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Abstract

We consider the problem of model (order) selection for integer valued autoregressive moving-

average (INARMA) processes. A very efficient Reversible Jump Markov chain Monte Carlo (RJM-

CMC) algorithm is constructed for moving between INARMA processes of different order. An al-

ternative in the form of the EM algorithm is given for determining the order of an integer valued

autoregressive (INAR) process. Both algorithms are successfully applied to both simulated and real

data sets.
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1 Introduction

There has been a steady increase over the last 5 years in studying Integer-valued time-series. Integer-

valued time-series naturally arise in the form of count data over sequential time-points. If the counts

are large (magnitude ’000s) then approximations of the time-series using continuous time-series models

such as the autoregressive moving-average (ARMA) process with Gaussian errors are usually adequate.

However, if this counts are of low-frequency (typical value less than 20, say) continuous approximations

are totally inadequate. Hence the need to develop time-series models appropriate for low-frequency count

data.

An excellent review of integer-valued time-series, and in particular, integer-valued ARMA (INARMA)

models is given in McKenzie (2003). Most attention has been restricted to INAR(p) processes due to the

complicated form of the likelihood of the full INARMA model. Even with p = 1 the likelihood of the

INAR(p) process is not trivial to analyse and a number of works have considered statistical inference for

this case only, see Franke and Seligmann (1993), Freeland and McCabe (2004) and McCabe and Martin

(2005). Recently Jung and Tremayne (2006) have studied the case p = 2.

In Neal and Subba Rao (2006), an MCMC algorithm for obtaining samples from the posterior distributions

of parameters of a general INARMA(p, q) process with known orders p and q was devised. MCMC is a

particularly attractive tool to use in analysing INARMA processes since statistical inference is greatly

assisted by the use of data augmentation. In other words, the likelihood for the model parameters

given the data is intractable, but given carefully chosen extra information (data) the likelihood becomes

tractable and analysis is very straightforward. One of the main limitations of Neal and Subba Rao (2006)

is that they assume p and q are known/fixed. Therefore the aim of the current work is to study the case

where p and q are themselves parameters of the model to be estimated.

We consider two avenues for treating p and q as parameters in the model. The first is an extension of the

MCMC algorithm of Neal and Subba Rao (2006). Since the number of parameters in the model depends

upon p and q, it is necessary to develop an MCMC algorithm which can move between different parameter

spaces. This can be done very naturally using Reversible Jump (RJ)MCMC which was introduced in

Green (1995). The biggest drawback which is often encountered by RJMCMC is problems with moving

between different parameter spaces, in that, the acceptance probability of such moves can be very low.

We circumvent this problem and develop a very efficient RJMCMC algorithm by exploiting the structure

of the INARMA(p, q) model. In particular, we identify a parameter which is well estimated directly from
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the data and utilise this parameter in constructing efficient parameter space switching moves.

The second approach also uses data augmentation but in a maximum likelihood estimation (MLE) setting,

via the EM algorithm. The EM algorithm can be employed for fixed p and q and the resulting likelihood

compared using some model selection criterion such as the BIC (Bayesian Information Criterion). Un-

fortunately the EM algorithm can only be constructed for INAR(p) processes. One possible solution for

INARMA(p, q) processes is to use a Monte-Carlo EM algorithm. However, in this case computation of the

likelihood is not possible, and so, model selection, via information criterion, is not possible. We discuss

how the RJMCMC algorithm can be used to pinpoint the most parsimonious model and to provide good

initial parameter estimates for the EM algorithm.

The paper is structured as follows. In Section 2, the INARMA(p, q) model is briefly described. In Section

3, a review of the MCMC algorithm used in Neal and Subba Rao (2006) is given followed by a description

of our RJMCMC algorithm. In particular, we give important details as to how the efficient algorithm is

constructed. The EM algorithm is introduced in Section 4. This is followed by results in Section 5 for

both simulated test data sets and real life data sets. Finally, in Section 6 we discuss minor modifications

and extensions of the work presented in this paper.

2 The INARMA(p, q) Model

The integer valued ARMA (INARMA(p, q)) process is the natural analogue of the ARMA(p, q) process for

integer valued time series. For {Xt;−∞ < t < ∞}, the INARMA(p, q) satisfies the difference equation:

Xt =

p
∑

i=1

αi ◦ Xt−i +

q
∑

j=1

βj ◦ Zt−j + Zt, t ∈ Z, (2.1)

for some generalised, Steutel and van Harn, operators αi (1 ≤ i ≤ p) and βj (1 ≤ j ≤ q) (see, Steutel and

van Harn (1979) and Latour (1997)) and Zt (−∞ < t < ∞) are independent and identically distributed

according to an arbitrary, but specified, non-negative integer valued random variable Z with E[Z2] < ∞.

The operators ensure that the process is integer valued and, for simplicity of exposition, we shall restrict

attention to binomial operators. The binomial operator, γ ◦, for a non-negative integer-valued random

variable, W say, is defined as

γ ◦ W =







Bin(W,γ) W > 0,

0 W = 0.
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As noted in Neal and Subba Rao (2006), the procedures described in this paper readily extend to other

general Steutel and van Harn operators.

To ensure that the above INARMA(p, q) process is (second-order) stationary, we require that
∑p

i=1
αi < 1.

The corresponding constraint on the β’s for invertibility of the time-series is that
∑q

j=1
βj < 1.

3 MCMC algorithm

3.1 Introduction and review of Neal and Subba Rao (2006) algorithm

We begin by giving a brief summary of the procedure in Neal and Subba Rao (2006) for studying the

INARMA(p, q) process for fixed p and q. This is followed by a detailed description of the order switching

steps for p and q using reversible jump (RJ) MCMC. The within-order moves (i.e. fixed p and q) for

updating α = (α1, . . . , αp), β = (β1, . . . , βq) and λ can be performed using the algorithm of Neal and

Subba Rao (2006).

Inference for the INARMA(p, q) is greatly facilitated by data augmentation. That is, for t ∈ Z, we

represent αi ◦ Xt−i (1 ≤ i ≤ p) and βj ◦ Zt−j (1 ≤ j ≤ q) by Yt,i and Vt,j , respectively, with Yp
t =

(Yt,1, Yt,2, . . . , Yt,p) and Vq
t = (Vt,1, Vt,2, . . . , Vt,q). Thus for t ∈ Z,

Zt = Xt −

p
∑

i=1

Yt,i −

q
∑

j=1

Vt,j .

In Neal and Subba Rao (2006) the augmented data are treated as variables to be updated as part of the

MCMC procedure alongside the parameters. In particular, Neal and Subba Rao (2006) gives an efficient

procedure for updating the augmented data. The parameters can be sampled using their conditional

distributions (see Neal and Subba Rao (2006), (6)–(8)) if the following natural conjugate priors are

chosen:

π(α) = p!; 0 ≤ αi < 1 (1 ≤ i ≤ p),

p
∑

i=1

αi < 1;

π(β) = q!; 0 ≤ βj < 1 (1 ≤ j ≤ q),

q
∑

j=1

βj < 1;

π(λ) ∼ Gam(Aλ, Bλ); for some Aλ, Bλ > 0.

Note that the above priors on α and β are (uninformative) uniform over the permissable parameter

ranges. Finally, let π(p) (π(q)) denote the prior probability for AR (MA) order p (q).
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Letting r = max{p, q}, we have the joint density for the augmented data and the parameter values,

f(v,y, z,α,β, λ|x) ∝ π(p)p!π(q)q!

n
∏

t=1

{

λzt

zt!
e−λ

p
∏

i=1

{(

xt−i

yt,i

)

α
yt,i

i (1 − αi)
xt−i−yt,i

}

×

q
∏

j=1

{(

zt−j

vt,j

)

β
vt,j

j (1 − βj)
zt−j−vt,j

}







λAλe−Bλλ
r

∏

i=1

{

λz1−i

z1−i!
e−λ

}

(3.1)

subject to
∑p

i=1
yt,i +

∑q
j=1

vt,j + zt = xt (1 ≤ t ≤ n).

3.2 Order determination Algorithm

The algorithm outlined thus far is that given by Neal and Subba Rao (2006). The algorithm of Neal

and Subba Rao (2006) is used as a sub-algorithm here for the within-model moves. We now describe the

order switching step. At each iteration, we propose to either increase or decrease the AR order by 1 with

each move being proposed with probability 0.5. This is subject to constraints at p = 0 and p = pmax.

We then do the same for the MA order with constraints at q = 0 and q = qmax.

Before considering the order determination algorithm we consider the INARMA(p, q) model and highlight

the key features for our RJMCMC algorithm. Whilst RJMCMC is a very useful tool it is often plagued by

inefficient model switching moves. That is, the probability of accepting moves between different models

(orders) can be extremely low. As noted in Brooks et al. (2003) there is no generic way for constructing

efficient RJMCMC algorithms. However, a good understanding of the model under consideration can

enable the development of efficient RJMCMC algorithms.

Note that if the time-series is stationary

E[Xt] =

p
∑

i=1

αiE[Xt−i] +

q
∑

j=1

βjE[Zt−j ] + E[Zt] (3.2)

where E[Xt] = E[Xs] for all s, t ∈ Z. Therefore if Zt ∼ Po(λ),

E[Xt] = λ



1 +

q
∑

j=1

βj





/(

1 −

p
∑

i=1

αi

)

= κ, say. (3.3)

The key point which we shall exploit is that κ is well-estimated from the data, in that, κ̂ = 1

n

∑n
i=1

xi.

Therefore whilst information concerning (α, p), (β, q) and λ is not readily available, the data is extremely

informative about κ. Moreover, the algorithm in Neal and Subba Rao (2006) gives iid observations from

the posterior distribution of κ. Therefore a natural suggestion when constructing the order switching

step would be to keep κ fixed. This can be implemented very easily as long as we are not proposing to
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move the AR (MA) order p (q) either to or from p = 0 (q = 0). That is, the procedure is very simple

whenever we propose order moves within the same model, be it INAR(p), INMA(q) or INARMA(p, q).

The procedure for moving between the different models requires a little more care.

Thus we begin by describing the algorithm for increasing and decreasing the AR order where neither p

nor p′ (the new proposed order) are 0. In order to achieve transitions between parameter subspaces that

retain detailed balance in the Reversible Jump framework, we require a deterministic invertible mapping

that complies with the so-called ‘dimension-matching’ assumption mentioned in Green (1995). A splitting

and amalgamation mapping is described below.

Consider the move from p to p′ = p + 1. One way to keep κ fixed is to choose α′ such that

p′

∑

i=1

α′

i =

p
∑

i=1

αi

with β′ = β and λ′ = λ. This can be easily implemented as follows. Let U ∼ U [0, 1] and let K be drawn

uniformly at random from {1, 2, . . . , p}. Then for i ∈ {1, 2, . . . , p}/K, set α′

i = αi. Let α′

K = UαK and

α′

p+1 = (1−U)αK . Thus we are splitting the Kth AR term and this should be accompanied by a similar

splitting in the corresponding augmented data terms. That is, for 1 ≤ t ≤ n, let St ∼ Bin(yt,K , U) and

set y′

t,K = St, y′

t,p+1 = yt,K − St and S = (S1, S2, . . . , Sn). All other augmented data terms are kept

fixed.

For the reverse move from p + 1 to p′ = p. Choose K uniformly at random from {1, 2, . . . , p}. Set

α′

K = αK +αp+1 and for 1 ≤ t ≤ n, set y′

t,K = yt,K +yt,p+1. That is, we amalgamate the (p+1)th AR term

into the the Kth AR term. Therefore letting w = (y,v, z) (the augmented data) and θ = (α, p,β, q, λ)

(the parameters), we have that the probability of accepting the move to increase the order is:

A = 1 ∧
f(θ′,w′|x)

f(θ,w|x)
×

q(θ′,w′ → θ,w)

q(θ,w → θ′,w′)
× |J | (3.4)

where J denotes the Jacobian for the transformation from (θ,w, U,K,S) to (θ′,w′,K).

From (3.1), we have that

f(θ′,w′|x)

f(θ,w|x)
=

π(p′)p′

π(p)
×

n
∏

t=1

(xt−k

y
′

t,k

)

(α
′

k)
y

t,K
′ (1 − α

′

K)
xt−K−y

t,K
′
(x

t−p
′

y
′

t,p
′

)

(α
′

p′ )
y
′

t,p
′ (1 − α

′

p′ )
x

t−p
′−y

′

t,p
′

(

xt−K

yt,K

)

α
yt,K

K (1 − αK)xt−K−yt,K
.

(3.5)

For the proposal from (θ,w) to (θ′,w′), we have that

q(θ,w → θ′,w′) =
1

2
×

1

p
× 1 ×

n
∏

t=1

(

yt,K

y′

t,K

)

Uyt,K (1 − U)yt,K−y′

t,K
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where the terms correspond to increasing the order, K, U and S, respectively. The reverse move only

depends upon the probability of decreasing the order and choosing K, and so is given by

q(θ′,w′ → θ,w) =
1

2
×

1

p
.

Finally, the Jacobian can be factorised into n + 1 parts corresponding to the map in (α, U) → α′ and

maps (yt,K , St) → (y′

t,K , y′

t,p+1) (1 ≤ t ≤ n). This leads to |J | = αK × 1n = αK .

Clearly, the decreasing order move from p to p′ = p − 1 is simply the reverse of that given above.

For the MA order switching step the procedure is essentially identical to that given above except that we

combine and split MA terms. In particular, when changing order we ensure that β′ is such that

q′

∑

j=1

β′

j =

q
∑

j=1

βj

with α′ = α and λ′ = λ. For the order increase move from q to q′ = q + 1, we sample K uniformly from

{1, 2, . . . , q} and U ∼ U(0, 1), splitting the Kth term with β′

K = UβK and β′

q+1 = (1 − U)βK . Then

split the corresponding augmented data terms, by letting St ∼ Bin(vt,K , U) (1 ≤ t ≤ n) and setting

v′

t,K = St, v′

t,q+1 = vt,K −St and S = (S1, S2, . . . , Sn). The order decreasing move from q simply involves

amalgamating the qth term with one of the lower order MA terms (chosen at random) by combining the

β coefficients and the augmented data terms in the natural manner.

Finally, we want the algorithm to move between the INARMA(p, q) and the sub-models INAR(p) and

INMA(q). In order to do this we again keep κ fixed but can’t simply apply a splitting/combination

algorithm as described above. We consider the move from INAR(p) to INARMA(p, 1). In this case we

keep α fixed but let λ vary. Let U ∼ U [0, 1] and set β′

1 = U and λ′ = λ/(1 + U). The updating of the

augmented terms is sequential with St ∼ Bin(zt∧z′t−1, U/(1+U)), v′

t,1 = St and z′t = zt−St (1 ≤ t ≤ n).

The natural reverse move from INARMA(p, 1) to INAR(p) involves setting λ′ = λ(1+β1) and combining

the augmented data terms with z′t = zt + vt,1 (1 ≤ t ≤ n).

The move between the INMA(q) to INARMA(1, q) is more intricate. In this case we keep β fixed but let

λ and (v, z) vary. Let U ∼ U [0, 1] and set α′

1 = U and λ′ = λ(1 − U). For 1 ≤ t ≤ n and 0 ≤ j ≤ q, let

St,j ∼ Bin(vt,j , U) with the convention vt,0 ≡ zt. Set y′

t,1 =
∑q

j=0
St,j and set v′

t,j = vt,j−St,j (0 ≤ j ≤ q).

Therefore we are taking into account the fact that decreasing λ leads to a decrease in v as well as z for

fixed β. For the reverse move from INARMA(1, q) to INMA(q), set λ′ = λ/(1 − α1) keeping β fixed.

Let St = (St,0, St,1, . . . , St,q) ∼ Multinomial(yt,1,γ) where γ = (γ0, γ1, . . . , γq) and γk = βk/
∑q

j=0
βj

(0 ≤ k ≤ q) with the convention that β0 = 1. Finally, for 1 ≤ t ≤ n, set v′

t,j = vt,j + St,j (0 ≤ j ≤ q).
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4 EM Algorithm

Whilst MCMC is not an exclusively Bayesian statistical tool, it is primarily used within the Bayesian

paradigm and this is how it is used in Section 3. The aim therefore of this section is to look beyond

the Bayesian paradigm towards Maximum Likelihood Estimation (MLE) of the parameters and classical

model selection, via information criterion. Since the likelihood is intractable given the data x, one

possibility is data augmentation as in Section 3. Data augmentation in the MLE framework is usually

performed using the EM algorithm (see Dempster et al. (1977)). The natural augmentation is w =

(v,y, z) as used in Section 3 which gives us the likelihood proportional to (3.1) with Aλ = Bλ = 0. Then

the MLE for θ = (α,β, λ) are:

α̂i =
∑n

t=1
yt,i /

∑n
t=1

xt−i (1 ≤ i ≤ p)

β̂j =
∑n

t=1
vt,j /

∑n
t=1

zt−j (1 ≤ j ≤ q)

λ̂ = 1

n

∑n
t=1

zt.

(4.1)

However the EM algorithm relies upon being able to compute the expected values of w given x and

θ. For the INARMA(p, q) model the dependence of (vt,yt, zt) upon zt−1 makes the expectation step

infeasible. A Monte-Carlo EM algorithm can be used but this is very slow due to the slow convergence

of the parameters and the high rejection rate in the rejection sampler used to estimate the E-step.

For the INAR(p) model it is possible to compute the expected values of y given x and θ. Furthermore,

the likelihood of θ can be computed as a by-product of the EM algorithm. The EM algorithm can only

be used for the INAR(p) with fixed order p. However, computation of the log-likelihood enables us to

compare different orders of p using model selection tools, in particular, the BIC (Bayesian Information

Criterion). This is done for comparing different INAR(p) models in Section 5. The EM algorithm is

easy to implement and for p = 1, the algorithm is very effective being able to compute the E-step and

converging rapidly to the parameter MLEs. However, the efficiency of the algorithm rapidly drops away

as p increases. This is due in part to the fact that computation of the E-step, which requires calculations

of the probabilities for all the possibilities for the missing data, increases exponentially with p. This is

accompanied by much slower convergence of the parameters of the MLE which are necessarily heavily

correlated. Finally as p increases computer precision becomes an issue since for 1 ≤ t ≤ n, each individual

possibility for the missing data (yt, zt) have (very) small probability. This manifests itself by seeing, on

occasions, slight decreases in the calculation of the log-likelihood, despite the algorithm being correct.

Using Fortran 77 with double precision arithmetic, we saw these problems begin to enter the output
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for p = 4. These problems can be overcome by using multiple precision arithmetic in calculation of

the outcome probabilities, and hence, the log-likelihood. Multiple precision arithmetic has been used

effectively to calculate very small epidemic probabilities accurately, see Demiris and O’Neill (2006).

5 Results

5.1 Simulation study

We conducted a simulation study in order to assess the performance of the algorithms described in

Sections 3 and 4. The models used in the simulation study, along with the their true parameters, are

presented in Table 5.1.

Model n α β λ

AR(3) 400 (0.4,0.1,0.3) - 2

MA(3) 400 - (0.4,0.1,0.3) 2

ARMA(2,1) 400 (0.4,0.2) (0.3) 2

Table 5.1 A selection of models used in simulation study.

For each data set, the RJMCMC algorithm was run to obtain a sample of size 100,000 following a burn-in

period of 10,000 iterations with pmax = qmax = 10. The priors are chosen as specified in Section 3.1 with

π(λ) ∼ Gam(1, 1). For each of the models, data sets of length 400 were generated. Analysis was done

based on the first n observations for n = 100, 200, 400.

The choice of prior for p and q is an important consideration. In particular, as either p and q increases

by 1, the number of parameters in the model increases by n + 1, corresponding to one new AR or

MA parameter and n new augmented data values. Therefore we found that a BIC-like penalisation of

the model order produced excellent results for simulated data sets. That is, we set π(p) ∝ n−p/2 and

π(q) ∝ n−q/2. Such priors upon p and q produced consistent results as the length of n(≥ 400) varies. (We

tested n = 400, 800 and 1600.) Alternative priors π(p), π(q) ∼ Poisson(θ) and π(p), π(q) ∼ Geometric(θ)

were also tested but were not as effective as the BIC based prior.

The results produced by the RJMCMC algorithm can be seen in figures 1–3 which show histograms of

the estimated posterior densities for p and q when n = 100 and n = 400. The corresponding estimates of

α, β and λ for the true models when n = 400 are given in table 5.2.

9



For the AR(3) data set (figure 1) we can see that for n = 100 the marginal posterior probabilities for p = 3

and q = 0 (the true orders) are approximately 0.60 and 0.75, respectively. When the sample size increases

from n = 100 to n = 400 the data becomes much more informative and consequently the performance of

the algorithm is much better, with corresponding marginal posterior probabilities for p = 3 and q = 0

exceeding 0.99 and 0.90, respectively.
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Figure 1: Posterior density plots for the distributions of p and q when the true model is INAR(3).

It is worth noting that it is the joint posterior distribution of p and q which is of particular interest.Table

5.3 shows the estimated posterior probabilities for the three most visited models when n = 400 with the

posterior probability of the simulated model (INAR(3)) exceeding 0.90.

Analogous analysis for the case where the simulated model is an INMA(3), figure 2, shows a considerable

improvement when we increase the sample size from n = 100 to n = 400. In particular, for n = 400 the

posterior probability of the INMA(3) model exceeds 0.98.

In the ARMA case we can see that the algorithm once again favours the simulated model, with the
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Model Probability

INAR(3) 0.902

INARMA(3,2) 0.049

INARMA(3,1) 0.039

Table 5.3 Model probabilities when simulated data comes from an INAR(3), n = 400.

0 2 4 6 8 10
0

20,000

40,000

60,000

80,000

q

D
en

si
ty

0 2 4 6 8 10
0

20,000

40,000

60,000

80,000

p

D
en

si
ty

n=100

0 2 4 6 8 10
0

20,000

40,000

60,000

80,000

100,000

q

D
en

si
ty

0 2 4 6 8 10
0

20,000

40,000

60,000

80,000

100,000

p
D

en
si

ty

n=400

INMA(3)

Figure 2: Posterior density plots for the distributions of p and q when the true model is INMA(3).

posterior probability for the INARMA(2,1) exceeding 0.95 when n = 400. As mentioned in Neal and

Subba Rao (2006) the parameter estimates for the MA parameters are more volatile than those for

the AR parameters since the data is more informative about the latter parameters. This is confirmed

by the increased size of the estimated standard deviations of β̂1, as a consequence the algorithm also

underestimates λ .

As mentioned in Neal and Subba Rao (2006) we can assess whether the MCMC algorithm has converged

and consequently that the Markov Chain is sampling from its stationary distribution by visual inspection

of the time series plots of the MCMC samples. The main diagnostic is for the model switching step.

(For fixed p and q the algorithm is that given in Neal and Subba Rao (2006).) In all the above analysis
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Figure 3: Posterior density plots for the distributions of p and q when the true model is INARMA(2,1).

Model α̂ β̂ λ̂

AR(3)

Mean (0.4473, 0.1418, 0.2439) - 1.667

SD (0.0418, 0.0475, 0.0453) - 0.3207

MA(3)

Mean - (0.3743, 0.1861, 0.3582) 1.937

SD - (0.0774, 0.0786, 0.0728) 0.1066

ARMA(2,1)

Mean (0.408, 0.195) (0.624) 1.787

SD (0.0634, 0.0473) (0.2142) 0.2684

Table 5.2 Mean and standard deviations of posterior parameters estimates, n = 400.
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we have started from a saturated model INARMA(5,5) with the algorithm converging quickly (within

the burn-in) period to the simulated model. However, to demonstrate the robustness of the algorithm,

we analysed the INAR(3) data set with the algorithm started in the INMA(3) model. Figure 4 shows

a run of size 50,000 with no burn-in for this case. The algorithm appears to converge to the posterior

distribution within less than 30,000 iterations.
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Figure 4: Time series plots of p̂ and q̂ for an INAR(3) data set with starting values p0 = 0, q0=3.

Finally, the EM algorithm of Section 4 was run for the AR(3) data set with p = 1, 2, 3, 4. Using the

BIC, the AR(3) model was clearly selected with corresponding MLEs; α̂ = (0.4534, 0.1359, 0.2343) and

λ̂ = 1.7592. These estimates are very close the posterior means obtained from the RJMCMC algorithm

given in Table 5.2.

5.2 Real life data

5.2.1 Westgren Data Set

The first data set we consider is the Westgren gold particle data set analysed in Jung and Tremayne

(2006) and Neal and Subba Rao (2006). Figure 5 shows a plot of this data set which consists of 370

counts of gold particles in a solution at equidistant points in time. In Jung and Tremayne (2006), it is

concluded that an INAR(2) model fits the data adequately. Estimatation of the parameters then proceeds

via the method of moments.

We ran the RJMCMC algorithm to obtain a sample of size 100,000 from the posterior distribution of the

orders p and q following a burn-in of 10,000 iterations. We use the same priors as in Section 5.1, namely,

π(p) ∝ n−p/2, π(q) ∝ n−q/2 and π(λ) ∼ Gam(1, 1).
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Figure 5: Westgren gold particle data set.

Figure 6 gives posterior histograms for the orders p and q. The results support the findings of Jung

and Tremayne (2006) with the posterior probabilities of the three most likely models being 0.669, 0.249

and 0.056 for the INAR(2), INAR(3) and INAR(4) models, respectively. Table 5.4 gives the parameters

estimates obtained from the RJMCMC algorithm for the INAR(2) and INAR(3) models along with the

results obtained in Jung and Tremayne (2006). The parameter estimates for the INAR(2) model are

very close to those obtained in Jung and Tremayne (2006). An advantage of our approach is that we

can just as easily provide estimates for the INAR(3) or any other model that the RJMCMC algorithm

suggests whereas the approach taken in Jung and Tremayne (2006) is limited by the complex form of the

likelihood of the INAR(p) model for large p.
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Figure 6: Posterior density plots for the distributions of p and q for the Westgren gold particle data set.

The EM algorithm was also applied to the Westgren data set for INAR(p) with p=1,2,3,4. Using the

BIC, model INAR(2) was selected just ahead of model INAR(3). The corresponding MLEs are again

very close to the posterior means given in Table 5.4. In particular, for INAR(2) α̂ = (0.4716, 0.1798) and

λ̂ = 0.5450 and for INAR(3), α̂ = (0.4672, 0.1433, 0.0954) and λ̂ = 0.4546.
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Parameter α1 α2 α3 λ

INAR(2) 0.465 (0.0485) 0.183 (0.0543) - 0.554 (0.0720)

INAR(3) 0.456 (0.0477) 0.149 (0.0551) 0.100 (0.0478) 0.462 (0.0755)

JT-INAR(2) 0.453 ( - ) 0.213 ( - ) - 0.518 ( - )

Table 5.4 Mean (standard deviations) of parameter estimates for the Westgren data set.

5.2.2 Cut Injury Data Set

The second data set under consideration is the cut injury data set analysed in Zhu and Joe (2006).

This data set consists of the monthly number of claims of short-term disability benefits made by injured

workers to the British Columbia Workers’ Compensation Board from January 1985 to December 1994.

This data set focuses particularly on cut related injuries in the logging industry. Figure 7 shows the time

series plot of this data set.
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Figure 7: Cut injury in logging industry data set.

Zhu and Joe (2006) fit several models to this data set all of them being of autoregressive type. Since

the data is monthly, exploratory analysis was used to check for seasonality. Plotting the autocorrelation

and partial autocorrelation functions (ACF and PACF) gave weak evidence for a non-zero lag 12 corre-

lation (an annual effect). However, for the purposes of this paper this seasonality effect will be ignored.

Furthermore, the ACF and PACF gave support for both INMA(2) and INMA(3) models for the data.

The RJMCMC algorithm was run to obtain a sample of size 100,000 from the posterior distribution of

the orders p and q following a burn-in of 10,000 iterations. We used the same priors as before.
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Figure 8: Posterior density plots for the distributions of p and q for the Cut injury data set.

Figure 8 gives histograms for the marginal posterior distributions of p and q. From the joint posterior

distribution the INMA(2) and INMA(3) models have posterior probabilities 0.627 and 0.164, respectively.

No other model has posterior probability exceeding 0.05. These findings are supported by our initial

exploratory analysis using the ACF and PACF plots. Table 5.5 shows the estimated posterior means and

standard deviations obtained for the INMA(2) and INMA(3) models.

Parameter β1 β2 β3 λ

INMA(2) 0.547 (0.0801) 0.353 (0.0883) - 3.089 (0.2110)

INMA(3) 0.498(0.0859) 0.3032 (0.0818) 0.1402 (0.0745) 2.941 (0.1861)

Table 5.5 Mean (standard deviations) of parameter estimates for the Cut injury data set.

6 Discussion

We have presented an efficient RJMCMC algorithm for conducting inference for the orders p and q of

an INARMA(p, q) process. The algorithm has shown to be very successful at detecting the correct order

for simulated data sets and produced good results for real life data sets. Furthermore, the algorithm

freely moves between the INARMA(p, q) and the sub-models INAR(p) and INMA(q). An alternative to

MCMC has been given in the form of the EM algorithm for INAR(p) processes. This gave very similar

results to the MCMC algorithm where comparisons were applicable.

Finally, the RJMCMC methodology can be used to analyse other integer-valued time series models. In

particulars, the authors are considering the inclusion of explanatory variables into the INARMA(p, q)

model. In such a case the question as to whether or not to include an explanatory variable can be
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considered. The RJMCMC methodology is also clearly applicable to time series with an unknown number

of parameter change-points, see Green (1995), Section 4.
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