The problem of differentiation of an Abelian function over its parameters

Buchstaber, Victor and Leykin, Dmitry

2006

MIMS EPrint: 2006.414

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

```
Reports available from: http://eprints.maths.manchester.ac.uk/
    And by contacting: The MIMS Secretary
            School of Mathematics
                            The University of Manchester
                            Manchester, M13 9PL, UK
```


The problem of differentiation of an Abelian function

 over its parametersVictor Buchstaber
The University of Manchester \＆Steklov Institute，RAS〈Victor．Buchstaber＠manchester．ac．uk buchstab＠mi．ras．ru〉

Dmitry Leykin
MIMS \＆Institute of magnetism，Kiev〈Dmitry．Leykin＠manchester．ac．uk dile＠imag．kiev．ua〉

Manchester
December 2006

Abstract

Theory of Abelian functions was a central topic of the 19th century mathematics. In mid-seventies of the last century a new wave arose of investigation in this field in response to the discovery that Abelian functions provide solutions of a number of challenging problems of modern Theoretical and Mathematical Physics.

In a cycle of our joint papers published in 2000-05, we have developed a theory of multivariate sigma-function, an analogue of the classic Weierstrass sigma-function.

A sigma-function is defined on a cover of U, where U is the space of a bundle $p: U \rightarrow B$ defined by a family of plane algebraic curves of fixed genus. The base B of the bundle is the space of the family parameters and a fiber J_{b} over $b \in B$ is the Jacobi variety of the curve with the parameters b. A second logarithmic derivative of the sigma-function along the fiber is an Abelian function on J_{b}.

Thus, one can generate a ring F of fiber-wise Abelian functions on U. The problem to find derivations of the ring F along the base B is a reformulation of the classic problem of differentiation of Abelian functions over parameters. Its solution is relevant to a number of topical applications.

This work presents a solution of this problem recently found by the authors. Our method of solution essentially employs the results from Singularity Theory about vector fields tangent to the discriminant of a singularity $y^{n}-x^{s}, \operatorname{gcd}(n, s)=1$.

References

Theory of multivariate sigma-functions
V.M.Buchstaber and D.V.Leykin
[1] Polynomial Lie algebras. Funct. Anal. Appl. 36 (2002), no. 4, 267-280.
[2] The heat equations in a nonholonomic frame. Funct. Anal. Appl. 38 (2004), no. 2, 88-101.
[3] Hyperelliptic addition law.
J. Nonlin. Math. Phys. 12 (2005), S. 1, 106-123.
[4] Addition laws on Jacobian varieties of plane algebraic curves.
Proc. Steklov Math. Inst. 251 (2005), 49-120.

Applications

V.M.Buchstaber, D.V.Leykin, and M.V.Pavlov
[1] Egorov hydrodynamic chains, the Chazy equation, and the group $\operatorname{SL}(2, \mathbb{C})$.
Funct. Anal. Appl. 37 (2003), no. 4, 251-262.
V.M.Buchstaber and D.V.Leykin
[2] An analogue of the Chazy equation in higher genus and the group $\operatorname{Sp}(2 g, \mathbb{C})$.
Work in progress.

We are grateful to Kirill Mackenzie and Theodore Voronov for fruitful discussions, which helped to improve the differential-geometric part of this work.

An Abelian function is, in the classical sense, a meromorphic function on a complex Abelian torus

$$
T^{g}=\mathbb{C}^{g} / \Gamma
$$

where $\Gamma \subset \mathbb{C}^{g}$ is a rank $2 g$ lattice.

That is f is Abelian iff

$$
f(u)=f(u+\omega), \quad \text { for all } u \in \mathbb{C}^{g} \text { and } \omega \in \Gamma
$$

Abelian functions form a differential field.

Complex dimension g of the torus is called the genus of a field.

A plane algebraic curve defines a lattice Γ as the set of all periods of basis holomorphic differentials.

The resulting torus is called the Jacobian of a curve.
Suppose B is an open dense subset in \mathbb{C}^{d}.

We will consider a family of curves V, depending linearly on a parameter $b \in B$. We use V to define over B a space of Jacobians U.

The space U is naturally fibred,

$$
p: U \rightarrow B
$$

where the fiber over a point $b \in B$ is the Jacobian J_{b} of the curve with the parameters b.

Let $g=1$ and $d=2$,

$$
V=\left\{\left(x, y, g_{2}, g_{3}\right) \in \mathbb{C}^{2} \times B \mid y^{2}=4 x^{3}-g_{2} x-g_{3}\right\}
$$

is the family of Weierstrass elliptic curves, where

$$
B=\left\{\left(g_{2}, g_{3}\right) \in \mathbb{C}^{2} \mid g_{2}^{3}-27 g_{3}^{2} \neq 0\right\}
$$

This is the only case, when U and V are equivalent.

It is natural to consider on U the ring F of fiber-wise Abelian functions, i.e., the restriction of $f \in F$ to a fiber is an Abelian function.

Let $g=1$ and $d=2$.
F is generated by g_{2}, g_{3} and elliptic Weierstrass functions

$$
\wp\left(u, g_{2}, g_{3}\right) \quad \text { and } \quad \wp^{\prime}\left(u, g_{2}, g_{3}\right) .
$$

The ring F attractes much interest since 1974, when S.P. Novikov discovered that relations in F are relevant to modern challenging problems of Mathematical Physics.

The main problem.

Find the generators of the F-module $\operatorname{Der}(F)$ of derivations of the ring F.

Let $g=1, d=2$. F.G.Frobenius (1849-1917) and L.Stickelberger found* the generators of $\operatorname{Der}(F)$,

$$
\begin{aligned}
& L_{0}=-u \partial_{u}+4 g_{2} \partial_{g_{2}}+6 g_{3} \partial_{g_{3}}, \\
& L_{1}=\partial_{u} \\
& L_{2}=-\zeta\left(u, g_{2}, g_{3}\right) \partial_{u}+6 g_{3} \partial_{g_{2}}+\frac{1}{3} g_{2}^{2} \partial g_{3}
\end{aligned}
$$

with the structure relations,

$$
\left[L_{0}, L_{k}\right]=k L_{k}, \quad\left[L_{1}, L_{2}\right]=\wp\left(u, g_{2}, g_{3}\right) L_{1}
$$

B.A. Dubrovin ${ }^{\dagger}$ clarified the meaning of this result for reconstructing the differential geometry of the universal bundle of genus one Jacobians. He named the connection on this bundle the FS-connection.
*Crelles Journal, Bd. 92. S. 311-337. (1882)
\dagger "Geometry of 2D topological field theories", Appendix C, Lect. Notes Math. 1620. (1994)

A differential-geometric approach to the problem.

One can realize U as the space of classes $[(u, b)]$ of pairs

$$
\begin{gathered}
(u, b) \in \mathbb{C}^{g} \times B \subset \mathbb{C}^{g+d}, \quad \text { where } \\
(u, b) \sim\left(u^{\prime}, b^{\prime}\right) \quad \text { iff } \quad b=b^{\prime} \text { and } u-u^{\prime} \in \Gamma_{b}
\end{gathered}
$$

Here Γ_{b} is a rank $2 g$ lattice in \mathbb{C}^{g} defined by the curve with parameters b from the family of curves V.

Now, we have an action $\mu: U \times \mathbb{C}^{g} \rightarrow U$

$$
\mu([(u, b)], z)=[(u+z, b)],
$$

with the following properties:
(1) The orbit space of μ is B.
(2) Fix $[(u, b)] \in U$. Then μ defines a map

$$
\mu_{[(u, b)]}: \mathbb{C}^{g} \rightarrow p^{-1}(b), \quad \mu_{[(u, b)]}(z)=[(u+z, b)]
$$

which is a universal covering of the Jacobian $J=p^{-1}(b)$.
(3) Fix $z \in \mathbb{C}^{g}$. Then μ defines a map

$$
\mu_{z}: U \rightarrow U, \quad \mu_{z}([(u, b)])=[(u+z, b)]
$$

which induces an automorphism of F.

Since U is the space of the bundle $p: U \rightarrow B$ with a fiber $J=T^{g}$, we have an exact sequence of bundles:

$$
0 \rightarrow \mathcal{T}_{J} U \rightarrow \mathcal{T} U \rightarrow \mathcal{T} B \rightarrow 0
$$

Due to the properties of μ we can fix following basis of sections in $\mathcal{T}_{J} U$,

$$
\left(\partial_{u_{1}}, \ldots, \partial_{u_{g}}\right),
$$

which are derivations of F.

Note, that U has a zero section $s_{0}=[(0, b)]$.

However, the trivial lift, with the help of s_{0} and μ, of a vector field from $\mathcal{T} B$ is not a derivation of F.

The problem of derivations of F reduces to constructing a special basis of horizontal sections of $\mathcal{T} U$.

In other words, we have to construct a connection on U, which is 'smooth' with respect of the structure ring F.

Koszul connection.

Let $\pi: E \rightarrow B$ be a complex vector bundle.

Notation:

$X(B)$ is the $C^{\infty}(B)$-module of vector fields on B;
ΓE is the space of smooth sections of $\pi: E \rightarrow B$.

Then,*

A Koszul connection in a vector bundle $\pi: E \rightarrow B$ is a map

$$
\nabla: X(B) \times \Gamma E \rightarrow \Gamma E, \quad(X, f) \mapsto \nabla_{X}(f)
$$

which is bilinear and satisfies the two identities

$$
\nabla_{\mu X}(f)=\mu \nabla_{X}(f), \quad \nabla_{X}(\mu f)=\mu \nabla_{X}(f)+X(\mu) f
$$ for all $X \in \mathcal{X}(B), f \in \Gamma E, \mu \in C^{\infty}(B)$.

The connection ∇ is flat if

$$
\nabla_{[X, Y]}(f)=\nabla_{X}\left(\nabla_{Y}(f)\right)-\nabla_{Y}\left(\nabla_{X}(f)\right)
$$

*Kirill C.H. Mackenzie. General theory of Lie groupoids and Lie algebroids. LMS Lect. Notes. Ser. 213, CUP (2005).

An accompanying problem.

Consider, associated with $p: U \rightarrow B$, a complex vector bundle

$$
\pi: E \rightarrow B
$$

whose fiber F_{b} is the restriction of the ring F to the fiber $p^{-1}(b)=J_{b} \subset U$.

Since $\Gamma E=F$, we come to the problem

Construct a flat Koszul connection on the vector bundle $\pi: E \rightarrow B$ with a fiber F_{b}.

Basic facts about Abelian functions on a Jacobian of genus g.

$\left(A_{1}\right)$ If $f \in F_{b}$, then $\partial_{u_{i}} f \in F_{b}, i=1, \ldots, g$.
$\left(A_{2}\right)$ For any nonconstant f_{1}, \ldots, f_{g+1} from F_{b} there exists $P \in \mathbb{C}\left[z_{1}, \ldots, z_{g+1}\right]$ such that

$$
P\left(f_{1}, \ldots, f_{g+1}\right)=0, \quad \text { for all } u \in p^{-1}(b)
$$

$\left(A_{3}\right)$ If $f \in F_{b}$ is any nonconstant function, then any $h \in F_{b}$ is a rational function of $\left(f, \partial_{u_{1}} f, \ldots, \partial_{u_{g}} f\right)$.
$\left(A_{4}\right)$ There exists an entire function $\vartheta: \mathbb{C} g \rightarrow \mathbb{C}$ such that

$$
\partial u_{i}, u_{j} \log \vartheta \in F_{b}, \quad i, j=1, \ldots, g .
$$

A strategy of solution of the problem in general case.

One can understand the strategy of solution by following our treatment of the classic case.

We employ the following properties of Weierstrass sigmafunction $\sigma: \mathbb{C}^{3} \rightarrow \mathbb{C}$.
(a) $\sigma\left(u, g_{2}, g_{3}\right)$ is entire in $\left(u, g_{2}, g_{3}\right) \in \mathbb{C}^{3}$.
(b) $\partial_{u}^{2} \log \left(\sigma\left(u, g_{2}, g_{3}\right)\right)=-\wp\left(u, g_{2}, g_{3}\right) \in F$,
whenever

$$
\left(g_{2}, g_{3}\right) \in B=\left\{\left(g_{2}, g_{3}\right) \in \mathbb{C}^{2} \mid g_{2}^{3}-27 g_{3}^{2} \neq 0\right\}
$$

which is sufficient to generate the whole ring F.
(c) $\sigma\left(u, g_{2}, g_{3}\right)$ is a solution of the system

$$
\begin{array}{ll}
Q_{0}(\sigma)=0, & Q_{0}=4 g_{2} \partial_{g_{2}}+6 g_{3} \partial_{g_{3}}-u \partial_{u}+1 \\
Q_{2}(\sigma)=0, & Q_{2}=6 g_{3} \partial_{g_{2}}+\frac{1}{3} g_{2}^{2} \partial_{g_{3}}-\frac{1}{2} \partial_{u}^{2}-\frac{1}{24} g_{2} u^{2}
\end{array}
$$

where the operators depend polynomially on $b \in B$.
K.Weierstrass (1815-97) discovered Q_{0} and Q_{2} in 1894.

Observe, that due to (b) the equations (c) convert into derivations of F.

Let $\quad \ell_{2}=6 g_{3} \partial_{g_{2}}+\frac{1}{3} g_{2}^{2} \partial_{g_{3}}$.

Since

$$
\ell_{2}\left(g_{2}^{3}-27 g_{3}^{2}\right)=0
$$

ℓ_{2} is a field on B.
Now, $Q_{2}=\ell_{2}-\frac{1}{2} \partial_{u}^{2}-\frac{1}{24} g_{2} u^{2}$.
Divide $Q_{2}(\sigma)=0$ by σ and rearrange the terms using

$$
\zeta=\partial_{u} \log \sigma \quad \text { and } \quad \wp=-\partial_{u}^{2} \log \sigma
$$

We obtain

$$
\ell_{2}(\log (\sigma))-\frac{1}{2} \zeta^{2}+\frac{1}{2} \wp-\frac{1}{24} g_{2} u^{2}=0
$$

Apply ∂_{u}, and as $\left[\partial_{u}, \ell_{2}\right]=0$,

$$
\ell_{2}(\zeta)+\zeta \wp+\frac{1}{2} \wp^{\prime}-\frac{1}{12} g_{2} u=0
$$

apply ∂_{u} again,

$$
-\ell_{2}(\wp)+\zeta \wp^{\prime}-\wp^{2}+\frac{1}{2} \wp^{\prime \prime}-\frac{1}{12} g_{2}=0
$$

and finally:

$$
\left(\ell_{2}-\zeta \partial_{u}\right)_{\wp}=\frac{1}{2} \wp^{\prime}-\wp^{2}-\frac{1}{12} g_{2} \in F
$$

We have recovered the operator $L_{2}=\ell_{2}-\zeta \partial_{u}$.

In their original work of 1882, Frobenius and Stickelberger used a completely different techniques.

By our construction, the operator L_{2} is a special horizontal section of $\mathcal{T} U$, which respects the structure ring F.

Our strategy leads to the solution of general case, as soon as one presents an entire function on \mathbb{C}^{g+d}, whose properties generalize the above properties (b) and (c) of Weierstrass σ.

What classic Abelian functions theory had in store.

A function with (b) is at hand. One takes any Riemann θ-function. But, since it depends on the choice of a basis in Γ, it is impossible to find a θ-function with (c).

Klein's project (c. 1886)
Modify θ to obtain an entire function, which
(1.) depends on a lattice Γ in the whole;
(2.) is a covariant of Möbius transforms of a curve.
F.Klein (1849-1925) gave a review* of the outcome, which is the hyperelliptic sigma-function. It was proven, that Kleinian σ has both (a) and (b).

Still, the claim (2.) restricts Klein's theory to hyperelliptic curves and, even in this case, creates artificial complications in the operators (c).
*Gesammelte Mathematische Abhandlungen, vol. 3, S. 317-322, (1923)
H.F.Baker* (1866-1956) abandoned (2.) and demonstrated for $g=2$ that a theory of sigma-function can be constructed without any reference to θ. Baker's book is a realization of the following.

Weierstrass principle

One has to work with a canonical model of a curve.
Elliptic sigma-function owes its advantages to Weierstrass' cubic equation,

$$
y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

Weierstrass ${ }^{\dagger}$ proposed, for a pair $(n, s), \operatorname{gcd}(n, s)=1$, the class of models

$$
V=\left\{(x, y ; \lambda) \in \mathbb{C}^{2+d} \mid y^{n}=x^{s}+\sum_{i, j \geq 0}^{q(i, j)>0} \lambda_{q(i, j)} x^{i} y^{j}\right\}
$$

where $q(i, j)=(n-j)(s-i)-i j$ and $d=n s-g$.
Curves in Weierstrass' (n, s)-class are of genus not greater than $g=(n-1)(s-1) / 2$.

For hyperelliptic curves $(n, s)=(2,2 g+1)$.
*Multiply periodic functions. Part I. (1907)
${ }^{\dagger}$ Abel'schen Funktionen. Ges. Werke, vol. 4. (1904)

A contribution from Singularity Theory.

Singularity Theory studies a function

$$
f(x, y, \lambda)=y^{n}-x^{s}-\sum_{j=0}^{n-2} \sum_{i=0}^{s-2} \lambda_{q(i, j)} x^{i} y^{j}
$$

as miniversal unfolding of Pham singularity $y^{n}-x^{s}$.

Miniversal unfolding has $2 g$ parameters λ.

The number $m=\#\left\{\lambda_{k} \mid k<0\right\}$ is the modality of f.

One relates to f the discriminant variety $\Sigma \subset \mathbb{C}^{2 g}$,

$$
(\lambda \in \Sigma) \Leftrightarrow\left(\exists(x, y) \in \mathbb{C}^{2}: f_{x}=f_{y}=0 \text { at }(x, y, \lambda)\right)
$$

We use a construction*, which is based on a theorem due to V.M. Zakalyukin ${ }^{\dagger}$ of holomorphic vector fields tangent to Σ.

The fields define a holomorphic function $\Delta(\lambda) \in \mathbb{C}(\lambda)$, such that

$$
\Sigma=\left\{\lambda \in \mathbb{C}^{2 g} \mid \Delta(\lambda)=0\right\}
$$

a vector field ℓ is a tangent to Σ iff

$$
\ell(\Delta(\lambda))=\phi(\lambda) \Delta(\lambda)
$$

where

$$
\phi(\lambda) \in \mathbb{C}[[\lambda]]
$$

There exists a unique basis $\mathcal{L}=\left(\ell_{1}, \ldots, \ell_{2 g}\right)^{t}$ in the space of holomorphic fields tangent to Σ such that

$$
\mathcal{L}=T(\lambda) \partial_{\lambda}, \quad T(\lambda)=T(\lambda)^{t}, \quad \Delta(\lambda)=\operatorname{det} T(\lambda)
$$

where $T(\lambda)$ is the matrix of Arnold's convolution.
*Funct. Anal. Appl. 36 (2002), no. 4, 267-280.
${ }^{\dagger}$ 'Funct. Anal. Appl. 10 (1976), no. 2, 139-140.

The family of (n, s)-curves.

Genus of a curve in Weierstrass' (n, s)-class is $\leq(n-1)(s-1) / 2$.

Genus of a miniversal unfolding, if $b \notin \Sigma$, is $\geq(n-1)(s-1) / 2$.

We impose the condition

$$
\lambda_{q(i, j)}=0, \quad \text { when } q(i, j)<0
$$

on miniversal unfolding, or, equivalently,

$$
\lambda_{q(s-1, j)}=\lambda_{q(i, n-1)}=0
$$

on Weierstrass' model, and obtain a family of curves of constant genus $g=(n-1)(s-1) / 2$ over $B=\mathbb{C}^{2 g-m} \backslash \Sigma$.

Our (n, s)-models are the intersection of the classes of miniversal unfoldings and Weierstrass' models.

The structure of a $\mathbb{C}[\lambda]$-module in the space of sections of $\mathcal{T} B$.

In what follows we use an obvious renumbering of λ_{k}.

Under the condition $\lambda_{k}=0$ for $k<0$,

(1) the holomorphic symmetric matrix $T(\lambda)$ becomes a matrix over $\mathbb{C}\left[\lambda_{1}, \ldots, \lambda_{2 g-m}\right]$;
(2) $\Delta(\lambda) \in \mathbb{C}\left[\lambda_{1}, \ldots, \lambda_{2 g-m}\right]$ and

$$
B=\left\{\lambda \in \mathbb{C}^{2 g-m} \mid \Delta(\lambda) \neq 0\right\}
$$

(3) the holomorphic frame \mathcal{L} becomes the $2 g$-dimensional basis of $\mathbb{C}\left[\lambda_{1}, \ldots, \lambda_{2 g-m}\right]$-module of global sections of $(2 g-m)$-dimensional bundle $\mathcal{T} B$.

Fix the notation for the frame

$$
\mathcal{L}=\left(\ell_{1}, \ldots, \ell_{2 g}\right)^{t}=T(\lambda)(\underbrace{0, \ldots, 0}_{m}, \partial_{\lambda_{1}}, \ldots, \partial_{\lambda_{2 g-m}})^{t}
$$

and its structure functions

$$
\left[\ell_{i}, \ell_{j}\right]=\sum_{h=1}^{2 g} c_{i j}^{h}(\lambda) \ell_{h}, \quad c_{i j}^{h}(\lambda) \in \mathbb{C}[\lambda]
$$

Gauß-Manin connection on the bundle of (n, s)-curves punctured at (∞).

The equation $f(x, y, \lambda)=0$ in $\mathbb{C}^{2+2 g-m}$ defines the family V of (n, s)-curves over $B=\mathbb{C}^{2 g-m} \backslash \Sigma$.

Consider the bundle $\stackrel{\circ}{p}: \stackrel{\circ}{V} \rightarrow B$ whose fiber is the curve

$$
\stackrel{\circ}{V}_{b}=\left\{(x, y) \in \mathbb{C}^{2} \mid f(x, y, b)=0\right\}
$$

with a puncture at infinity.

Let $H^{1}\left(\stackrel{\circ}{V}_{b}, \mathbb{C}\right)$ be the linear $2 g$-dimensional vector space of holomorphic 1-forms on V_{b}.

Consider associated with $\stackrel{\circ}{p}: \stackrel{\circ}{V} \rightarrow B$ locally trivial vector bundle $\varpi: \Omega^{1} \rightarrow B$ whose fiber is $H^{1}\left(\stackrel{\circ}{V}_{b}, \mathbb{C}\right)$.

A connection in Ω^{1} is a Gauß-Manin connection on $\stackrel{\circ}{V}$.

Since (∞) belongs to all curves from V, we can construct a global section of Ω^{1} by taking the classical basis of Abelian differentials of first and second kind.

Let $D(x, y, \lambda)$ be the vector

$$
D(x, y, \lambda)=\left(D_{1}(x, y, \lambda), \ldots, D_{2 g}(x, y, \lambda)\right)
$$

of canonical basis 1 -forms from $H^{1}\left(\stackrel{\circ}{V}_{b}, \mathbb{C}\right)$.

Its matrix of periods Ω satisfies the Legendre relation*

$$
\Omega^{t} J \Omega=2 \pi l J, \quad \text { where } \quad J=\left(\begin{array}{cc}
0_{g} & 1 g \\
-1 g & 0_{g}
\end{array}\right) .
$$

Classic theory of Abelian differentials asserts that such basis exists and provides a means to construct it ${ }^{\dagger}$.
*The particular case of Riemann-Hodge relations.
${ }^{\dagger}$ H.F.Baker, Abelian Functions, CUP, 1997

The essential part of $D(x, y, \lambda)$, i.e., the part that provides the Legendre relation, is defined by the classic formula

$$
\begin{gathered}
\quad D\left(x_{1}, y_{1}\right)^{t} J D\left(x_{2}, y_{2}\right)=\left\{\Phi_{1,2}-\Phi_{2,1}\right\} \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
\text { where } \quad \Phi_{1,2}=\frac{1}{f_{y}\left(x_{1}, y_{1}, \lambda\right)} \frac{\mathrm{d}}{\mathrm{~d} x_{2}}\left(\frac{f\left(x_{1}, y_{2}, \lambda\right)}{\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)}\right) .
\end{gathered}
$$

The calculation is carried out 'on the curve', i.e. with the assumption $f\left(x_{i}, y_{i}, \lambda\right)=0, i=1,2$.

The Christoffel coefficient of the Gauß-Manin connection

$$
\Gamma_{j}=\left(\Gamma_{j, i}^{k}\right), \quad i, j, k=1, \ldots, 2 g,
$$

associated to the field ℓ_{j} is uniquely defined by the relation

The holomorphic vector-valued 1-form

$$
\ell_{j}(D(x, y, \lambda))+\Gamma_{j} D(x, y, \lambda)
$$

is exact 'on the curve'.

The properties of our sigma-function.*

(a) $\sigma(u, \lambda)$ is an entire function of $u \in \mathbb{C}^{g}$ and $\lambda \in \mathbb{C}^{d}$.
(b) $\partial_{u_{i}, u_{j}} \log (\sigma(u, \lambda))=-\wp_{i j}(u, \lambda) \in F$ whenever $\lambda \in B, i, j=1, \ldots, g$.
(c) $\sigma(u, \lambda)$ is a solution of the system

$$
Q_{j} \sigma(u, \lambda)=0, \quad j=1, \ldots, 2 g
$$

The operators have the form $Q_{j}=\ell_{j}-\frac{1}{2} H_{j}-\delta_{j}(\lambda)$, with $\ell_{j} \in \mathcal{L}$ and

$$
\begin{aligned}
& H_{j}=\alpha_{j}^{k l}(\lambda) \partial_{u_{k}} \partial_{u_{l}}+2 \beta_{j k}^{l}(\lambda) u_{k} \partial_{u_{l}}+\gamma_{j k l}(\lambda) u_{k} u_{l} \\
& \delta_{j}(\lambda)=\frac{1}{8} \ell_{j}(\log \Delta(\lambda))+\frac{1}{2} \beta_{j k}^{k}(\lambda)
\end{aligned}
$$

where the summation from 1 to g extends over the repeated indices.

The coefficients $\alpha_{j}^{k l}(\lambda)=\alpha_{j}^{l k}(\lambda), \beta_{j k}^{l}(\lambda)$ and $\gamma_{j k l}(\lambda)=$ $\gamma_{j l k}(\lambda)$ are polynomials of λ.
*Funct. Anal. Appl. 38 (2004), no. 2, 88-101.

The annihilators Q_{j} of the sigma-function

 and a quantum oscillator.Write the system of equations

$$
Q_{j} \sigma(u, \lambda)=0, \quad j=1, \ldots, 2 g .
$$

in the form of the Schrödinger equations

$$
\ell_{j}(\sigma)=\left\{\frac{1}{2} H_{j}+\delta_{j}(\lambda)\right\} \sigma,
$$

of a multidimensional quantum harmonic oscillator with multiple 'times'.

The formalism of quantum oscillator:
H_{j} is a set of 'quadratic Hamiltonians',
ℓ_{j} are derivatives over 'times',
δ_{j} is 'the energy of an oscillator mode'.
The realization of sigma-function in the form of an average of the 'ground state wave-function' (a multi-dimensional Gaussian function) over a lattice* suggests a natural interpretation of sigma-function as the 'wavefunction of the coherent state' of the oscillator. *see MIMS EPrint: 2005.50.

The Gauß-Manin connection and

 the annihilators Q_{j} of the sigma-function.An operator Q_{j} is defined if we know the polynomial in λ matrices

$$
\alpha_{j}=\left(\alpha_{j}^{k l}\right), \quad \beta_{j}=\left(\beta_{j k}^{l}\right), \quad \text { and } \quad \gamma_{j}=\left(\gamma_{j k l}\right)
$$

Let

$$
A_{j}(\lambda)=J\left(\begin{array}{cc}
\alpha_{j} & \left(\beta_{j}\right)^{t} \\
\beta_{j} & \gamma_{j}
\end{array}\right)
$$

Theorem. The set of matrices $\left\{\alpha_{j}, \beta_{j}, \gamma_{j}\right\}$ defines the operators $Q_{j}, j=1, \ldots, 2 g$, such that
(1)

$$
\left[Q_{i}, Q_{j}\right]=\sum_{h=1}^{2 g} c_{i j}^{h}(\lambda) Q_{h}
$$

(2)

$$
Q_{j}(\sigma(u, \lambda))=0
$$

if and only if $A_{j}=\Gamma_{j}$.

Observe, that our operators Q_{j} and vector fields ℓ_{j} obey the same commutation relations.

A lifting process

Define a map t that takes the operators Q_{j} to vector fields by the formula

$$
t\left(Q_{j}\right)=\ell_{i}-\left(\alpha_{j}^{k l} \zeta_{k}(u, \lambda)+\beta_{j k}^{l} u_{k}\right) \partial_{u_{l}}
$$

where $\zeta_{i}(u, \lambda)=\partial_{u_{i}} \log \sigma(u, \lambda)$.

Lemma. Let $f \in F$ and $Q(\sigma)=0$, then $t(Q)(f) \in F$.

Define a lift of the basis fields \mathcal{L} to horizontal sections of $\mathcal{T} U$ by the formula

$$
p^{*}\left(\ell_{i}\right)=t\left(Q_{i}\right) .
$$

Summary: take a field ℓ on B, construct the heat operator $Q=\ell-\frac{1}{2} H-\delta$ associated to ℓ, and then apply t to Q obtain the lift $p^{*}(\ell)=t(Q)$.

Solution of the main problem: a basis of $\operatorname{Der}(F)$.

Theorem. The lifting process gives the following basis of the F-module $\operatorname{Der}(F)$:

$$
\mathcal{F}=\left(\partial_{u_{1}}, \ldots, \partial_{u_{g}}, p^{*}\left(\ell_{1}\right), \ldots, p^{*}\left(\ell_{2 g}\right)\right)
$$

The coordinate frame \mathcal{F} is subject to the relations

$$
\begin{aligned}
& {\left[\partial_{u_{q}}, \partial_{u_{r}}\right] }=0 \\
& {\left[p^{*}\left(\ell_{i}\right), \partial_{u_{q}}\right] }=-\left(\alpha_{i}^{k l} \wp l q(u, \lambda)-\beta_{i q}^{k}\right) \partial_{u_{k}} \\
& {\left[p^{*}\left(\ell_{i}\right), p^{*}\left(\ell_{j}\right)\right] }=p^{*}\left(\left[\ell_{i}, \ell_{j}\right]\right)+ \\
&+\frac{1}{2}\left(\alpha_{i}^{k l} \alpha_{j}^{q r}-\alpha_{j}^{k l} \alpha_{i}^{q r}\right) \wp_{k l q}(u, \lambda) \partial_{u_{r}}
\end{aligned}
$$

where $i, j=1, \ldots, 2 g, k, l, q, r=1, \ldots, g$.
The frame \mathcal{F} has zero curvature and nontrivial torsion. Introduce the second order linear operators X_{i}, $i=1, \ldots, 2 g$,

$$
X_{i}(\cdot)=\frac{1}{2} \alpha_{i}^{k l}\left[\left[\cdot, \partial_{u_{k}}\right], \partial_{u_{l}}\right] ; \quad\left[X_{i}, X_{j}\right]=0
$$

Now, we have the torsion formula

$$
\left[p^{*}\left(\ell_{i}\right), p^{*}\left(\ell_{j}\right)\right]-p^{*}\left(\left[\ell_{i}, \ell_{j}\right]\right)=X_{i}\left(p^{*}\left(\ell_{j}\right)\right)-X_{j}\left(p^{*}\left(\ell_{i}\right)\right)
$$

Action of $p^{*}\left(\ell_{i}\right)$ and $\partial_{u_{k}}$ on F.

$$
\begin{aligned}
\partial_{u_{k}}\left(\wp_{q r}\right)= & \wp_{k q r}, \\
\partial_{u_{k}}\left(\lambda_{j}\right)= & 0, \\
p^{*}\left(\ell_{i}\right)\left(\wp_{q r}\right)= & \frac{1}{2} \alpha_{i}^{k l}\left(\wp_{k l q r}-2 \wp_{k q} \wp_{l r}\right)+ \\
& \quad+\beta_{i q}^{k} \wp_{k r}+\beta_{i r}^{k} \wp_{k q}-\gamma_{i q r}, \\
p^{*}\left(\ell_{i}\right)\left(\lambda_{j}\right)= & T_{i}^{j}(\lambda) .
\end{aligned}
$$

The singular set of $p^{*}\left(\ell_{i}\right)$.

$$
\begin{aligned}
p^{*}\left(\ell_{i}\right) \Delta(\lambda) & =\ell_{i} \Delta(\lambda)=\phi(\lambda) \Delta(\lambda), \\
p^{*}\left(\ell_{i}\right) \sigma(u, \lambda)^{k} & =\psi(u, \lambda) \sigma(u, \lambda)^{k-2},
\end{aligned}
$$

where $\phi(\lambda) \in \mathbb{C}[\lambda]$ and $\psi(u, \lambda) \in \mathbb{C}[\lambda] \llbracket u]$

The coefficients of vector fields $p^{*}\left(\ell_{i}\right)$ become singular at the points where $\sigma(u, \lambda)$ vanishes.

A solution of the accompanying problem.

Consider the operators $Q_{i}^{(\sigma)}, i=1, \ldots, 2 g$,

$$
Q_{i}^{(\sigma)}(f)=\sigma(u, \lambda)^{-1} Q_{i}(\sigma(u, \lambda) f(u, \lambda)),
$$

where $f(u, \lambda)$ is a differentiable function.
Observe, that the map $(\cdot)^{(\sigma)}: Q_{i} \mapsto Q_{i}^{(\sigma)}$ preserves the bracket,

$$
\left[Q_{i}^{(\sigma)}, Q_{j}^{(\sigma)}\right]=\left(\left[Q_{i}, Q_{j}\right]\right)^{(\sigma)}=c_{i j}^{h} Q_{h}^{(\sigma)}
$$

and that $Q_{i}^{(\sigma)}(1)=0$.
Since $Q_{i}(\sigma)=0$, we have

$$
Q_{i}^{(\sigma)}(f)=p^{*}\left(\ell_{i}\right)(f)-X_{i}(f)
$$

thus, if $f \in F$, then $Q_{i}^{(\sigma)}(f) \in F$.
Theorem. The operators $Q_{i}^{(\sigma)}, i=1, \ldots, 2 g$, define a flat Koszul connection in the complex vector fiber bundle $\pi: E \rightarrow B$ by the formula

$$
\nabla_{\ell_{j}}(f)=Q_{j}^{(\sigma)}(f)
$$

where $f \in F$.

Examples

A polynomial Lie algebra structure

$$
\begin{gathered}
{\left[L_{i}, d_{q}\right]=-\left(\alpha_{i}^{k l} x_{l q}-\beta_{i q}^{k}\right) d_{k},} \\
{\left[L_{i}, L_{j}\right]=c_{i j}^{h} L_{h}+\frac{1}{2}\left(\alpha_{i}^{k l} \alpha_{j}^{q r}-\alpha_{j}^{k l} \alpha_{i}^{q r}\right) x_{k l q} d_{r}} \\
{\left[L_{i}, x_{q r}\right]=\frac{1}{2} \alpha_{i}^{k l}\left(x_{k l q r}-2 x_{k q} x_{l r}\right)+} \\
\quad+\beta_{i q}^{k} x_{k r}+\beta_{i r}^{k} x_{k q}-\gamma_{i q r}, \\
{\left[L_{i}, \lambda_{a}\right]=T_{i}^{a}, \quad\left[d_{k}, x_{l q \ldots}\right]=x_{k l q \ldots},} \\
{\left[d_{q}, d_{r}\right]=\left[d_{r}, \lambda_{a}\right]=\left[\lambda_{a}, \lambda_{e}\right]=} \\
\quad=\left[\lambda_{e}, x_{l q \ldots}\right]=\left[x_{l q \ldots}, x_{k r \ldots}\right]=0,
\end{gathered}
$$

where $T_{i}^{j}, \alpha_{j}^{k l}, \beta_{j k}^{l}, \gamma_{j k l}, c_{i j}^{h} \in \mathbb{C}[\lambda]$,

$$
\begin{aligned}
a, e & =1, \ldots, 2 g-m, \\
h, i, j & =1, \ldots, 2 g \\
k, l, q, r & =1, \ldots, g .
\end{aligned}
$$

$\mathrm{g}=2$. The basis $\left\{\ell_{i}\right\}$.

The symmetric matrix T, which transforms the standard fields $\partial_{\lambda_{4}}, \partial_{\lambda_{6}}, \partial_{\lambda_{8}}, \partial_{\lambda_{10}}$ to the basis fields $\ell_{0}, \ell_{2}, \ell_{4}, \ell_{6}$

$$
T=\left(\begin{array}{cccc}
4 \lambda_{4} & 6 \lambda_{6} & 8 \lambda_{8} & 10 \lambda_{10} \\
* & \frac{40 \lambda_{8}-12 \lambda_{4}^{2}}{5} & \frac{50 \lambda_{10}-8 \lambda_{4} \lambda_{6}}{5} & -\frac{4 \lambda_{4} \lambda_{8}}{5} \\
* & * & \frac{20 \lambda_{4} \lambda_{8}-12 \lambda_{6}^{2}}{5} & \frac{30 \lambda_{4} \lambda_{10}-6 \lambda_{6} \lambda_{8}}{5} \\
* & * & * & \frac{4 \lambda_{6} \lambda_{10}-8 \lambda_{8}^{2}}{5}
\end{array}\right)
$$

$$
\begin{aligned}
& {\left[\ell_{0}, \ell_{k}\right]=k \ell_{k}, \quad k=2,4,6} \\
& {\left[\ell_{2}, \ell_{4}\right]=2 \ell_{6}-\frac{8}{5} \lambda_{4} \ell_{2}+\frac{8}{5} \lambda_{6} \ell_{0}} \\
& {\left[\ell_{2}, \ell_{6}\right]=-\frac{4}{5} \lambda_{4} \ell_{4}+\frac{4}{5} \lambda_{8} \ell_{0}} \\
& {\left[\ell_{4}, \ell_{6}\right]=2 \lambda_{4} \ell_{6}-\frac{6}{5} \lambda_{6} \ell_{4}+\frac{6}{5} \lambda_{8} \ell_{2}-2 \lambda_{10} \ell_{0}}
\end{aligned}
$$

$g=2$. The operators $\left\{H_{i}\right\}$.

$$
H_{0}=\underline{u_{1}} \partial_{u_{1}}+3 u_{3} \partial_{u_{3}}-3
$$

$$
\begin{aligned}
& 10 H_{2}=\frac{5 \partial_{u_{1}}^{2}+10 u_{1} \partial_{u_{3}}-8 \lambda_{4} u_{3} \partial_{u_{1}}}{-3 \lambda_{4} u_{1}^{2}+\left(15 \lambda_{8}-4 \lambda_{4}^{2}\right) u_{3}^{2}} \\
& 5 H_{4}= \\
& \frac{5 \partial_{u_{1}} \partial_{u_{3}}+5 \lambda_{4} u_{3} \partial_{u_{3}}-6 \lambda_{6} u_{3} \partial_{u_{1}}}{-5 \lambda_{4}-\lambda_{6} u_{1}^{2}+5 \lambda_{8} u_{1} u_{3}+3\left(5 \lambda_{10}-\lambda_{4} \lambda_{6}\right) u_{3}^{2}}
\end{aligned}
$$

$$
10 H_{6}=5 \partial_{u_{3}}^{2}-6 \lambda_{8} u_{3} \partial_{u_{1}}
$$

$$
-5 \lambda_{6}-\lambda_{8} u_{1}^{2}+20 \lambda_{10} u_{1} u_{3}-3 \lambda_{4} \lambda_{8} u_{3}^{2}
$$

$\underline{g}=2$. The vector fields $\quad\left\{t\left(Q_{i}\right)\right\}$.

$$
\begin{aligned}
& t\left(Q_{0}\right)=\ell_{0}-u_{1} \partial_{u_{1}}-3 u_{3} \partial_{u_{3}}, \\
& t\left(Q_{2}\right)=\ell_{2}-\zeta_{1} \partial_{u_{1}}-u_{1} \partial_{u_{3}}-\frac{4}{5} \lambda_{4} u_{3} \partial_{u_{1}} \\
& t\left(Q_{4}\right)=\ell_{4}-\zeta_{3} \partial_{u_{1}}-\zeta_{1} \partial_{u_{3}}+\lambda_{4} u_{3} \partial_{u_{3}}-\frac{6}{5} \lambda_{6} u_{3} \partial_{u_{1}} \\
& t\left(Q_{6}\right)=\ell_{6}-\zeta_{3} \partial_{u_{3}}-\frac{3}{5} \lambda_{8} u_{3} \partial_{u_{1}} .
\end{aligned}
$$

$\mathrm{g}=2$. The frame \mathcal{F} structure.

Notation: $L_{i}=p^{*}\left(\ell_{i}\right)=t\left(Q_{i}\right)$.

$$
\begin{aligned}
& {\left[L_{2}, L_{4}\right]=p^{*}\left[\ell_{2}, \ell_{4}\right]+\frac{1}{2}\left(\wp_{1,1,3} \partial_{u_{1}}-\wp_{1,1,1} \partial_{u_{3}}\right),} \\
& {\left[L_{2}, L_{6}\right]=p^{*}\left[\ell_{2}, \ell_{6}\right]+\frac{1}{2}\left(\wp_{1,3,3} \partial_{u_{1}}-\wp_{1,1,3} \partial_{u_{3}}\right),} \\
& {\left[L_{4}, L_{6}\right]=p^{*}\left[\ell_{4}, \ell_{6}\right]+\frac{1}{2}\left(\wp_{3,3,3} \partial_{u_{1}}-\wp_{1,3,3} \partial_{u_{3}}\right) .}
\end{aligned}
$$

$g=2$. Linearization.

Let $\lambda_{i}=\mu_{i} \xi$, and pass to the limit as $\xi \rightarrow 0$.
$\sigma(u, 0)=u_{3}-\frac{1}{3} u_{1}^{3}$.
Change the variables: $u_{1}=\xi_{1}+\xi_{2}, u_{3}=\left(\xi_{1}^{3}+\xi_{2}^{3}\right) / 3$, then $\sigma \rightarrow-\xi_{1} \xi_{2}\left(\xi_{1}+\xi_{2}\right)$.
$\lim _{\xi \rightarrow 0} L_{i}=M_{i}$, where

$$
\begin{aligned}
M_{0}= & 4 \mu_{4} \partial_{\mu_{4}}+6 \mu_{6} \partial_{\mu_{6}}+8 \mu_{8} \partial_{\mu_{8}}+10 \mu_{10} \partial_{\mu_{10}} \\
& -\xi_{1} \partial_{\xi_{1}}-\xi_{2} \partial_{\xi_{2}} \\
M_{2}= & 6 \mu_{6} \partial_{\mu_{4}}+8 \mu_{8} \partial_{\mu_{6}}+10 \mu_{10} \partial_{\mu_{8}} \\
& -\xi_{1}^{-1} \partial_{\xi_{1}}-\xi_{2}^{-1} \partial_{\xi_{2}} \\
M_{4}= & 8 \mu_{8} \partial_{\mu_{4}+10 \mu_{10} \partial_{\mu_{6}}+} \\
& +\frac{1}{2} \varphi\left(\frac{\xi_{2}^{2} \partial_{\xi_{1}}-\xi_{1}^{2} \partial_{\xi_{2}}}{\xi_{1}-\xi_{2}}+\left(\xi_{1}+\xi_{2}\right)^{2} \frac{\partial_{\xi_{1}}-\partial_{\xi_{2}}}{\xi_{1}-\xi_{2}}\right) \\
M_{6}= & 10 \mu_{10} \partial_{\mu_{4}}+\varphi \frac{\partial_{\xi_{1}}-\partial_{\xi_{2}}}{\xi_{1}-\xi_{2}} \\
\text { and } \quad \varphi= & \frac{1}{\xi_{1} \xi_{2}\left(\xi_{1}+\xi_{2}\right)^{2}} .
\end{aligned}
$$

