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Abstract

Theory of Abelian functions was a central topic of the 19th century

mathematics. In mid-seventies of the last century a new wave arose

of investigation in this field in response to the discovery that Abelian

functions provide solutions of a number of challenging problems of

modern Theoretical and Mathematical Physics.

In a cycle of our joint papers published in 2000–05, we have de-

veloped a theory of multivariate sigma-function, an analogue of the

classic Weierstrass sigma-function.

A sigma-function is defined on a cover of U , where U is the space

of a bundle p : U → B defined by a family of plane algebraic curves

of fixed genus. The base B of the bundle is the space of the family

parameters and a fiber Jb over b ∈ B is the Jacobi variety of the

curve with the parameters b. A second logarithmic derivative of

the sigma-function along the fiber is an Abelian function on Jb.

Thus, one can generate a ring F of fiber-wise Abelian functions on

U . The problem to find derivations of the ring F along the base B is

a reformulation of the classic problem of differentiation of Abelian

functions over parameters. Its solution is relevant to a number of

topical applications.

This work presents a solution of this problem recently found by

the authors. Our method of solution essentially employs the results

from Singularity Theory about vector fields tangent to the discrimi-

nant of a singularity yn − xs, gcd(n, s) = 1.

1



References

Theory of multivariate sigma-functions

V.M.Buchstaber and D.V.Leykin

[1] Polynomial Lie algebras.

Funct. Anal. Appl. 36 (2002), no. 4, 267–280.

[2] The heat equations in a nonholonomic frame.

Funct. Anal. Appl. 38 (2004), no. 2, 88–101.

[3] Hyperelliptic addition law.

J. Nonlin. Math. Phys. 12 (2005), S. 1, 106–123.

[4] Addition laws on Jacobian varieties

of plane algebraic curves.

Proc. Steklov Math. Inst. 251 (2005), 49–120.

Applications

V.M.Buchstaber, D.V.Leykin, and M.V.Pavlov

[1] Egorov hydrodynamic chains, the Chazy equation,

and the group SL(2, C).

Funct. Anal. Appl. 37 (2003), no. 4, 251–262.

V.M.Buchstaber and D.V.Leykin

[2] An analogue of the Chazy equation in higher genus

and the group Sp(2g, C).

Work in progress.

2



We are grateful to Kirill Mackenzie and Theodore

Voronov for fruitful discussions, which helped

to improve the differential-geometric part of

this work.

3



An Abelian function is, in the classical sense, a mero-

morphic function on a complex Abelian torus

Tg = Cg/Γ,

where Γ ⊂ Cg is a rank 2g lattice.

That is f is Abelian iff

f (u) = f (u + ω), for all u ∈ Cg and ω ∈ Γ.

Abelian functions form a differential field.

Complex dimension g of the torus is called the genus of

a field.
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A plane algebraic curve defines a lattice Γ as the set of

all periods of basis holomorphic differentials.

The resulting torus is called the Jacobian of a curve.

Suppose B is an open dense subset in Cd.

We will consider a family of curvesV , depending linearly

on a parameter b ∈ B. We use V to define over B a

space of Jacobians U .

The space U is naturally fibred,

p : U → B,

where the fiber over a point b ∈ B is the Jacobian Jb of

the curve with the parameters b.

Let g = 1 and d = 2,

V = {(x, y, g2, g3) ∈ C2 × B | y2 = 4x3 − g2x − g3}
is the family of Weierstrass elliptic curves, where

B = {(g2, g3) ∈ C2 | g3
2 − 27g2

3 6= 0}.
This is the only case, when U and V are equivalent.

5



It is natural to consider on U the ring F of fiber-wise

Abelian functions, i.e., the restriction of f ∈ F to a fiber

is an Abelian function.

Let g = 1 and d = 2.

F is generated by g2, g3 and elliptic Weierstrass func-

tions

℘(u, g2, g3) and ℘′(u, g2, g3).

The ring F attractes much interest since 1974, when

S.P. Novikov discovered that relations in F are rele-

vant to modern challenging problems of Mathematical

Physics.
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The main problem.

Find the generators of the F-module Der(F) of

derivations of the ring F .

Let g = 1, d = 2. F.G.Frobenius (1849–1917) and

L.Stickelberger found∗ the generators of Der(F),

L0 = −u∂u + 4g2∂g2 + 6g3∂g3,

L1 = ∂u,

L2 = −ζ(u, g2, g3)∂u + 6g3∂g2 +
1

3
g2
2∂g3,

with the structure relations,

[L0, Lk] = kLk, [L1, L2] = ℘(u, g2, g3)L1.

B.A. Dubrovin† clarified the meaning of this result for

reconstructing the differential geometry of the universal

bundle of genus one Jacobians. He named the connec-

tion on this bundle the FS-connection.

∗Crelles Journal, Bd. 92. S. 311–337. (1882)

†“Geometry of 2D topological field theories”, Appendix C, Lect.

Notes Math. 1620. (1994)
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A differential-geometric approach to the problem.

One can realize U as the space of classes [(u, b)] of

pairs

(u, b) ∈ Cg × B ⊂ Cg+d, where

(u, b) ∼ (u′, b′) iff b = b′ and u− u′ ∈ Γb.

Here Γb is a rank 2g lattice in Cg defined by the curve

with parameters b from the family of curves V .

Now, we have an action µ : U × Cg → U

µ
(
[(u, b)], z

)
= [(u + z, b)],

with the following properties:

(1) The orbit space of µ is B.

(2) Fix [(u, b)] ∈ U . Then µ defines a map

µ[(u,b)] : Cg → p−1(b), µ[(u,b)](z) = [(u + z, b)],

which is a universal covering of the Jacobian J = p−1(b).

(3) Fix z ∈ Cg. Then µ defines a map

µz : U → U , µz
(
[(u, b)]

)
= [(u + z, b)],

which induces an automorphism of F .
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Since U is the space of the bundle p : U → B with a

fiber J = Tg, we have an exact sequence of bundles:

0 → TJU → TU → T B → 0

Due to the properties of µ we can fix following basis of

sections in TJU ,

(∂u1, . . . , ∂ug),

which are derivations of F .

Note, that U has a zero section s0 = [(0, b)].

However, the trivial lift, with the help of s0 and µ, of a

vector field from T B is not a derivation of F .

The problem of derivations of F reduces to construct-

ing a special basis of horizontal sections of TU .

In other words, we have to construct a connection on U ,

which is ‘smooth’ with respect of the structure ring F .
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Koszul connection.

Let π : E → B be a complex vector bundle.

Notation:

X(B) is the C∞(B)-module of vector fields on B;

ΓE is the space of smooth sections of π : E → B.

Then,∗

A Koszul connection in a vector bundle π : E → B is

a map

∇ : X(B)× ΓE → ΓE, (X, f ) 7→ ∇X(f ),

which is bilinear and satisfies the two identities

∇µX(f ) = µ∇X(f ), ∇X(µf ) = µ∇X(f ) + X(µ)f ,

for all X ∈ X(B), f ∈ ΓE, µ ∈ C∞(B).

The connection ∇ is flat if

∇[X,Y ](f ) = ∇X(∇Y (f ))−∇Y (∇X(f )).

∗Kirill C.H.Mackenzie. General theory of Lie groupoids and Lie

algebroids. LMS Lect. Notes. Ser. 213, CUP (2005).
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An accompanying problem.

Consider, associated with p : U → B, a complex vector

bundle

π : E → B,

whose fiber Fb is the restriction of the ring F to the fiber

p−1(b) = Jb ⊂ U .

Since ΓE = F , we come to the problem

Construct a flat Koszul connection on the vector bun-

dle π : E → B with a fiber Fb.

11



Basic facts about Abelian functions

on a Jacobian of genus g.

(A1) If f ∈ Fb, then ∂uif ∈ Fb, i = 1, . . . , g.

(A2) For any nonconstant f1, . . . , fg+1 from Fb there

exists P ∈ C[z1, . . . , zg+1] such that

P(f1, . . . , fg+1) = 0, for all u ∈ p−1(b).

(A3) If f ∈ Fb is any nonconstant function, then any

h ∈ Fb is a rational function of (f , ∂u1f , . . . , ∂ugf ).

(A4) There exists an entire function ϑ : Cg → C such

that

∂ui,uj logϑ ∈ Fb, i, j = 1, . . . , g.
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A strategy of solution of the problem

in general case.

One can understand the strategy of solution by following

our treatment of the classic case.

We employ the following properties of Weierstrass sigma-

function σ : C3 → C.

(a) σ(u, g2, g3) is entire in (u, g2, g3) ∈ C3.

(b) ∂2
u log(σ(u, g2, g3)) = −℘(u, g2, g3) ∈ F ,

whenever

(g2, g3) ∈ B = {(g2, g3) ∈ C2 | g3
2 − 27g2

3 6= 0},
which is sufficient to generate the whole ring F .

(c) σ(u, g2, g3) is a solution of the system

Q0(σ) = 0,

Q2(σ) = 0,

Q0 = 4g2∂g2 + 6g3∂g3 − u∂u + 1,

Q2 = 6g3∂g2 +
1

3
g2
2∂g3 −

1

2
∂2
u −

1

24
g2u

2,

where the operators depend polynomially on b ∈ B.

K.Weierstrass (1815–97) discovered Q0 and Q2 in 1894.
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Observe, that due to (b) the equations (c) convert into

derivations of F .

Let `2 = 6g3∂g2 +
1

3
g2
2∂g3.

Since

`2(g
3
2 − 27g2

3) = 0,

`2 is a field on B.

Now, Q2 = `2 −
1

2
∂2
u −

1

24
g2u2.

Divide Q2(σ) = 0 by σ and rearrange the terms using

ζ = ∂u log σ and ℘ = −∂2
u log σ.

We obtain

`2(log(σ))−
1

2
ζ2 +

1

2
℘−

1

24
g2u

2 = 0.

Apply ∂u, and as [∂u, `2] = 0,

`2(ζ) + ζ℘ +
1

2
℘′ −

1

12
g2u = 0,
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apply ∂u again,

− `2(℘) + ζ℘′ − ℘2 +
1

2
℘′′ −

1

12
g2 = 0,

and finally:

(`2 − ζ∂u)℘ =
1

2
℘′ − ℘2 −

1

12
g2 ∈ F .

We have recovered the operator L2 = `2 − ζ∂u .

In their original work of 1882, Frobenius and Stickel-

berger used a completely different techniques.

By our construction, the operator L2 is a special hor-

izontal section of TU , which respects the structure

ring F .

Our strategy leads to the solution of general case, as

soon as one presents an entire function on Cg+d,

whose properties generalize the above properties

(b) and (c) of Weierstrass σ.
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What classic Abelian functions theory had in store.

A function with (b) is at hand. One takes any Riemann

θ-function. But, since it depends on the choice of a

basis in Γ, it is impossible to find a θ-function with (c).

Klein’s project (c. 1886)

Modify θ to obtain an entire function, which

(1.) depends on a lattice Γ in the whole;

(2.) is a covariant of Möbius transforms of a curve.

F.Klein (1849-1925) gave a review∗ of the outcome,

which is the hyperelliptic sigma-function. It was proven,

that Kleinian σ has both (a) and (b).

Still, the claim (2.) restricts Klein’s theory to hyper-

elliptic curves and, even in this case, creates artificial

complications in the operators (c).

∗Gesammelte Mathematische Abhandlungen, vol. 3, S. 317-322,

(1923)
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H.F.Baker∗ (1866–1956) abandoned (2.) and demon-

strated for g = 2 that a theory of sigma-function can be

constructed without any reference to θ. Baker’s book is

a realization of the following.

Weierstrass principle

One has to work with a canonical model of a curve.

Elliptic sigma-function owes its advantages to Weier-

strass’ cubic equation,

y2 = 4x3 − g2x − g3.

Weierstrass† proposed, for a pair (n, s), gcd(n, s) = 1,
the class of models

V = {(x, y; λ) ∈ C2+d | yn = xs +
q(i,j)>0∑
i,j≥0

λq(i,j)x
iyj},

where q(i, j) = (n− j)(s − i)− ij and d = ns − g.

Curves in Weierstrass’ (n, s)-class are of genus not

greater than g = (n− 1)(s − 1)/2.

For hyperelliptic curves (n, s) = (2, 2g + 1).
∗Multiply periodic functions. Part I. (1907)

†Abel’schen Funktionen. Ges. Werke, vol. 4. (1904)
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A contribution from Singularity Theory.

Singularity Theory studies a function

f (x, y, λ) = yn − xs −
n−2∑
j=0

s−2∑
i=0

λq(i,j)x
iyj,

as miniversal unfolding of Pham singularity yn − xs.

Miniversal unfolding has 2g parameters λ.

The number m = #{λk | k < 0} is the modality of f .

One relates to f the discriminant variety Σ ⊂ C2g,

(λ ∈ Σ) ⇔
(
∃ (x, y) ∈ C2 : fx = fy = 0 at (x, y, λ)

)
.

18



We use a construction∗, which is based on a theo-

rem due to V.M. Zakalyukin† of holomorphic vector fields

tangent to Σ.

The fields define a holomorphic function ∆(λ) ∈ C(λ),
such that

Σ = {λ ∈ C2g | ∆(λ) = 0},

a vector field ` is a tangent to Σ iff

`(∆(λ)) = φ(λ)∆(λ),

where

φ(λ) ∈ C[[λ]].

There exists a unique basis L = (`1, . . . , `2g)
t in the

space of holomorphic fields tangent to Σ such that

L = T (λ)∂λ, T (λ) = T (λ)t, ∆(λ) = detT (λ),

where T (λ) is the matrix of Arnold’s convolution.

∗Funct. Anal. Appl. 36 (2002), no. 4, 267–280.

†Funct. Anal. Appl. 10 (1976), no. 2, 139–140.
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The family of (n, s)-curves.

Genus of a curve in Weierstrass’ (n, s)-class is

≤ (n− 1)(s − 1)/2.

Genus of a miniversal unfolding, if b /∈ Σ, is

≥ (n− 1)(s − 1)/2.

We impose the condition

λq(i,j) = 0, when q(i, j) < 0,

on miniversal unfolding, or, equivalently,

λq(s−1,j) = λq(i,n−1) = 0

on Weierstrass’ model, and obtain a family of curves of

constant genus g = (n−1)(s−1)/2 over B = C2g−m\Σ.

Our (n, s)-models are the intersection of the classes

of miniversal unfoldings and Weierstrass’ models.
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The structure of a C[λ]-module

in the space of sections of T B.

In what follows we use an obvious renumbering of λk.

Under the condition λk = 0 for k < 0,

(1) the holomorphic symmetric matrix T (λ) becomes

a matrix over C[λ1, . . . , λ2g−m];

(2) ∆(λ) ∈ C[λ1, . . . , λ2g−m] and

B = {λ ∈ C2g−m | ∆(λ) 6= 0};

(3) the holomorphic frame L becomes the 2g-dimen-

sional basis of C[λ1, . . . , λ2g−m]-module of global

sections of (2g − m)-dimensional bundle T B.

Fix the notation for the frame

L = (`1, . . . , `2g)
t = T (λ)( 0, . . . , 0︸ ︷︷ ︸

m
, ∂λ1

, . . . , ∂λ2g−m
)t

and its structure functions

[`i, `j] =
2g∑

h=1
ch
ij(λ)`h, ch

ij(λ) ∈ C[λ].
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Gauß-Manin connection on the bundle

of (n, s)-curves punctured at (∞).

The equation f (x, y, λ) = 0 in C2+2g−m defines the

family V of (n, s)-curves over B = C2g−m\Σ.

Consider the bundle
◦
p :

◦
V → B whose fiber is the curve

◦
V b = {(x, y) ∈ C2 | f (x, y, b) = 0}

with a puncture at infinity.

Let H1(
◦
V b, C) be the linear 2g-dimensional vector space

of holomorphic 1-forms on
◦
V b.

Consider associated with
◦
p :

◦
V → B locally trivial vector

bundle $ : Ω1 → B whose fiber is H1(
◦
V b, C).

A connection in Ω1 is a Gauß-Manin connection on
◦
V .

22



Since (∞) belongs to all curves from V , we can con-

struct a global section of Ω1 by taking the classical basis

of Abelian differentials of first and second kind.

Let D(x, y, λ) be the vector

D(x, y, λ) =
(
D1(x, y, λ), . . . , D2g(x, y, λ)

)
of canonical basis 1-forms from H1(

◦
V b, C).

Its matrix of periods Ω satisfies the Legendre relation∗

ΩtJΩ = 2πıJ , where J =

(
0g 1g
−1g 0g

)
.

Classic theory of Abelian differentials asserts that such

basis exists and provides a means to construct it†.

∗The particular case of Riemann-Hodge relations.

†H.F.Baker, Abelian Functions, CUP, 1997
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The essential part of D(x, y, λ), i.e., the part that pro-

vides the Legendre relation, is defined by the classic

formula

D(x1, y1)
tJD(x2, y2) = {Φ1,2 − Φ2,1}dx1dx2,

where Φ1,2 =
1

fy(x1, y1, λ)

d

dx2

( f (x1, y2, λ)

(x1 − x2)(y1 − y2)

)
.

The calculation is carried out ‘on the curve’, i.e. with

the assumption f (xi, yi, λ) = 0, i = 1, 2.

The Christoffel coefficient of the Gauß-Manin connection

Γj = (Γk
j,i), i, j, k = 1, . . . , 2g,

associated to the field `j is uniquely defined by the re-

lation

The holomorphic vector-valued 1-form

`j(D(x, y, λ)) + Γj D(x, y, λ)

is exact ‘on the curve’.
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The properties of our sigma-function.∗

(a) σ(u, λ) is an entire function of u ∈ Cg and λ ∈ Cd.

(b) ∂ui,uj log(σ(u, λ)) = −℘ij(u, λ) ∈ F
whenever λ ∈ B, i, j = 1, . . . , g.

(c) σ(u, λ) is a solution of the system

Qjσ(u, λ) = 0, j = 1, . . . , 2g.

The operators have the form Qj = `j− 1
2Hj− δj(λ), with

`j ∈ L and

Hj = αkl
j (λ)∂uk∂ul + 2βl

jk(λ)uk∂ul + γjkl(λ)ukul,

δj(λ) =
1

8
`j
(
log ∆(λ)

)
+

1

2
βk
jk(λ),

where the summation from 1 to g extends over the re-

peated indices.

The coefficients αkl
j (λ) = αlk

j (λ), βl
jk(λ) and γjkl(λ) =

γjlk(λ) are polynomials of λ.

∗Funct. Anal. Appl. 38 (2004), no. 2, 88–101.
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The annihilators Qj of the sigma-function

and a quantum oscillator.

Write the system of equations

Qjσ(u, λ) = 0, j = 1, . . . , 2g.

in the form of the Schrödinger equations

`j(σ) =
{1

2
Hj + δj(λ)

}
σ,

of a multidimensional quantum harmonic oscillator with

multiple ‘times’.

The formalism of quantum oscillator:

Hj is a set of ‘quadratic Hamiltonians’,

`j are derivatives over ‘times’,

δj is ‘the energy of an oscillator mode’.

The realization of sigma-function in the form of an av-

erage of the ‘ground state wave-function’ (a multi-di-

mensional Gaussian function) over a lattice∗ suggests

a natural interpretation of sigma-function as the ‘wave-

function of the coherent state’ of the oscillator.

∗see MIMS EPrint: 2005.50.
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The Gauß-Manin connection and

the annihilators Qj of the sigma-function.

An operator Qj is defined if we know the polynomial in

λ matrices

αj = (αkl
j ), βj = (βl

jk), and γj = (γjkl).

Let

Aj(λ) = J
(
αj (βj)t

βj γj

)
.

Theorem. The set of matrices {αj, βj, γj} defines the

operators Qj, j = 1, . . . , 2g, such that

(1) [Qi,Qj] =
2g∑

h=1
ch
ij(λ)Qh

(2) Qj
(
σ(u, λ)

)
= 0

if and only if Aj = Γj.

Observe, that our operators Qj and vector fields `j obey

the same commutation relations.
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A lifting process

Define a map t that takes the operators Qj to vector

fields by the formula

t(Qj) = `i −
(
αkl

j ζk(u, λ) + βl
jkuk

)
∂ul ,

where ζi(u, λ) = ∂ui log σ(u, λ).

Lemma. Let f ∈ F and Q(σ) = 0, then t(Q)(f ) ∈ F .

Define a lift of the basis fields L to horizontal sections

of TU by the formula

p∗(`i) = t(Qi).

Summary: take a field ` on B, construct the heat

operator Q = ` − 1
2H − δ associated to `, and then

apply t to Q obtain the lift p∗(`) = t(Q).
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Solution of the main problem: a basis of Der(F).

Theorem. The lifting process gives the following basis

of the F-module Der(F):

F = (∂u1, . . . , ∂ug, p
∗(`1), . . . , p

∗(`2g)).

The coordinate frame F is subject to the relations

[∂uq, ∂ur] = 0,

[p∗(`i), ∂uq] = −
(
αkl

i ℘lq(u, λ)− βk
iq
)
∂uk,

[p∗(`i), p
∗(`j)] = p∗([`i, `j])+

+
1

2

(
αkl

i α
qr
j − αkl

j α
qr
i
)
℘klq(u, λ)∂ur ,

where i, j = 1, . . . , 2g, k, l, q, r = 1, . . . , g.

The frame F has zero curvature and nontrivial tor-

sion. Introduce the second order linear operators Xi,
i = 1, . . . , 2g,

Xi( · ) =
1

2
αkl

i [[ · , ∂uk], ∂ul]; [Xi, Xj] = 0.

Now, we have the torsion formula

[p∗(`i), p
∗(`j)]− p∗([`i, `j]) = Xi(p

∗(`j))− Xj(p
∗(`i)).
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Action of p∗(`i) and ∂uk on F .

∂uk

(
℘qr

)
= ℘kqr,

∂uk(λj) = 0,

p∗(`i)
(
℘qr

)
=

1

2
αkl

i

(
℘klqr − 2℘kq℘lr

)
+

+ βk
iq℘kr + βk

ir℘kq − γiqr,

p∗(`i)
(
λj
)
= T j

i (λ).

The singular set of p∗(`i).

p∗(`i)∆(λ) = `i∆(λ) = φ(λ)∆(λ),

p∗(`i)σ(u, λ)k = ψ(u, λ)σ(u, λ)k−2,

where φ(λ) ∈ C[λ] and ψ(u, λ) ∈ C[λ][[u]]

The coefficients of vector fields p∗(`i) become singular

at the points where σ(u, λ) vanishes.
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A solution of the accompanying problem.

Consider the operators Q(σ)
i , i = 1, . . . , 2g,

Q(σ)
i (f ) = σ(u, λ)−1Qi

(
σ(u, λ)f (u, λ)

)
,

where f (u, λ) is a differentiable function.

Observe, that the map ( · )(σ) : Qi 7→ Q(σ)
i preserves the

bracket,

[Q(σ)
i ,Q(σ)

j ] = ([Qi,Qj])
(σ) = ch

ijQ
(σ)
h ,

and that Q(σ)
i (1) = 0.

Since Qi(σ) = 0, we have

Q(σ)
i (f ) = p∗(`i)(f )− Xi(f ),

thus, if f ∈ F , then Q(σ)
i (f ) ∈ F .

Theorem. The operators Q(σ)
i , i = 1, . . . , 2g, define a

flat Koszul connection in the complex vector fiber bun-

dle π : E → B by the formula

∇`j
(f ) = Q(σ)

j (f ),

where f ∈ F .
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Examples

A polynomial Lie algebra structure

[Li, dq] = −
(
αkl

i xlq − βk
iq
)
dk,

[Li, Lj] = ch
ij Lh +

1

2

(
αkl

i α
qr
j − αkl

j α
qr
i
)
xklqdr,

[Li, xqr] =
1

2
αkl

i

(
xklqr − 2xkqxlr

)
+

+ βk
iqxkr + βk

irxkq − γiqr,

[Li, λa] = Ta
i , [dk, xlq...] = xklq... ,

[dq, dr] =[dr, λa] = [λa, λe] =

= [λe, xlq...] = [xlq..., xkr...] = 0,

where T j
i ,α

kl
j , βl

jk, γjkl, c
h
ij ∈ C[λ],

a, e = 1, . . . , 2g − m,

h, i, j = 1, . . . , 2g,

k, l, q, r = 1, . . . , g.
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g=2. The basis {`i}.

The symmetric matrix T , which transforms the standard

fields ∂λ4
, ∂λ6

, ∂λ8
, ∂λ10

to the basis fields `0, `2, `4, `6

T =



4λ4 6λ6 8λ8 10λ10

∗ 40λ8−12λ2
4

5
50λ10−8λ4λ6

5 −4λ4λ8
5

∗ ∗ 20λ4λ8−12λ2
6

5
30λ4λ10−6λ6λ8

5

∗ ∗ ∗ 4λ6λ10−8λ2
8

5


[`0, `k] = k`k, k = 2, 4, 6;

[`2, `4] = 2`6 −
8

5
λ4`2 +

8

5
λ6`0;

[`2, `6] = −
4

5
λ4`4 +

4

5
λ8`0;

[`4, `6] = 2λ4`6 −
6

5
λ6`4 +

6

5
λ8`2 − 2λ10`0;
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g = 2. The operators {Hi}.

H0 = u1∂u1 + 3u3∂u3 − 3

10H2 = 5∂2
u1

+ 10u1∂u3 − 8λ4u3∂u1

− 3λ4u
2
1 + (15λ8 − 4λ2

4)u
2
3

5H4 = 5∂u1∂u3 + 5λ4u3∂u3 − 6λ6u3∂u1

− 5λ4 − λ6u
2
1 + 5λ8u1u3 + 3(5λ10 − λ4λ6)u

2
3

10H6 = 5∂2
u3
− 6λ8u3∂u1

− 5λ6 − λ8u
2
1 + 20λ10u1u3 − 3λ4λ8u

2
3
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g=2. The vector fields {t(Qi)}.

t(Q0) = `0 − u1∂u1 − 3u3∂u3,

t(Q2) = `2 − ζ1∂u1 − u1∂u3 −
4

5
λ4u3∂u1

t(Q4) = `4 − ζ3∂u1 − ζ1∂u3 + λ4u3∂u3 −
6

5
λ6u3∂u1

t(Q6) = `6 − ζ3∂u3 −
3

5
λ8u3∂u1.

g=2. The frame F structure.

Notation: Li = p∗(`i) = t(Qi).

[L2, L4] = p∗[`2, `4] +
1

2
(℘1,1,3∂u1 − ℘1,1,1∂u3),

[L2, L6] = p∗[`2, `6] +
1

2
(℘1,3,3∂u1 − ℘1,1,3∂u3),

[L4, L6] = p∗[`4, `6] +
1

2
(℘3,3,3∂u1 − ℘1,3,3∂u3).
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g=2. Linearization.

Let λi = µiξ, and pass to the limit as ξ→ 0.

σ(u, 0) = u3 −
1

3
u3
1.

Change the variables: u1 = ξ1 + ξ2 , u3 = (ξ31 + ξ32)/3,
then σ→ −ξ1ξ2(ξ1 + ξ2).

lim
ξ→0

Li = Mi, where

M0 = 4µ4∂µ4 + 6µ6∂µ6 + 8µ8∂µ8 + 10µ10∂µ10

− ξ1∂ξ1 − ξ2∂ξ2,

M2 = 6µ6∂µ4 + 8µ8∂µ6 + 10µ10∂µ8

− ξ−1
1 ∂ξ1 − ξ−1

2 ∂ξ2,

M4 = 8µ8∂µ4 + 10µ10∂µ6+

+
1

2
ϕ
(ξ22∂ξ1 − ξ21∂ξ2

ξ1 − ξ2
+ (ξ1 + ξ2)

2∂ξ1 − ∂ξ2
ξ1 − ξ2

)
,

M6 = 10µ10∂µ4 + ϕ
∂ξ1 − ∂ξ2
ξ1 − ξ2

,

and ϕ =
1

ξ1ξ2(ξ1 + ξ2)2
.
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