DSCAL(N-J, ONE / AJJ, AC J+1, J), 1)

END IF

CONTINUE

Update trailing matrix, J already incremented

182

IF(K+JB.LE.N) THEN
CALL DSYRK(’Lower’, ’No Trams’, N-J+1, JB, -ONE,
$ AC J, K), LDA, ONE, AC J, J), LDA)
END IF
90 CONTINUE

END IF
END IF

Ran to completion, A has full rank

RANK = N

GO TO 110
100 CONTINUE

Rank is the number of steps completed

RANK = J - 1

110 CONTINUE
RETURN

End of LEV3PCHOL

END

183

A.3 blas dmax val.f

The subroutine BLAS DMAX VAL is modified from the BLAS function IDAMAX
to return the largest algebraic value of a vector and the smallest index that
contains that value. This routine is used as there is not an appropriate routine
in the current version of the BLAS. IDAMAX returns the largest absolute value
and its index. The name and interface conform to the BLAS Technical Forum
Standard [46], which gives details of a future release of the BLAS.

SUBROUTINE BLAS_DMAX_VAL(N, X, INCX, K, R)

BLAS_DMAX_VAL finds the largest component of X, R, and
determines the smallest index, K, such that X(K) = R.
Craig Lucas, University of Manchester. June, 2003

Modified from the BLAS function IDAMAX:
Jack Dongarra, LINPACK, 3/11/78.

* X X X X X ¥ ¥ *

. Scalar Arguments ..
DOUBLE PRECISION R
INTEGER INCX, K, N

. Array Arguments ..
DOUBLE PRECISION X(*)

. Local Scalars ..
INTEGER I, IX

K=0

IF(N.LT.1 .OR. INCX.LE.O)
$ RETURN

K=1

IF(N.EQ.1)
$ RETURN

IF(INCX.EQ.1)
$ GO TO 30

* Code for increment not equal to 1

IX = 1
R=2X(1)
IX = IX + INCX
DO 20 I =2, N
IF(X(IX).LE.R)

184

$ GO TO 10
K=1
R = X(IX)
10 CONTINUE
IX = IX + INCX
20 CONTINUE
RETURN

Code for increment equal to 1

30 CONTINUE
R=X(1)
DO 40 I =2, N
IF(X(I).LE.R)
$ GO TO 40
K=1
R=X(1I)
40 CONTINUE
RETURN
END

185

Appendix B

Testing Code for the Cholesky
Routines

CL_DCHKAA runs the test code for LEV2PCHOL and LEV3PCHOL. It reads in user
set parameters and calls the subroutine CL_DCHKPOQ. It is based on the LAPACK
testing routine DCHKAA. Other dependent routines follow the same naming con-
vention of prefixing CL_ where existing LAPACK routines have been adapted
for our code.

CL_DCHKPQ loops through all the different cases specified in the input file.
Test matrices are generated, input arguments are checked and the backward

error of the computed factor is measured. Full details are given in the individual

files.
CL_DCHKPQ calls the following adapted LAPACK testing routines not in-
cluded in this appendix:

e CL_DERRPO checks LEV2PCHOL and LEV3PCHOL exit correctly when input
parameters are incorrect.

e CL _DLATB4 sets parameters for the following routine.

e CL_DLATMS generates random matrices. Requires CL_DLATM1 which spec-
ifies eigenvalues of the random matrix.

e CL_DPOTO1 calculates the backward error of the computed Cholesky fac-
tors.

e CL_ALAERH handles the output from the testing routines. CL_ALAHD is
required which prints details to the screen.

186

The following LAPACK testing routines are also required for setting parameters
to other routines, handling errors and printing results:

ALADHD ALAESM ALAREQ ALASUM CHKXER XLAENV

Special versions of the LAPACK routines ILAENV, which sets some of the
input parameters to LEV2PCHOL and LEV3PCHOL, and XERBLA which handles
errors are also required.

The full set of testing files can be found at http://www.ma.man.ac.uk/
“clucas/cholesky.

B.1 ¢l dchkaa.f

PROGRAM CL_DCHKAA

*
* Craig Lucas, University of Manchester. March, 2004.

* Based on the following LAPACK routine.

*

* DCHKAA

* -— LAPACK test routine (version 3.0) --

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* June 30, 1999

*

* Purpose

% =======

%

* CL_DCHKAA is a test program for the DOUBLE PRECISION routine

* LEV3PCHOL, calling LEV2PCHOL for small N.

%

* The program must be driven by a short data file. The first 9 records
* gpecify problem dimensions and program options using list-directed

* input. The last line specify the LAPACK test path and the

* number of matrix types to use in testing. The test path is a legacy
* of the original LAPACK code and is always ’DP0’. An annotated example
* of a data file can be obtained by deleting the first 3 characters

* from the following 11 lines:

* Data file for testing DOUBLE PRECISION routine LEV3PCHOL

* 6 Number of values of N

* 0 10 20 30 100 200 Values of N

* 3 Number of values of NB

* 10 20 50 Values of NB (the block size)

187

* O X XK X X X X K X K X K X ¥ X X ¥ X ¥ X * ¥ * * *x

3 Number of values of RANK

30 50 90 Values of rank (as a % of N)

1 Threshold value of test ratio

T Put T to test the LAPACK routines (T = true)
T Put T to test the error exits

DPO 9 List types on next line if O < NTYPES < 9

Internal Parameters

NMAX INTEGER
The maximum allowable value for N

MAXIN INTEGER
The number of different values that can be used for each of
N, NB, and RANK

NIN INTEGER
The unit number for input

NOUT INTEGER
The unit number for output

. Parameters ..
INTEGER NMAX
PARAMETER (NMAX = 1000)
INTEGER MAXIN
PARAMETER (MAXIN = 12)
INTEGER MATMAX
PARAMETER (MATMAX = 9)
INTEGER NIN, NOUT
PARAMETER (NIN = 5, NOUT = 6)

. Local Scalars ..
DOUBLE PRECISION EPS, S1, S2, THRESH

INTEGER I, IC, J, K, LDA, NB, NMATS, NN, NNB, NNB2,
$ NRANK, NTYPES

LOGICAL FATAL, TSTCHK, TSTERR

CHARACTER c1

CHARACTER*2 c2

CHARACTER*3 PATH

188

*

$

$
$

CHARACTER*10 INTSTR
CHARACTER*72 ALINE

. Local Arrays ..

DOUBLE PRECISION A(NMAX*NMAX, 3), PIV(NMAX),

INTEGER

LOGICAL

RWORK(NMAX), WORK(NMAX*3)
IWORK(25%NMAX), NBVAL(MAXIN),
NBVAL2(MAXIN), NVAL(MAXIN),
RANKVAL (MAXIN)

DOTYPE(MATMAX)

. External Functions ..
DOUBLE PRECISION DLAMCH, DSECND

LOGICAL

EXTERNAL

LSAME, LSAMEN
DLAMCH, DSECND, LSAME, LSAMEN

. External Subroutines ..

EXTERNAL

ALAREQ, CL_DCHKPO

. Scalars in Common ..

INTEGER INFOT, NUNIT
LOGICAL LERR, OK
CHARACTER*6 SRNAMT

. Arrays in Common ..

INTEGER

IPARMS(100)

. Common blocks ..

COMMON
COMMON
COMMON

/ CLAENV / IPARMS
/ INFOC / INFOT, NUNIT, OK, LERR
/ SRNAMC / SRNAMT

. Data statements ..

DATA

INTSTR / ’0123456789° /

S1 = DSECND()
LDA = NMAX

FATAL =

.FALSE.

Read a dummy line.

189

READ(NIN, FMT = *)

Report values of parameters.

WRITE(NOUT, FMT

9994)

Read the values of N

READ(NIN, FMT = *)NN
IF(NN.LT.1) THEN
WRITE(NOUT, FMT = 9996)’ NN ’, NN, 1
NN = 0
FATAL = .TRUE.
ELSE IF(NN.GT.MAXIN) THEN
WRITE(NOUT, FMT = 9995)’ NN ’, NN, MAXIN
NN = 0
FATAL = .TRUE.
END IF
READ(NIN, FMT = *)(NVAL(I), I =1, NN)
DO 10 I = 1, NN
IF(NVAL(I).LT.0) THEN
WRITE(NOUT, FMT = 9996)’ N ’, NVAL(I), O
FATAL = .TRUE.
ELSE IF(NVAL(I).GT.NMAX) THEN

WRITE(NOUT, FMT = 9995)’ N >, NVAL(I), NMAX
FATAL = .TRUE.
END IF

10 CONTINUE
IF(NN.GT.0)
$ WRITE(NOUT, FMT = 9993)’N ',
$ (NVAL(I), I =1, NN)

Read the values of NB

READ(NIN, FMT = *)NNB
IF(NNB.LT.1) THEN
WRITE(NOUT, FMT = 9996)’NNB ’, NNB, 1
NNB = 0O
FATAL = .TRUE.
ELSE IF(NNB.GT.MAXIN) THEN
WRITE(NOUT, FMT = 9995)’NNB ’, NNB, MAXIN
NNB = 0O

190

FATAL = .TRUE.
END IF
READ(NIN, FMT = *)(NBVAL(I), I =1, NNB)
DO 20 I = 1, NNB
IF(NBVAL(I).LT.0) THEN
WRITE(NOUT, FMT = 9996)’ NB ’, NBVAL(I), O
FATAL = .TRUE.
END IF
20 CONTINUE
IF(NNB.GT.O)
$ WRITE(NOUT, FMT = 9993)’ NB ’,
$ (NBVAL(I), I=1, NNB)

Set NBVAL2 to be the set of unique values of NB

NNB2 = 0
DD 40 I = 1, NNB
NB = NBVAL(I)
DO 30 J = 1, NNB2
IF(NB.EQ.NBVAL2(J))
$ GO TO 40
30 CONTINUE
NNB2 = NNB2 + 1
NBVAL2(NNB2) = NB
40 CONTINUE

Read the values of RANKVAL

READ(NIN, FMT = *)NRANK
IF(NN.LT.1) THEN
WRITE(NOUT, FMT = 9996)’ NRANK ’, NRANK, 1
NRANK = 0
FATAL = .TRUE.
ELSE IF(NN.GT.MAXIN) THEN
WRITE(NOUT, FMT = 9995)’ NRANK ’, NRANK, MAXIN
NRANK = 0
FATAL = .TRUE.
END IF
READ(NIN, FMT = *)(RANKVAL(I), I = 1, NRANK)
DO 50 I = 1, NRANK
IF(RANKVAL(I).LT.O0) THEN
WRITE(NOUT, FMT = 9996)’ RANK ’, RANKVAL(I), O
FATAL = .TRUE.

191

*

50

$
$

ELSE IF(RANKVAL(I).GT.100) THEN

WRITE(NOUT, FMT = 9995)’ RANK ’, RANKVAL(I), 100
FATAL = .TRUE.
END IF
CONTINUE

IF(NRANK.GT.O)
WRITE(NOUT, FMT = 9993)’RANK % OF N’,
(RANKVAL(I), I =1, NRANK)

Read the threshold value for the test ratios.

READ(NIN, FMT = *)THRESH
WRITE(NOUT, FMT = 9992)THRESH

Read the flag that indicates whether to test the routine.
READ(NIN, FMT = *)TSTCHK

Read the flag that indicates whether to test the error exits.
READ(NIN, FMT = *)TSTERR

IF(FATAL) THEN
WRITE(NOUT, FMT = 9999)
STOP

END IF

Calculate and print the machine dependent constants.

EPS = DLAMCH(’Underflow threshold’)
WRITE(NOUT, FMT = 9991)’underflow’, EPS
EPS = DLAMCH(’Overflow threshold’)
WRITE(NOUT, FMT = 9991)’overflow ’, EPS
EPS = DLAMCH(’Epsilon’)

WRITE(NOUT, FMT = 9991)’precision’, EPS
WRITE(NOUT, FMT *)

Read a test path and the number of matrix types to use.

READ(NIN, FMT = ’(A72)’, END = 110)ALINE
PATH = ALINE(1: 3)

NMATS = MATMAX

I=3

192

60

70

80

90

100

CONTINUE
I=1I+1
IF(I.GT.72) THEN
NMATS = MATMAX
GO TO 100
END IF
IF(ALINEC I: I).EQ.’ ?)
$ GO TO 60
NMATS = 0
CONTINUE
Cl1 = ALINE(I: I)
DD 80 K = 1, 10
IF(C1.EQ.INTSTR(K: K)) THEN
IC=K -1
GO TO 90
END IF
CONTINUE
GO TO 100
CONTINUE
NMATS = NMATS*10 + IC
I=I+1
IF(I.GT.72)
$ GO TO 100
GO TO 70
CONTINUE
C1 = PATH(1: 1)
C2 = PATH(2: 3)

Check first character for correct precision.

IF(.NOT.LSAME(C1, ’Double precision’)) THEN
WRITE(NOUT, FMT = 9990)PATH

ELSE IF(NMATS.LE.O) THEN
Check for a positive number of tests requested.
WRITE(NOUT, FMT = 9989)PATH

ELSE IF(LSAMEN(2, C2, ’P0’)) THEN

PO: positive semi-definite matrices

193

NTYPES = 9
CALL ALAREQ(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)

IF(TSTCHK) THEN
CALL CL_DCHKPO(DOTYPE, NN, NVAL, NNB2, NBVAL2, NRANK,

$ RANKVAL , THRESH, TSTERR, LDA, A(1, 1),
$ AC1, 2),AC 1, 3), PIV, WORK, RWORK,
$ IWORK, NOUT)
ELSE
WRITE(NOUT, FMT = 9989)PATH
END IF
ELSE

WRITE(NOUT, FMT = 9990)PATH
END IF

Branch to this line when the last record is read.

110 CONTINUE
CLOSE (NIN)
S2 = DSECND()
WRITE(NOUT, FMT
WRITE(NOUT, FMT

9998)
9997)82 - S1

9999 FORMAT(/ ’ Execution not attempted due to input errors’)
9998 FORMAT(/ ’ End of tests’)
9997 FORMAT(’ Total time used = ’, F12.2, ’ seconds’, /)

9996 FORMAT(’ Invalid input value: ’, A5, ’=’, I6, ’; must be >=’,
$ 16)

9995 FORMAT(’ Invalid input value: ’, A5, ’=’, I6, ’; must be <=,
$ I6)

9994 FORMAT(’ Tests of the DOUBLE PRECISION routine LEV3PCHOL’,
$ / ’ LAPACK VERSION X.X, ’, / /
$ > The following parameter values will be used:’)

9993 FORMAT(4X, A12, ’: ’, 10I6, / 11X, 10I6)

9992 FORMAT(/ ’ Routines pass computational tests if test ratio is ’,
$ ’less than’, F8.2, /)

9991 FORMAT(’ Relative machine ’, A, ’ is taken to be’, D16.6)

9990 FORMAT(/ 1X, A3, ’: Unrecognized path name’)

9989 FORMAT(/ 1X, A3, ’ routines were not tested’)
9988 FORMAT(/ 1X, A3, ’ driver routines were not tested’)

194

End of CL_DCHKAA

END

195

B.2 ¢l dchkpo.f

SUBROUTINE CL_DCHKPO(DOTYPE, NN, NVAL, NNB, NBVAL, NRANK,

$ RANKVAL, THRESH, TSTERR, NMAX, A, AFAC,
$ PERM, PIV, WORK, RWORK, IWORK, NOUT)
*
* Craig Lucas, University of Manchester. March, 2004.
* Based on the following LAPACK routine. Arguments added are
* NRANK, RANKVAL, PERM and PIV
%
* DCHKPO
* —— LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* December 7, 1999
*
* . Scalar Arguments ..
DOUBLE PRECISION THRESH
REAL PIV
INTEGER NMAX, NN, NNB, NOUT, NRANK
LOGICAL TSTERR
* .. Array Arguments ..
DOUBLE PRECISION AC *), AFAC(*), PERM(*), RWORK(*),
$ WORK(*)
INTEGER IWORK(*), NBVAL(*), NVAL(*), RANKVAL(*)
LOGICAL DOTYPE(*)
* Purpose
% =======
*
* CL_DCHKPO tests LEV3PCHOL.
*
* Arguments
% =========
*
* DOTYPE (input) LOGICAL array, dimension (NTYPES)
* The matrix types to be used for testing. Matrices of type j
* (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
* .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*
* NN (input) INTEGER

196

* X X X X X K X K X K X X X X K X K X X ¥ K ¥ X ¥ X ¥ ¥ ¥ ¥ X ¥ ¥ * ¥ ¥ ¥ X ¥ * ¥ *x *

NVAL

NNB

NBVAL

NRANK

RANKVAL

THRESH

TSTERR

NMAX

AFAC

PERM

PIV

WORK

RWORK

IWORK

The number of values of N contained in the vector NVAL.

(input) INTEGER array, dimension (NN)
The values of the matrix dimension N.

(input) INTEGER
The number of values of NB contained in the vector NBVAL.

(input) INTEGER array, dimension (NBVAL)
The values of the block size NB.

(input) INTEGER

The number of values of RANK contained in the vector RANKVAL.

(input) INTEGER array, dimension (NBVAL)
The values of the block size NB.

(input) DOUBLE PRECISION

The threshold value for the test ratios. A result is
included in the output file if RESULT >= THRESH. To have
every test ratio printed, use THRESH = 0.

(input) LOGICAL
Flag that indicates whether error exits are to be tested.

(input) INTEGER

The maximum value permitted for N, used in dimensioning the
work arrays.

(workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)
(workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)
(workspace) DOUBLE PRECISION array, dimension (NMAX*NMAX)
(workspace) INTEGER array, dimension (NMAX)

(workspace) DOUBLE PRECISION array, dimension (NMAXx*3)

(workspace) DOUBLE PRECISION array, dimension (NMAX)

(workspace) INTEGER array, dimension (NMAX)

197

* ¥ ¥ X * *

NOUT (input) INTEGER
The unit number for output.

. Parameters ..
DOUBLE PRECISION
PARAMETER
INTEGER
PARAMETER

. Local Scalars ..

DOUBLE PRECISION
INTEGER

ONE

(ONE = 1.0D+0)
NTYPES

(NTYPES = 9)

ANORM, CNDNUM, RESULT, TOL
COMPRANK, I, IMAT, IN, INB, INFO, IRANK, IUPLO,

$ IZERO, KL, KU, LDA, MODE, N, NB, NERRS, NFAIL,
$ NIMAT, NRUN, RANK, RANKDIFF

CHARACTER DIST, TYPE, UPLO, XTYPE

CHARACTER*3 PATH

. Local Arrays ..
INTEGER ISEED(4), ISEEDY(4)
CHARACTER UPLOS(2)

. External Subroutines ..

EXTERNAL CL_ALAERH, CL_ALAHD, ALASUM, CL_DERRPO,
$ DLACPY, CL_DLATB4, CL_DLATMS, CL_DPOTO1,
$ LEV3PCHOL, XLAENV

. Scalars in Common ..

INTEGER INFOT, NUNIT

LOGICAL LERR, OK

CHARACTER*6 SRNAMT

. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT

. Intrinsic Functions ..
INTRINSIC DBLE, MAX

. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / °U’, L’ /

198

* ¥ ¥ %

*

Initialize constants and the random number seed.

PATH(1: 1) = ’Double precision’
PATH(2: 3) = ’PO’

NRUN = 0O

NFAIL = 0

NERRS = 0

DO 10 I =1, 4
ISEED(I) = ISEEDY(I)
10 CONTINUE

Test the error exits
IF(TSTERR)
$ CALL CL_DERRPO(PATH, NOUT)
INFOT = 0O
CALL XLAENV(2, 2)
Do for each value of N in NVAL
DO 60 IN = 1, NN
N = NVAL(IN)
LDA = MAX(N, 1)
XTYPE = °N°
NIMAT = NTYPES
IF(N.LE.O)
$ NIMAT = 1

IZERO = 0
DO 50 IMAT = 1, NIMAT

Do the tests only if DOTYPE(IMAT) is true.

IF(.NOT.DOTYPE(IMAT))
$ GO TO 50

Do for each value of RANK in RANKVAL
DO 40 IRANK = 1, NRANK

Only repeat test 3 to 5 for different ranks

199

* ¥ ¥ *

* ¥ ¥ *

* * ¥ *

Other tests use full rank

IF((IMAT.LT.3 .0OR. IMAT.GT.5) .AND. IRANK.GT.1)
GO TO 40

RANK = (DBLE(RANKVAL(IRANK)) / 100.D+0)*N

Do first for UPLO = ’U’, then for UPLO = 'L’

DO 30 IUPLO = 1, 2
UPLO = UPLOS(IUPLO)

Set up parameters with DLATB4 and generate a test matrix
with DLATMS.

CALL CL_DLATB4(PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
MODE, CNDNUM, DIST)

SRNAMT = ’DLATMS’

CALL CL_DLATMS(N, N, DIST, ISEED, TYPE, RWORK, MODE,
CNDNUM, ANORM, RANK, KL, KU, UPLO, A,
LDA, WORK, INFO)

Check error code from DLATMS.

IF(INFO.NE.O) THEN
CALL CL_ALAERH(PATH, ’DLATMS’, INFO, O, UPLO, N,
N, -1, -1, -1, IMAT, NFAIL, NERRS,
NOUT)
GO TO 30
END IF

Do for each value of NB in NBVAL
DO 20 INB = 1, NNB
NB = NBVAL(INB)

CALL XLAENV(1, NB)

Compute the pivoted L*L’ or U’*U factorization
of the matrix.

CALL DLACPY(UPLO, N, N, A, LDA, AFAC, LDA)

200

* ¥ X ¥ ¥

* % ¥ %

SRNAMT = ’LEV3PC’
Use default tolerance

TOL = -ONE
CALL LEV3PCHOL(UPLO, N, AFAC, LDA, PIV, COMPRANK,
TOL, WORK, INFO)

Check error code from LEV3PCHOL.

IF(INFO.NE.IZERO) THEN
CALL CL_ALAERH(PATH, ’LEV3PC’, INFO, IZERO,
UPLO,N, N, -1, -1, NB, IMAT,
NFAIL, NERRS, NOUT)
GO TO 20
END IF

Skip the test if INFO is not O.

IF(INFO.NE.O)
GO TO 20

Reconstruct matrix from factors and compute residual.
PERM holds permuted L*L"T or U~Tx*U

CALL CL_DPOTO1(UPLO, N, A, LDA, AFAC, LDA, PERM,
LDA, PIV, RWORK, RESULT, COMPRANK)

Print information about the tests that did not pass
the threshold or where computed rank was not RANK.

RANKDIFF = RANK - COMPRANK
IF(N.EQ.0)
RANKDIFF = 0
IF(RESULT.GE.THRESH .OR. RANKDIFF.NE.O) THEN
IF(NFAIL.EQ.O .AND. NERRS.EQ.O)
CALL CL_ALAHD(NOUT, PATH)
WRITE(NOUT, FMT = 9999)UPLO, N, RANK,
RANKDIFF, NB, IMAT, RESULT
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1

201

20 CONTINUE

30 CONTINUE
40 CONTINUE

50 CONTINUE

60 CONTINUE

*

Print a summary of the results.

CALL ALASUM(PATH, NOUT, NFAIL, NRUN, NERRS)
*

9999 FORMAT(’> UPLO = ’’’, A1, ’°°, N =?, I5, ’, RANK =’, I3,
$ ’, Diff =°, I5, ’, NB =’, 14, ’, type ’, I2, ’, Ratio =7,
$ G12.5)
RETURN
* End of CL_DCHKPO
END

202

Appendix C

MATLAB Code for the
Symmetric Semidefinite
Generalized Eigenvalue Problem

C.1

ssgep.m

function [U,D,r] = ssgep(A,B,rrdl,rrd3,rrd4,reltol,normtol)

%SSGEP
yA
%
yA
yA
%
yA
yA
yA
%
yA
yA
%
yA
yA
yA
%
yA
yA
%
yA
yA

Solves the symmetric semidefinite generalized eigenvalue problem.
This function returns the finite eigenvalues and the
eigenvectors of the symmetric semidefinite eigenvalue problem

Ax = \lambda Bx, A = A’, B = B’ and B semidefinite.

[U,D,r] = ssgep(A,B,rrdl,rrd3,rrd4,reltol,normtol)

U is a matrix of eigenvectors, the first r(6) columns contain
those corresponding to finite eigenvalues, the remaining r(3) +
r(5) correspond to infinite eigenvalues. The diagonal elements
of D are the r(6) finite eigenvalues. r(1) is the numerical
rank of B. r(7) is the dimension of the singular part of the
pencil which has been deflated out of the problem.

rrdl specifies rank revealing decomposition (RRD) for Step 1
’spec’ spectral decomposition via eig.m (default)

’chol’ Cholesky decomposition via cholp.m

rrd3 specifies RRD for Step 3

’spec’ as above (default)

’1d1t’ LDL’ factorization via lqdgtlt.m

rrd4 specifies RRD for Step 4

203

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

’svd’ singular value decomposition via svd.m (default)

’qrp’ column pivoted QR decomposition via qr.m

’qr’ QR factorization via gr.m, fails for nonregular pencils
’cod’ Complete orthogonal decomposition via cod.m

reltol is a tolerance for defining the rank of an approximate
diagonal matrix. For an RRD C = XDZ of dimension m-by-n with the
elements in D ordered in descending order by magnitude if
|d_ii| <= reltol * max(m,n) * |d_11]|, i = r+1:n,
then rank is r, and |d_ii|, i = r+1:n, are set to zero.
normtol is a tolerance that decides if a submatrix, A_s of
dimension m-by-n, of A is considered zero. The matrix is
set to zero if
norm(A_s,’fro’) <= normtol * max(m,n) * norm(A,’fro’).
If tolerances are omitted, they default to eps/2.
Calls lqdgtlt.m, distributed with this routine, and
cholp.m and cod.m from Nicholas Higham’s Matrix Computation

Toolbox, available at:
http://www.ma.man.ac.uk/~“higham/mctoolbox

if “isequal(A,A’) | “isequal(B,B’)

end

error (’A and B must be square and symmetric’)

if length(A) "= length(B)

error(’A and B must be the same size’)

end

if nargin < 3 | isempty(rrdl), rrdl = ’spec’; end

if nargin < 4 | isempty(rrd3), rrd3 = ’spec’; end

if nargin < 5 | isempty(rrd4), rrd4 = ’svd’; end

if nargin < 6 | isempty(reltol), reltol = eps/2; end
if nargin < 7 | isempty(normtol), normtol = eps/2; end

n = length(4);

% kkkkskokkkkk STEP ONE skokskoksk skskokokok

204

tol = reltol * n;

if rrdl == ’chol’
[R,P,ri] cholp(B,tol);
R(ri+il:n,ri+1:n) = eye(n-ril);

Xilinv = R’\P’;

Dilinv = 1;

elseif rrdl == ’spec’
[Q,D] = eig(B);
d = diag(D);

% sort D and Q, descending in value
[res,i] = sort(-4d);

d = d(i);

r1l = sum(d >= tol*d(1));
Q =QC:,1);

Xlinv = Q’;

Dilinv = diag(1./(sqrt(d(1:r1))));

else
error(’Invalid option for RRD1’)

end

% Transform A
A = X1linv*AxX1inv’;

% ensure symmetry
A= (A+A°)/2;

Y kkkkdokkkkk STEP TWO kokokskokskskkkk
A(1:r1,1:r1) = Dilinv*A(1:rl1,1:r1)*Dilinv;
% if r2 = 0 we can solve, else

r2 =n -ri;
if r2 "= 0

205

A(l1:r1,r1+1:n) = Dilinv*A(l:rl1,ri+1:n);
Y kkkkkkkkkk STEP THREE skokokosk sk ok kokk

tol = reltol * r2;

if rrd3 == ’spec’

[X3invT,D] = eig(A(ri+l:n,ri+1:n));

% sort D and X3invT, descending in abs value

d = diag(D);
[res,i] = sort(-abs(d));
d = d(i);

X3invT = X3invT(:,1i);
r3 = sum(abs(d) >= tol*abs(d(1)));
D=diag(d);

elseif rrd3 == ’1d41t’
[Q,L,D,P] = 1qdqtlt(A(ri+l:n,ri+1:n));

% sort D and Q, descending in abs value
d=diag(D);

[res,i] = sort(-abs(d));

d = d(1);

Q =Q(:,1);

r3 = sum(abs(d) >= tol*abs(d(1)));

D = diag(d);

X3invT = P’/L’*Q;

else
error (’Invalid option for RRD3’)

end

A(l:r1,r1+1:n) = A(1l:r1,r1+1:n)*X3invT;
A(ri+1:r1+r3,r1+1:r1+r3) = D(1:r3,1:r3);

r4d = r2-r3;

206

% A13 may be considered zero, accumulate norm(A, ’fro’) and test

normA = norm(A(1:r1,1:r1),’fro’)"2;

normA = normA+2*norm(A(l:rl,r1+1:n),’fro’) "2+sum(diag(D)."2);
normA = sqrt(norml);

normA13 = norm(A(1l:rl1,n-r4+1:n),’fro’);

normtol*normi;

% treat A13 as zero
if normA13 <= normtol*max(rl,r4)*normA
rb =0; vr6 = rl; r7 = r4;

% A13 exists and is non zero
elseif r4 "= 0

Y kkkkkdkokkkkx STEP FOUR skokokkokskokokkk
tol = reltol * max(rl,r4);
% We do A13 = X4xDeltaxZ4
if rrd4 == ’qrp’
[X4,R,P] = qr(A(l:rl1,n-r4+1:n));

% qr with p sorts diag

if size(R,2) == 1 || size(R,1) == 1
d = R;
r5 =1;
Deltald = d(1);
else
d = diag(R);

r5 = sum(abs(d) >= tol*abs(d(1)));
Deltal4 = diag(d(1:r5));

end

U = eye(rd);

U(1:r5,:) = Deltal4\R(1:x5,:);

Z4inv = P/U;

elseif rrd4 == ’cod’
[X4,Deltald,Z4] = cod(A(1:r1,n-r4+1:n),tol);

r5 = size(Deltal4d,1);

207

Z4inv = Z4’;

elseif rrd4 == ’svd’
[X4,D,Z4inv] = svd(A(1:rl1,n-rd4+1:n));

if size(D,2) == || size(D,1) == 1
d = D;

else
d = diag(D);

end

r5 = sum(abs(d) >= tol*xabs(d(1)));
Deltald = diag(d(1:r5));

elseif rrd4 == ’qr’
[X4,R] = qr(A(1:r1,n-r4+1:n));

d = diag(R);
[res,i] = sort(-abs(d));
d=d(i);

r5 = sum(abs(d) >= tol*abs(d(1)));

if r5 < r4
error (’Fix & Heiberger failure - pencil nonregular’)
end

Deltald = triu(R(1:r4,:));
Z4inv = eye(r4);

else
error (’Invalid option for RRD4’)

end
r6 = r1-r5;
r7 = r4-rb;

A(l:r1,1:r1) = X4°*A(1:r1,1:r1)*X4;
A(l:r1,r1+1:r1+4r3) = X4°*xA(1:r1,r1+1:r1+r3);

else

208

r5 =0; r6 = rl1; r7 = 0;

end

else

r3 0; r4=0; rb = 0; r6 = rl; r7 = 0;
end

% *kkkkkokkkk S0lve SEP skskskskokkokokkk

% B had full rank
if r1 == n

[U,D] = eig(A);

U = D11inv*U;
U = Xlinv’*U;
else

% A22 had full rank in STEP 2 or A13 zero in STEP 3
if r4 == 0 || rb ==

A1 = A(1l:r1,1:71);

% generic if r3 = n-rl last index is just n as before
A12 = A(l:r1,ri+1:r1+13);

D22inv = diag(l./(diag(A(ri+l:ri+r3,ri+l:ri+r3))));

% if r4 = 0 then r3 = r2 so ok
U = zeros(n,ri+r3);
[U(1:r1,1:71),D] = eig(A11-A12+D22inv*A12’);

U(ri+1:r1+r3,:) = -D22inv*A12°*U(1:r1,:);

% Set part of U for infinite eigenvalues
U(ri+l:ri+r3,ri+l:ri+r3) = eye(r3);

U(ri+1:n,:) = X3invT*U(ri+i:n,:);

U(l:r1,:) = Di1inv¥U(1:r1,:);
U = X1linv’*U;

209

% Al4 exists in STEP 4

else
A22 = A(xr5+1:r1,r5+1:r1);
A23 = A(r5+1:ri1,r1+1:r1+41r3);

D33inv = diag(l./(diag(A(ri+1l:ri+r3,ri+1:r1+r3))));
A12 = A(1:r5,r5+1:r1);
A13 = A(1:r5,r1+1:r1+r3);

U = zeros(n,r6+r3+r5);

[U(xr5+1:r1,1:r6),D] = eig(A22—A23*D33inv*A23’);
U(ri+1:r1+r3,:) = -D33inv*A23°*U(r5+1:r1,:);
U(ri1+r3+1:r1+r3+r5,:) = -Deltald\(A12*xU(xr5+1:r1,:) + ...

A13*xU(ri+l:r1+r3,:));

% Set part of U for infinite eigenvalues
U(ri+1:r1+r3+r5,r6+1:r6+r3+r5) = eye(r3+r5);

U(l:rl,:) = X4*xU(1:rl,:);
U(ri1+r3+1:n,:) = Z4inv*U(ri+r3+1:n,:);
U(ri+1:n,:) = X3invT*U(ri+i:n,:);

U(l:r1,:) = Dilinv*U(1:rl,:);
U = X1linv’*U;
end

end

r=[rl r2 r3 r4 r5 r6 r7];

210

C.2 1lqdqtlt.m

function [Q,L,D,P]1=1qdqtlt(A, piv)
%LQDQTLT LQDQ"TL"T factorization for a symmetric indefinite matrix.

% Given a Hermitian matrix A,

% [Q,L,D,P] = 1qdqtlt(A, PIV) computes a permutation P,

% a unit lower triangular L, a real diagonal D and orthogonal
% Q with 1x1 and 2x2 diagonal blocks, such that

yA PxAxP’ = L*Q*D*Q’L’.

% LDLT_SYMM is called and the resulting 2x2 blocks in D

h are diagonalized with a spectral decomposition

h

yA PIV controls the pivoting strategy for the LDL"T

yA factorization performed by LDLT_SYMM:

% PIV = ’p’: partial pivoting (Bunch and Kaufman),

% PIV = ’r’: rook pivoting (Ashcroft, Grimes and Lewis).
yA The default is rook pivoting.

h

% Calls 1dlt_symm.m

n = size(A,1);

if nargin ==
piv = ’r’;
end

% 1dlt_symm tests for symmetric A
[L,D,P,rho,ncomp] = 1dlt_symm(A, piv);

Q = eye(n);
for j = 1:n-1
if D(j+1,j) "= 0
[Q2,D2] = eig(D(j:j+1,j:j+1));
D(j:j+1,j:j+1) = D2;
Q(j:j+1,j:j+1) = Q2;
j = j+1;

end

end

211

C.3 gen data.m

function [A,B]l=gen_data(rl,r2,r3,r5,k2one,k2two,reg)
%GEN_DATA Generation of random matrix pencils.

h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h
h

[A,B]=gen_data(rl,r2,r3,r5) generates the matrix pencils
described below.

rli r2 ri r2
B=Q[D 0] Qri, A=17[A11 A12] r1 , such that
[0 01 =2 [A127 A22] r2
if reg ==
D = diag(lambda_1, ..., lambda_rl)

where lambda_i > 0 and geometrically decreases such that
lambda_1 = 1 and lambda_rl = k2one~{-1}
and Q is a random orthogonal matrix

else
D = eye(rl) and Q = eye(n)

A1l is random symmetric matrix

if reg ==

A22 = Q * diag(lambda_1, ..., lambda_r2) * Q’

where lambda_i are geometrically decreasing such that
lambda_1 = 1 and lambda_r2 = k2two{-1}

and Q is a random orthogonal matrix.

else

A22 = Q * diag(lambda_1, ..., lambda_r3, 0, ..., 0) * Q’
where lambda_i are geometrically decreasing such that
lambda_1 = 1 and lambda_r3 = k2one{-1}

if reg ==
Al12 is a random matrix

else

A12 = Q1 * diag(sigma_1, ..., sigma_r5, 0, ..., 0) * Q2
where sigma_i are geometrically decreasing such that
sigma_1 = 1 and sigma_r5 = k2two{-1}

and Q1 and Q2 are random orthogonal matrices.

if reg == 1 r3 and r5 are not used but are required

212

h

% calls gmult.m (private to elmat.m)

n = ri+r2;
if reg ==

% Set B with rank ri
B = zeros(n);

d = zeros(ri,1);
d(1) = 1;

beta = power(1/k2one,1/(r1-1));
for m = 2:r1

d(m) = beta~(m-1);
end

B(1:r1,1:r1) = diag(d);

Q = gmult(n);
B = Q’*Bx*Q;
B = (B+B’)/2;

% Set Al1 as random symmetric matrix
A = zeros(n);

A(l:r1,1:r1)
A(l:r1,1:r1)

rand(rl);
(A(l:ri,1:r1)+A(1:r1,1:r1)°)/2;

% Set A22 with full rank
d = zeros(r2,1);
(1) = 1;

beta = power(1/k2two,1/(xr2-1));
form = 2:r2

d(m) = beta”(m-1);
end

A(ri+i:n,ri+1:n)
Q = qmult(r2);

A(ri+i:n,ri+1:n)
A(ri+i:n,ri1+1:n)

diag(d);

Q*A(ri+i:n,r1+1:n)*Q’;
(A(ri+1:n,ri+1:n)+A(ri+1:n,r1+1:n)°)/2;

% Set A12 as random matrix
A(1:r1,r1+1:n) = rand(ri,r2);

213

A(ri+i:n,1:r1) = A(d:rl1,r1+1:n)’;
else

% Set B with rank ril
B = zeros(n);
B(1l:r1,1:r1) = eye(rl);

% Set A1l as random symmetric matrix
A = zeros(n);

A(l:r1,1:r1)
A(l:r1,1:r1)

rand(rl);
(A(l:r1,1:r1)+A(1:r1,1:r1)°)/2;

% Set A22 with rank r3
d(1) = 1;

beta = power(1/k2one,1/(xr3-1));
for m = 2:r3

d(m) = beta”(m-1);
end

A(ri+1:ri+r3,ri+l:ri+r3) = diag(d);
Q = qmult(r2);

A(ri+i:n,ri+1:n)
A(ri+i:n,ri1+1:n)

Q*A(ri+i:n,r1+1:n)*Q’;
(A(ri+1:n,ri+1:n)+A(ri+1:n,r1+1:n)°)/2;

% Set A12 with rank r5
d = zeros(r5,1);
d(1) = 1;

beta = power(1/k2two,1/(x5-1));
for m = 2:r5

d(m) = beta”(m-1);
end

A(1:r5,ri+1l:r1+4r5) = diag(d);

Q2 = qmult(r2);

Q1 = gmult(rl);

A(l:r1,r1+1:n) = Q1*A(1:rl1,r1+1:n)*Q2;
A(ri+i:n,1:r1) = A(1l:rl1,r1+1:n)’;

end

214

Appendix D

Code for Updating the ()R
Factorization

D.1 delcols.f

SUBROUTINE DELCOLS(M, N, A, LDA, K, P, TAU, WORK, INFO)

sk
* Craig Lucas, University of Manchester
* March, 2004
*
* . Scalar Arguments ..

INTEGER INFO, K, LDA, M, N, P
%

. Array Arguments ..

DOUBLE PRECISION A(LDA, *), TAU(C *), WORK(*)
* Purpose
* =======
%
* Given a real m by (n+p) matrix, B, and the QR factorization
* B = Q_B * R_B, DELCOLS computes the QR factorization
* C =0Q * R where C is the matrix B with p columns deleted
* from the kth column onwards.
sk
* The input to this routine is Q_B’ * C
*
* Arguments

* %

215

* K X K X X K X K X K X K X X K X K X X ¥ K ¥ X ¥ X ¥ ¥ ¥ ¥ X ¥ ¥ * ¥ ¥ ¥ X ¥ * ¥ *x *

LDA

TAU

WORK

INFO

(input) INTEGER
The number of rows of the matrix C. M >= 0.

(input) INTEGER
The number of columns of the matrix C. N >= 0.

(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix Q_B’ * C. The elements in columns
1:K-1 are not referenced.

On exit, the elements on and above the diagonal contain
the n by n upper triangular part of the matrix R. The
elements below the diagonal in columns k:n, together with
TAU represent the orthogonal matrix Q as a product of
elementary reflectors (see Further Details).

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

(input) INTEGER
The position of the first column deleted from B.
0 < K <= N+P.

(input) INTEGER
The number of columns deleted from B. P > 0.

(output) DOUBLE PRECISION array, dimension(N-K+1)
The scalar factors of the elementary reflectors
(see Further Details).

DOUBLE PRECISION array, dimension (P+1)
Work space.

(output) INTEGER
= 0: successful exit
< 0: if INFO = -I, the I-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of Q_B and elementary

reflectors

216

* ¥ ¥ X ¥ X X X ¥ ¥ X ¥ ¥ ¥ * *

*

* % ¥ %

Q = Q_B * H(k) * H(k+1) *...* H(last), last = min(m-1, n).
Each H(j) has the form

H(j) = I - tauxv*v’
where tau is a real scalar, and v is a real vector with
v(1l:j-1) = 0, v(j) = 1, v(j+1:j+lenh-1), lenh = min(p+l, m-j+1),
stored on exit in A(j+1:j+lenh-1,j) and v(j+lenh:m) = O, tau is

stored in TAU(j).

The matrix Q can be formed with DELCOLSQ

. Parameters ..
DOUBLE PRECISION ONE
PARAMETER (ONE = 1.0D+0)

. Local Scalars ..
DOUBLE PRECISION AJJ
INTEGER J, LAST, LENH

. External Subroutines ..
EXTERNAL DLARF, DLARFG, XERBLA

. Intrinsic Functions ..
INTRINSIC MAX, MIN

Test the input parameters.

INFO = 0

IF(M.LT.0) THEN
INFO = -1

ELSE IF(N.LT.O) THEN
INFO = -2

ELSE IF(LDA.LT.MAX(1, M)) THEN
INFO = -4

ELSE IF(K.GT.N+P .0OR. K.LE.0) THEN
INFO = -5

ELSE IF(P.LE.O) THEN
INFO = -6

217

* % ¥ *

END IF
IF(INFO.NE.O) THEN
CALL XERBLA(’DELCOLS’, -INFO)
RETURN
END IF
LAST = MIN(M-1, N)
DO 10 J = K, LAST

Generate elementary reflector H(J) to annihilate the nonzero
entries below A(J,J)

LENH = MIN(P+1, M-J+1)
CALL DLARFG(LENH, A(J, J), AC J+1, J), 1, TAU(J-K+1))

IF(J.LT.N) THEN
Apply H(J) to trailing matrix from left
AJJ = ACJT, J)
ACJ, J) = ONE
CALL DLARF(’L’, LENH, N-J, AC J, J), 1, TAU(J-K+1),
$ AC J, J+1), LDA, WORK)
ACJ, J) =AJJ
END IF
10 CONTINUE
RETURN

End of DELCOLS

END

218

D.2 delcolsq.f

* % * * ¥ X * ¥

* X X X ¥ X ¥ X * * *

*

* K X X X X ¥ X ¥ X ¥ ¥ * ¥ *

Pur

DEL
whi

SUBROUTINE DELCOLSQ(M, N, A, LDA, Q, LDQ, K, P, TAU, WORK, INFO)

Craig Lucas, University of Manchester
March, 2004

. Scalar Arguments ..
INTEGER INFO, K, LDA, LDQ, M, N, P

. Array Arguments ..
DOUBLE PRECISION A(LDA, *), QC LDQ, *), TAU(*), WORK(*)

pose

COLSQ generates an m by m real matrix (with orthogonal columns,
ch is defined as the product of Q_B and elementary reflectors

Q = Q_B * H(k) * H(k+1) *...* H(last), last = min(m-1, n)

where the H(j) are as returned by DELCOLSQ, such that C = Q * R and
C is the matrix B = Q_B * R_B, with p columns deleted from the
kth column onwards.
Arguments
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the elements below the diagonal in columns k:n
must contain the vector which defines the elementary
reflector H(J) as returned by DELCOLS.
LDA (input) INTEGER

The leading dimension of the array A. LDA >= max(1,M).

219

¥ X X X K X K X X X K ¥ K X X K X K X ¥ ¥ X * X * * * *

LDQ

TAU

WORK

INFO

(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix Q_B.
On exit, the matrix Q.

(input) INTEGER
The leading dimension of the array Q. LDQ >= M.

(input) INTEGER
The position of the first column deleted from B.
0 < K <= N+P.

(input) INTEGER
The number of columns deleted from B. P > O.

(input) DOUBLE PRECISION array, dimension(N-K+1)
TAU(J) must contain the scalar factor of the elementary
reflector H(J), as returned by DELCOLS.

DOUBLE PRECISION array, dimension (P+1)
Work space.

(output) INTEGER
= 0: successful exit
< 0: if INFO = -I, the I-th argument had an illegal value.

. Parameters ..

DOUBLE PRECISION ONE
PARAMETER (ONE = 1.0D+0)

. Local Scalars ..

DOUBLE PRECISION AJJ
INTEGER J, LAST, LENH

. External Subroutines ..

EXTERNAL DLARF, XERBLA

. Intrinsic Functions ..

INTRINSIC MAX, MIN

Test the input parameters.

220

INFO = 0
IF(M.LT.0) THEN

INFO = -1
ELSE IF(N.LT.0) THEN
INFO = -2
ELSE IF(LDA.LT.MAX(1, M)) THEN
INFO = -4
ELSE IF(K.GT.N+P .OR. K.LE.O) THEN
INFO = -5
ELSE IF(P.LE.O) THEN
INFO = -6
END IF

IF(INFO.NE.O) THEN
CALL XERBLA(’DELCOLSQ’, -INFO)
RETURN

END IF

LAST = MIN(M-1, N)

DO 10 J

K, LAST

LENH

MIN(P+1, M-J+1)
Apply H(J) from right

AJJ = AC T, J)
ACJ, J) = ONE

CALL DLARF(’R’, M, LENH, AC J, J), 1, TAU(J-K+1),
$ QC 1, J), LDQ, WORK)

ACJ, J) =AJ]
10 CONTINUE
RETURN
End of DELCOLSQ

END

221

D.3 addcols.f

* * ¥ X * ¥

* %

* ¥ ¥ X ¥ X * ¥ *

*

* ¥ X X X X ¥ X ¥ X ¥ ¥ X ¥ * * *

SUBROUTINE ADDCOLS(M, N, A, LDA, K, P, TAU, WORK, LWORK, INFO)

Craig Lucas, University of Manchester
March, 2004

. Scalar Arguments ..
INTEGER INFO, K, LDA, LWORK, M, N, P

. Array Arguments ..
DOUBLE PRECISION A(LDA, *), TAU(*), WORK(*)

Purpose

Given a real m by (n-p) matrix, B, and the QR factorization
B = Q_B * R_B, ADDCOLS computes the QR factorization

C =Q * R where C is the matrix B with p columns added

in the kth column onwards.

The input to this routine is Q_B’ * C

Arguments

M (input) INTEGER
The number of rows of the matrix C. M >= 0.

N (input) INTEGER
The number of columns of the matrix C. N >= 0.

A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix Q_B’ * C. The elements in columns
1:K-1 are not referenced.

On exit, the elements on and above the diagonal contain
the n by n upper triangular part of the matrix R. The
elements below the diagonal in columns K:N, together with
TAU represent the orthogonal matrix Q as a product of
elementary reflectors and Givens rotations.

(see Further Details).

222

* X X X X X K X K X K X X X X K X K X X ¥ K ¥ X ¥ X ¥ ¥ ¥ ¥ X ¥ ¥ * ¥ ¥ ¥ X ¥ * ¥ *x *

LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

K (input) INTEGER
The position of the first column added to B.
0 < K <= N-P+1.

P (input) INTEGER
The number of columns added to B. P > 0.

TAU (output) DOUBLE PRECISION array, dimension(P)
The scalar factors of the elementary reflectors
(see Further Details).

WORK (workspace) DOUBLE PRECISION array, dimension (LWORK)
Work space.

LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= P.
For optimal performance LWORK >= P*NB, where NB is the
optimal block size.

INFO (output) INTEGER
= 0: successful exit

< 0: if INFO = -I, the I-th argument had an illegal value.

Further Details

The matrix Q is represented as a product of Q_B, elementary
reflectors and Givens rotations

Q = Q_B * H(k) * H(k+1) *...* H(k+p-1) * G(k+p-1,k+p) *...
*G(k,k+1) * G(k+p,k+p+1l) *...* G(k+2p-2,k+2p-1)

Each H(j) has the form
H(j) = I - tauxvxv’
where tau is a real scalar, and v is a real vector with

v(l:n-p-j+1) = 0, v(j) = 1, and v(j+1l:m) stored on exit in
A(j+1:m,j), tau is stored in TAU(j).

223

* X X X K K K X X X K X X ¥ X ¥ X ¥ X * *

*

* ¥ ¥ ¥

Each G(i,j) has the form

i-1 i
[I]
[¢ =-s 71 i-1
¢, =0 s ¢ 1i
[I1]

and zero A(i,j), where c and s are encoded in scalar and
stored in A(i,j) and

IF A(i,j) =1, c=0, s = 1
ELSE IF | A(i,j) | <1, s = A(i,j), c = sqrt(l-s*x2)
ELSE ¢ =1 / A(i,j), s = sqrt(l-c**2)

The matrix Q can be formed with ADDCOLSQ

. Local Scalars ..
DOUBLE PRECISION C, S
INTEGER I, INC, ISTART, J, JSTOP, UPLEN

. External Subroutines ..
EXTERNAL DGEQRF, DLASR, DROT, DROTG, XERBLA

. Intrinsic Functions ..
INTRINSIC MAX, MIN

Test the input parameters.

INFO = 0

IF(M.LT.0) THEN
INFO = -1

ELSE IF(N.LT.0) THEN
INFO = -2

ELSE IF(LDA.LT.MAX(1, M)) THEN
INFO = -4

ELSE IF(K.GT.N-P+1 .OR. K.LE.O) THEN
INFO = -5

ELSE IF(P.LE.O) THEN

224

*

* % ¥ *

* ¥ ¥ ¥

* % ¥ *

INFO = -6
END IF
IF(INFO.NE.O) THEN
CALL XERBLA(’ADDCOLS’, —-INFO)
RETURN
END IF
Do a QR factorization on rows below N-P, if there is more than one
IF(M.GT.N-P+1) THEN

Level 3 QR factorization

CALL DGEQRF(M-N+P, P, A(N-P+1, K), LDA, TAU, WORK, LWORK,
INFO)

END IF

If K not equal to number of columns in B and not <= M-1 then
there is some elimination by Givens to do

IF(K+P-1.NE.N .AND. K.LE.M-1) THEN

Zero out the rest with Givens
Allow for M < N

JSTOP = MIN(P+K-1, M-1)
DO 20 J = K, JSTOP

Allow for M < N

ISTART = MIN(N-P+J-K+1, M)
UPLEN = N - K - P - ISTART + J + 1

INC = ISTART - J
DO 10 I = ISTART, J + 1, -1

Recall DROTG updates A(I-1, J) and
stores C and S encoded as scalar in AC I, J)

CALL DROTG(A(C I-1, J), ACI, J), C, S)
WORK(INC) = C

225

* ¥ ¥ * *

* % ¥ *

10

20

WORK(N+INC) = S
Update nonzero rows of R
Do the next two line this way round because

A(I-1, N-UPLEN+1) gets updated

A(I, N-UPLEN) = -S*A(I-1, N-UPLEN)
A(I-1, N-UPLEN) = C*A(I-1, N-UPLEN)

CALL DROT(UPLEN, A(I-1, N-UPLEN+1), LDA,
A(I, N-UPLEN+1), LDA, C, S)

UPLEN = UPLEN + 1
INC = INC - 1

CONTINUE

Update inserted columns in one go
Max number of rotations is N-1, we’ve allowed N

IF(J.LT.P+K-1) THEN
CALL DLASR(’L’, ’V’, ’B’, ISTART-J+1, K+P-1-J,
WORK(1), WORK(N+1), A(J, J+1), LDA)
END IF
CONTINUE

END IF
RETURN

End of ADDCOLS

END

226

D.4 addcolsq.f

SUBROUTINE ADDCOLSQ(M, N, A, LDA, Q, LDQ, K, P, TAU, WORK, INFQ)

sk
* Craig Lucas, University of Manchester
* March, 2004
*
* . Scalar Arguments ..

INTEGER INFO, K, LDA, LDQ, M, N, P
* .

. Array Arguments ..

DOUBLE PRECISION ~ A(LDA, *), QC LDQ, *), TAUC *), WORK(*)
* Purpose
% =======
*
* ADDCOLSQ generates an m by m real matrix Q with orthogonal columns,
* which is defined as the product of (Q_B, elementary reflectors and
* Givens rotations
*
* Q = Q_B * H(k) * H(k+1) *...* H(k+p-1) * G(k+p-1,k+p) *...
* *G(k,k+1) * G(k+p,k+p+1) *...* G(k+2p-2,k+2p-1)
*
* where the H(j) and G(i,j) are as returned by ADDCOLS, such that
* C=0Q * R and C is the matrix B = Q_B * R_B, with p columns added
* from the kth column onwards.
*
* Arguments
% =========
%
x M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
%
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the elements below the diagonal in columns
* K:K+P-1 (if M > M-P+1) must contain the vector which defines
* the elementary reflector H(J). The elements above these
* vectors and below the diagonal store the scalars such that
* the Givens rotations can be constructed, as returned by

227

* X X K K X K X K X K X X ¥ X ¥ ¥ K X X ¥ ¥ ¥ ¥ ¥ ¥ X ¥ * ¥ *x *

LDA

LDQ

TAU

WOR

INF

ADDCOLS.

(input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).

(input/output) DOUBLE PRECISION array, dimension (LDA,N)
On entry, the matrix Q_B.
On exit, the matrix Q.

(input) INTEGER
The leading dimension of the array Q. LDQ >= M.

(input) INTEGER
The postion of first column added to B.
0 < K <= N-P+1.

(input) INTEGER
The number columns added. P > 0.

(output) DOUBLE PRECISION array, dimension(N-K+1)
The scalar factors of the elementary reflectors.

K (workspace) DOUBLE PRECISION array, dimension (2xN)
Work space.

0 (output) INTEGER
= 0: successful exit
< 0: if INFO = -I, the I-th argument had an illegal value

. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

. Local Scalars ..
DOUBLE PRECISION DTEMP
INTEGER COL, I, INC, ISTART, J, JSTOP

. External Subroutines ..
EXTERNAL DLARF, DLASR, XERBLA

. Intrinsic Functions ..

228

INTRINSIC ABS, MAX, MIN, SQRT
Test the input parameters.

INFO = O

IF(M.LT.0) THEN
INFO = -1

ELSE IF(N.LT.0) THEN
INFO = -2

ELSE IF(LDA.LT.MAX(1, M)) THEN
INFO = -4

ELSE IF(K.GT.N-P+1 .OR. K.LE.O) THEN
INFO = -5

ELSE IF(P.LE.O) THEN
INFO = -6

END IF

IF(INFO.NE.O) THEN
CALL XERBLA(’ADDCLQ’, -INFO)
RETURN

END IF

We did a QR factorization on rows below N-P+1
IF(M.GT.N-P+1) THEN

COL=N-P + 1
DO 10 J =K, K+P -1

DTEMP = A(COL, J)
AC COL, J) = ONE

If N+P > M-N we have only factored the first M-N columns.
IF(M-COL+1.LE.O)
$ GO TO 10
CALL DLARF(’R’, M, M-COL+1, A(C COL, J), 1, TAU(J-K+1),
$ QC 1, coL), LDQ, WORK)

AC cOL, J) = DTEMP
COL = COL + 1

10 CONTINUE
END IF

229

* ¥ ¥ %

*

If K not equal to number of columns in B then there was
some elimination by Givens

IF(K+P-1.LT.N .AND. K.LE.M-1) THEN
Allow for M < N, i.e DO P wide unless hit the bottom first

JSTOP = MIN(P+K-1, M-1)
DO 30 J = K, JSTOP

ISTART = MIN(N-P+J-K+1, M)
INC = ISTART - J

Compute vectors of C and S for rotations
DO 20 I = ISTART, J + 1, -1

IF(AC I, J).EQ.ONE) THEN
WORK(INC) = ZERO
WORK(N+INC) = ONE
ELSE IF(ABS(A(I, J)).LT.ONE) THEN
WORK(N+INC) = AC I, J)
WORK(INC) = SQRT((1-A(I, J)**2))

ELSE
WORK(INC) = ONE / AC I, J)
WORK(N+INC) = SQRT((1-WORK(INC)*x*2))
END IF
INC = INC - 1
20 CONTINUE

Apply rotations to the Jth column from the right

CALL DLASR(’R’, ’V’, ’b’, M, ISTART-I+1, WORK(1),
$ WORK(N+1), Q(1, I), LDQ)

30 CONTINUE

END IF
RETURN

End of ADDCOLS

230

END

231

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Third edition, STAM, Philadelphia,
1999.

[2] Cleve Ashcraft, Roger G. Grimes, and John G. Lewis. Accurate symmetric
indefinite linear equation solvers. SIAM J. Matriz Anal. Appl., 20(2):513—-
061, 1998.

[3] Automatically Tuned Linear Algebra Software (ATLAS). http://math-
atlas.sourceforge.net/ /.

[4] A. Bjorck. Numerical Methods for Least Squares Problems. SIAM,
Philadelphia, PA, USA, 1996.

[5] A. Bjérck, L. Eldén, and H. Park. Accurate downdating of least squares
solutions. SIAM J. Matriz Anal. Appl., 15:549-568, 1994.

[6] A. W. Bojanczyk, R. P. Brent, P. Van Dooren, and F. R. De Hoog. A note
on downdating the Cholesky factorization. SIAM J. Sci. Stat. Comput.,
8(3):210-221, 1987.

[7] Adam Bojanczyk, Nicholas J. Higham, and Harikrishna Patel. Solving the
indefinite least squares problem by hyperbolic QR factorization. STAM J.
Matriz Anal. Appl., 24(4):914-931, 2003.

[8] James R. Bunch and Linda Kaufman. Some stable methods for calculating

inertia and solving symmetric linear systems. Mathematics of Computa-
tion, 31(137):163-179, 1977.

[9] A.Bunse-Gerstner. An algorithm for the symmetric generalized eigenvalue
problem. Linear Algebra and Appl., 58:43—68, 1984.

[10] Ralph Byers, Volker Mehrmann, and Hongguo Xu. A structured staircase
algorithm for skew-symmetric/symmetric pencils. In preparation.

232

[11] Zhi Hao Cao. On a deflation method for the symmetric generalized eigen-
value problem. Linear Algebra and Appl., 92:187-196, 1987.

[12] J. M. Chambers. Regression updating. Journal of the American Statistical
Association, 66(336):744-748, 1971.

[13] J. W. Daniel, W. B. Gragg, L. Kaufman, and G. W. Stewart. Reorthog-
onalization and stable algorithms for updating the Gram-Schmidt QR
factorization. Mathematics of Computation, 30(136):772-795, 1976.

[14] J. W. Demmel. Applied Numerical Linear Algebra. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1997.

[15] James Demmel and Bo Kagstrém. The generalized Schur decomposition
of an arbitrary pencil A — AB: Robust software with error bounds and
applications. Part I: Theory and algorithms. ACM Trans. Math. Soft., 19
(2):160-174, 1993.

[16] James Demmel and Bo Kagstrém. The generalized Schur decomposition
of an arbitrary pencil A — AB: Robust software with error bounds and
applications. Part II: Software and applications. ACM Trans. Math. Soft.,
19(2):175-201, 1993.

[17] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization soft-
ware with performance profiles. Math. Prog., 91:201-213, 2002.

[18] J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling. A set of Level 3
Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 16(1):1-17,
1990.

[19] J. Dongarra and D. Sorensen. A fully parallel algorithm for the symmetric
eigenproblem. STAM J. Sci. Stat. Comput., 8(2):139-154, 1987.

[20] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An ex-
tended set of basic linear algebra subprograms: Model implementation
and test programs. ACM Trans. Math. Soft., 14(1):18-32, 1988.

[21] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK
Users’ Guide. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 1979.

[22] L. Eldén and H. Park. Block downdating of least squares solutions. SIAM
J. Matriz Anal. Appl., 15:1018-1034, 1994.

233

[23] G. Fix and R. Heiberger. An algorithm for the ill-conditioned generalized
eigenvalue problem. SIAM Journal on Numerical Analysis, 9(1):78-88,
1972.

[24] G. H. Golub and C. F. Van Loan. Matriz Computations. Third edition,
The Johns Hopkins University Press, Baltimore, MD, USA, 1996.

[25] D. J. Higham and N. J. Higham. Structured backward error and condition
of generalized eigenvalue problems. SIAM J. Matriz Anal. Appl., 20(2):
493-512, 1998.

[26] Desmond J. Higham and Nicholas J. Higham. MATLAB Guide. Second
edition, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2005. To be published.

[27] N. J. Higham. Analysis of the Cholesky decomposition of a semidefinite
matrix. In Reliable Numerical Computation, M. G. Cox and S. J. Ham-
marling, editors, Oxford University Press, 1990, pages 161-185.

[28] Nicholas J. Higham. The Matrix Computation Toolbox. http://www.ma.
man.ac.uk/ “higham/mctoolbox.

[29] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Sec-
ond edition, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 2002.

[30] R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge University
Press, 1985.

[31] B. Kagstrom. Singular matrix pencils (section 8.7). In Templates for
the Solution of Algebraic Figenvalue Problems: a Practical Guide, Z. Bai,
J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors, Society
for Industrial and Applied Mathematics, 2000, pages 260-277.

[32] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic Linear
Algebra Subprograms for Fortran usage. ACM Trans. Math. Soft., 5(3):
308-323, 1979.

[33] Craig Lucas. Computing Nearest Covariance and Correlation Matrices.
MSc thesis, University of Manchester, Manchester, England, 2001.

[34] Matrix Market. http://math.nist.gov/MatrixMarket/.

[35] /matlab6.5/toolbox/matlab/elmat/private/qmult.m from the MAT-
LAB distibution.

234

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

MATLAB, version 6.5. The Mathworks Inc, Natick, MA, USA.

C. B. Moler and G. W. Stewart. An algorithm for generalized matrix
eigenvalue problems. SIAM Journal on Numerical Analysis, 10(2):241-
256, 1973.

NAG Fortran Library Manual, Mark 20. Numerical Algorithms Group,
Oxford, UK.

S. J. Olszanskyj, J. M. Lebak, and A. W. Bojanczyk. Rank-%£ modificaton
methods for recursive least squares problems. Numerical Algorithms, 7:
325-354, 1994.

B. N. Parlett. Analysis of algorithms for reflections in bisectors. STAM
Review, 13:197-208, 1971.

B. N. Parlett. The Symmetric Figenvalue Problem. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.

C. M. Rader and A. O. Steinhardt. Hyperbolic Householder transforms.
SIAM J. Matriz Anal. Appl., 9(2):269-290, 1988.

L. Reichel and W. B. Gragg. Algorithm 686: FORTRAN subroutines for
updating the QR decomposition. ACM Trans. Math. Soft., 16:369-377,
1990.

M. A. Saunders. Large-scale linear programming using the cholesky factor-
ization. Technical Report CS252, Computer Science Department, Stanford
University, CA, 1972.

Robert Schreiber and Charles van Loan. A storage-efficient wy represen-
tation for products of householder transformations. SIAM J. Sci. Stat.
Comput., 10(1):53-57, 1989.

BLAS Technical Forum Standard. http://www.netlib.org/blas/
blast-forum/.

G. W. Stewart. The effects of rounding error on an algorithm for down-
dating a Cholesky factorization. Journal of the Institute of Mathematics
and its Applications, 23(2):203-213, 1979.

G. W. Stewart. The efficient generation of random orthogonal matrices

with an application to condition estimators. SIAM Journal on Numerical
Analysis, 17(3):403-409, 1980.

235

[49] G. W. Stewart. On the stability of sequential updates and downdates.
IEEE Trans. Signal Processing, 43(11):2642-2648, 1995.

[50] G. W. Stewart. Matriz Algorithms. Volume II: Eigensystems. SIAM,
Philadelphia, PA, USA, 2001.

[61] L. N. Trefethen and D. Bau. Numerical Linear Algebra. STAM, Philadel-
phia, PA, USA, 1997.

236

