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Introduction

In this paper we attempt to bridge a gap or, perhaps, to strengthen some existing links.
Model theory has evolved in two sharply different directions. One is set-based, centred
around pure model theory and applications to various mathematical structures: here
even the language of category theory is only beginning to be heard. In contrast is
the sort of model theory which is set in rather general category-theoretic, or topos-
theoretic, contexts and which often looks to non-classical logics or computer science
for its inspirations and applications. Our results sit in the rather sparsely populated
territory between these.

The origin of our results lies in the model theory of modules. In that context a
theorem of Burke [5, 3.2.5] showed how to translate between the two sorts of model
theory. More precisely, if R is a ring and Mod-R is the category of right R-modules
then there is an equivalence between, on the one hand, the category (mod-R,Ab) of
additive functors from the category, mod-R, of finitely presented R-modules to that
of abelian groups and, on the other hand, the category (Mod-R)eq+ of pp-defined
imaginaries for R-modules. Imaginaries belong to set-based model theory. Indeed,
thinking of them as forming a category was a novel step which was taken by Herzog
[6] when he defined the category (Mod-R)eq+. This equivalence has the consequence
that there are two quite different languages for talking about the same circle of ideas.
More important, it allows an effective transfer between model-theoretic and functor-
category-theoretic ideas and it led to new results as well as improved proofs of existing
ones. But all this, fruitful as it was, was set within the additive context: a context
more general than modules (one may replace Mod-R by any locally finitely presented
additive category), but always with the additive structure on hom-sets available for
use.

It was natural to ask whether this, in particular the key equivalence between finitely
presented functors and imaginaries, could be extended to non-additive situations. In
this paper we show that the answer is positive.

In particular this paper provides a new proof of an old result of Makkai and Reyes
[13, p. 269] where a logical characterisation of the coherent objects in the classifying
topos for a coherent theory is obtained. Burke’s result can, it turns out, be seen as
an additive version of this. We state his result precisely. Fix a ring R. Denote by
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(Mod-R)eq+ the category whose objects are pairs of positive primitive (pp) formulas
ϕ/ψ where ψ → ϕ. Such a pair defines a functor Mod-R → Ab, namely that given
on objects by M 7→ ϕ(M)/ψ(M). The morphisms of (Mod-R)eq+ are the pp-definable
functions between such pairs. Formally, they are equivalence classes of pp-formulas
ρ : ϕ/ψ → ϕ′/ψ′, where the notation means that, on any module M , ρ defines a subset
of ϕ(M) × ϕ′(M) which induces a function from ϕ(M)/ψ(M) to ϕ′(M)/ψ′(M). The
equivalence relation is, of course, that of two formulas defining the same function at each
module M . Clearly every pp-pair defines a functor from mod-R to Ab (indeed from
all of Mod-R to Ab), which turns out to be finitely presented, and every morphism
of (Mod-R)eq+ defines a natural transformation between the corresponding functors.
The theorem is that this is an equivalence (Mod-R)eq+ ' fp(mod-R,Ab) (we use fpC
to denote the full subcategory of finitely presented objects of a category C).

In fact there is a relative/localised version. First note that any functor F ∈
fp(mod-R,Ab) has a unique extension to a functor in (Mod-R,Ab) which commutes

with directed colimits (see Lemma I,1). We can denote this extension
−→
F but, in prac-

tice, we use the same notation, F , for this extension. Suppose that {Fλ}λ is a family
of finitely presented objects in the category (mod-R,Ab). To this family one may
associate the full subcategory D of Mod-R consisting of those modules M such that
FλM = 0 for every λ. By Burke’s theorem each Fλ is isomorphic to one of the form
ϕλ/ψλ for some pair of pp formulas with ψλ → ϕλ. Thus D is exactly the class of
models of the theory T obtained by adding, to axioms for R-modules, the implications
ϕλ → ψλ. To the set {Fλ}λ of finitely presented functors one also can associate a finite
type hereditary torsion theory τ on (mod-R,Ab), namely that which has torsion class
generated by the Fλ. The full subcategory of finitely presented objects in the corre-
sponding localisation of (mod-R,Ab) is equivalent to the quotient of fp(mod-R,Ab)
by the Serre subcategory of fp(mod-R,Ab) generated by the Fλ. The localised version
of the theorem is that this quotient category of finitely presented functors is equivalent
to Deq+, where the latter category has the same objects as (Mod-R)eq+ but has, for
morphisms, the equivalence classes of pp formulas which define morphisms when eval-
uated on members of D. Of course, if we take the family {Fλ}λ to consist of only the
zero functor, then we obtain the original theorem.

Taking model theory rather than topos theory as our starting point, we set out to
prove a non-abelian version of Burke’s result for modules. Being aware of, but not
conversant with, the book [13] of Makkai and Reyes, it was only later that we realised
the relevance of their work.

Fix an arbitrary (finitary) first-order language L and let C denote the category of
L-structures. Recall that a coherent theory is one which is axiomatised by universal
implications of positive existential (pe) formulas. Following the terminology used for
locally finitely presented abelian categories, we say that the category of models of a
coherent theory is a definable subcategory of the category C. We show that such a
definable subcategory gives rise to a finite type Grothendieck topology on the category
of finitely presented L-structures and the corresponding category of sheaves is a locally
finitely presented topos. Actually, because we prefer to deal with covariant functors
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(since pe formulas define such) we deal with “cosheaves”, that is covariant functors
from fpC to Set, and the corresponding notion of topology. That is, in this paper, by
a (pre-)sheaf we mean an object of (fpC,Set), rather than the more usual meaning of
an object of ((fpC)op,Set).

The additive case suggested that we should attempt to characterise the subcategory
of finitely presented sheaves as some kind of an “eq+” category. We show that the full
subcategory of finitely presented sheaves is indeed equivalent to the category with ob-
jects ϕ/θ̃ where ϕ and θ are pe-formulas, θ ⊆ ϕ × ϕ, and θ̃ denotes the equivalence
relation generated by θ, and with maps given by pe-formulas ρ : ϕ/θ̃ → ψ/η̃ which
define functions, as opposed to just relations, when restricted to objects of the defin-
able subcategory. We also obtain a similar characterisation of the category of finitely
generated sheaves.

It was at this point that we realised the relevance of the results of Makkai and Reyes.
The category of sheaves corresponding to a coherent theory T of the kind described is a
well understood coherent topos called the classifying topos of T , so called because of a
certain universal property. Rather than studying the finitely presented objects, Makkai
and Reyes had been looking at the full subcategory of coherent objects of this topos and
had obtained the following logical characterisation of this category: the coherent objects
are pairs of pe-formulas ϕ/θ where θ ⊆ ϕ × ϕ and T ` (θ is an equivalence relation),
and the maps ϕ/θ → ψ/η are pe-formulas ρ satisfying T ` (ρ defines a function ϕ/θ →
ψ/η).

In the abelian situation coherent and finitely presented objects coincide. In the
non-abelian case, there may be finitely presented objects which are not coherent. Hav-
ing realised this, it was relatively easy to derive the Makkai-Reyes result from our
characterisation of finitely presented objects.

In summary, given a coherent theory T in a first-order language L, there is an as-
sociated category of “positive existential imaginaries” - a functorial version of Shelah’s
imaginaries - which can be defined in purely categorical terms as a certain category of
coherent sheaves. In the last part of this paper we suggest a definition of an interpre-
tation between coherent theories as being (given by) a certain type of functor between
the associated “imaginaries” categories of coherent sheaves.

Throughout this paper “definable” means definable without parameters.
The work reported in this paper will form part of the doctoral thesis of the first

author, who has been supported by a MATHLOGAPS Marie Curie Fellowship.
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I Finitely presented and coherent functors

Categorical preliminaries

In an arbitrary category, an object is said to be finitely presented (f.p.) if its associ-
ated covariant Hom-functor commutes with directed colimits. This can be restated as
follows. An object X is finitely presented if whenever ((Yi)i, (uij : Yi → Yj)i<j) is a
directed system and Y = lim−→Yi is the directed colimit, any map f : X → Y factors
through some object Yi as f = uig where ui : Yi → Y is the canonical colimit map.
Moreover, this factorisation is essentially unique in the sense that if f = uig

′ for some
other map g′ then g and g′ are equalised by some diagram map uij : Yi → Yj, that is
uijg = uijg

′.
An object is finitely generated (f.g.) if it cannot be expressed as a directed union

of proper subobjects. An object X is coherent if it is f.g. and whenever Y is f.g. and
f : Y → X is any map, then the pullback Y ×X Y is finitely generated.

A set of objects G is a generating set for a category if for any pair of maps f, g :
X → Y such that f 6= g, there is an object G ∈ G and a map h : G → X such that
fh 6= gh. Furthermore, G is a strong generating set if, in addition, whenever X ′ → X
is a subobject of X, there is a G ∈ G and a map h : G → X which does not factor
through the subobject. A category is locally finitely presented (LFP) if it is cocomplete
and has a strong generating set of f.p. objects. Equivalently, a category is LFP if it
is cocomplete and has a set of f.p. objects such that every object is a directed colimit
of these (see [1, p. 17]). The following proposition gives a characterisation of f.g. and
f.p. objects in an LFP topos, mirroring the abelian situation. A topos is simply the
category of (set-valued) sheaves on a Grothendieck site, that is, on a small category with
a Grothendieck topology. All these notions will be defined later. The topologies that will
arise in this paper will all be of finite type, a fact which ensures that the corresponding
categories of sheaves are LFP topoi. The proof of the following proposition does not
mention sheaves, but uses instead certain completeness and exactness properties of
topoi. In fact, a topos can be characterised as a category with certain completeness
and exactness properties. This is the content of Giraud’s theorem. All this is explained
in the book of Maclane and Moerdijk [12]. We do not know good references for the
following results, so we prove them here.

Proposition 1 Let E be an LFP topos (so in particular E is Grothendieck) with a
generating set G of f.p. objects.
(a) An object X ∈ E is finitely generated if and only if there are objects G1, . . . , Gn ∈ G

and an epimorphism
n∐
i=1

Gi
-- X

(b) An object X ∈ E is finitely presented if and only if there are objects G1, . . . , Gn, H1, . . . , Hm ∈
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G and a coequaliser diagram of the form

n∐
i=1

Gi
--

m∐
i=1

Hi
- X

Proof. (a)
(⇒) Write G = {Gi}i, and put Ai = Hom(Gi, X). Define the map

∐
i

G
(Ai)
i

p- X

by pi,f = f (for f ∈ Ai). Then p is epic. To see this, suppose we have two maps
g 6= h : X → Y . Since G generates the category, there is an i and a map t : Gi → X
with gt 6= ht. This gives gpi,t 6= hpi,t and so (gp)i,t 6= (hp)i,t which implies that gp 6= hp.

The components of p determine maps from any finite subcoproduct of
∐
iG

(Ai)
i to

X. The images of these maps determine a directed system of subobjects of X, with
colimit X. Since X is f.g., X = im(

∐n
i=1Gi → X) for some G1, . . . , Gn ∈ G. So there

is an epimorphism
n∐
i=1

Gi
-- X

as required.
(⇐) Now suppose there is an epimorphism

∐n
i=1Gi → X. Since a finite colimit of

f.p. objects is f.p. (see [1, p. 12]), X, as a quotient of a f.p. object, is f.g. (For if
X = lim−→Xi as a directed union of subobjects, then the epimorphism factors through
some subobject Xj as fig so the inclusion fi must be epic hence, as we’re in a topos, is
idX .

(b) (⇒) Suppose that X is finitely presented. Then in particular, X is f.g. and so
by (a) there must be an epimorphism p :

∐m
i=1Hi → X where Hi ∈ G. Let

Y
π1-

π2

-
m∐
i=1

Hi

be the kernel pair of p. So

Y
π1-

π2

-
m∐
i=1

Hi
p- X

is a coequaliser. Let {Mi}i be a directed system of subobjects of Y as in (a). So each
Mi is the image of map from a finite coproduct of objects from G into Y . Let Xi be
the coequaliser of the maps

Mi
- - Y

π1-

π2

-
m∐
i=1

Hi

Note that an inclusion Mi ⊆ Mj induces an epimorphism uij : Xi → Xj. The Xi with
the uij form a directed system with X = lim−→Xi and with the cone maps ui : Xi → X
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given by the universal property of the coequaliser. Since X is f.p., idX factors through
some Xj. So idX = ujf for some f : X → Xj. There is an epimorphism

l∐
i=1

G′
i

-- Mj

where G′
i ∈ G hence, since the G′

i are finitely presented, there is a coequaliser diagram
of the form

l∐
i=1

G′
i

--
m∐
i=1

Hi
- Xj

Since Xj is a finite colimit of f.p. objects, Xj is itself f.p. Hence the factorisation

Xj
uj - X

Xj

u j

-

id -

of ui as ujid is essentially unique (in the sense defined earlier). So, since also uj =
uj(fuj), there is a k ≥ j such that ujk = ujkfuj. We claim that uk : Xk → X
is an isomorphism. First note that uk(ujkf) = (ukujk)f = ujf = idX . But also
((ujkf)uk)ujk = (ujkf)(ukujk) = ujkfuj = ujk. So since ujk is epic, (ujkf)uk = idXk

.
So indeed uk is invertible. Hence X ∼= Xk and there is a coequaliser diagram

n∐
i=1

Gi
--

m∐
i=1

Hi
- X

as required.
(⇐) This direction is direct from the fact that a finite colimit of f.p. objects is f.p. �

Corollary 2 Let E and G be as above. If X is a coherent object of E, then X is finitely
presented.

Proof. Since X is f.g., there is an epimorphism
∐n
i=1Gi

-- X where Gi ∈ G. Let
G =

∐
iGi and put Y = G ×X G. Y is f.g. since X is coherent and so there is an

epimorphism
∐m
j=1Hj

-- Y . This gives us a coequaliser∐
j

Hj
-
- G - X

Hence X is f.p. as required. �

A functor category is an LFP topos and is generated by the set of representable functors.
So we get the following useful corollary.

Corollary 3 Let C be a small category and let F be a set-valued functor on C.
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(a) F is finitely generated if and only if there are objects C1, . . . , Cn ∈ C and an
epimorphism

n∐
i=1

Hom(Ci,−) -- F

(b) F is finitely presented if and only if there are objects C1, . . . , Cn, D1, . . . , Dm ∈ C
and a coequaliser diagram

n∐
i=1

Hom(Ci,−) --
m∐
i=1

Hom(Di,−) - F

Finitely generated and finitely presented functors

Let L be a (finitary, but possibly many-sorted) first-order language. It may be that the
category of definable sets in L-structures already has disjoint unions in the sense that
if U , V are definable sets then there is a definable set W (in some sort) and definable
injections f : U → W , g : V → W such that W is the disjoint union of the images of f
and g. If not, then we use the following device. Expand the language, to L′, by adding
one new sort and two constants of this new sort {c0, c1}. Add the axiom c0 6= c1 and
the sentence expressing that there are exactly two elements of the new sort. Variables
of the new sort will be denoted by x′1, x

′
2, . . . etc. This will ensure that we can form

definable disjoint unions of (finitely many) definable sets. Let C be the category (with
the usual homomorphisms) of L′-structures satisfying these sentences (or just the class
of L-structures if we did not add the extra sort). Then C is an LFP category with a
skeletally small class fpC of finitely presented objects (see [1, p. 201]) and these have
the form M ∪{c0, c1} where M is a f.p. L-structure. By, e.g. [1, p. 201], an L-structure
is f.p. if it is isomorphic to a quotient of the term algebra on finitely many variables
by finitely many term equations, and is such that the interpretations of the relation
symbols have just finitely many edges. From now on we write L for L′, and assume
that the language was added to as above if it was necessary.

A crucial observation in what follows is that a positive existential formula, being
preserved by homomorphisms, defines a functor C → Set by associating to each object
C ∈ C the set it defines and with the obvious action on morphisms. In particular
each positive existential formula ϕ is identified with an element of the functor category
(fpC,Set) (we use the same notation for the formula and the functor).

It is worth singling out the following two properties of the category C. We say that
a tuple a of elements of A ∈ C generates A if for every b ∈ A there is a term t(x) of L

such that b = t(a). Proofs of these properties are easily extracted from [1, Sec. 5A].

FR If ϕ(x) is a finite conjunction of atomic formulas, then there is an object
A ∈ fp(C) and a tuple of generators a ∈ ϕ(A) for A with the property
that if B is any object and b ∈ ϕ(B) then the map a 7→ b extends to a
morphism A → B. Following the terminology used (for a more general
notion) in the additive case, we say that the pair (A,a) is a free realisation
of ϕ.
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PF If C ∈ fp(C) and c is a tuple of generators for C, then there is a finite
conjunction of atomic formulas ϕ(x) with c ∈ ϕ(C) such that whenever
D ∈ C and d ∈ ϕ(D), the map c 7→ d extends to a morphism C → D.
Such a formula is called a presentation formula for C.

Note that FR implies that any finite conjunction of atomic formulas defines a repre-
sentable functor. Conversely, PF implies that any representable functor is isomorphic
to a functor defined by a finite conjunction of atomic formulas.

Let ϕ be a pe-formula and R a subfunctor of ϕ×ϕ in (fpC,Set). Suppose C ∈ fpC
and a, b are tuples from ϕ(C). Then we write R(a, b) when (a, b) ∈ R(C). If for every
C ∈ fpC it is the case that R(C) is an equivalence relation on ϕ(C), then we say that R
is a functorial equivalence relation on ϕ. We write ϕ/R for the functor which associates
to C ∈ fpC the set of equivalence classes of ϕ(C) modulo R(C).

Proposition 4 Let F be a functor in (fpC,Set).
(a) Suppose that F is finitely generated Then there is a positive quantifier-free L-

formula ϕ(x) and a functorial equivalence relation E(x,y) such that

F ∼=
ϕ

E

(b) Suppose that F is finitely presented Then there is a positive quantifier-free L-
formula ϕ(x) and a positive existential formula θ(x,y) such that

F ∼=
ϕ

θ̃

where θ̃ denotes the equivalence relation generated by θ.

Proof. (a) Suppose F is finitely generated. By Corollary 3, there areD1, . . . , Dm ∈ fpC
and an epimorphism ∐

j

Hom(Dj,−) -- F

Let ϕj be a presentation formula for Dj and assume without loss of generality that
the ϕj all have the same number of free variables. For if the largest number of free
variables among the ϕj is l and ϕj = ϕj(x1, . . . , xr) where r < l, then simply add to ϕj
a conjunction of equations xr+1 = x1 ∧ · · · ∧ xl = x1.

Now let ϕ′j(x1, . . . , xl, x
′
1, . . . , x

′
m) be the formula

ϕj(x1, . . . , xl) ∧ x′1 = c0 ∧ · · · ∧ x′j = c1 ∧ · · · ∧ x′m = c0

so that ϕ = ϕ′1∨· · ·∨ϕ′m defines the disjoint union of the sets defined by ϕ1, . . . , ϕm. In
particular, ϕ ∼=

∐m
j=1 ϕj as a coproduct of functors (note that, in the functor category,

coproduct is given pointwise by disjoint union) and we have an epimorphism

ϕ
p-- F
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Let R ⊆ ϕ× ϕ be the functor given by

M - {(x,y) ∈ ϕ(M)2 : pM(x) = pM(y)}

and let E(x,y) be the equivalence relation generated by R. Then F ∼= ϕ/E as required.
(b) Now suppose that F is f.p., so there is a presentation for F of the form

n∐
i=1

Hom(Ci,−)
p-

q
-

m∐
j=1

Hom(Dj,−) - F

We can write this as
n∐
i=1

ψi
p-

q
- ϕ - F

where ϕ ∼=
∐
j ϕj as in part (a) and ψi is a presentation formula for Ci.

Since p and q are natural transformations, their components pi and qi are determined
by their actions at Ci on the identity map idCi

. So if k is such that (pi)Ci
(idCi

) ∈
Hom(Dk, Ci) ' ϕk(Ci) then pi is a natural transformation ψi → ϕk. So since pi is a
natural transformation between two representable functors, it must be induced by a
map f : Dk → Ci. In other words pi = f ∗ (the latter is the notation we will use for
Hom(f,−)).

Let c be a tuple of generators for Ci and d a tuple of generators for Dk. Let
E ∈ fp(C) and consider the component

ψi(E)
pi- ϕk(E)

For each dj from the tuple d, there is a term tj such that f(dj) = tj(c). Let t(c) be
the tuple whose jth component is tj(c). Then the action of (pi)E on a tuple e ∈ ψi(E)
is given simply by

e - t(e)

So we see that pi is a definable map (that is, its graph is, uniformly over C, a definable
subset of the product of its domain and codomain). Clearly pi can be regarded as a
definable map into ϕ′k by extending the tuple t(x) in the obvious way.

Let θ(x,y) be the relation on ϕ which holds when there is an element a ∈ ∐n
i=1 ψi

such that p(a) = x and q(a) = y. This is expressible by the formula

∃z(
n∨
i=1

(ψi(z) ∧ pi(z) = x ∧ qi(z) = y))

It should be clear that
F ∼=

ϕ

θ̃

as required. �
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In the additive case the corresponding results, see [5, 3.2.5], [15, Chpt. 12], require
only positive primitive (pp) formulas. These are the formulas built up from atomic
formulas using just conjunction and existential quantification. To obtain a converse to
the above proposition we will need the following lemmas.

Lemma 5 Any positive primitive L-formula defines a finitely presented functor.

Proof. Let ϕ(x) be the positive primitive formula ∃yθ(x,y) where θ is a conjunction
of atomic formulas. Let (C, c,d) be a free realisation of θ. Clearly C has the property
that if E is any other object with e ∈ ϕ(E), there is a map f : C → E with f(c) = e.
So the map

Hom(C,−) - ϕ

defined by
f - f(c)

is epic. Hence ϕ is finitely generated.
Now let ψ(x,y1,y2) be the formula θ(x,y1) ∧ θ(x,y2). As a finite conjunction

of atomic formulas, ψ is representable, hence finitely presented. Define the map pi :
ψ → Hom(C,−) to be that whose component at E takes (a, b1, b2) ∈ ψ(E) to the map
defined by (c,d) 7→ (a, bi). Then the diagram

ψ
p1-

p2
- Hom(C,−) - ϕ

is a coequaliser. Since ψ and Hom(C,−) are f.p., ϕ is also finitely presented. �

Lemma 6 Any positive existential formula defines a finitely presented functor.

Proof. Any positive existential formula ϕ is a disjunction of positive primitive formulas.
We proceed by induction on the number n of disjuncts. If n = 1 then ϕ is positive
primitive and so finitely presented by the above. Now suppose n > 1. Write ϕ =

∨n
i=1 ϕi

where each ϕi is positive primitive. The following diagram, with the obvious maps from
the conjunction to the union, is a coequaliser.

(
n−1∨
i=1

ϕi) ∧ ϕn -
- (x′ = c0 ∧

n−1∨
i=1

ϕi) ∨ (x′ = c1 ∧ ϕn) - ϕ

Both
∨n−1
i=1 ϕi and (

∨n−1
i=1 ϕi)∧ϕn have n−1 disjuncts so the induction hypothesis applies.

It now easily follows that ϕ is finitely presented since the functor in the middle is a
coproduct of f.p. functors. �

Proposition 7
(a) Any functor of the form ϕ/E where ϕ is positive existential and E is a functorial

equivalence relation on ϕ is finitely generated.
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(b) Any functor of the form ϕ/θ̃ where ϕ is a positive existential formula and θ is a
positive existential relation on ϕ is finitely presented.

Proof. (a) There is a natural epimorphism ϕ -- ϕ/E. Hence ϕ/E is f.g.
(b) Consider the diagram

θ -- ϕ - ϕ/θ̃

where the maps are the obvious ones. This is clearly a coequaliser. So ϕ/θ̃ is finitely
presented as required. �

Combining Propositions 4 and 7 we get the following corollary.

Corollary 8 Let F be a functor in (fpC,Set).
(a) F is finitely generated if and only if F ∼= ϕ/E where ϕ is positive existential.
(b) F is finitely presented if and only if it is of the form ϕ/θ̃ where ϕ and θ are positive

existential.

We will now characterise the natural transformations between f.g. functors in terms
of positive existential formulas. Let ϕ/E1 and ψ/E2 be two f.g. functors. A positive
existential formula ρ(x,y) clearly defines a natural transformation ϕ/E1 → ψ/E2 if
the following are satisfied for each A ∈ fpC.

• For every a ∈ ϕ(A) there is a b ∈ ψ(A) with ρ(a, b).

• If a,a′ ∈ ϕ(A) are such that E1(a,a
′) and for some tuples b, b′ we have

ρ(a, b) and ρ(a′, b′), then b, b′ ∈ ψ(A) and E2(b, b
′).

As ρ is a natural transformation, ρA takes an equivalence class [a]E1 to the equivalence
class [b]E2 where ρ(a, b) holds.

Proposition 9 Every natural transformation in fg(fpC,Set), the full subcategory of
finitely generated functors, is defined by a positive existential formula.

Proof. Let α : ϕ/E1 → ψ/E2 be a natural transformation in fg(fpC,Set). The
positive existential formula ϕ will be of the form

∨
i ∃zσi(x, z) where σi is a conjunction

of atomic formulas. Let (Ai,ai, bi) be a free realisation of σi. For each i choose a
representative a′

i for the E2-equivalence class αAi
[ai]E1 . Since (ai, bi) generates Ai,

there will be a tuple ti of terms such that ti(ai, bi) = a′
i. Let ρ(x,y) be the formula∨

i

∃z(σi(x, z) ∧ ti(x, z) = y)

Suppose that c, c′ are tuples from an object C and that ρ(c, c′) holds. Then there is
an i and a tuple d such that σi(c,d) and ti(c,d) = c′. So there is a map f : Ai → C

11



defined by (ai, bi) 7→ (c,d). Since α is a natural transformation, the following diagram
commutes, where f∗ denotes the obvious induced map.

Ai (ai, bi)
ϕ

E1

(Ai)
αAi-

ψ

E2

(Ai)

C

f

?
(c,d)

? ϕ

E1

(C)

f∗

?

αC

-
ψ

E2

(C)

f∗

?

Clearly c ∈ ϕ(C) so we can investigate the action of αC on the equivalence class
[c]E1 .

αC [c]E1 = αC [f(ai)]E1

= αCf∗[ai]E1

= f∗αAi
[ai]E1

= f∗[a
′
i]E2

= f∗[ti(ai, bi)]E2

= [f(ti(ai, bi))]E2

= [ti(f(ai, bi))]E2

= [ti(c,d)]E2

= [c′]E2

So we see that if ρ(c, c′) holds in C, then αC [c]E1 = [c′]E2 . We now check that ρ defines
the natural transformation α.

Let a ∈ ϕ(A). Then there is an i and a tuple b such that σi(a, b). Clearly
ρ(a, ti(a, b)) holds. By above, this implies that αA[a]E1 = [ti(a, b)]E2 so we must
have, in particular, that ti(a, b) ∈ ψ(A). Now suppose that E1(a,a

′), ρ(a, b) and
ρ(a′, b′). Then [b]E2 = αA[a]E1 = αA[a′]E1 = [b′]E2 . So we have b, b′ ∈ ψ(A) and
E2(b, b

′). Hence ρ defines a natural transformation ϕ/E1 → ψ/E2 which is, therefore,
α. �

Local coherence of the functor category

We will show that our functor category (fpC,Set) is a locally coherent category in the
sense that every finitely generated subobject of a finitely presented object is finitely
presented. In the abelian context, but not here, this is equivalent to the class of f.p.
functors being closed under finite limits. For, we will see that our f.p. functors are
closed under finite products but need not be closed under equalisers.

Proposition 10 Any finitely generated subfunctor of a finitely presented functor is
itself finitely presented.

12



Proof. Let F be f.p. and G ⊆ F be a f.g. subfunctor. By Corollary 8 above F ∼= ϕ/θ̃
for pe-formulas ϕ and θ, and G ∼= ψ/E for a pe-formula ψ. By Proposition 9 the
embedding of G in F is defined by a pe-formula ρ:

ψ/E- ρ- ϕ/θ̃

The functor G is isomorphic to the following subfunctor of F :

∃z(ψ(z) ∧ ρ(z,x))

θ̃

Which is finitely presented. �

Corollary 11 Any finitely generated subfunctor of a representable functor is defined
by a pe-formula.

Proposition 12 The category fp(fpC,Set) is closed under finite products but need not
be closed under equalisers.

Proof. Given a positive existential relation θ(x,y), define θs(x,y) to be the positive
existential relation

θ(x,y) ∨ θ(y,x) ∨ x = y

Then θs is the symmetric and reflexive closure of θ and θ̃ = θ̃s.
Let ϕ/θ̃ and ψ/η̃ be finitely presented functors. We claim that

ϕ(x)

θ̃(x,x′)
× ψ(y)

η̃(y,y′)
∼=
ϕ(x) ∧ ψ(y)

θ̃s ∧ ηs

To see this, suppose that ([x], [y]) = ([x′], [y′]) in the product. Then θ̃(x,x′) and
η̃(y,y′). So there is a sequence x0, . . . ,xn ∈ ϕ and a sequence y0, . . . ,yn ∈ ψ with
θs(x,x0) ∧ · · · ∧ θs(xn,x′) and ηs(y,y0) ∧ · · · ∧ ηs(yn,y′). The claim follows.

Consider, with notation as above, an equaliser diagram

E - ϕ/θ̃
p1-

p2
- ψ/η̃

The natural transformations p1 and p2 can be expressed by positive existential formulas
ρ1 and ρ2 respectively (by Proposition 9). We then have

E = {[x] ∈ ϕ/θ̃ : ∃y,y′ρ1(x,y) ∧ ρ2(x,y
′) ∧ η̃(y,y′)}

So E is the functor given by

ϕ(x) ∧ ∃y,y′(ρ1(x,y) ∧ ρ2(x,y
′) ∧ η̃(y,y′))

θ̃

13



The formula on the top need not be reducible to a first-order formula. Here is an
explicit example.

Let L be the language of rings and let θ(x, y) be the relation x = y + 1. Let E be
the equaliser of the maps

x = x
x-

2x
-
x = x

θ̃
Then E defines the set of x such that 2x = m + x for some m ∈ Z. So E(R) = Z.
If E where reducible to a finitary first-order formula, then this would imply that Z
was definable in R, which is not the case. So E cannot be finitary first-order. This
is in contrast to the additive case where the group structure gives finitary first-order
definability of such relations. �

Coherent functors

We are now in a position to characterise the category coh(fpC,Set) of coherent func-
tors.

Proposition 13 F ∈ (fpC,Set) is coherent if and only if F ∼= ϕ/θ where ϕ and θ are
positive existential formulas and θ defines an equivalence relation on ϕ.

Proof. (⇒) Suppose that F is coherent. So in particular F is f.p. and by Corollary
8, F ∼= ϕ/θ̃. Since F is coherent, ϕ ×F ϕ is f.g. But ϕ ×F ϕ ∼= θ̃ so θ̃ is f.g. Since
θ̃ ⊆ ϕ× ϕ, the proof of Proposition 10 implies that θ̃ ∼= η for some pe-formula η.

(⇐) Now suppose that F ∼= ϕ/θ where ϕ and θ are pe-formulas. Let G be a f.g.
functor and f : G→ F a map. By Corollary 8 and Proposition 9 we can write this as

ψ

E

ρ-
ϕ

θ

for some pe-formulas ψ and ρ. Let ∼ be the equivalence relation on ψ × ψ defined by

(x,y) ∼ (x′,y′) ⇔ E(x,x′) and E(y,y′)

Let γ(x,y) be the formula

∃w, z(ψ(x) ∧ ψ(y) ∧ ρ(x,w) ∧ ρ(y, z) ∧ θ(w, z))

Then G×F G ∼= γ/ ∼ which is f.g. �

We collect together the above proposition and Proposition 9 in the following theo-
rem.

Theorem 14 The category coh(fpC,Set) of coherent functors is equivalent to the cat-
egory with objects ϕ/θ where ϕ and θ are pe-formulas and θ defines an equivalence
relation on ϕ, and with maps the pe-definable functions ϕ/θ → ψ/η.

14



II Finitely presented and coherent sheaves

Extending functors

In defining localisations of our functor category we will need to make use of the notion of
an extension of a functor defined on f.p. objects to the category of all objects. The well-
definedness of the extension depends on the following lemma (which has an analogue
in the additive case; see, e.g. [2, pp. 4-5], [10, 5.6]).

Lemma 1 Let F : fp(C) → Set be a functor defined on the category of finitely pre-
sented objects of C. Let X, Y ∈ C.
(a) If ((Ai)i, (aik : Ai → Ak)i<k) and ((Bj)j, (bjl : Bj → Bl)j<l) are directed sys-

tems where Ai, Bj ∈ fp(C) and with X = lim−→i
Ai = lim−→j

Bj then lim−→i
F (Ai) ∼=

lim−→j
F (Bj).

(b) If X = lim−→i
Xi and Y = lim−→i

Yj and f : X → Y , then there is a canonically induced
map

f∗ : lim−→
i

F (Xi) - lim−→
j

F (Yj)

which is functorial in the obvious sense.

Proof. (a) Suppose
X = lim−→

i∈I
Ai = lim−→

j∈J
Bj

Since the Ai are f.p., for each i ∈ I, there is an fi : Ai → Bki
such that the following

diagram commutes.

Ai
ai - X

Bki

b k i

-

f
i -

Now consider the following diagram.

Ai
aij - Aj

Bki

fi

? bkikj - Bkj

fj

?

X �
bl

�

b k j
b
k
i -

Bl

b
k
j l

-

15



Although the square does not necessarily commute, there will be an l ∈ J such that
bkj lbkikj

fi = bkj lfjaij. This implies that the following diagram is a cocone on the F (Ai).

F (Ai)
F (aij) - F (Aj)

F (Bki
)

F (fi)

?

F (Bkj
)

F (fj)

?

lim−→
j∈J

F (Bj)
� π k j

π
k
i -

(Here the πj : F (Bj) → lim−→l∈J F (Bl) are the canonical maps to the limit. Similarly we

write σi : F (Ai) → lim−→k∈I F (Ak).) Hence there is a unique ρ such that the following
diagram commutes.

F (Ai)
F (aij) - F (Aj)

lim−→
i∈I

F (Ai)
�

σ j
σ
i -

F (Bki
)

F (fi)

?

F (Bkj
)

F (fj)

?

lim−→
j∈J

F (Bj)

ρ

?� π k j
π
k
i -

Similarly, for each j ∈ J there will be a map gj : Bj → Amj
such that bj = amj

gj and
one gets a map ρ′ : lim−→j

F (Bj) → lim−→i∈I F (Ai) such that ρ′πj = σmj
F (gj).

Now consider the following diagram.

Ai
fi- Bki

gki- Amki

X

bki

?� am
k i

a
i -

By essential uniqueness, there is an li ∈ I such that akiligki
fi = aili . Then

ρ′ρσi = ρ′πki
F (fi)

= σmki
F (gki

)F (fi)

= σmki
F (gki

fi)

= σliF (akili)F (gki
fi)

= σliF (aili)

= σi

16



So ρ′ρ is the identity on lim−→F (Ai). By symmetry, ρρ′ is the identity on lim−→F (Bj) so ρ
is an isomorphism.

(b) The argument for this is similar to that in part (a). �

We are now in a position to define the extension of a functor F ∈ (fpC,Set) to the
whole of C. We will denote this extension of F also by F , and put for C ∈ C,

F (C) = lim−→F (Ci)

where C = lim−→Ci is a directed colimit of f.p. objects. The action of F on maps of C is
given canonically as in the above lemma.

One can also extend a natural transformation σ : F → G in the category (fpC,Set)
to a natural transformation between the extensions by defining, for C = lim−→Ci ∈ C, a
directed colimit of f.p. objects,

σC = lim−→ σCi

(One may check that this is independent of representation of C as a directed colimit of
finitely presented objects.) Any f.p. functor ϕ/θ̃ in (fpC,Set) extends to the functor
ϕ/θ̃ : C → Set defined by the same formulas and this, it is easily checked, commutes
with directed colimits. Similarly, a natural transformation given by a pe-formula ρ
extends to a functor given by the same formula and which commutes with directed
colimits.

Definable subcategories and finite type topologies

Let A be a small category. Any subfunctor S of Hom(A,−) may be thought of as a
collection of maps with domain A which is closed under composition on the left: i.e.
if f ∈ S and g is a composable map (in the sense that dom g = cod f), then gf ∈ S.
We say that S is a (left) ideal of A. Given an ideal S of A and a map f : A → B
in A, one gets an ideal f∗(S) of B defined to be {g : dom g = B and gf ∈ S}. A
(left) Grothendieck topology J on A is a function which associates to any object A ∈ A
a set J(A) of left ideals of A. The elements of J(A) are called covers of A or dense
subfunctors of Hom(A,−) and must satisfy the following conditions.

G1 Hom(A,−) ∈ J(A) for every A ∈ A;

G2 If S ∈ J(A) and f : A→ B is an arrow of A, then f∗(S) ∈ J(B);

G3 If S ∈ J(A) and R ⊆ Hom(A,−) is such that, for any arrow f ∈ S ,
f∗(R) ∈ J(cod f), then R ∈ J(A).

Fix a subcategory D of C. We associate to D a Grothendieck topology JD on fp(C)
defined by

S ∈ JD(A) ⇔ S(D) = Hom(A,D) for all D ∈ D

17



In this definition we are using the extension of S from fpC to C as explained in the
previous section. One easily verifies that this extension does satisfy the above axioms
for a Grothendieck topology.

Conversely, to a given Grothendieck topology J on fp(C) one can associate a full
subcategory V (J) of C by

D ∈ V (J) ⇔ S(D) = Hom(A,D) for all A ∈ fp(C) and S ∈ J(A)

If C ⊆ D in C then C is a pure subobject of D if for every commutative diagram

A
f - B

C

g

?
- - D

?

with A and B finitely presented, the map g factors through f .

Proposition 2 The subobject C ⊆ D is pure if and only if, for every positive existential
formula ϕ(x) and any tuple c from C, C |= ϕ(c) if D |= ϕ(c).

Proof. It is clearly sufficient to prove the statement for positive primitive formulas.
(⇒) Suppose that C ⊆ D is pure. Let ϕ(x) be the positive primitive formula ∃yσ(x,y)
where σ is a conjunction of atomic formulas. Suppose D |= ϕ(c) where c is a tuple
from C. Then there is a tuple d from D such that D |= σ(c,d). Let (A,a, b) be a free
realisation of σ. We get the following commutative diagram, where Fr(x) is the free
L-structure generated by a tuple of variables x (e.g. see [1, XX]).

x - a

x Fr(x) - A (a, b)

c
?

C
?

- D
?

(c,d)
?

By purity, we get a map f : A→ C such that f(a) = c. Since a ∈ ϕ(A) we must have
c ∈ ϕ(C) as required.
(⇐) Suppose we have a commutative square

A
f - B

C

h

?
- - D

g

?

where A and B are finitely presented. Let a be a tuple of generators for A and b a
tuple of generators for B. Let ϕ be a presentation formula for B.

18



There is a tuple of terms t such that f(a) = t(b). Let ψ(x) be the positive primitive
formula

∃y(ϕ(y) ∧ t(y) = x)

Then D |= ψ(gf(a)) since D |= ϕ(g(b)) and

t(g(b)) = g(t(b)) = gf(a)

Since gf(a) = h(a) lies in C, the hypothesis implies that C |= ψ(h(a)). So there
is a tuple c ∈ ϕ(C) such that t(c) = h(a). By the definition of presentation formula,
there is a map f ′ : B → C with f ′(b) = c. So

h(a) = t(c) = t(f ′(b)) = f ′(t(b)) = f ′f(a)

and we see that h factors through f as required. �

Following terminology used in the additive case, we will say that a category D ⊆ C
closed in C under ultraproducts and pure subobjects is a definable subcategory of C.
As the following result shows, this means definable by sentences of a particular sort.

Theorem 3 The following are equivalent.
(i) D is a definable subcategory;
(ii) D can be axiomatised by a coherent theory.

This result is a direct consequence of a result of Keisler’s [8]. Recall that a coherent
theory is one whose axioms are of the form ∀x(ϕ(x) → ψ(x)) where ϕ and ψ are
positive existential. Keisler’s result is that an elementary class of structures is closed
under directed colimits if and only if it can be axiomatised by sentences of the form

∀x∃y
∧
i∈I

∨
j∈J

(gij(x) → hij(x,y))

where the gij and hij are atomic formulas and I and J are finite. But the above sentence
is equivalent to the following collection of coherent sentences∀x

∧
i∈I′

∧
j∈J

gij(x) → ∃y
∧
i∈I′

∨
j∈J

hij(x,y)


I′⊆I

Now a definable subcategory D is an elementary class closed under directed colimits.
The fact that D is elementary follows (by [9], Corollary 6.1.16) from the fact that D
is closed under ultraproducts and its complement is closed under ultrapowers (since
every structure is purely, even elementarily, embeddable in any of its ultrapowers via
the diagonal map). The fact that D is closed under directed colimits follows from the
fact that for any directed system of structures (Di : i ∈ I) there is an ultrafilter U
on I and a pure embedding of lim−→Di in

∏
iDi/U . Hence, Keisler’s result gives us that

a definable subcategory D can be axiomatised by a coherent theory. The converse is
easy.
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We shall say that a Grothendieck topology J is of finite type if every cover has a
finitely generated cover below it. In our context this is equivalent to there being a
positive existential formula dense below every cover (by Corollary I,11). If J has the
stronger property that any cover has a positive primitive formula dense below it, then
we shall say it is of finite pp type.

Proposition 4
(a) If D is definable, then JD is of finite type. If in addition D is closed under finite

products, then JD is of finite pp type.
(b) If J is of finite type, then V (J) is definable. If J is of finite pp type, then V (J) is

also closed under products.

Proof. (a) Suppose D is definable. Let S ⊆ Hom(C,−) be a cover with respect to JD.
Let ϕ be a presentation formula for C, so Hom(C,−) ∼= ϕ. If {ϕλ : λ ∈ Λ} is the set of
positive existential formulas below S, then clearly

S =
⋃
λ∈Λ

ϕλ

Suppose that none of them is dense. So for each λ there is a Dλ ∈ D such that
ϕλ(Dλ) $ ϕ(Dλ). Let p be the partial type

{ϕ ∧ ¬ϕλ : λ ∈ Λ}.

Then p is closed under finite conjunctions. Define

〈λ〉 = {µ ∈ Λ : ϕλ ⊆ ϕµ}.

Then
〈λ〉 ∩ 〈µ〉 = 〈ν〉

where ϕν = ϕλ ∨ ϕµ. So the set {〈λ〉 : λ ∈ Λ} has the finite intersection property
and there is an ultrafilter U containing it. The ultraproduct D∗ =

∏
λDλ/U realises p.

More concretely, the tuple [(aλ)λ] where aλ ∈ ϕ(Dλ) \ ϕλ(Dλ) is a realisation. To see
this, take any ϕ ∧ ¬ϕλ ∈ p. Then

〈λ〉 ⊆ {µ ∈ λ : Dµ |= ϕ ∧ ¬ϕλ(aµ)}

and so the right hand side is in U . So D∗ |= p([(aλ)λ]). But this means that S(D∗) 6=
Hom(C,D∗) which is a contradiction. So JD must be of finite type.

Now suppose that in addition D is closed under finite products. We know from
above that any cover S ⊆ ϕ ∼= Hom(C,−) has a dense positive existential formula ψ
below it. Write ψ as ψ1 ∨ · · · ∨ ψn where each ψi is positive primitive. Suppose that
none of the ψi is dense. Then for each i there is Di ∈ D and ai ∈ ϕ(Di) \ ψi(Di). Let
D =

∏n
i=1Di. Then

ψ(D) =
n⋃
k=1

(
n∏
i=1

ψk(Di)

)
⊆

n∏
i=1

ϕ(Di) = ϕ(D)
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Since D ∈ D and ψ is dense, we must have ψ(D) = ϕ(D). But ak ∈ ϕ(Dk) \ ψk(Dk)
implies that

(a1, . . . ,an) ∈
n∏
i=1

ϕ(Di) \
n∏
i=1

ψk(Di)

for each k which is a contradiction.
(b) Suppose J is a finite type topology. For each A ∈ fpC, let ϕA be a presentation

formula for A. Now let T be the coherent theory with axioms

{ϕA → ψ : A ∈ fpC, ψ ∈ J(A)}
Then V (J) = ModT (the class of models of T ). By Theorem 3, V (J) is definable.

Suppose now that J is of finite pp type. Let ψ ⊆ S ⊆ ϕ be dense where ψ is positive
primitive. Let D =

∏
iDi where each Di is in V (J).

ψ(D) =
∏
i

ψ(Di) =
∏
i

ϕ(Di) = ϕ(D)

so S(D) = ϕ(D) and we must have D ∈ V (J) as required.
�

Proposition 5 Suppose D is a definable subcategory. Then D = V (JD).

Proof. Obviously we have D ⊆ V (JD). For the other direction we use Theorem 3.
There is a coherent theory T ′ such that D = ModT ′. Suppose C ∈ V (JD). We

want C |= T ′. So consider an arbitrary formula ∀x(ϕ(x) → ψ(x)) from T ′. We may
clearly assume that ϕ is positive primitive and ψ is positive existential. Since ϕ is
positive primitive, there is a finitely presented object A and an epimorphism

Hom(A,−)
f-- ϕ

Consider the pullback diagram

f−1(ψ ∧ ϕ) -- ψ ∧ ϕ

Hom(A,−)
?

?

-- ϕ
?

?

Let D ∈ D. Then (ψ ∧ ϕ)(D) = ϕ(D), hence f−1(ψ ∧ ϕ)(D) = Hom(A,D). So
f−1(ψ ∧ ϕ) ∈ JD(A). But this means f−1(ψ ∧ ϕ)(C) = Hom(A,C) which implies that
(ψ ∧ ϕ)(C) = ϕ(C). So C |= ∀x(ϕ(x) → ψ(x)) as required. �

Recall ([4, 6.7]), or note from the above, that if D is a definable subcategory closed
under finite products, then it is closed under arbitrary products.

We do not know whether, if J is a finite type topology, it must be that JV (J) = J .
This is equivalent to the following question: if T is the coherent theory of Proposi-
tion 4(b) axiomatised by

{ϕA → ψ : A ∈ fpC, ψ ∈ J(A)}
and T ` ϕB → ψ′ for some B ∈ fpC and pe-formula ψ′ ⊆ ϕB, is it the case that
ψ′ ∈ J(B)?
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Some general sheaf theory

Fix a Grothendieck topology J on a skeletally small category A. A presheaf P ∈
(A,Set) is called a separated presheaf if whenever A ∈ A and f, g : Hom(A,−) → P
are maps such that f �S= g �S for some cover S ∈ J(A), then f = g. A presheaf
F ∈ (A,Set) is called a sheaf if for any object A ∈ A and any cover S ∈ J(A), every
map α : S → F has a unique extension to a map Hom(A,−) → F .

S
α- F

Hom(A,−)
?

?

!

-

Given a Grothendieck topology J on A, one can form the category of sheaves
Sh(A, J) which will be a reflexive subcategory of (A,Set). So we have an adjoint pair

Sh(A, J)
i-�
a

(A,Set)

where a is the associated sheaf functor and i is the inclusion functor. The functor a is
left adjoint to i and commutes with finite limits.

The construction of the associated sheaf is usually done by two applications of
Grothendieck’s plus functor. This functor takes a presheaf P in (A,Set) to the presheaf
P+ which is defined on objects C ∈ A as follows.

P+C = lim−→
R∈J(C)

Nat(R,P )

where the directed colimit is taken over the decreasing family of covers. Note that since
a finite intersection of covers is a cover, we do indeed have a directed system over which
we can take a limit. Here Nat(R,P ) = Hom(R,P ) is the set of natural transformations
R→ P . The elements of P+C can be represented by pairs (R,α) where α : R→ P is
a natural transformation and R ∈ J(C). We factor by the equivalence relation

(R,α) ∼ (S, β) ⇔ there is a cover T ⊆ R ∩ S s.t. α �T= β �T

Given a map f : C → C ′, the induced map P+f : P+C → P+C ′ is defined as follows.

[R,α] - [f∗R,αf
∗]

Here f ∗ : Hom(C ′,−) → Hom(C,−) is the induced map and f∗R is the cover (f ∗)−1R
(since an inverse image of a cover is a cover).

The plus functor takes a natural transformation ϕ : P → Q to the natural trans-
formation ϕ+ : P+ → Q+ which is defined as follows.

ϕ+
C [R,α] = [R,ϕ ◦ α]
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The canonical map η : P → P+ is defined as follows.

ηC(x) = [Hom(C,−), x]

On the right hand side we identify the element x ∈ P (C) with the corresponding
element of Nat(Hom(C,−), P ). Clearly η is a monomorphism if and only if P is a
separated presheaf. For any presheaf P , P+ is separated. If P is separated, then P+

is a sheaf. So P++ is always a sheaf. The associated sheaf functor is equivalent to two
applications of the plus functor, so that aP = P++.

The following lemmas will be important for us. The first is direct from the definition
of P+.

Lemma 6 For every map Hom(A,−) → P+, there is a cover S ∈ J(A) and a map
S → P such that the following square commutes.

S - P

Hom(A,−)
?

?

- P+
?

Lemma 7 Let f : a(Hom(A,−)) → aP be a map of sheaves. Then there is a cover
S ∈ J(A) such that for every h ∈ S there is an xh ∈ P (C = codh) such that a(xh) =
f ◦ a(h∗) as in the following diagram (which uses the Yoneda identification of PC with
Nat(Hom(C,−), P )).

a(Hom(C,−))
a(xh) - aP

a(Hom(A,−))

f

-

a(h ∗
) -

Proof. By applying Lemma 6 to the composition

Hom(A,−) - a(Hom(A,−))
f- aP

there is a cover R ∈ J(A) and a map R→ P+ s.t. the following diagram commutes.

R - P+

Hom(A,−)
?

?

- a(Hom(A,−))
f- aP

?

Let g ∈ R and put D = cod g. Then, again by Lemma 6 there is a cover Rg ∈ J(D)
and a map Rg → P such that

Rg
- P

Hom(D,−)
?

?

g∗
- R - P+

?
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commutes.
Let S ⊆ Hom(A,−) be defined by S = {g′g : g ∈ R, g′ ∈ Rg}. By G3 of the axioms

for a Grothendieck topology S ∈ J(A). Suppose h ∈ S. Then h = g′g for some g ∈ R
and g′ ∈ Rg. The map

Hom(C = codh,−)
(g′)∗- Rg

- P

corresponds to an element xh ∈ P (C) and

Hom(C,−)
xh - P

S

h∗

?

Hom(A,−)
?

?

- a(Hom(A,−))
f- aP

?

commutes. Hence a(xh) = f ◦ a(h∗) as required. �

As described above, the associated sheaf functor a is equivalent to two applications
of the plus functor, but it is also equivalent to one application of the “sep-functor”
followed by one application of the plus functor. The sep-functor will be relevant to us
so we describe it now.

We define an equivalence relation on P (C) by

x ∼ y ⇔ ∃S ∈ J(C) s.t. x �S= y �S

Define PsepC = P (C)/ ∼. A map f : C → C ′ induces a map f∗ : Psep(C) → Psep(C
′)

in the obvious way. This association is functorial and so Psep is a well defined element
of (A,Set). Moreover, the map

P - Psep

is also functorial as one can check (the induced maps are the obvious ones). There is a
canonical epimorphism σ : P → Psep.

Lemma 8 Psep is separated.

Proof. Let S ∈ J(C) and let x, y ∈ P (C) with x̄, ȳ the corresponding equivalence classes
in PsepC. Suppose that x̄ �S= ȳ �S. So for each f ∈ S, there is an Rf ∈ J(cod f) such
that

f∗(x) �Rf
= f∗(y) �Rf

Let S ′ be the set
{gf : f ∈ S, g ∈ Rf}

Then S ′ ∈ J(C) (by Grothendieck topology axiom G3) and x �S′= y �S′ . So x̄ = ȳ and
Psep is separated as required. �
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Since Psep is separated, the canonical map η : Psep → (Psep)
+ is a monomorphism

and (Psep)
+ is a sheaf. Since σ is universal from P to separated presheaves and η

is universal from P to sheaves (these statements are easily verified), it follows that
(−)+ ◦ (−)sep = a. We have the following picture.

P -- Psep
- - aP

Let P be any presheaf. A subobject P ′ ⊆ P is dense (w.r.t. the ambient Grothendieck
topology J) if for any representable functor Hom(A,−) and any map f : Hom(A,−) →
P , the inverse image f−1(P ′) is in J(A). For any presheaf P , we use the notation D(P )
for its set of dense subobjects. This set is closed under finite intersections so forms a
downward directed family.

Lemma 9
Nat(aP, aQ) ∼= lim−→

P ′∈D(P )

Nat(P ′, Qsep)

Proof. First note that Nat(aP, aQ) ∼= Nat(P, aQ). Define the map

Φ : Nat(P, aQ) - lim−→
P ′∈D(P )

Nat(P ′, Qsep)

by
Φ(α) =

[
α−1Qsep, α(, rather α � α−1Qsep

)
]

In the other direction, we define the map

Ψ : lim−→
P ′∈D(P )

Nat(P ′, Qsep) - Nat(P, aQ)

by
Ψ [P ′, α]C (x) =

[
x−1P ′, α ◦ x

]
Note that the morphism α ◦ x : x−1P ′ → Qsep has a unique extension to a morphism
Hom(C,−) → aQ, that is, to an element of aQ(C). It is easily checked that, since Qsep

is separated, Ψ is well defined. We claim that Ψ = Φ−1.
We first show that Ψ ◦ Φ = id.

Ψ(Φ(α))C(x) = Ψ
[
α−1Qsep, α

]
C

(x)

=
[
x−1(α−1Qsep), α ◦ x

]
Write R = x−1(α−1Qsep). Suppose that αC(x) = [S, β]. We want to show that there is
a cover T ⊆ R ∩ S such that α ◦ x �T= β �T .

For any f : C → D in R,

(α ◦ x)(f) = αD(f∗(x))

= f∗(αC(x))

= f∗ [S, β]

= [f∗S, βf
∗]
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But we know that (α ◦ x)(f) is the element [Hom(D,−), (α ◦ x)(f)] ∈ aQ. So there is
a cover Sf ⊆ f∗S such that

βf ∗ �Sf
= (α ◦ x)(f) �Sf

So setting
T = {gf : f ∈ R, g ∈ Sf}

we see that T is a cover such that α ◦ x �T= β �T as required.
We now show that Φ ◦Ψ = id. Let β = Ψ[P ′, α], so

βC(x) =
[
x−1P ′, α ◦ x

]
Then we have

Φ(β) =
[
β−1Qsep, β

]
.

Now, P ′ ⊆ β−1Qsep since if x ∈ P ′C then βC(x) = [Hom(C,−), α ◦ x] ∈ Qsep. Clearly
β �P ′= α and the result follows. �

Finitely presented sheaves

Let J be a Grothendieck topology on fpC. We have an adjunction

Sh(fpC, J)
i-

�
a

(fpC,Set)

as before, where the associated sheaf functor a commutes with finite limits. Note that
a monomorphism f is a dense embedding of presheaves if and only if a(f) is invertible
in the category of sheaves.

Lemma 10 Suppose i commutes with directed colimits. Then for any finitely presented
(resp. finitely generated) functor P in the presheaf category (fpC,Set), aP is finitely
presented (resp. finitely generated) in the category of sheaves.

Proof. Let P be a f.p. (resp. f.g.) presheaf and let lim−→Gi be a directed colimit (resp.
directed union) of sheaves. Note that since i preserves monomorphisms, directed unions
are taken to directed unions. Then:

Nat(aP, lim−→Gi) ∼= Nat(P, i(lim−→Gi)) ∼= Nat(P, lim−→ iGi) ∼= lim−→Nat(P, iGi) ∼= lim−→Nat(aP,Gi)

�

Proposition 11 The topology J is of finite type if and only if the inclusion functor i
commutes with directed colimits.
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Proof. (⇒) Suppose J is of finite type. Let {Fi}i be directed system of sheaves and let
lim−→Fi, with limit maps fk : Fk → lim−→Fi be their directed colimit as presheaves. Let ψ
be a finitely presented cover of an object A ∈ fp(C). Consider a natural transformation
α : ψ → lim−→Fi. Since ψ is f.p. α factors essentially uniquely through some Fk as fkβ,
as shown. But since Fk is a sheaf, β extends uniquely to a natural transformation ρ on
Hom(A,−) as in the following diagram.

ψ
α - lim−→Fi

Hom(A,−)
?

?

ρ

- Fk

fk

6

β

-

Clearly fkρ is the unique extension of α to Hom(A,−), so lim−→Fi is a sheaf.
(⇐) Now suppose that i commutes with directed colimits. Let S ⊆ Hom(A,−) be

a cover. Write
S =

⋃
λ

ϕλ

as a directed union of finitely presented subobjects. Since a is a left adjoint it com-
mutes with directed colimits. It also commutes with finite limits and so preserves
monomorphisms. Hence

a(Hom(A,−)) = aS =
⋃
λ

a(ϕλ)

is a directed union in the sheaf category. Since i commutes with directed colimits, we
have, by Lemma I,10, that a(Hom(A,−)) is finitely presented in the sheaf category.
So a(Hom(A,−)) = a(ϕλ) for some λ. But this means that ϕλ ⊆ Hom(A,−) is dense.
This proves that J is of finite type. �

Proposition 12 Let J be a finite type topology.
(a) If F is a finitely generated sheaf, there is a finitely generated presheaf P such that

F ∼= aP ;
(b) IF F is a finitely presented sheaf, then there is a finitely presented presheaf P such

that F ∼= aP .

Proof. (a) By Lemma I,10 if J is a finite type topology, then Sh(fpC, J) is an LFP
topos with a generating set

{a(Hom(A,−)) : A ∈ fpC}

of finitely presented objects. By Proposition I,1 there is an epimorphism∐
i

a(Hom(Ai,−)) -- F ∼= aF
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where the coproduct is finite. By Lemma 7, for each component a(Hom(Ai,−)) → aF
there is a cover Si of Ai such that for each C ∈ fpC and h ∈ SiC, the composition

a(Hom(C,−)) - a(Hom(Ai,−)) - aF

is of the form a(fi,h) for some fi,h : Hom(C,−) → F . Since the topology J is of finite
type, we can assume that Si is finitely presented, so there are finitely many Ck and
hk ∈ SiCk and an epimorphism∐

k

Hom(Ck,−) -- Si

This gives an epimorphism∐
k

a(Hom(Ck,−)) -- a(Hom(Ai,−))

Given all this, and since a commutes with coproducts, it is clear that we can choose
the Ai such that our epimorphism∐

i

a(Hom(Ai,−)) -- aF

is of the form a(f) for some f :
∐
i Hom(Ai,−) → F . Put P = im f . Then P is f.g.

and aP ∼= aF ∼= F .
(b) Now suppose that F is f.p., so there is a presentation for F of the form

∐
i

a(Hom(Ai,−))
p-

q
-

∐
j

a(Hom(Bj,−)) - F

where all coproducts are finite. The argument of part (a) applies here to give us that,
when the Ai are chosen suitably, p = a(f) and q = a(g) for maps

∐
i

Hom(Ai,−)
f-

g
-

∐
j

Hom(Bj,−)

Since a commutes with colimits, F ∼= aP where P is the, clearly finitely presented,
coequaliser of the above diagram. �

For the remainder of this section, let J = JD for a definable subcategory D ⊆ C. In
this case we have the following neat characterisation of dense subobjects of presheaves
(involving the extension of functors from fpC to C defined earlier).

Lemma 13 P ′ ⊆ P is a dense inclusion of presheaves if and only if P ′(D) = P (D)
for all D ∈ D.
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Proof. Let D ∈ D and x ∈ P (D). Then there is a f.p. object C ∈ C, an element
y ∈ P (C) and a map f : C → D s.t. f∗(y) = x. Since P ′ is dense in P , we have that
(y−1P ′)(D) = Hom(C,D). So f∗(y) ∈ P ′(D), i.e. x ∈ P ′(D) as required.

For the converse, assume P ′(D) = P (D) for all D ∈ D. Let A ∈ fpC, and
f : Hom(A,−) → P a natural transformation. Then our assumption implies that
(f−1P ′)(D) = f−1(P ′D) = f−1(PD) = Hom(A,D). So by definition of JD, we have
that f−1P ′ is dense in Hom(A,−). This implies that P ′ is dense in P . �

We are now in a position to prove a characterisation result for the category of finitely
presented sheaves fp(Sh(fpC, JD)) where D ⊆ C is a definable subcategory. Let P and
Q be finitely presented presheaves. So P ∼= ϕ/θ̃ and Q ∼= ψ/η̃ say. Let E ⊆ ψ × ψ be
the functorial equivalence relation defined by

E(C) = {(x,y) ∈ ψ(C)× ψ(C) : ∃R ∈ JD(C) s.t. ∀g ∈ R, η̃(g(x), g(y))}

It is clear that Qsep = ψ/E.
Note that η̃ ⊆ E is dense. To see this, let C ∈ fpC and suppose that (x,y) ∈ E(C).

We need to show that (x,y)−1η̃ is a cover of C. That is, S = {f ∈ Hom(C,−) :
η̃(f(x), f(y))} is in JD(C). Let f : C → D be a map with D ∈ D. We know there is an
R ∈ JD(C) such that for all g ∈ R, η̃(g(x), g(y)) holds. But since R(D) = Hom(C,D)
we have f ∈ R(D) and so η̃(f(x), f(y)) which implies f ∈ S. This shows that S is a
cover of C and that η̃ ⊆ E is dense.

We claim that E is in fact the closure of η̃ in ψ×ψ (that is, E is the largest subobject
of ψ × ψ in which η̃ is dense). Let E ⊆ F ⊆ ψ × ψ be such that E(D) = F (D) for
all D ∈ D. We want to show that E = F . So take (x,y) ∈ FC. This element defines
a natural transformation α : Hom(C,−) → F and we can take the pullback as in the
following diagram.

α−1E - E

Hom(C,−)
?

?

- F
?

?

Since E ⊆ F is dense, α−1E is in JD(C). For all f ∈ α−1E, α(f) = f∗(x,y) =
(f(x), f(y)) ∈ E(cod f). So there is a coverRf such that for all g ∈ Rf , η̃(gf(x), gf(y)).
So putting

T = {gf : f ∈ α−1E, g ∈ Rf}

we have that T ∈ JD(C) and for all h ∈ T , η̃(h(x), h(y)). So (x,y) ∈ E(C) which
means that E = F . This shows that E is indeed the closure of η̃ in ψ × ψ.

Now let us write E as the directed union of positive existential formulas ηλ such
that η ⊆ ηλ ⊆ E. Then ψ/E = lim−→λ

ψ/η̃λ as a directed colimit of finitely presented
functors. Since JD is a finite type topology, any dense subobject P ′ of P will have a
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dense f.p. object (of the form given by Corollary I,11) below it. This can be seen from
the following diagram.

ϕ′ -- α(ϕ′)

α−1P ′
?

?

-- P ′
?

?

Hom(C,−)
?

?

α
- P

?

?

Here α(ϕ′) is the image of the restriction of α to the positive existential formula ϕ′ ∈
JD(C). Since α(ϕ′) is the quotient of a f.p. functor, it must be f.g. But since P is f.p.
and our functor category is locally coherent, α(ϕ′) is in fact f.p. Moreover, it is easy to
see that it is dense in P .

So we can assume that D(P ) is the filter generated by {ϕµ/θ̃}µ where ϕµ/θ̃ is dense
in ϕ/θ̃. Then

Nat(aP, aQ) ∼= lim−→
µ

lim−→
λ

Nat

(
ϕµ

θ̃
,
ψ

η̃λ

)

We know that any map ϕµ/θ̃ → ψ/η̃λ is given by a positive existential formula
ρ (which defines a map on the whole of C). Restricted to D, ρ will define a map
ϕ/θ̃ → ψ/η̃. Moreover, any other representative for the class of ρ in the directed
colimit will define the same map ϕ/θ̃ → ψ/η̃ on D.

Conversely, suppose that ρ : ϕ/θ̃ → ψ/η̃ defines a map on D. Without loss, we can
asssume that ∀x,y(ρ(x,y) → ψ(y)) holds on C. Let ϕ0(x) be the positive existential
formula

ϕ(x) ∧ ∃yρ(x,y)

Then clearly ϕ0/θ̃ is dense in ϕ/θ̃. Now let η0(y, z) be the formula

∃x,x′(θ(x,x′) ∧ ρ(x,y) ∧ ρ(x′, z)) ∨ η(y, z)

It is clear that η̃0(D) = η̃(D) for all D ∈ D so that η ⊆ η0 ⊆ E. Note that ρ defines a
map

ϕ0/θ̃ → ψ/η̃0

Therefore the following holds.

Theorem 14 Let D ⊆ C be a definable subcategory. The category fp(Sh(fpC, JD))
has the following logical characterisation. Its objects are pairs of positive existential
formulas of the form ϕ/θ̃ and its morphisms are positive existential formulas which
define maps ϕ/θ̃ → ψ/η̃ when restricted to D.
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Finitely generated and coherent sheaves

The above argument which yielded the characterisation result for f.p. sheaves may also
be applied to f.g. sheaves. In fact the argument is slightly simpler. If P ∼= ϕ/E1 and
Q ∼= ψ/E2 are two f.g. presheaves, then

Nat(aP, aQ) ∼= lim−→
λ

Nat(ϕλ/E1, ψ/E)

where ϕλ is dense in ϕ, and E ⊇ E2 is the closure of E2 in ψ×ψ (so ψ/E ∼= Qsep). Any
map ϕλ/E1 → ψ/E is given by a pe-formula (Proposition I,9) which, when restricted
to D, defines a map ϕ/E1 → ψ/E2. Two formulas representing the same maps in the
directed colimit will define the same map on D.

Conversely if ρ is a pe-formula which defines a map ϕ/E1 → ψ/E2 when restricted
to D, then the formula ϕ0 expressing (as above) that this map is total is dense in ϕ,
and the equivalence relation generated by

E2(y, z) ∨ (∃x,x′(E1(x,x
′) ∧ ρ(x,y) ∧ ρ(x′, z)))

is contained in E (since E is the closure of E2), so ρ defines a natural transformation
ϕ0/E1 → ψ/E. This gives us the following result.

Proposition 15 Let D ⊆ C be a definable subcategory. The category of finitely
generated sheaves fg(Sh(fpC, JD)) is the category with objects ϕ/E where ϕ is a pe-
formula and E is a functorial equivalence relation on ϕ, and with maps pe-formulas
ρ : ϕ/E1 → ψ/E2 which define actual maps on the subcategory D.

With our characterisation of the category of finitely generated sheaves fg(Sh(fpC, JD))
we can deduce a logical characterisation of the category of coherent sheaves coh(Sh(fpC, JD)).

Proposition 16 The coherent objects of Sh(fpC, JD) are those isomorphic to one of
the form ϕ/θ where ϕ, θ are pe and θ defines an equivalence relation on ϕ when re-
stricted to objects of the definable subcategory D.

Proof. Let F be a coherent sheaf. Then F is f.g. so we can write F in the form ϕ/E.
Since F is coherent, there is a pullback diagram of the form

θ′/E ′ ρ1 - ϕ

ϕ

ρ2

?
- ϕ/E

?

in the sheaf category. By the previous proposition, we can assume that the maps ρi are
pe-formulas which define functions on D. So

E(x,y) ⇔ ∃z(θ′(z) ∧ ρ1(z,x) ∧ ρ2(z,y))
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holds on D. Let θ(x,y) be the pe-formula on the right hand side. Then θ defines an
equivalence relation on D and ϕ/θ̃ ∼= ϕ/E in the sheaf category. We can write ϕ/θ̃
simply as ϕ/θ where θ defines an equivalence relation on D.

Now suppose F ∼= ϕ/θ where θ defines an equivalence relation on D. We want to
show that F is coherent. Let G ∼= ψ/E be a f.g. sheaf and let ρ : ψ/E → ϕ/θ be a
pe-formula which defines a map on D. If γ(x,y) is the formula

∃w, z(ψ(x) ∧ ψ(y) ∧ ρ(x,w) ∧ ρ(y, z) ∧ θ(w, z))

then G ×F G is a quotient of γ in the sheaf category, so G ×F G is finitely generated.
Therefore F is coherent as required. �

We describe the category coh(Sh(fpC, JD)) in the following theorem.

Theorem 17 Let D ⊆ C be definable. The category coh(Sh(fpC, JD)) has as objects
pairs of pe-formulas ϕ/θ where θ defines an equivalence relation on ϕ on all objects
of D. The maps ϕ/θ → ψ/η are given by pe-formulas ρ which define actual functions
ϕ/θ → ψ/η when restricted to objects of D.

This result appears in [13] on page 269, although it is not easy to recognise it as the
same result. Makkai and Reyes’ proof is very different from ours, as is their terminology.

Definable subcategories D ⊆ C are categories of models of coherent theories. Given
a coherent theory T , the category of sheaves Sh(fpC, JModT ) is the classifying topos
of T . We have shown that the full subcategory of coherent objects in this topos is
equivalent to the category with objects

{ϕ/θ : ϕ, θ pe-formulas s.t. T ` (θ is an equivalence relation on ϕ)}

and with Hom-sets Hom(ϕ/θ, ψ/η) of the form

{ρ : ρ is a pe-formula s.t. T ` (ρ defines a function ϕ/θ → ψ/η)}

We will denote this category by T eq+ or Deq+ where D = ModT .

III Interpretations

Interpretations as functors

Fix two first-order signatures L and K. For simplicity of notation we write as if L and
K are one-sorted but all our definitions and results are easily generalised to many-sorted
languages. Let C be the category of L-structures and A the category of K-structures.
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Let D ⊆ C and B ⊆ A be definable subcategories. We define an interpretation of B
in D to be an exact (i.e. commuting with finite limits and finite colimits) functor

Γ : Beq+ - Deq+

Note that although the eq+ categories are closed under finite limits, they need not be
closed under finite colimits. However it still makes sense to talk of an exact functor be-
tween such categories, meaning one which preserves finite limits and such finite colimits
as do exist.

Proposition 1 Fix an object ϕ/θ of Deq+. Associate to each n-ary function symbol
f ∈ K a map

Γf :
(
ϕ

θ

)n
-
ϕ

θ

of Deq+, and to each m-ary relation symbol R ∈ K an object

ΓR ⊆
(
ϕ

θ

)m
such that for each D ∈ D the K-structure (ϕ

θ
(D),Γf (D),ΓR(D))f,R∈K is in B. Then

the function

x = x - ϕ/θ

f - Γf

R - ΓR

has a unique extension to an interpretation Γ : Beq+ → Deq+.
(Constants can be treated as special cases of the above.)

Proof. We extend the function as follows. First put Γ(x=x)n = (ϕ/θ)n for each n. Now,
any term t(x1, . . . , xn) of K defines a map

t : (x = x)n - x = x

of Beq+. Suppose that t is the term f(f1(x), . . . , fm(x)) where f, f1, . . . , fm are function
symbols of K. Then we put

Γt = Γf ◦ (Γf1 , . . . ,Γfm)

We now define the action of Γ on a term equation t(x) = s(x) where x = (x1, . . . , xn).
The functor t = s is an equaliser as shown.

t = s - (x = x)n
t-

s
- x = x

So we define Γt=s to be the equaliser of Γt and Γs. Note that Γt=s will indeed be an
object of Deq+ since this category has all finite limits.
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We now consider an atomic formulaR(t1, . . . , tk) inm free variables. Define ΓR(t1,...,tk)

to be Γ−1
(t1,...,tk)(ΓR) as in the following diagram.

Γ−1
(t1,...,tk)(ΓR) - ΓR

(
ϕ

θ

)m?

?

Γ(t1,...,tk)

-
(
ϕ

θ

)k?

?

Again, ΓR(t1,...,tk) will be an object of Deq+.
For a functor ψ of the form

∨n
i=1

∧m
j=1 ψij where ψij is atomic, we define

Γψ =
⋃
i

⋂
j

Γψij

Suppose now that ψ = ψ(x,y) where x is of length n and y of length m. Then Γψ
embeds in (ϕ/θ)n+m. We define Γ∃yψ to be the image of Γψ under the projection map

(ϕ/θ)n+m - (ϕ/θ)n

So far, we have extended Γ to all positive existential formulas (as well as maps
defined by terms). This map corresponds exactly to the syntactic interpretation map
of the Reduction Theorem as described in [7, p. 214].

To complete the definition of Γ, we need to define its action on pairs of positive
existential formulas ψ/η and maps between them. Note that ψ/η is the coequaliser of
the two projection maps

η -- ψ

so we can define Γψ/η to be the coequaliser of the corresponding projection maps

Γη
-- Γψ

The fact that η is an equivalence relation on ψ is expressible by a K-formula. Since the
above process takes structures in D to structures in B, the Reduction Theorem gives
us that the corresponding L-formula holds on D so that Γη is an equivalence relation
on Γψ. Hence Γψ/η ∼= Γψ/Γη.

So how should Γ act on a positive existential map

ρ : ψ/η → χ/ζ

of Beq+? Note that ρ defines a subfunctor of ψ × χ which satisfies the K-formulas

∀x(ψ(x) → ∃yρ(x,y))

∀x,x′,y,y′(η(x,x′) ∧ ρ(x,y) ∧ ρ(x′,y′) → ζ(y,y′))
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on the definable subcategory B. Regarding ρ as an object of Beq+, Γρ defines a sub-
functor of Γψ×Γχ. The two K-formulas above have obvious translations to L-formulas
which say exactly that Γρ defines a function

Γρ : Γψ/η - Γχ/ζ

These L-formulas will hold on D by the Reduction Theorem. It is easy to check that
this action of Γ on maps ρ is functorial.

This extension to a functor Γ : Beq+ → Deq+ is clearly the unique such extension
to a functor commuting with finite limits and finite colimits. �

The above proof shows, amongst other things, that the interpretation functor Γ
takes positive existential formulas to their syntactic translations in the sense of the
Reduction Theorem (see [7]). We will henceforth refer to the following restricted form
of this theorem as the Reduction Theorem. Its proof is a direct consequence of the
above proof and the proof in [7].

Theorem 2 (Reduction Theorem) Let Γ : Beq+ → Deq+ be an exact functor. Fix
D ∈ D and let B = (Γx=x(D),Γf (D),ΓR(D))f,R∈K. Then, for any ([a1], . . . , [an]) ∈
Γx=x(D), and any pe K-formula ϕ(x1, . . . , xn) we have

B |= ϕ([a1], . . . , [an]) ⇔ D |= Γϕ(a1, . . . ,an)

¿From this it follows that an exact functor Γ : Beq+ → Deq+ induces a functor
D → B which does indeed correspond to an interpretation in the sense of model
theory: we are interpreting B in D in a definable way.

Proposition 3 Let B and D be definable subcategories as above. An exact functor
Γ : Beq+ → Deq+ induces a functor Γx=x : D → B via

D - (Γx=x(D),Γf (D),ΓR(D))f,R∈K

Moreover, this functor commutes with directed colimits and pure embeddings.

Proof. We first need to show that for everyD ∈ D the K-structure (Γx=x(D),Γf (D),ΓR(D))f,R∈K

is in B. Suppose B = ModT for a coherent theory T . Choose a coherent axiom ϕ→ ψ
of T . Let ρ(x,y) be the relation defined by the pe-formula

ϕ(x) ∧ ψ(y) ∧ x = y

Then ρ defines a monomorphism ϕ→ ψ in Beq+. By left exactness of Γ, ρ is taken to
a monomorphism Γρ : Γϕ → Γψ in Deq+, so

D |= Γϕ → Γψ

By the reduction theorem,

(Γx=x(D),Γf (D),ΓR(D))f,R∈K |= ϕ→ ψ
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for every D ∈ D.
That the association

D - (Γx=x(D),Γf (D),ΓR(D))f∈K

is functorial is obvious. So we indeed have a functor Γx=x : D → B. It remains to show
that this functor commutes with directed colimits and pure embeddings.

Since Γx=x, Γf and ΓR have expressions as quotients of pe-formulas, which we
know commute with directed colimits, we have the first statement. As for the second,
suppose that D ⊆ D′ is a pure embedding in D. Then Γx=x(D) → Γx=x(D

′) is a
monomorphism. For suppose Γx=x ∼= ϕ/θ. Let a, b ∈ ϕ(D) such that D |= θ(a, b). By
purity, D |= θ(a, b), so ϕ/θ(D) → ϕ/θ(D′) is monic.

To show that the embedding ϕ/θ(D) → ϕ/θ(D′) is pure, let ψ be a positive exis-
tential K-formula and let a1, . . . ,an ∈ ϕ(X) such that(

ϕ

θ
(D′),Γf (D

′),ΓR(D′)
)
f,R∈K

|= ψ([a1], . . . , [an])

We can now apply the reduction theorem to get

D′ |= Γψ(a1, . . . ,an)

Since D ⊆ D′ is pure, we have

D |= Γψ(a1, . . . ,an)

and so, by applying the reduction theorem once more, we have that(
ϕ

θ
(D),Γf (D),ΓR(D)

)
f,R∈K

|= ψ([a1], . . . , [an])

as required. �

It is easy to see that interpretations behave well with respect to composition. For
suppose that we have interpretations

Beq+ Γ- Deq+ ∆- Feq+

where Γx=x = ϕ/θ and ∆x=x = ψ/η. Then one can check that Γx=x ◦∆x=x = ∆ϕ/θ so

(∆ ◦ Γ)x=x = Γx=x ◦∆x=x

So now that we have a nice definition of interpretation, we can give a relatively
simple and natural definition of a bi-interpretation. We say that a pair (Γ,∆) is a
bi-interpretation between definable subcategories B and D if

Beq+
Γ-

�
∆

Deq+
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are interpretations such that

(Γ ◦∆)x=x ∼= x = x

(∆ ◦ Γ)x=x ∼= x = x

as objects of Deq+ and Beq+ respectively. So these natural isomorphisms will be given
by positive existential formulas, corresponding to the notion of definable isomorphism
in the classical definition of a bi-interpretation.

We shall give some examples of interpretations and bi-interpretations in the next
section. But first we show that one can recover a definable subcategory D as the
category of exact functors on Deq+. Our notation for this category of exact functors is
Ex(Deq+,Set).

Proposition 4 Given a definable subcategory D in a first-order language L,

D ' Ex(Deq+,Set)

Proof. We define a functor

ev : D - (Deq+,Set)

by evD(F ) = F (D) and evf (F ) = F (f). It is easily checked that evD is an exact functor
Deq+ → Set, so ev maps to Ex(Deq+,Set). It is also easy to see that ev is a faithful
functor. For suppose f, g : X → Y are parallel arrows in D such that evf = evg. Then
evf (x = x) = evg(x = x), so f = g.

Now suppose that we have a map Φ : evD → evE in (Deq+,Set). Evaluate Φ at
(x = x) ∈ Deq+ to obtain a map f : D → E of sets. For each n consider the map∧n
i=1(xi = xi) → (xk = xk) of Deq+ corresponding to projection onto the kth factor.

The naturality of Φ gives us the following commutative square.

Dn Φ(x=x)n- En

D

πk

?

f
- E

πk

?

By letting k vary we see that Φ(x=x)n = fn.
Now, for every n-ary function symbol σ : (x = x)n → (x = x) naturality of Φ gives

a commutative square

Dn fn
- En

D

σD

?

f
- E

σE

?
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and, for every relation symbol R ⊆ (x = x)m, a commutative square

R(D)
ΦR- R(E)

Dm
?

?

fm
- Em

?

?

Thus f is a homomorphism D → E. That is, f ∈ D.
Since every pe-formula ϕ in n variables defines a subobject of (x = x)n in Deq+, it

is easy to see that Φϕ is the restriction of fn to ϕ(X). Also since ϕ/θ is a quotient
object of ϕ in Deq+, one can deduce that Φϕ/θ takes an equivalence class [x] in ϕ/θ(X)
to the equivalence class [fn(x)] in ϕ/θ(Y ). Hence Φ = evf . That is, the functor ev is
full.

We now show that ev is an equivalence. Let Γ : Deq+ → Set be any exact functor.
Let D be the L-structure (Γ(x = x),Γ(f),Γ(R))f,R∈L. Using the exactness of Γ, it
is easily checked that Γ(ϕ) = ϕ(D) for every pe-formula ϕ. We claim that D ∈ D.
Suppose that D = ModT for a coherent theory T . Let ϕ→ ψ be a coherent axiom of
T . Let ρ(x,y) be the relation defined by

ϕ(x) ∧ ψ(y) ∧ x = y

Then ρ defines a monomorphism ϕ→ ψ in Deq+. By exactness of Γ, Γ(ρ) : Γ(ϕ) → Γ(ψ)
is a monomorphism of sets, so Γ(ϕ) ⊆ Γ(ψ), i.e. ϕ(D) ⊆ ψ(D), that is

D |= ϕ→ ψ

Thus D ∈ D = ModT . Clearly Γ ∼= evD, so ev is indeed an equivalence as required. �

Examples of interpretations

Let L = K be the language of rings. Let D be the category of real closed fields and B
the category of algebraically closed fields. It is easy to see that D and B are definable
subcategories. The standard two dimensional interpretation of an algebraically closed
field in a real closed field is an instance of an interpretation in our sense.

In fact any classical interpretation by positive existential formulas of a K-structure
B in an L-structure D can be thought of as an interpretation in our sense between
the category of K-structures and a suitable definable subcategory D of the category of
L-structures. For suppose that

B ∼=
(
ϕ

θ
(D),Γf (D),ΓR(D)

)
f,R∈K

where θ(D) is an equivalence relation on ϕ(D). Let D be the category of L-structures
on which θ is an equivalence relation and the Γf are definable maps (ϕ/θ)n → ϕ/θ,
where n is the arity of f . The sentences expressing these facts can be checked to be

38



coherent sentences. This implies that D is a definable subcategory and it can easily be
seen that this is an instance of an interpretation (K-Str)eq+ → Deq+ via the map

x = x - ϕ/θ

(f ∈ K) - Γf

We now look at an example of a bi-interpretation. This example shows that our
theory is also well-suited to what is traditionally regarded as the domain of abelian
model/category theory. Let Q be the quiver

1 •
α-

β
- • 2

and let k be any field. Then the path algebra of Q over k, written kQ, has a basis
{e1, e2, α, β} over k. For any kQ-module M , left multiplication by α and β restricted
to e1M define maps of e1M into e2M . Let D be the definable subcategory of kQ-Mod
consisting of those modules in which this restriction of α is invertible. Define the
interpretation

Γ : (k[X]-Mod)eq+ - Deq+

by putting Γx=x = ∃z(x = e2z) and ΓX(x, y) = ∃z(αe1z = x ∧ βe1z = y). In other
words, Γx=x(M) = e2M and ΓX = βα−1 : e2M → e2M .

Now let ∆ be the interpretation

∆ : Deq+ - (k[X]-Mod)eq+

defined by ∆x=x(M) = (x = x ∧ y = y) and

∆α : (x, y) - (0, x)

∆β : (x, y) - (0, X(x))

∆e1 : (x, y) - (x, 0)

∆e2 : (x, y) - (0, y)

One can check that with this definition one does indeed get a kQ-module structure on
the direct sum M ⊕M of the k[X]-module M . We claim that the pair (Γ,∆) gives
a bi-interpretation between the categories D and k[X]-Mod. To see this, note that
∆x=x ◦ Γx=x(M) = e2M ⊕ e2M and the natural isomorphism

M
∼=- e2M ⊕ e2M

is given by x 7→ (αe1x, e2x).
Conversely, Γx=x ◦∆x=x(M) = M . So we do indeed have a bi-interpretation.
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