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Abstract

We consider the problem of optimal scaling of the proposal variance for multidimensional Random

walk Metropolis (RWM) algorithms. It is well known, for a wide range of continuous target densi-

ties, that the optimal scaling of the proposal variance leads to an average acceptance rate of 0.234.

Therefore a natural question is, do similar results for target densities which have discontinuities? In

the current work, we answer in the affirmative for a class of spherically constrained target densities.

Even though the acceptance probability is more complicated than for continuous target densities, the

optimal scaling of the proposal variance again leads to an average acceptance rate of 0.234.

AMS 2000 subject classification. Primary 60F05; secondary 65C05.

Keywords: Random walk Metropolis algorithm, Markov chain Monte Carlo, optimal scaling, spherical

distributions.

1 Introduction

The Random walk Metropolis (RWM) algorithm is one of the most widely used Markov chain Monte Carlo

(MCMC) algorithms. The RWM algorithms popularity is due to the fact that it is easy to implement

and its generic nature. Therefore it is often seen as the default MCMC algorithm when more model

specific algorithms do not readily present themselves. However the RWM algorithms generic nature can
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be its downfall and it is important that the proposal variance is carefully chosen to construct an efficient

algorithm. If the proposal variance is too small, then the RWM algorithm converges slowly since all of

the increments are small. Alternatively, if the proposal variance is too large, the RWM will reject too

high a proportion of proposed moves.

The question of optimal scaling of RWM algorithms for d-dimensional target distributions has received

considerable attention. A number of heuristic, ‘rules of thumb’ have been proposed, see Besag and

Green (1993) and Besag et al. (1995). However, in Roberts et al. (1997) theoretical guidelines were

obtained by considering a sequence of d-dimensional target distributions as d → ∞. These guidelines

although asymptotic have been shown to be practically useful for relatively low dimensions such as d = 10.

Moreover the guidelines provided by Roberts et al. (1997) are easy to implement and summed up in the

following statement from Roberts et al. (1997), page 113.

Tune the proposal variance so that the average acceptance rate is roughly 1/4. (1.1)

In Roberts et al. (1997), iid product densities were considered. Subsequent papers have shown that (1.1)

holds in a range of situations, see Breyer and Roberts (2000), Roberts and Rosenthal (2001), Neal and

Roberts (2006) and Bédard (2006). All these papers consider continuous target densities. Therefore the

following question is posed; does (1.1) hold for discontinuous target densities? A partial answer is given

in this paper, in that, we show that (1.1) holds when the target distribution is subjected to a global

(spherical) constraint on the components. In a subsequent paper, Neal et al. (2006), we show that (1.1)

does not hold for target distributions with local discontinuities, that is, where the discontinuities are

given in terms of individual components as opposed to a global condition.

The paper is structured as follows. In Section 2, the target distribution to be considered is introduced.

In Section 3, RWM on the d-dimensional uniform hypersphere is considered. In particular, we focus on

the limiting behaviour of movements both in the radial component of the hypersphere and individual

components. The analysis is similar to Roberts et al. (1997), thus allowing for direct comparisons with

the results there in. However, variation in the radial component, and hence the acceptance probability,

leads to more involved arguments than those required in Roberts et al. (1997). In Section 4, extending

the results of Section 3 to more general target distributions is discussed. This begins with a detailed com-

parison with Roberts et al. (1997) and is followed by analysis of constrained Gaussian random variables

for which explicit results can be derived. Finally, in Section 5 a brief summary of the results is given.
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2 Target densities

For d ≥ 1, we consider the optimal scaling of the proposal variance for target distributions of the form:

πd(x
d) ∝







∏d
i=1 f(xi) if 1

d

∑d
i=1 x2

i ≤ 1,

0 otherwise.
(2.1)

The spherical constraint is chosen so that in the limit, as d → ∞, each of the components of Xd ∼ πd(·)

have non-trivial marginal distributions. Note that without the spherical constraint (2.1) is the product

density considered in Roberts et al. (1997).

In Section 3, we consider the d-dimensional uniform hypersphere, that is, the special case of (2.1) where

f(x) = 1 (x ∈ R). The behaviour of the RWM algorithm in this case is indicative of the RWM behaviour

for more general target densities. In Section 4, we let f(·) ∼ N(0, λ) for λ > 0, with the d-dimensional uni-

form hypersphere as the special limiting case when λ → ∞. Complications encountered when considering

more general choices of f(·) are also discussed in Section 4.

The RWM algorithm is described below. For t ≥ 0 and i ≥ 1, let Zt,i be independent and identically

distributed according to Z ∼ N(0, 1). For d ≥ 1, 1 ≤ i ≤ d, t ≥ 0 and l > 0, let σd = l/
√

d and

Y d
t+1,i = Xd

t,i + σdZt,i.

Then if 1
d

∑d
i=1(Y

d
t+1,i)

2 ≤ 1, we accept the proposed move with probability 1 ∧ ∏d
i=1 f(Y d

t+1,i)/f(Xd
t,i).

If the move is accepted, we set Xd
t+1 = Yd

t+1. Otherwise, we reject the move and set Xd
t+1 = Xd

t .

The stationary distribution of Xd
t is given by (2.1). Each of the components of Xd

t are identically

distributed and exchangeable. Therefore we shall focus on the first two components Xd
·,1 and Xd

·,2. In

particular, we show that the movements in the first two components are asymptotically independent.

For t ≥ 0, let Rd
t =

(

1
d

∑d
i=1(X

d
t,i)

2
)

1
2

denote the (normalised) radius. A key point to note is that for

the uniform hypersphere and the constrained Gaussian distribution the acceptance probability is totally

determined by the radius of Yd
t+1. Therefore in both cases we begin by studying the behaviour of the

radial component before analysing Xd
·,1 and Xd

·,2 in detail.
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3 Hypersphere

3.1 Radial Component

For large d, the majority of the mass of the hypersphere is located close to the surface (radius equal to

1). Under stationarity, Rd
0 has cumulative distribution function Fd(r) = rd (0 ≤ r ≤ 1). Therefore rather

than consider the asymptotic behaviour of Rd
t as d → ∞, it will be convenient to consider Bd

t = −d log Rd
t ,

where for all d ≥ 1, Bd
0 ∼ Exp(1).

Fix l > 0. We shall assume that l is fixed for the remainder of this section. For t ≥ 0, let the Markov

chain B have the following transition kernel,

Bt+1 =







Bt − Z̃t if Bt − Z̃t > 0

Bt otherwise,
(3.1)

where Z̃t ∼ N
(

l2

2 , l2
)

. The Markov chain {Bt} is a random walk on the positive half line with stationary

distribution Exp(1), and so, by Jarner and Tweedie (2003), Theorem 2.2 it is geometrically ergodic.

Before showing that B is the limiting process of Bd we introduce some preliminary results.

Let

B̃d(xd) = −d

2
log

(

1

d

d
∑

i=1

(xd
i )

2

)

.

Then for α, γ > 0, let

F
(α,γ)
d = {xd; max

1≤i≤d
|xd

i | ≤ dα} ∩ {xd; 0 ≤ B̃d(xd) ≤ γ log d}.

We then have the following trivial result which will enable us, for α > 0 and γ > 1, to restrict attention

to Xd
t ∈ F

(α,γ)
d .

Lemma 3.1 For all α > 0 and γ > 1,

dP(Xd
0 6∈ F

(α,γ)
d ) → 0 d → ∞. (3.2)

Proof. Fix α > 0 and γ > 1. Note that

dP(Xd
0 6∈ F

(α,γ)
d ) ≤ dP( max

1≤i≤d
|Xd

0,i| > dα) + dP(B̃d(Xd) > γ log d). (3.3)

The components of Xd
0 are exchangeable, and so, the first term on the righthandside of (3.3) is bounded

as follows

dP( max
1≤i≤d

|Xd
0,i| > dα) ≤ d2

P(|Xd
0,1| > dα). (3.4)
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Therefore since Xd
0,1 has probability density function,

gd(x) =







Γ(d/2+1)

πd/2(
√

d)d

(

πd−1/2(
√

d−x2)d−1

Γ((d−1)/2+1)

)

−
√

d ≤ x ≤
√

d

0 otherwise,

it is straightforward to show that the righthandside of (3.4) converges to 0 as d → ∞.

The latter term on the righthandside of (3.3) converges to 0 as d → ∞, since for all t ≥ 0, B̃d(Xd
t ) ∼

Exp(1). ¤

Lemma 3.2 For all 0 < α < 1
4 , γ > 1, k ∈ N and t ≥ 0, if Xd

t ∈ F
(α,γ)
d , then

l√
d

d
∑

i=k

Xd
t,iZt,i +

l2

2d

d
∑

i=k

Z2
t,i

D
= Z̃t + ǫd

t as d → ∞, (3.5)

where Z̃t ∼ N(l2/2, l2) and for any δ < 1 − 4α, dδǫd
t

p−→ 0 as d → ∞.

Proof. Let Xd
t = wd ∈ F

(α,γ)
d . We prove the result for t = 1, the general result follows similarly.

Let θ ∈ R. Then since max1≤j≤d |wd
j | ≤ dα,

E



exp



iθ







σd

d
∑

j=1

wd
j Z1,j +

σ2
d

2

d
∑

j=1

Z2
1,j













 =

d
∏

j=1

E

[

exp

(

iθ

{

σdw
d
j Z1,j +

σ2
d

2
Z2

1,j

})]

=

d
∏

j=1

(

1 + iθ
l2

2d
− θ2l2

2d
(wd

j )2 + O(d4α−2)

)

= exp





d
∑

j=1

{

iθ
l2

2d
− θ2l2

2d
(wd

j )2 + O(d4α−2)

}





= exp



iθ
l2

2
− θ2 l2

2

1

d

d
∑

j=1

(wd
j )2 + O(d4α−1)



 .(3.6)

Note that since wd ∈ F
(α,γ)
d , we have that

1 − 2
γ log d

d
≤ 1

d

d
∑

j=3

(wd
j )2 ≤ 1.

Therefore it follows from (3.6) that

σd

d
∑

j=3

wd
j Z1,j +

σ2
d

2

d
∑

j=3

Z2
1,j

D
= Z̃1 + ǫd

1

where for any δ < 1 − 4α, dδǫd
1

p−→ 0 as d → ∞. ¤

Lemmas 3.1 and 3.2 are stronger than are required for analysing the radial component but are needed for

the analysis of the individual components in Section 3.2. We now turn our attention to the main results

for the radial component.
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Theorem 3.3 For all b ∈ R
+ and T ∈ N,

Bd
T |Bd

0 = b
D−→ BT |B0 = b as d → ∞. (3.7)

Proof. We prove the result for T = 1. The result for general T ∈ N follows straightforwardly since Bd
·

and B· are Markovian.

For d ≥ 1 and t ≥ 1, let

Sd
t+1 = −d

2
log

(

1

d

d
∑

i=1

(Y d
t+1,i)

2

)

,

then

Bd
t+1 =







Sd
t+1 if Sd

t+1 > 0

Bd
t otherwise.

Firstly, note that

d
∑

i=1

(Y d
1,i)

2 =

(

Xd
0 +

l√
d
Zd

0

)T (

Xd
0 +

l√
d
Zd

0

)

= d(Rd
0)

2 + 2
l√
d
(Zd

0)
T Xd

0 +
l2

d
(Zd

0)
T Zd

0

= d(Rd
0)

2 + 2
l√
d

d
∑

i=1

Xd
0,iZ0,i +

l2

d

d
∑

i=1

Z2
0,i.

By Lemma 3.2,

d

{

exp

(

−2

d
Sd

t+1

)

− exp

(

−2

d
Bd

t

)}

=

d
∑

i=1

(Y d
t+1,i)

2 − d(Rd
t )

2

D−→ 2Z̃t as d → ∞. (3.8)

For all t ≥ 0,

∣

∣

∣

∣

d

{

exp

(

−2

d
Sd

t+1

)

− exp

(

−2

d
Bd

t

)}

+ 2(Sd
t+1 − Bd

t )

∣

∣

∣

∣

p−→ 0 as d → ∞,

and so, by Billingsley (1968), Theorem 4.1,

−(Sd
t+1 − Bd

t )
D−→ Z̃t as d → ∞.

Therefore for all b ≥ 0,

Sd
t+1|Bd

t = b
D−→ St+1|Bt = b as d → ∞, (3.9)

where

St+1 = Bt − Z̃t. (3.10)
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Since Z̃t is continuous, (3.7) follows from (3.9) and (3.10). ¤

Theorem 3.3 shows that the radial component mixes in O(1) iterations. However, for studying the

movement in individual components we shall require the following result.

Lemma 3.4 For any β > 0, γ > 1 and for all bd ∈ [0, γ log d],

Bd
[dβ ]|Bd

0 = bd
D−→ B̃ ∼ Exp(1) as d → ∞. (3.11)

Proof. Fix β, ǫ > 0, γ > 1, ζ ∈ R
+ and let C = [0, ζ].

Let Wd = min1≤i≤d{Bd
i ∈ C}. Then since Bd

· has negative drift, it is trivial to show that

P(Wd > [dβ/2]) → 0 as d → ∞. (3.12)

Since {Bt} is geometrically ergodic, there exists T ∈ N such that

|{BT |B0 ∈ C} − B̃|TV <
ǫ

2
, (3.13)

see Meyn and Tweedie (1993) page 354, Theorem 15.0.1. However, for all b ∈ C and x ∈ R,

|P(Bd
T ≤ x|Bd

0 = b) − P(B̃ ≤ x)|

≤ |P(Bd
T ≤ x|Bd

0 = b) − P(BT ≤ x|B0 = b)| + |P(BT ≤ x|B0 = b) − P(B̃ ≤ x)|. (3.14)

By (3.7) and (3.13), respectively, the two terms on the righthandside of (3.14) are bounded by ǫ/2 for

all sufficiently large d. Therefore since [dβ/2] → ∞ as d → ∞, it follows that for all sufficiently large d,

[dβ/2] ≥ T , and so, by the Markov property

Bd
[dβ/2]|Bd

0 = b
D−→ B̃ as d → ∞. (3.15)

The lemma follows from (3.12) and (3.15). ¤

3.2 Individual Components

We are now in position to consider the movement in any of the components. Since the components are

exchangeable but not independent we shall focus upon components 1 and 2.

For t ≥ 0 and d ≥ 1, let Ud
t =

(

Xd
[dt],1,X

d
[dt],2

)

.
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Theorem 3.5 For all d ≥ 1, let Xd
0 be distributed according to πd(·), where for xd ∈ R

d,

πd(x
d) ∝







1 if 1
d

∑d
i=1(x

d
i )

2 ≤ 1,

0 otherwise.
(3.16)

Then, as d → ∞,

Ud ⇒ U as d → ∞,

where U· = (U·,1, U·,2), U0,i ∼ N(0, 1) (i = 1, 2) and U satisfies the Langevin SDE

dUt = s(l)1/2dBt −
s(l)

2
Ut dt (3.17)

with s(l) = 2l2Φ(−l/2). (Note that Φ and φ denote the cdf and pdf of a standard normal random variable,

respectively.)

Thus the limiting process U is a bivariate Ornstein-Uhlenbeck process with independent components

and each component having stationary distribution N(0, 1). Hence in the limit as d → ∞ any pair of

components are (asymptotically) independent. Furthermore, the statement of Theorem 3.5 is essentially

identical to the statement of Roberts et al. (1997), Theorem 1.1. In particular, the speed measure of

the diffusion is of the same form. Thus letting ad(l) denote the πd(·) average acceptance rate of the

d-dimensional RWM, we have the following Corollary which mirrors Roberts et al. (1997), Corollary 1.2.

Corollary 3.6

lim
d→∞

ad(l) = a(l) = 2Φ

(

− l

2

)

.

s(l) is maximised by l̂ = 2.38 with a(l̂) = 0.234.

We proceed by introducing the notation and results needed to prove Theorem 3.5. Fix 0 < α, β, τ < 1
16

and γ > 1 with α + β < τ . For t ≥ 0, let W
d,τ
t = Xd

tkτ
d
, where kτ

d = [dτ ]. Thus the W
d,τ
· processes are

the Xd
· processes observed at time-points 0, kτ

d , 2kτ
d , . . ..

Let Gτ
d be the (discrete-time) generator of Wd,τ , and let V ∈ C∞

c (the space of infinitely differentiable

functions on compact support) be an arbitrary test function of the first two components only. Thus

Gτ
dV (wd) = d1−τ

E

[

V (Wd,τ
1 ) − V (Wd,τ

0 )|Wd,τ
0 = wd

]

= d1−α
E

[

V (Xd
kτ

d
) − V (Xd

0)|Xd
0 = wd

]

= d1−τ

kτ
d−1
∑

i=0

E
[

V (Xd
i+1) − V (Xd

i )|Xd
0 = wd

]

= d1−τ

kτ
d−1
∑

i=0

E

[

(V (Yd
i+1) − V (Xd

i ))

{

1 ∧ πd(Y
d
i+1)

πd(Xd
i )

}∣

∣

∣

∣

∣

Xd
0 = wd

]

(3.18)
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The generator G of the two-dimensional Ornstein-Uhlenbeck process described in Theorem 3.5, for an

arbitrary test function V ∈ C∞
c , is given by

GV (w1, w2) = s(l)
2

∑

i=1

{

1

2

∂2

∂w2
i

V (w1, w2) −
wi

2

∂

∂wi
V (w1, w2)

}

. (3.19)

By Ethier and Kurtz (1986), Chapter 4, Corollary 8.7 and Lemma 3.1, we can restrict attention to

Xd
t ∈ F

(α,γ)
d . (i.e. Xd

t stays close to the boundary of the hypersphere, and none of the components are

excessively large.) The aim will therefore be to show that,

sup
wd∈F

(α,γ)
d

|GdV (wd) − GV (w1, w2)| → 0 as d → ∞. (3.20)

Before proving (3.20) rigorously we give an outline of the arguments used in the proof. The acceptance

probability is a function of the radius which mixes in O(1) iterations. On the other hand, any single

component mixes in O(d) iterations. Thus the acceptance probability is mixing much faster than any

of the individual components. Therefore for any 0 < β < α, the radial component has ‘forgotten’ its

starting value after [dβ ] iterations (see Lemma 3.4), whereas any given component barely moves in [dβ ]

iterations. Furthermore, over [dβ ] iterations approximately ad(l)[d
β ] proposed moves will be accepted.

For b ≥ 0 and u1, u2 ∈ R, let

h(b, u1, u2) =
l2

2

2
∑

i=1

{

Φ

(

1

l

{

b − l2

2

})

∂2

∂u2
i

V (u1, u2) −
1

l
uiφ

(

1

l

{

b − l2

2

})

∂

∂ui
V (u1, u2)

}

. (3.21)

Lemma 3.7 For all wd ∈ F
(α,γ)
d ,

E

[

(V (Yd
1) − V (Xd

0))

{

1 ∧ πd(Y
d
1)

πd(Xd
0)

}∣

∣

∣

∣

Xd
0 = wd

]

=
1

d
h(bd, w1, w2) + o(d−5/4), (3.22)

where bd = −d
2 log

(

1
d

∑d
i=1 w2

i

)

.

Therefore there exists K < ∞ such that for all d ≥ 1 and wd ∈ F
(α,γ)
d ,

dE

[

(V (Yd
1) − V (Xd

0))

{

1 ∧ πd(Y
d
1)

πd(Xd
0)

}∣

∣

∣

∣

Xd
0 = wd

]

≤ Kdα. (3.23)

Proof. Let

Ad(Y
d
1) =







1 if
{

1
d

∑d
i=1(Y

d
1,i)

2
}1/2

≤ 1,

0 otherwise.
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Therefore, letting Yd
− = (Y d

3 , Y d
4 , . . . , Y d

d ),

E

[

(V (Yd
1) − V (Xd

0))

{

1 ∧ πd(Y
d
1)

πd(Xd
0)

}∣

∣

∣

∣

Xd
0 = wd

]

= E
[

(V (Yd
1) − V (Xd

0))Ad(Y
d
1)|Xd

0 = wd
]

= EY d
1 ,Y d

2

[

(V (Yd
1) − V (Xd

0))EYd
−

[Ad(Y
d
1)|Xd

0 = wd, Y d
1 , Y d

2 ]|Xd
0 = wd

]

.

Concentrating first on the inner expectation. Note that for 1 ≤ i ≤ d, Y d
1,i = wi + σdZ1,i, where

Z1,i ∼ N(0, 1). Thus,

E
Yd

−

[Ad(Y
d
1)|Xd

0 = wd, Z1,1 = z1, Z1,2 = z2]

= P

(

1

d

d
∑

i=1

(Y d
1,i)

2 ≤ 1
∣

∣Xd
0 = wd, Y d

1 = w1 + σdz1, Y
d
2 = w2 + σdz2

)

= P

(

d(Rd
0)

2 + 2σd

(

w1z1 + w2z2 +
d

∑

i=3

wiZ1,i

)

+ σ2
d

(

z2
1 + z2

2 +
d

∑

i=3

Z2
1,i

)

≤ d

∣

∣

∣

∣

∣

Xd
0 = wd

)

= P

(

d − 2bd + o(d−3/4) + 2σd

(

w1z1 + w2z2 +

d
∑

i=3

wiZ1,i

)

+ σ2
d

(

z2
1 + z2

2 +

d
∑

i=3

Z2
i

)

≤ d

∣

∣

∣

∣

∣

Xd
0 = wd

)

.

(3.24)

Therefore by Lemma 3.2, (3.6)

P

(

d − 2bd + o(d−3/4) + 2σd

(

w1z1 + w2z2 +

d
∑

i=3

wiZ1,i

)

+ σ2
d

(

z2
1 + z2

2 +

d
∑

i=3

Z2
1,i

)

≤ d

∣

∣

∣

∣

∣

Xd
0 = wd

)

= P

(

Z̃1 + ǫd ≤ bd − o(d−3/4) − σd(w1z1 + w2z2) +
σ2

d

2
(z2

1 + z2
2)

)

=

∫ ∞

−∞
fǫd

(x)Φ

(

1

l

{

bd − l2

2
− σd(w1z1 + w2z2) − x + o(d−3/4)

})

dx

= Φ

(

1

l

{

bd − l2

2

})

− 1

l
σd(w1z1 + w2z2)φ

(

1

l

{

bd − l2

2

})

+ o(d−3/4), (3.25)

using a Taylor series expansion.

Also by Taylor’s Theorem,

V (Yd
1) − V (Xd

0)

=
l√
d

(

z1
∂

∂w1
V (wd) + z2

∂

∂w2
V (wd)

)

+
l2

2d

(

z2
1

∂2

∂w2
1

V (wd) + z2
2

∂2

∂w2
2

V (wd) + z1z2
∂2

∂w1w2
V (wd)

)

+ o(d−5/4). (3.26)

10



Therefore it follows from (3.25) and (3.26) that

E
[

(V (Yd
1) − V (Xd

0))Ad(Y
d
1)|Xd

0 = wd
]

=

∫ ∞

−∞

∫ ∞

−∞
φ(z1)φ(z2)

{

l√
d

(

z1
∂

∂w1
V (wd) + z2

∂

∂w2
V (wd)

)

+
l2

2d

(

z2
1

∂2

∂w2
1

V (wd) + z2
2

∂2

∂w2
1

V (wd) + z1z2
∂2

∂w1w2
V (wd)

)

+ o(d−5/4)

}

×
{

Φ

(

1

l

{

bd − l2

2

})

− 1√
d
(w1z1 + w2z2)φ

(

1

l

{

bd − l2

2

})

+ o(d−3/4)

}

dz2dz1

=
l2

2d

2
∑

i=1

{

Φ

(

1

l

{

bd − l2

2

})

∂2

∂w2
i

V (w1, w2) −
1

l
wiφ

(

1

l

{

bd − l2

2

})

∂

∂wi
V (w1, w2)

}

+ o(d−5/4)

=
1

d
h(bd, w1, w2) + o(d−5/4), (3.27)

and (3.22) is proved.

Finally (3.23) follows straightforwardly from (3.27) since V ∈ C∞
c and for wd ∈ F

(α,γ)
d , |w1|, |w2| ≤ dα.

¤

Lemma 3.8 For any wd ∈ F
(α,γ)
d and for any sequence of positive integers {cd} such that [dβ ] ≤ cd ≤

[dτ ],

dE

[

(V (Yd
cd+1) − V (Xd

cd
))

{

1 ∧ πd(Y
d
cd+1)

πd(Xd
cd

)

}∣

∣

∣

∣

∣

Xd
0 = wd

]

→
∫ ∞

0

h(b, w1, w2)e
−b db.

Proof. Fix the sequence {cd} such that for all d ≥ 1, [dβ ] ≤ cd ≤ [dα]. By Lemma 3.7, for wd ∈ F
(α,γ)
d ,

dE
[

(V (Yd
cd+1) − V (Xd

cd
))Ad(Y

d
cd+1)|Xd

0 = wd
]

= d

∫ ∞

0

{∫

E
[

(V (Yd
cd+1) − V (Xd

cd
))Ad(Y

d
cd+1)|Xd

cd
= ud

]

gcd
(ud|wd, bd(u

d) = b) dud

}

fd
cd

(b|wd) db

=

∫ ∞

0

{∫

{hd(bd(u
d), u1, u2) + o(d−1/4)}gd

cd
(ud|wd, bd(u

d) = b) dud

}

fd
cd

(b|wd) db, (3.28)

where fd
cd

(·|wd) and gd
cd

(·|wd) denote the pdfs of Bd
cd

and Xd
cd

, respectively, given that Xd
0 = wd.

For any ǫ > 0 and |u1 − w1|, |u2 − w2| < O(d−ǫ), it follows by Taylor’s Theorem that

h(bd(u
d), u1, u2) = h(bd(u

d), w1, w2) + O(d−ǫ). (3.29)

For any i ≥ 1, by the triangle inequality,

|Xd
cd,i − Xd

0,i| ≤ σd

cd
∑

j=1

|Zj,i|.

Let ǫ = 1
2 − 2τ . By Markov’s inequality,

dP



σd

cd
∑

j=1

|Zj,i| > d−ǫ



 → 0 as d → ∞. (3.30)
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Therefore by (3.29) and (3.30), it follows from (3.28) that

dE
[

(V (Yd
cd+1) − V (Xd

cd
))Ad(Y

d
cd+1)|Xd

0 = wd
]

=

∫ ∞

0

{∫

{hd(b, w1, w2) + O(d−ǫ)}gcd
(ud|wd, bd(u

d) = b) dud

}

fd
cd

(b|wd) db

=

∫ ∞

0

h(b, w1, w2)f
d
cd

(b|wd) db + δd, (3.31)

where δd → 0 as d → ∞.

By Lemma 3.4, for all wd ∈ F
(α,γ)
d , Bd

cd
|Xd

0 = wd D−→ B̃ as d → ∞. Furthermore, for all w1, w2 ∈ R,

h(·, w1, w2) is bounded. Therefore the righthand-side of (3.31) converges to

∫ ∞

0

h(b, w1, w2)f(b) db =

∫ ∞

0

h(b, w1, w2)e
−b db as d → ∞

and the lemma is proved. ¤

Lemma 3.9
∫ ∞

0

h(b, w1, w2)e
−b db = s(l)

2
∑

i=1

{

1

2

∂2

∂w2
i

V (wi) −
wi

2

∂

∂wi
V (wi)

}

.

Proof. The lemma follows straightforwardly since

∫ ∞

0

e−bΦ

(

b

l
− l

2

)

db = 2Φ

(

− l

2

)

and

1

l

∫ ∞

0

e−bφ

(

b

l
− l

2

)

db = Φ

(

− l

2

)

,

as required. ¤

Proof of Theorem 3.5. By Ethier and Kurtz (1986), Chapter 4, Corollary 8.7 to prove the theorem it

is sufficient to show that,

sup
wd∈F

(α,γ)
d

|Gτ
dV (wd) − GV (w1, w2)| → 0 as d → ∞.

It follows trivially from Corollary 3.8 and Lemma 3.9, that for all wd ∈ F
(α,γ)
d ,

Gτ
dV (wd) = d1−τ

E

[

V (Wd,τ
1 ) − V (Wd,τ

0 )|Wd,τ
0 = wd

]

= d1−τ

[dβ ]
∑

i=0

E
[

V (Xd
i+1) − V (Xd

i )|Xd
0 = wd

]

+d1−τ

[dτ ]
∑

i=[dβ ]+1

E
[

V (Xd
i+1) − V (Xd

i )|Xd
0 = wd

]

. (3.32)
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Since α + β < τ , the first term on the righthand-side of (3.32) converges to 0 as d → ∞ by (3.23). The

second term converges to GV (w1, w2) as d → ∞ by Lemmas 3.8 and 3.9.

Since C∞
c separates points (see Ethier and Kurtz (1986), page 113), the theorem follows from (3.32) by

Ethier and Kurtz (1986), Chapter 4, Corollary 8.7 provided the compact containment condition holds for

{Ud
· }. This is easily verified using the proof of Neal and Roberts (2006), Theorem 3.1 ¤

4 Constrained Gaussian distributions

4.1 Introduction

In Section 3, we have considered the special case where πd(·) is uniformly distributed over the d-

dimensional hypersphere with radius
√

d. We shall in this section consider extensions of the results

of Section 3. However, we begin by comparing the results obtained so far with previous analysis in

Roberts et al. (1997) giving reasons for restricting attention to constrained Gaussian random variables.

The acceptance probability for the d-dimensional hypersphere is totally determined by the radial com-

ponent which mixes in O(1) iterations. In Roberts et al. (1997) it was shown that for independent and

identically distributed product densities πd(x
d) =

∏d
i=1 f(xi) where f(·) = exp(g(·)) is the pdf of X,

the acceptance probability of a move is determined by 1
d−1

∑d
i=2 g′(xi)

2 and 1
d−1

∑d
i=2 g′′(xi). Further-

more, under stationarity, subject to mild moment conditions upon g′(·) and g′′(·), 1
d−1

∑d
i=2 g′(Xt,i)

2

and 1
d−1

∑d
i=2 g′′(Xt,i) are essentially constant for all t ≥ 0. That is, with sufficiently high probability

for large d, the acceptance probability is contained within
(

Φ(−l
√

I/2) − ǫd,Φ(−l
√

I/2) + ǫd

)

where

I ≡ Ef [g′(X)2] and ǫd → 0 as d → ∞. Thus attention in Roberts et al. (1997) can be restricted to the

movement of individual components. Therefore the movement in the radial component of the hypersphere

is a complication not encountered in Roberts et al. (1997).

For more general target densities than the hypersphere the acceptance probability is more complicated

than a 0-1 indicator. In particular, for πd(·) given by (2.1), (the constrained version of Roberts et

13



al. (1997) (1.1)),

1 ∧ πd(Y
d
1)

πd(xd)
= 1{d−1

∑

i(Y
d
1,i)

2≤1}

{

1 ∧
d

∏

i=1

f(Y d
1,i)

f(xd
i )

}

= 1{bd−σ2
d/2

∑

i Z2
1,i−σd

∑

i xd
i Z1,i+o(d−1/4)>0}

×
{

1 ∧ exp

(

σd

d
∑

i=1

g′(xi)Z1,i +
1

2
σ2

d

d
∑

i=1

g′′(xi)Z
2
1,i + o(d−1/4)

)}

(4.1)

with Xd
0 = xd and bd = −d

2 log
(
∑

i(x
d
i )

2
)

. Therefore (4.1) is a hybrid of the acceptance probability of

Section 3 and Roberts et al. (1997), and the joint distribution of

(

σd

d
∑

i=1

xd
i Zt,i +

σ2
d

2

d
∑

i=1

Z2
t,i, σd

d
∑

i=1

g′(xd
i )Zt,i +

σ2
d

2

d
∑

i=1

g′′(xd
i )Z

2
t,i

)

needs to be studied. In Roberts et al. (1997), it is shown that 1
d−1

∑d
i=2 g′(Xt,i)

2 ≈ I, but such arguments

do not readily extend to the current target density due to the dependencies in the components of Xd
t

induced by the constraint.

Progress can be made when f(x) = 1√
2πλ

exp(−x2/2λ) (x ∈ R), i.e. f(·) ∼ N(0, λ). In this case

(

σd

d
∑

i=1

xd
i Zt,i +

σ2
d

2

d
∑

i=1

Z2
t,i, σd

d
∑

i=1

g′(xd
i )Zt,i +

σ2
d

2

d
∑

i=1

g′′(xd
i )Z

2
t,i

)

= Qd
t (1, 1/λ)

where

Qd
t (= Qd

t (x
d)) = σd

d
∑

i=1

xd
i Zt,i +

σ2
d

2

d
∑

i=1

Z2
t,i.

Thus the acceptance probability is determined by Qd
t and Bd

t = −d
2 log

(
∑

i(X
d
t,i)

2
)

.

Without any constraint, if X1,X2, . . . are independent and identically distributed according to X ∼

N(0, λ), then

1

d

∑

i

X2
i

a.s.−→ λ as d → ∞. (4.2)

Therefore with the constraint that there are three cases to consider λ < 1, λ = 1 and λ > 1. For λ < 1,

the constraint 1
d

∑

i X2
i < 1 is redundant, and so, Roberts et al. (1997), Theorem 1.1 holds. Furthermore,

the constraint is redundant for any Y ∼ f(·) for which E[Y 2] < 1. Thus we restrict attention to the cases

where the constraint is important. In particular, we shall focus on λ > 1 where the results mirror those

of the hypersphere. Note that the hypersphere is the limiting case as λ → ∞. Finally, the case λ = 1 is

more intricate with a different scaling of the radial component. In particular, the mixing of the (scaled)

radial component is O(d) and the methodology required for dealing with this is very different to that

used here. As a consequence, we shall consider the case λ = 1 elsewhere.
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4.2 Radial component

The analysis is very similar to section 3.1, and so, only an outline of the argument is given.

For t ≥ 0, let the Markov chain B have transition kernel,

Bt+1 =







Bt − Z̃t with probability 1 ∧ exp
(

−Z̃t/λ
)

if Bt − Z̃t > 0

Bt otherwise.

where Z̃t ∼ N(l2/2, l2). It is straightforward by studying the balance equation to show that Bt has

stationary distribution Exp(µλ) where µλ = λ−1
λ . Therefore by Jarner and Tweedie (2003), Theorem

2.2, Bt is geometrically ergodic.

Theorem 4.1 For all b > 0,

Bd
1 |Bd

0 = b
D−→ B1|B0 = b as d → ∞. (4.3)

For any β > 0, γ > 1/µλ and for all bd ∈ [0, γ log d],

Bd
[dβ ]|Bd

0 = b
D−→ B̃λ ∼ Exp(µλ) as d → ∞. (4.4)

Proof. The proofs of (4.3) and (4.4) are essentially identical to the proofs of Theorem 3.3 and Lemma

3.4, respectively, and therefore the details are omitted. ¤

We conclude our brief analysis of the radial component by noting that in the conditions of Theorem 4.1,

γ > 1/µλ replaces γ > 1 for the hypersphere. This is necessary for (3.2) to hold for the constrained Gaus-

sian. We can then utilise the sets {F (α,γ)
d } as before when considering the movements of the individual

components.

4.3 Individual Components

For t ≥ 0 and d ≥ 1, let Ud
t = (Xd

[dt],1,X
d
[dt],2). Theorem 4.2 is virtually identical to Theorem 3.5.

Theorem 4.2 Suppose that there exists λ > 1 such that f(·) ∼ N(0, λ). For all d ≥ 1, let Xd
0 be

distributed according to πd(·) (2.1), where for xd ∈ R
d,

Ud ⇒ U as d → ∞,
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where U· = (U1,·, U2,·), U0,i ∼ N(0, 1) (i = 1, 2) and U1,· and U2,· are independent Ornstein-Uhlenbeck

processes with Ui,0 ∼ N(0, 1) (i = 1, 2) and U satisfies the Langevin SDE

dUt = s(l)1/2dBt −
s(l)

2
Ut dt (4.5)

with s(l) = 2l2Φ(−l/2).

The proof of Theorem 4.2 is similar to the proof of Theorem 3.5. Whilst some of the calculations are a

little more involved, the essentials of the proof are the same. Therefore we give an outline of the proof

only highlighting the salient points.

Proposition 4.3 For any c ∈ R and for Z ∼ N(µ, σ2),

E
[

1{Z<c}{1 ∧ exp(−Z)}
]

= Φ
(

−µ

σ

)

+ exp

(

σ2

2
− µ

){

Φ

(

c − µ

σ
+ σ

)

− Φ
(

σ − µ

σ

)

}

(4.6)

and for c > 0,

E
[

1{Z<c} exp(−Z);Z > 0
]

= exp

(

σ2

2
− µ

){

Φ

(

c − µ

σ
+ σ

)

− Φ
(

σ − µ

σ

)

}

. (4.7)

Lemma 4.4 For any λ > 1 and for Xd
0 = xd,

E
Y

d−

1

[

1 ∧ πd(Y
d
1)

πd(xd)

]

= Φ

(

− l

2

)

+ exp

(

− l2

2

µλ

λ

){

Φ

(

bd

l
+

l

λ
− l

2

)

− Φ

(

l

λ
− l

2

)}

+

2
∑

i=1

−σdxizi exp

(

− l2

2

µλ

λ

){

1

l
φ

(

bd

l
+

l

λ
− l

2

)

+
1

λ

{

Φ

(

bd

l
+

l

λ
− l

2

)

− Φ

(

l

λ
− l

2

)}}

+ o(d−3/4), (4.8)

where bd = −d
2 log

(

1
d

∑d
i=1(x

d
i )

2
)

.

Proof. Note that

E
Y

d−

1

[

1 ∧ πd(Y
d
1)

πd(xd)

]

= E

[

1{−bd+o(d−3/4)+Qd
1+σd(x1z1+x2z2)≤0}

{

1 ∧ exp

(

− 1

λ
Qd

1 −
σd

λ
(x1z1 + x2z2) + o(d−3/4)

)}]

= E

[

1{−bd+o(d−3/4)+Qd
1+σd(x1z1+x2z2)≤0}

{

1 ∧ exp

(

− 1

λ
Qd

1 + o(d−3/4)

)}]

−σd

λ
(x1z1 + x2z2)E

[

1{−bd+o(d−3/4)+Qd
1+σd(x1z1+x2z2)≤0} exp

(

− 1

λ
Qd

1 + o(d−3/4)

)

;Qd
1 > 0

]

+o(d−3/4). (4.9)
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The second equality follows by differentiating

1 ∧ exp

(

− 1

λ
Qd

1 −
σd

λ
(x1z1 + x2z2) + o(d−3/4)

)

with respect to z1 and z2, see Breyer and Roberts (2000) page 192.

The lemma follows by applying Proposition 4.3 to (4.9). ¤

Let V (·) ∈ C∞
c be an arbitrary test function of the first two components only. For b ≥ 0, λ > 1 and

u1, u2 ∈ R, let

hλ(b, u1, u2)

=
l2

2

{

Φ

(

− l

2

)

+ exp

(

− l2

2
× µλ

λ

){

Φ

(

b

l
+

l

λ
− l

2

)

− Φ

(

l

λ
− l

2

)} 2
∑

i=1

∂2

∂u2
i

}

V (u1, u2)

− l2
2

∑

i=1

ui
∂

∂ui
V (u1, u2) exp

(

− l2

2
× µλ

λ

) {

1

l
φ

(

b

l
+

l

λ
− l

2

)

+
1

λ

{

Φ

(

b

l
+

l

λ
− l

2

)

− Φ

(

l

λ
− l

2

)}}

.

(4.10)

Then Lemma 4.5 follows from Lemma 4.4. The proof is identical to Lemma 3.7, and so, the details are

omitted.

Lemma 4.5 For any λ > 1 and for Xd
0 = wd ∈ F

(α,γ)
d ,

E

[

(V (Yd
1) − V (Xd

0))

{

1 ∧ πd(Y
d
1)

πd(Xd
0)

}∣

∣

∣

∣

Xd
0 = wd

]

=
1

d
hλ(bd, w1, w2) + o(d−5/4).

Corollary 4.6 follows immediately from Lemma 4.5 by straightforward but tedious integration, c.f. Lemma

3.7, Corollary 3.8 and Lemma 3.9.

Corollary 4.6 For any wd ∈ F
(α,γ)
d and for any sequence of positive integers {cd} such that [dβ ] ≤ cd ≤

[dα],

dE

[

(V (Yd
cd+1) − V (Xd

cd
))

{

1 ∧ πd(Y
d
cd+1)

πd(Xd
cd

)

}∣

∣

∣

∣

∣

Xd
0 = wd

]

→
∫ ∞

0

hλ(b, w1, w2)µλe−µλb db, (4.11)

where

∫ ∞

0

hλ(b, w1, w2)µλe−µλb db = s(l)

2
∑

i=1

{

1

2

∂2

∂w2
i

V (wi) −
wi

2

∂

∂wi
V (wi)

}

. (4.12)

Proof of Theorem 4.2. The theorem follows immediately from Corollary 4.6. The details of the proof

are identical to the proof of Theorem 3.5. ¤
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5 Summary

This paper has shown that the optimal scaling results of Roberts et al. (1997) extend to Gaussian

distributions with a global (spherical) constraint. The radial constraint is the key feature in these results.

In particular, for the hypercube, Neal et al. 2006, rather different limiting results are observed. The major

difference between the hypercube (the non-zero density is constrained to xd ∈ [0, 1]d) and the hypersphere

(the non-zero density is constrained to d−1
∑

i x2
i ≤ 1), is that in the former case the discontinuity is local,

depending upon individual components, whilst in the latter case the discontinuity is global, depending

upon a function of all the components. In particular, the global constraint leads to continuous (Gaussian)

limits for the distributions of the individual components.

In order to derive analytic results it has been necessary to restrict attention to constrained Gaussian

distributions. For λ > 1 and f(·) ∼ N(0, λ), the limiting behaviour of individual components are

independent of λ. However, the limiting behaviour of the radial component is dependent upon λ. As

previously mentioned, the case λ < 1 is not of great interest since the constraint is essentially redundant.

For the case λ = 1, the statement of Theorem 4.2 holds but a very different proof is required.

Finally, the method of proof employed here can be used for other optimal scaling results where the

acceptance probability is non-constant but is mixing at a much faster rate than the movement in individual

components.
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