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Abstract. We use the problem of determining nematic liquid crystal director profiles
from optical measurements as an example to illustrate that what is often treated
purely as a data fitting problem is really an inverse problem and that useful insights
can be obtained by treating it in this way. Specifically we illustrate the analysis of
the sufficiency of data and the sensitivity of a solution to measurement errors. We
assume a stratified medium where the Berreman method can be used for the optical
forward problem and we consider the inverse problem to be the determination of an
anisotropic dielectric permittivity tensor from optical data. A numerical Singular Value
Decomposition (SVD) analysis reveals that although this inverse problem is severely
ill-conditioned it is possible to determine depth-dependent information provided the
medium is sufficiently birefringent and that, as one might expect, a larger range
of incident angles gives greater information. Analytical solutions of the Berreman
equations for general perturbations of an orthorhombic crystal confirm uniqueness of
solution for the linearized problem and give further insights into the severely ill-posed
nature of the inverse problem.

PACS numbers: 02.30.Zz, 42.70.Df
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1. Introduction

Many inverse problems occur in experimental physics, although these are often just

treated as data fitting problems, where the parameters in a forward model are varied

until a good fit to the experimental data is obtained. Examples include optically probing

nematic liquid crystal cells to obtain information about the director profile through the

cell (the example used here to illustrate the approach being presented) and determining

material structure using X-rays, or neutron scattering. In these problems some initial

questions that arise are:

(i) Can the required parameters be deduced from the data?

(ii) How is the solution affected by the amount and type of data collected?

(iii) How can a solution be efficiently obtained?

(iv) How does experimental noise in the data limit the information that we can reliably

deduce from it?

These questions are typical of many such inverse problems that occur in experimental

physics and where a similar analysis to that given here may also be appropriate.

Nematic liquid crystals are generally made up of rod-like molecules which show a

nematic phase, i.e. a phase where the centres of mass of the molecules have no positional

order, but where there is local orientational order. At any point, r, in the material we

can define an average direction, which we represent by a unit vector, n(r) and which

we call the director. We make no distinction between n(r) and −n(r). In the absence

of external influences the liquid crystal (LC) director is the same everywhere, there is

no distortion. In an LC cell the cell walls are treated to provide boundary conditions

that the director must satisfy. The LC takes up a configuration which minimizes the

free energy, which in its simplest form (with rigid anchoring at the boundaries and no

applied fields) is given in 1. The three terms in the integral represent the allowable

distortions for a nematic LC: splay, twist and bend.

F =
∫

V

[
1

2
K11 (∇ · n)2 +

1

2
K22 (n · (∇∧ n))2 +

1

2
K33 |n ∧ (∇∧ n)|2

]
dv (1)

These are given the elastic constants K11, K22 and K33. These can be measured

experimentally and are typically of the order of 10−11Nm−2.

Optically probing nematic liquid crystal cells, although experimentally straight-

forward, relies on difficult data fitting to give the director profile [1, 2, 3, 4]. Work at

Hewlett Packard Laboratories, Bristol (HPLB) is focused on developing a technique that

can efficiently obtain director profiles for such cells to allow different surface treatments

and LC materials to be evaluated.

The experimental set-up uses a polarimeter to measure the normalized Stokes

parameters [5] of monochromatic light transmitted by a test cell as a function of the

incident angle and polarization state of the input beam. The data is then compared to

results obtained from an optical model of the system and the model parameters adjusted

to give a good fit to the data.
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In this paper results are presented in terms of the fundamental model parameters,

the elements of the dielectric tensor.

2. Experimental method

Figure 1 shows the experimental setup used at HPLB. A cylindrical mount enables data

to be collected over a wide range of incident angles. For each incident angle normalized

Stokes parameters are measured for a number of input polarisations‡. For the Stokes

parameter measurement the z-axis is taken to be in the direction of the beam and the

alignment of the polarimeter defines the x and y-axes. In the experimental setup used

at HPLB the x-axis is horizontal and the y-axis vertical and into the optical bench.

Similar experiments are carried out in the Department of Physics at the University of

He-Ne laser Set input 
polarisation
state

PolarimeterCorrection
lens

Correction
lens

Test cell in a 
cylindrical mount
on a rotation stage

Figure 1. The experimental setup used at HPLB. The correction lenses ensure that
the beam is collimated on the cell. The polarimeter used gives normalized Stokes
parameters.

Exeter. Later in this paper we will apply the same techniques to their experimental

setup.

3. The forward problem

The forward problem is the calculation of the Stokes parameters for a given incident

angle and input polarization.

Taking the z-axis in the direction of the beam and defining the x and y-axes relative

to the laboratory system the electric field vector, E , can be written E = (Ex, Ey)T (where

T denotes the transpose) with Ex = a cos(ωt − kz) and Ey = b cos(ωt − kz + δ). The

Stokes parameters [5] are defined as

S0 = a2 + b2, S1 = a2 − b2, S2 = 2ab cos δ and

S3 = 2ab sin δ (2)

To calculate the E-vector we use the Berreman 4 × 4 matrix method [6]. This method

supersedes the simpler 2×2 Extended Jones method [7] used elsewhere in that reflected

waves are also correctly included.

‡ Typically four input polarizations are used: linear polarization at 22.5o, 67.5o and 112.5o to the
horizontal (the x-axis) and left handed circular polarization.
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Maxwell’s equations (in SI units) for a dielectric are[8]

∇ ·D = 0 (3)

∇ ·B = 0 (4)

∇∧ E = − ∂B

∂t
(5)

∇∧H =
∂D

∂t
(6)

Putting (x, y, z) = (x1, x2, x3) we write each of the terms in the solution as

U = U(z)exp(i(ωt− k1x1 − k2x2)) (7)

giving

iωD1 = − ik2H3 − ∂H2

∂x3

iωD2 = ik1H3 +
∂H1

∂x3

iωD3 = − ik1H2 + ik2H1 (8)

iωB1 = ik2E3 +
∂E2

∂x3

iωB2 = − ik1E3 − ∂E1

∂x3

iωB3 = ik1E2 − ik2E1

We assume that D is linearly related to E and that B is linearly related to H with

relative permeability µ = 1 and write§
D = ε0εE (9)

B = µ0H (10)

Choosing our co-ordinate system so that the xz-plane is the incident plane (k2 = 0) and

substituting for D and B gives‖

iωε0ε1kEk = − ∂H2

∂x3

iωε0ε2kEk = ik1H3 +
∂H1

∂x3

iωε0ε3kEk = − ik1H2 (11)

iωµ0H1 =
∂E2

∂x3

iωµ0H2 = − ik1E3 − ∂E1

∂x3

iωµ0H3 = ik1E2

§ In SI units ε0c
2 = 107/4π (by definition) and µ0ε0c

2 = 1. ε is the dielectric tensor.
‖ We use the normal summation convention, i.e. we sum over repeated indices. So, for example,
ε1kEk = ε11E1 + ε12E2 + ε13E3.
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k1 = (ω/c)ξ, were ξ depends on the incident angle and the refractive index of the input

medium (usually air). Eliminating E3 and H3 gives an ordinary differential equation for

the Berreman field vector X = (E1,H2, E2,−H1)
T

∂

∂x3

X = − iω

c
MX (12)

where the matrix M is

M =




− ε13
ε33

ξ µ0c
ε33−ξ2

ε33
− ε23

ε33
ξ 0

εoc
(
ε11 − ε132

ε33

)
− ε13

ε33
ξ ε0c

(
ε12 − ε13ε23

ε33

)
0

0 0 0 µ0c

ε0c
(
ε12 − ε13ε23

ε33

)
− ε23

ε33
ξ ε0c

(
ε22 − ε223

ε33
− ξ2

)
0




(13)

The final value problem for this linear ODE can be solved to give the linear relationship

between ‘initial data’ X(0) and X(z) = P (z)X(0), where P (z) is a propagation matrix.

Given the field vector in the input plane we can calculate the field vector at the output

(z = d). We will write P (d) as simply P . We now assume that we have an input wave,

Xi, a reflected wave, Xr and a transmitted wave, Xt. We then have

Xt = P (Xi + Xr) (14)

This equation can be re-arranged (see Appendix 9) to give Xr and Xt as functions of

the input field vector, Xi.

For a region where M is independent of z we write each of the terms in the solution

as

U(z) = Uexp(−i(ω/c)ηz) (15)

and Berreman’s equation (12) then reduces to an eigenvalue equation

MX = ηX (16)

The eigen-solutions of this equation give the modes that propagate in that region.

4. Linearization and the SVD

In this case the specific questions that we would like to answer are:

(i) Can the dielectric tensor through the cell be deduced from the data?

(ii) How is the solution affected by the range of incident angles and input polarizations

used?

(iii) Given the limited accuracy of the polarimeter how much information can be deduced

from the data?

As a first step to answering these questions we have carried out an analysis of the inverse

problem by linearization and using singular value decomposition (SVD). The SVD is a

widely used tool in inverse problems as it can be used to study the number of unknown

parameters one can expect to reliably recover from a given system of measurements

of a specified precision. The Truncated SVD (TSVD) gives an explicit inversion of a
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linearized problem ignoring components in the solution that are not justified by the

precision of the data.

The forward problem can be written as

S = F (p) (17)

with S the vector of measured Stokes parameters, and F the corresponding calculated

values for the vector of model parameters p. We wish to solve the inverse problem

i.e. given a set of measured Stokes parameters find the model parameters consistent

with this data. This inverse problem is ill-posed in the sense that without including

additional a priori information widely varying parameter values will fit the data to a

given precision. To understand this difficulty we first linearize the problem about some

initial guess for the parameters p0

S = F (p0) + Jδp (18)

giving

Jδp = S − F (p0) = δS (19)

where J is the Jacobian matrix, Jij = ∂Si/∂pj.

A solution to the (non-linear) inverse problem is obtained by iteratively solving

the linearized problem and updating the model parameters. Given an initial set of

parameters, p0 we obtain the next estimate by solving the equation

Jδp = δS (20)

for δp. Solution of this equation is ill-conditioned and the results strongly affected by

any noise in the data. To investigate this we look at the SVD of the Jacobian, J .

Any m× n(m ≥ n) real matrix J can be written [9] as

J = UΣV T (21)

where

U is an m×m orthogonal matrix (its column vectors, ui, are orthonormal).

V is an n× n orthogonal matrix (with column vectors, vi. V T is the transpose of V ).

Σ is an m × n matrix, arranged so that the upper n × n block is diagonal with these

diagonal elements in descending order, and zeros elsewhere. The m−n rows below

are all zeros. We will also write this as Σ = diag(σ1, . . . , σn). The σi are called

singular values. If rank(J) = r then the last (n − r) singular values will be zero

and we will write Σ = diag(σ1, . . . , σr, 0, . . . , 0)

This is the SVD of the matrix. Given this decomposition we can write the least-squares

solution of (20) as

δp =
r∑

i=1

uT
i δS

σi

vi (22)

Small singular values give large contributions to the solution vector and this is where the

ill-conditioning arises. A measure of this ill-conditioning is the ratio of the largest to the
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smallest singular value, the condition number of the matrix [10]. Any noise on the data

carries across to δS and is then amplified by the smaller singular values. Put another

way, if we only know the data δS to some limited relative precision ε, we are not justified

in recovering components of the parameter vector uT
i δp for σi/σ1 < ε. The graph of the

decay of the singular values can therefore be used to indicate how many independent

components of δp we can expect to recover for a given measurement precision. We can

see how this varies for different data sets and choices of parametrization. The TSVD

is an approximate least squares solution where the sum in (22) is taken only as far as

some k < min(m,n) determined by the accuracy of the data.

5. Numerical results

Because the dielectric tensor is symmetric we need 6 parameters to specify it completely.

For N layers we have 6N parameters in all. For the results given below the Jacobian is

H T P

Figure 2. The director profiles used in the numerical tests (projected onto the xz

plane).

calculated for sets of initial parameters (p0) calculated by assuming that the dielectric

tensor is derived from an LC layer and that the LC director in this layer is aligned in

the following ways (see figure 2):

H The director is parallel to the incident (xz) plane. It is parallel to the z-axis at z = 0,

and is parallel to the x-axis at z = d (d is the thickness of the cell). The tilt of the

director varies linearly across the cell. A hybrid aligned nematic (HAN) cell. This

configuration closely models the experimental set-up at HPLB¶.

T The director is parallel to the xy-plane and is aligned at −π/4 to the x-axis at z = 0

and twists linearly through the cell so that it is aligned at π/4 to the the x-axis at

z = d. A twist cell with no pre-tilt.

P The director is parallel to the x-axis throughout the cell. A planar cell with no

pre-tilt.

In order to focus on the LC layer of the cell we choose the ordinary and

extraordinary refractive indices (no and ne) so that their average is equal to the refractive

index of the surrounding medium (glass)+. The LC is further assumed to be lossless so

¶ For a real material the director does not vary linearly, the amount of this non-linearity is small and
depends on the ratio of the bend and splay elastic constants.
+ This is probably a worst case situation as it minimizes any reflections and the resulting fringes in
the data. The fringes in the data provide strong features which aid the fitting process.
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its refractive index is real. Given the refractive indices and the azimuthal (φ) and tilt

(θ) angles of the director the elements of the dielectric tensor are given by

ε11 = n2
o + (n2

e − n2
o) cos2 θ cos2 φ

ε12 = ε21 = (n2
e − n2

o) cos2 θ sin φ cos φ

ε13 = ε31 = (n2
e − n2

o) cos θ sin θ cos φ

ε22 = n2
o + (n2

e − n2
o) cos2 θ sin2 φ (23)

ε23 = ε32 = (n2
e − n2

o) cos θ sin θ sin φ

ε33 = n2
o + (n2

e − n2
o) sin2 θ

The LC layer is modelled as an infinite plane in (x, y) divided into N uniform anisotropic

layers normal to the z-axis and of equal thickness (N is typically 50). For each test

director profile (H, T or P) we calculate the azimuthal (φ) and tilt (θ) angles of the

director in the centre of the layer and use these to calculate the dielectric tensor for this

layer.

Unless otherwise stated, for the numerical results presented here: the birefringence,

∆n = ne − no, was fixed at 0.15 (a typical value for liquid crystals); the incident angles

were in the range −70 to +70 degrees and the number of Stokes vectors was kept

constant (there were 200 incident angles and four different input polarizations - linear

polarization at 22.5, 67.5 and 112.5 degrees to the x-axis, and left circular polarization).

Figure 3 shows how the normalized singular values, σi/σ1, vary with N , the number

200 400 600 800 1000 1200

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

i

σ i/σ
1

 

 

50
100
200

Figure 3. The normalised singular values, σi/σ1, for three different numbers of layers,
N = 50, 100 and 200.
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of layers in the system∗. As the number of layers increases so does the number of

parameters. However there is no significant change in the number of singular vectors

that can usefully be used to construct a solution (those for which σi/σ1 < ε). For the

other results presented here we will therefore use N = 50.

Figure 4 shows how the normalized singular values depend on the initial parameters,

50 100 150 200 250 300

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

i

σ i/σ
1

 

 

Han
Twisted
Planar

Figure 4. The normalised singular values, σi/σ1, for different initial parameter
configurations, p0.

p0. For σi/σ1 > 0.01 we see that the normalized singular values show little dependence

on the initial parameter set, although, of course, the corresponding singular vectors

may be quite different. For the other results presented below we just use the HAN-like

profile.

In the photoelastic tomography of a stratified medium when measuring only rays

passing through all layers, extra input rays in the same incident plane give no further

information (although they may increase the signal to noise ratio). It might be imagined

that the same thing applies in this case. Figure 5 shows how the normalized singular

values vary with different incident angle ranges. As the angle range increases we do see a

marked increase in the number of singular vectors that we can use to construct a solution.

Why this difference? In photoelastic tomography [16] the birefringence is weak and the

ray approximation can be used to reduce the forward problem to a Radon transform

along rays of the component of the permittivity tensor perpendicular to the rays. This

shows why extra rays passing through all layers (as they must in this case) give no extra

∗ For clarity, unless otherwise stated, markers are only plotted every 10 points.
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Figure 5. The normalised singular values, σi/σ1, for different incident angle ranges.
All plots have 200 incident angles in the range -θ to θ.

information. Liquid crystals are highly birefringent and the ray approximation cannot be

used, the problem cannot be reduced in this way. Figures 6 and 7 show the normalized

singular values plotted for different values of the birefringence, ∆n. As ∆n becomes

small the number of singular vectors that can be used to construct a solution drops to

five, even with a large angle range. This is expected from the truncated transverse ray

transform (see for example, Chapter 6 in Sharafutdinov [16]).

6. Theoretical details

While the numerical studies we have presented stand on their own, there are some limited

theoretical results that are also illuminating. First we show how the linearization of the

Berreman equations, and consequently the Jacobian J , can be derived without recourse

to a finite difference approximation perturbing parameter values. We begin with the

Berreman system of ODEs in the form
(

d

dz
+

iω

c
Mξ

)
Xξ = h (24)

for some fixed ξ. Of course h = 0 in Berreman’s equations but we will have cause

to solve for non-zero h(z) in the course of our linearization. For clarity we omit the

ξ subscripts in what follows. We note that there is a Green’s function G so that the
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Figure 6. The normalised singular values, σi/σ1, for different values of the
birefringence, ∆n.
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Figure 7. Detail from figure 6 showing the collapse to just five singular values when
the birefringence goes to zero. In this plot all of the points are marked.

solution to (24) can be written

X(z) = P (z)X(0) +

z∫

0

G(z, z′)h(z′)dz′ (25)
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and we shall write the right most term in operator notation as G[h]. Now we consider

a hypothetical perturbation of the material parameters resulting in a change in the

Berreman matrix to Mξ + δMξ. For simplicity we will assume the initial condition X(0)

is fixed and, although in our practical situation that is not the case, we will rectify

the deficiency below. Taking M to be an initial guess, and h in (24) to be 0, the new

electromagnetic field X + δX, with δX(0) = 0, satisfies
(

d

dz
+

iω

c
(M + δM)

)
(X + δX) = 0 (26)

or (
d

dz
+

iω

c
M

)
δX =

iω

c
(δMX + δMδX) (27)

using (24). We see that this is a differential equation of the same form as (24) but in

δX, and in operator form is
(
1− iω

c
GδM

)
[δX] =

iω

c
G[δMX]. (28)

Using the standard Neumann series for operators we can write
(
1− iω

c
GδM

)−1

= 1 +
iω

c
GδM + (

iω

c
GδM)2 + · · · (29)

a series that will converge provided the operator norm ‖ω
c
GδM‖ < 1, which can be

ensured by taking a sufficiently small perturbation in δM . We now see that to first

order in δM

δX = G[δMX] (30)

or returning to the differential form
(

d

dz
− iω

c
M

)
δX =

iω

c
δMX (31)

to first order. The final data is obtained by solving this ODE for its final value δX(d),

or from the integral

δX(d) =
iω

c

d∫

0

G(d, z)δM(z)X(z)dz. (32)

In our practical application M depends on the parameters for each layer, but the

dependence is a simple algebraic formula that can easily be differentiated, so the partial

derivatives of the final value Xξ(d) with respect to each parameter is readily calculated

using the chain rule.

Let us pause to consider what type of inverse problem we have. ξ depends on the

incident angle and enters the formula for M (see ( 13)) as terms up to second order.

If M was simply a linear function of ξ we would have something very close to the

inverse Sturm-Liouville problem of recovering the coefficients of an operator from its

boundary eigendata. Indeed before the elimination of the z components of the electric

and magnetic field we had a 6× 6 system of second order partial differential equations
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where the coefficient matrix is linear in ξ. Similar, but not identical inverse spectral

problems are treated for example by [14, 15]. Just as in typical inverse spectral problems

our boundary data is an analytic function of ξ so for exact data a knowledge of Xξ(d) for

ξ in some interval is sufficient to determine the data for all ξ by analytic continuation.

However analytic continuation is extremely ill-posed so we expect that in numerical

examples a wider range of incident angles will result in a better conditioned system.

We can explore this phenomenon in a little more depth, and provide some insight

in to the numerical results, by considering perturbation about a homogeneous M . In

this case we have an explicit formula for the Green’s function and find that the solution

for (24) is

X(z) = exp(
iω

c
Mz)×




z∫

0

exp(− iω

c
Mz′)h(z′)dz′ + X(0)


 (33)

or G(z, z′) = exp(−iω(z − z′)M/c) so that (32) becomes

δX(d) =
iω

c
exp(− iω

c
Md)×

d∫

0

exp(
iω

c
Mz)δM(z) exp(− iω

c
Mz)X(0)dz. (34)

As for non-lossy materials M is real, we can consider (34) as a generalized Fourier

transform of δMX. The successful recovery of the unknown spatially varying coefficients

in δM relies on knowing their moments with respect to a sufficiently large range of

functions. Here ξ plays a role analogous to a frequency variable and it is reasonable

to expect that a wider range of incident angles would yield more information. The

eigenvalues qi of M , are typically distinct and for non-dissipative media are real. Let U

be the matrix of eigenvectors of M , and Q = diag(qi) so that (34) becomes

δX(d) = exp(
iω

c
Md)×

d∫

0

U exp(− iω

c
Qz)A exp(

iω

c
Qz)U−1X(0)dz (35)

with A = U−1δM(z)U .

We note that exp(− iω
c
Qz)A exp( iω

c
Qz) has elements ei(qi−qj)zAij. As we know all possible

pairs of initial and final data X(0), X(d), we know the linear response map T defined

by δX(d) = TX(0). From this data, and the known initial orthorhombic ε we also know

the matrix

Y = exp(− iω

c
Md)U−1TU =

d∫

0

exp(− iω

c
Qz)A exp(

iω

c
Qz) dz (36)

and so

Yij =

d∫

0

e
iω
c

(qi−qj)zAi,jdz = Âi,j(qi − qj) (37)
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where the ̂ denotes the Fourier transform and A is considered to be extended by zero

outside the interval [0, d]. Here the qi are functions of ξ and in general varying ξ over

an interval will vary qi − qj over an interval, for i 6= j. We see therefore that this data,

over a variety of incident angles gives us some information about the deviation of the

permittivity tensor from our initial constant assumption, in terms of the deviation of

the measurements from those we could calculate for the constant case.

If it were not for the awkward fact that U is also a function of ξ, we could invoke the

Paley-Wiener theorem that says that the Fourier transform of a compactly supported

function is entire. Knowing an entire function on an interval is enough to determine the

Taylor series, and hence the function everywhere. However such analytic continuation is

severely ill-posed, and we can expect our problem to be as well. In simple cases we can

expect to calculate U explicitly and come to a definite conclusion about the sufficiency

of data for the linearized problem, and an example of this is given in the next section.

7. Orthorhombic case

Following Berreman we attempt to understand one of the simplest cases. We consider a

general perturbation in permittivity tensor δ about the permittivity for an orthorhombic

crystal with principle axes aligned with the coordinate axes. As before we take the

incident plane to be the xz plane.

For the orthorhombic case M reduces to


0 µ0c
ε33−ξ2

ε33
0 0

ε0cε11 0 0 0

0 0 0 µ0c

0 0 ε0c (ε22 − ξ2) 0




The eigenvalues are

q1 =

√
ε11

ε33

√
ε33 − ξ2, q2 = −q1, q3 =

√
ε22 − ξ2, q4 = −q3

with matrix of eigenvectors

U =




− q1

cε0ε11

q1

cε0ε11
0 0

1 1 0 0

0 0 −cµ0/q3 cµ0/q3

0 0 1 1




and inverse


−cε0ε11/2q1
1
2

0 0

cε0ε11/2q1
1
2

0 0

0 0 −q3

2 cµ0

1
2

0 0 q3

2 cµ0

1
2
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We calculate the perturbation δM corresponding to ε + δ

δM =




− ξ δ13
ε33

ξ2 δ33
cε0ε233

− ξ δ23
ε33

0

cε0δ11 − ξ δ13
ε33

cε0δ12 0

0 0 0 0

cε0δ12 − ξ δ23
ε33

cε0δ22 0




and then consider the coefficient of each δij in U−1δMU , noting that we will be able to

obtain Fourier data for off-diagonal terms.

coefficient of δ11 =
q3

2cε0ε11




−1 1 0 0

−1 1 0 0

0 0 0 0

0 0 0 0




coefficient of δ12 =
1

2cε0




0 0 − 1
q3

1
q3

0 0 − 1
q3

1
q3

− q1

2ε11

q1

2ε11
0 0

− q1

2ε11

q1

2ε11
0 0




coefficient of δ13 = − ξ

cε0ε33




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




coefficient of δ22 =
cµ0

2q3




0 0 0 0

0 0 −1 1

0 0 −1 1




coefficient of δ23 =



0 0 − ξ
√

ε11
2
√

ε33q1q3

ξ
√

ε11
2
√

ε33q1q3

0 0 ξ
√

ε11
2
√

ε33q1q3
− ξ

√
ε11

2
√

ε33q1q3

− ξ
2ε33

− ξ
2ε33

0 0

− ξ
2ε33

− ξ
2ε33

0 0




coefficient of δ33 =
ξε11

2ε33q1




−1 −1 0 0

1 1 0 0

0 0 0 0

0 0 0 0




We see that for all except δ13 there are non-trivial off diagonal components so that

for data using incident light in this plane for an interval of incident angles the Fourier

transforms of all other δij are determined for some interval of frequencies, hence by

analytic continuation the perturbation is determined uniquely everywhere. Although

of course their recovery in the presence of noise will be unstable. Note now that by

rotating the plane of incidence through a right angle, the x and y axis swap roles and
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we can with the data for these two planes recover all the perturbed coefficients. Now

let us look in a little more detail at the off diagonal terms above. For each of the

identifiable δij we recover Pξ δ̂ij(qi(ξ)− qj(ξ)) where Pξ is either a known constant or a

known multiple of ξ or q±1
k or ξ/qk for k = 1 or 3. In any case these are Fourier integral

operators applied to δij. One can expect different spectral information on δij from a

term appearing in the 1 2 or 3 4 position from those in the 1 3 and 2 4 positions. In

the first case q1 − q2 = 2q1, q3 − q4 = 2q3, and as dqi/dξ = 0 at ξ = 0 a small range of

incident angle about zero gives only a small spectral window. By contrast q1 and q3 will

be close for a weakly anisotropic medium, indeed for ε11 = ε22

q1 − q3 =

√
ε11

2

(
1

ε11

− 1

ε33

)
ξ2 + O(ξ4)

giving a wider spectral window for a range of incident angles near zero.

8. An alternative approach

Researchers in the Department of Physics at the University of Exeter have been working

on similar problems for some time [1, 2, 3, 4]. Figure 8 shows the experimental setup

that they use. Instead of a cylindrical mount Exeter use prisms to allow high angles of

incidence to be achieved, although this does restrict the incident angle range over which

measurements can be taken. For each incident angle s and p polarized light is input and

the reflected and transmitted intensities for s and p polarizations are measured]. This

gives eight measurements for each incident angle: Rss, Rsp, Rps, Rpp, Tss, Tsp, Tps and

Tpp. We have carried out a similar analysis for the Exeter experiment, assuming that

He-Ne laser Polariser Polariser Photo
detector

and polariser
Photo detector

Test cell between
prisms on a 
rotation stage

rotating separately

Figure 8. The experimental setup used at Exeter University. The photo detector and
polarizer for the reflected beam rotate at twice the speed of the cell.

the azimuthal angle for the cell is 45o and that the range of incident angles used is the

same as in a typical experiment (60 − 72o). The results for the different test director

profiles are shown in figure 9. The distribution of singular values is very similar and so

] The liquid crystal cell is inserted in the beam with the director out of the incident plane to ensure
that there is some polarization conversion.
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Figure 9. The normalised singular values, σi/σ1, for the Exeter experiment and
different initial parameter configurations, p0.

their problem is equally ill-posed. Any methods developed to facilitate the solution of

our inverse problem should work in this case also.

9. Conclusions

Our numerical investigation shows that a dielectric tensor depending on depth can be

recovered from the experimental measurements used by both the HPLB and Exeter

groups. While there is no rank deficiency indicating a unique solution for exact data,

this is a severely ill posed problem so some regularization will be needed to recover the

dielectric tensor field from experimental data. The number of parameters that can be

recovered for a given data error increases as the range of incident angle is increased.

In a special case of a general perturbation of an orthorhombic material, the

linearized inverse problem has a unique solution, provided two planes of incidence are

used. Further work is needed to apply the techniques of inverse spectral theory for

systems of ordinary differential equations to this problem in an attempt to understand

the question of sufficiency of data more completely.

Some simplification of the inverse problem can be obtained by assuming that the

LC is uniaxial (in inverse problem terms this is the inclusion of prior information). We

can also use the Euler-Lagrange equations obtained by minimizing the free energy (1)

to constrain any solution. Results for this uniaxial case, efficient methods of solving

the inverse problem using the Euler-Lagrange equations and results using experimental
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data will be reported separately.

A more general problem where we remove the hypothesis that the medium is

stratified has been treated numerically using the finite element method for forward

solution and is reported in [17]. The question of sufficiency of data for this more general

case is still an open problem.
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Appendix

The Berreman method gives us

Xt = P (Xi + Xr)

Following Galatola and Oldano [18] we rewrite this in terms of the TM and TE

components of the electric fields on the beams. So we have

Xi + Xr = T1




i1
i2
r1

r2




with

T1 =




cos θi 0 − cos θi 0

ε0cn1 0 ε0cn1 0

0 1 0 1

0 ε0cn1 cos θi 0 −ε0cn1 cos θi




Similarly, assuming that there is only an outgoing transmitted wave, we can write

Xt = T2




t1
t2
0

0




with

T2 =




cos θt 0 − cos θt 0

ε0cn2 0 ε0cn2 0

0 1 0 1

0 ε0cn2 cos θt 0 −ε0cn2 cos θt
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We then have

T2




t1
t2
0

0




= PT1




i1
i2
r1

r2




giving



t1
t2
0

0




= UB




i1
i2
r1

r2




with UB = T−1
2 PT1. Defining the projection matrices

P+ =




1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




and

P− =




0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1




we can rewrite the equation as



t1
t2
r1

r2




= (P+ − UBP−)−1UB




i1
i2
0

0




So, given the TM and TE components of the incident wave we can calculate the TM

and TE components of the transmitted and reflected waves.
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