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Abstract

This paper concerns quadratic matrix functions of the form L(λ) =
Mλ2 + Dλ + K where M, D, K are real and symmetric n× n matri-
ces with M > 0. Given complete spectral information on L(λ), it is
shown how new systems of the same type can be generated with up-
dated eigenvalues and/or eigenvectors. A general purpose algorithm is
formulated and illustrated with problems having no real eigenvalues,
or a mixture of real and non-real eiegnvalues, or only real eigenvalues.
The methods also apply for matrix polynomials of higher degree.
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1 Introduction

This paper concerns quadratic matrix functions of the form

L(λ) = Mλ2 + Dλ + K, (1)

where M, D, K are real and symmetric n × n matrices. It will be assumed
throughout that M is positive definite (written M > 0). Positivity properties
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for D and K occur in many problem areas, but are not necessary for the
algorithms developed here. Matrix functions of this kind appear frequently
in problems of classical mechanics where M, D, K are known as the mass,
damping, and stiffness matrices, respectively.

The set all of eigenvalues of L(λ) (zeros of the determinant, detL(λ)) form
the spectrum, σ(L), of L(λ), and are of great physical interest. There are
2n eigenvalues (counting algebraic multiplicities) and their location in the
complex plane (necessarily symmetric about the real line) determines vital
physical properties of any underlying system.

The model-updating problem considered here is briefly as follows: Given
complete spectral information on L(λ), suppose that the locations of some
(or all) eigenvalues are seen to be unfavourable. What changes in M, D, K
will produce a favourable re-location of the spectrum? Frequently, “un-
favourable” eigenvalue distributions concern either clustered eigenvalues, or
eigenvalues close to the imaginary axis, and adjustments are to be made to
moderate such properties. However, there is no hypothesis in this work re-
quiring that updates be “small” in any sense. When posed in the context of
the “transfer function” L(λ)−1, the problem could also be described as that
of “pole placement”.

Problems of this kind have been considered by several authors (see [1],
[2], [4], [7], et al.). In particular, interesting solutions are proposed in the
first of these papers and, as in this work, solutions are sought by Carvalho
et al. in [1] which maintain the symmetry of the coefficient matrices after
disturbance. The techniques proposed here are different, and more general
in the sense that the condition K > 0 is not imposed. We take advantage
of the detailed study of inverse problems begun in [5] and recently studied
more closely in [9] and [8], for example.

In the theory developed in these references, the notion of a self-adjoint
triple of spectral data plays a vital role. To the authors’ knowledge this is the
first time that an algorithmic approach has been taken to the determination
of these self-adjoint triples. They are, of course, a vital part of the updating
strategy proposed. We also remark that the theory and techniques developed
here apply immediately to polynomial functions L(λ) of higher degree - under
much the same conditions.

There is high computational expense in this methodology resulting from
the calculation of complete spectral data for the unperturbed problem, but
we take it that, in practice, this information is likely to be already known.
Indeed, much of this information is necessary before sensible “updates” can
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be formulated.
The method developed here is illustrated on small artificial problems,

but it is clear that accessible software can be utilized. There is no explicit
restriction on the size of L(λ), but stability problems are to be expected as
the size increases, as this will generally imply clustering of eigenvalues.

2 Spectral data

The complexity of our problem is significantly increased if L(λ) has both real
eigenvalues and eigenvalues in complex-conjugate pairs. We will formulate
the spectral data assuming that both are present, but we make the simplifying
(generic) hypothesis that all eigenvalues are distinct. Extension of the process
to admit multiple semisimple eigenvalues is not expected to be difficult, but
the inclusion of defective eigenvalues would be more formidable.

So suppose that there are 2r real eigenvalues (0 ≤ r ≤ n). When r < n
the non-real eigenvalues in the upper half of the complex plane are determined
by a complex diagonal matrix Jc = U1 + iW of size (n − r) × (n − r) with
W > 0. The complex conjugate eigenvalues make up the diagonal entries
of J̄c. Then there are 2r real eigenvalues which are distributed between the
diagonal entries of two r × r real diagonal matrices U2 and U3. The way in
which these two matrices are formed will be discussed in what follows.

A complex (canonical) diagonal 2n × 2n matrix including all the eigen-
values is now

J =


Jc 0 0 0
0 U2 0 0
0 0 U3 0
0 0 0 J̄c

 =


U1 + iW 0 0 0

0 U2 0 0
0 0 U3 0
0 0 0 U1 − iW

 . (2)

A right eigenvector (say xj 6= 0) can be associated with each diagonal
entry of J (each eigenvalue), and these form the columns of an associated
n × 2n matrix of eigenvectors, say X. Here, with our hypotheses on the
spectrum, we may define an n × 2n matrix of eigenvectors of L(λ) in the
form

X =
[

Xc XR1 XR2 Xc

]
, (3)

where Xc is an n × (n − r) matrix of (generally) non-real eigenvectors cor-
responding to the eigenvalues of Jc, matrices XR1 and XR2 are n × r real
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matrices of eigenvectors corresponding to the real eigenvalues in U2 and U3,
respectively. Note that the structure of X is consistent with that of J in (2).

The two matrices (X, J) form a Jordan pair of matrices for L(λ) and
necessarily satisfy the condition

det

[
X
XJ

]
6= 0. (4)

Canonical structures of the function L(λ) require the definition of a second
matrix. With X, J formulated as above, this matrix takes the form

P =


0 0 0 In−r

0 Ir 0 0
0 0 −Ir 0

In−r 0 0 0

 , (5)

and we observe that P ∗ = P and (PJ)∗ = PJ . This imposes a constraint on
the distribution of the real eigenvalues between U2 and U3. The eigenvalues in
U2, U3 have positive type and negative type, respectively. If it known a priori
that there are no real eigenvalues, then corresponding blocks of J , X, and P
simply do not appear. A bi-product of our algorithms is the determination
of the types of the real eigenvalues - if any. (See [5], or Chapter 12 of [6] for
the theory, and [8] for an expository discussion.)

It is shown in [8] that if M, D, K are real and symmetric and M > 0,
then X can be defined so that the two conditions

XPX∗ = 0, X(JP )X∗ = M−1 > 0 (6)

hold. (Then (X, J, PX∗) is known as a self-adjoint triple.)
The moments of the system are then the hermitian matrices

Γj = X(J jP )X∗, (7)

for all integers j for which J j is defined. Furthermore, when conditions (6)
hold the coefficents of L(λ) can be determined recursively in terms of the
moments (and hence X, J, P ):

M = Γ−1
1 , D = −MΓ2M, K = −MΓ3M + DΓ1D. (8)
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3 Model updating

We assume that in model updating the number of real and non-real eigen-
values is invariant. Then the facts above suggest the following

Strategy for model updating

• Given a system with real symmetric coefficients M, D, K and M > 0,
compute the matrices X, P, J above.

• Make the updates in X and J to produce X̂, Ĵ in such a way that:
(a) the canonical matrix P will not be disturbed, and
(b) conditions (6) are maintained (i.e. X̂PX̂∗ = 0, and X̂(ĴP )X̂∗ > 0).

• Compute the moments defined by X̂, P, Ĵ , and hence new coefficients
M̂, D̂, K̂ (as in (7) and (8)).

Clearly, one can choose to perturb the eigenvalues alone, or the eigenvec-
tors alone, or both together.

A difficulty in this program may arise in ensuring that, for the perturbed
system, the condition XPX∗ = 0 is maintained after updating. However,
this problem does not arise if (as is often the case) the eigenvector matrix, X,
is not to be changed (X̂ = X), and adjustments are made to the eigenvalues
only. Also, as it will be shown below, this problem can be resolved in another
way if it is known that there are no real eigenvalues.

Notice also that, by continuity, the positivity condition X(JP )X∗ > 0
will be preserved provided the perturbations are small enough. However,
even if the positivity condition is not satisfied but X(JP )X∗ is nonsingular,
then an updated system can be generated. In this case M̂ will not be positive
definite.

The major task is now to compute the triple X, P, J for the unperturbed
system (and hence a self-adjoint triple, X, J, PX∗).

4 Computing a selfadjoint triple

Given our hypothesis that all eigenvalues are simple, the determination of a
self-adjoint triple reduces to finding an appropriate “normalisation” of eigen-
vectors. This normalisation can be formulated in terms of the first order real,
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symmetric pencil forming a linearization of L(λ), namely Aλ−B, where

A :=

[
D M
M 0

]
, B :=

[
−K 0
0 M

]
, (9)

and observe that A−1 exists.
A characteristic property of a self-adjoint triple is the fact that X, J can

be used to simultaneously reduce A and B to canonical form as follows (when
all eigenvalues are distinct 1):[

X
XJ

]∗
A

[
X
XJ

]
= P,

[
X
XJ

]∗
B

[
X
XJ

]
= PJ. (10)

(These conditions are equivalent to those of equations (6)-(8)). After a little
manipulation, it follows that, also,

A−1B

[
X
XJ

]
= J

[
X
XJ

]
. (11)

On the other hand, suppose we are given any set of 2n eigenvectors, one
associated with each eigenvalue and arranged as in (3) to form an n×2n ma-

trix V0. Then the (generally complex) matrix V :=

[
V0

V0J

]
, with diagonal J

as in (2), is necessarily nonsingular ((V, J) is a Jordan pair). Indeed, we will
proceed on the assumption that V, J are generated by applying some gen-
eral purpous eigenvalue/eigenvector algorithm to the pencil λA−B. Notice
that we can identify the computed eigenvalues and associated eigenvectors
immediately (some real and some in conjugate pairs), but this does not give
immediate access to the sign characteristic. Consequently, we cannot write
down matrix P immediately.

We proceed with the retrieval of the sign characteristic and then to the
required normalization of the eigenvectors.

Proposition 1 If all eigenvalues are distinct, the matrices V T AV and V T BV
are (generally complex) diagonal.

(Note the curious entry of transposition rather than transposition with
conjugation; cf. the Appendix of [9].)

1cf. Theorem 6.1 of [10], for example.
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Proof: We have (A−1B)V = V J , whence AV J = BV and (V T AV )J =
(V T BV ). Since V T AV and V T BV are symmetric we also have J(V T AV ) =
V T BV . Thus, (V T AV )J = J(V T AV ) and the result follows easily from this.

2

Let S2 = V T AV , a diagonal matrix. It can be assumed that the entries
of J and the columns of V0 are arranged as in (2) and (3). Notice that for a
real eigenvalue λj the corresponding diagonal entry of S2 is[

vT
j λjv

T
j

] [
D M
M 0

] [
vj

λjvj

]
= vT

j (2λjM + D)vj, (12)

and the sign associated with λj (in the sign characteristic) is just the sign
of vT

j (2λjM + D)vj). (See Theorem 12.4.2 of [6], for example). Thus the
signs of the real diagonal entries of V T AV determine the signs εj (= ±1)
associated with the real eigenvalues. This admits the construction of the
canonical matrix P and the corresponding order of the real eigenvalues in
(2). Also, we may write

S2 = diag
[

S2
1 , S2

2 , −S2
3 , (S̄1)

2
]
,

where S2
2 > 0, S2

3 > 0 and S1 has non-real diagonal entries.
Now we go on to the definition of X. Let S be a diagonal square root of

S2 of the form
diag

[
S1 S2 iS3 S̄1

]
,

and let V0 be partitioned accordingly: V0 =
[

Vc VR1 VR2 V̄c

]
where VR1

and VR2 are real.

Proposition 2 If X := V0S
−1 then (X, J, PX∗) is a self-adjoint Jordan

triple.

Proof: Observe first that, if Q := |P | (the permutation matrix whose entries
are the absolute values of those of P ), then

V ∗
0 = QV0T and J∗Q = QJ.

Thus,

V ∗AV =
[

V ∗
0 J∗V ∗

0

]
A

[
V0

V0J

]
=

[
QV T

0 J∗QV T
0 ]

]
A

[
V0

V0J

]
=

[
QV T

0 QJV T
0 ]

]
A

[
V0

V0J

]
= Q(V T AV ) = QS2.
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Now

[
X
XJ

]
=

[
V0S

−1

V0S
−1J

]
=

[
V0

V0J

]
S−1 = V S−1, and so

[
X
XJ

]∗
A

[
X
XJ

]
= S−∗(V ∗AV )S−1 = S−∗Q(V T AV )S−1

=


0 0 0 S̄−1

1

0 S−1
2 0 0

0 0 iS−1
3 0

S−1
1 0 0 0




S1 0 0 0
0 S2 0 0
0 0 iS3 0
0 0 0 S̄1

 = P.

Thus the first of equations (10) holds, and it can be shown in a similar
way that the second is also true. 2

The construction of a self-adjoint Jordan triple is now complete. The
computational steps required to implement the analysis are summarised in
the Appendix to this paper.

As some technicalities disappear when there are no real eigenvalues, and
because this is a case of practical interest, it will be considered first in the
next section. The more general case of mixed, real and non-real eigenvalues
will be discussed in Section 6. A simple example of a (hyperbolic) system
with all real eigenvalues appears in Section 7.

5 Elliptic systems

Consider the case in which all eigenvalues appear in non-real conjugate pairs
(both before and after updating). Such systems are said to be elliptic. The
first observation is that equations (2) and (3) take the more simple form

J = Jc ⊕ Jc, X =
[

Xc Xc

]
.

The computational steps required are summarised in the Appendix to this
paper, and will simply be illustrated here by working through a simple ex-
ample.

Example 1: (This example is taken from [3].) The oscillations of a mass-
spring system lead to analysis of the 3× 3 function L(λ) = Mλ2 + Dλ + K
where

M =

24 1 0 0
0 2 0
0 0 5

35 , D =

24 0 0 0
0 3 −1
0 −1 6

35 , K =

24 2 −1 0
−1 3 0
0 0 10

35 .
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Apply the “matlab” instruction of Step 2 of the algorithm in the Appendix
(or equivalent), and complete Step 3 to find V and Jc. It is found that (with
truncated numbers) the eigenvalues are the diagonal elements of J with

Jc =

24 −0.0826 + i(1.4502) 0 0
0 −0.7530 + i(0.8576) 0
0 0 −0.5144 + i(1.2469)

35 .

We observe that the problem is, indeed, elliptic.

Complete Steps 4, 5, and 6 of the algorithm resulting in P =

[
0 I3

I3 0

]
and evaluation of the matrix Z. The normalised eigenvectors are the columns
of the 3×6 matrix X making up the first three rows of Z, and Xc is the first
3× 3 partition of X:

Xc =

24 0.3775 − 0.4667i 0.2440 − 0.0283i 0.1447 − 0.0656i
−0.1482 − 0.0455i 0.4103 − 0.3670i 0.0186 − 0.2322i
−0.0290 − 0.0066i −0.0343 + 0.1257i 0.2083 − 0.1720i

35 .

This completes the preparatory steps. (It can now be checked that Γ0 = 0
and Γ1 = M−1, for example.)

Suppose now that the first eigenvalue, −0.0826 + i(1.4502), is thought to
be too close to the imaginary axis. We generate an updated system with
this eigenvalue replaced by −µ + i(1.4502) where µ > 0.0826 and with the

eigenvectors unchanged. So the new matrix Ĵ is formed from

Ĵc =

24 −µ + i(1.4502) 0 0
0 −0.7530 + i(0.8576) 0
0 0 −0.5144 + i(1.2469)

35 ,

and Xc, X are unchanged. It can then be verified that X(P Ĵ)X∗ > 0. We
give the results below rounded to two decimal places for convenience.

When the critical eigenvalue is−0.1826+i(1.4502) the coefficient matrices
become:

M =

24 0.99 −0.03 −0.01
2.02 0.01

5.00

35 , D =

24 0.20 −0.10 −0.03
3.02 −1.00

6.00

35 , K =

24 2.03 −0.98 0.03
2.96 −0.02

9.99

35 .

When the critical eigenvalue is −0.2826 + i(1.4502) the coefficient matrices
become:

M =

24 0.97 −0.06 −0.03
2.04 0.02

5.01

35 , D =

24 0.41 −0.21 −0.07
3.04 −1.00

5.99

35 , K =

24 2.07 −0.97 0.05
2.92 −0.04

9.99

35 .

These results suggest that the update can be achieved in large measure by
adjustments to the damping matrix, D, only. 2
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In this example there has been no perturbation of the eigenvectors; i.e.
the columns of X, or Xc. As noted above, if X is perturbed there seems
to be a difficulty with maintaining the condition X∗PX = 0. However,
Prells has shown in [12] (see also [9]) how this can be controlled. Thus, the
normalisations required in this theory imply that (for an elliptic system) the
real and imaginary parts of Xc are strongly connected. Thus, if we write the
real and imaginary parts, Xc = XR + iXI then, necessarily, there is a real
orthogonal matrix Θ such that

Xc = XR(I − iΘ). (13)

Indeed, when X is properly normalised, XR is nonsingular and X−1
R XI is

an orthogonal matrix. Furthermore, the positive definite properties of the
coefficients M, D, K depend on Θ, and not on XR (see Theorem 9 of [9]).

However, for present purposes, the important observation is that, if Xc

has the form (15), then the condition X∗PX = 0 is automatically satisfied.
Furthermore, if updates are made in XR only then, by not changing Θ,
positivity properties of M, D, K will be preserved.

6 Mixed problems

Consider application of the algorithm of the Appendix to a “mixed” problem,
i.e. with both real and non-real eigenvalues. Steps 1 and 2 of the algorithm
in the Appendix can be completed as before.

For Step 3: Suppose that there are 2r real eigenvalues with 0 < r < n.
As mentioned above, it is known that there must be r eigenvalues of positive
type and r of negative type, and this classification is required in constructing
the canonical matrices J of (2) and P of equation (5). These signs are
determined using equation (13). We illustrate with a simple example.

Example 2: Consider the problem with

M =

[
1 0
0 1

]
, D =

[
2 0
0 3

]
, K =

[
5 2
2 2

]
,

and note that all three matrices are positive definite.
At Step 2 of the algorithm it is found that the problem is, indeed, mixed

with (truncated) eigenvalues

−1.0656± i(2.1742), −0.4175, −2.4513.
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Using the criterion (13) it is found that, of the real eigenvalues, −0.4175 has
positive type and −2.4513 has negative type. This admits definition of the
permutation Q of Step 4, and hence the suitably organised matrices V , J ,
and P . In fact:

J =

2664
−1.0656 + i(2.1742) 0 0 0

0 −0.4175 0 0
0 0 −2.4513 0
0 0 0 −1.0656 − i(2.1742)

3775 , P =

2664
0 0 0 1
0 1 0 0
0 0 −1 0
1 0 0 0

3775 .

After completion of Steps 4, 5, and 6, the normalised eigenvectors are ob-
tained from matrix XE:

X =

»
−0.3021 + i(0.3333) 0.2967 −i(0.2201) −0.3021 − i(0.3333)
−0.1567 + i(0.0774) −0.6438 i(0.6721) −0.1567 − i(0.0774)

–
.

Now we are in position to make updates. Consider the substantial shift
of spectrum to

−4± 4i, −1, −4,

and leave the eigenvectors invariant. Thus, J is to be modified and P and X
are to be unchanged; it can be verified that, with the new J , the condition
X(PJ)X∗ > 0 still holds (ensuring positive definiteness of the new mass
matrix).

Finally, apply formulae (7) and (8) to obtain the the coefficients of the
updated system:

M̂ =
[

0.5334 −0.118
0.6959

]
, D̂ =

[
3.8308 0.8350

4.0086

]
, K̂ =

[
14.8328 6.1635

5.7632

]
.

7 A hyperbolic example

This illustration is based on Example 8 of [8]. There, an inverse problem is
solved with specified eigenvalues and the coefficient matrices M, D, K are
generated. The eigenvalues are -1, -2, -3, -4 all of positive type and -5, -6,
-7, -8 all of negative type. Here we reverse the process and, starting with the
(truncated) coefficients found in that example, we reconstruct the spectrum.
Indeed, a selfadjoint triple is to be found (made up of matrices J, P, X) so
that updates can readily be made.
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We quote from [8]:

M =

2664
0.1886 0.0269 −0.0168 −0.0051

0.2896 0.0690 0.0707
0.2694 0.0808

0.42342

3775 , D =

2664
1.3771 0.0808 −0.0673 −0.0253

2.1582 0.3451 0.4242
2.6162 0.5657

4.3939

3775 ,

K =

2664
1.1886 0.0539 −0.0505 −0.0202

3.1582 0.4141 0.5657
5.4242 0.9697

10.7879

3775 ,

After Steps 2 and 3 of the algorithm it is found that the (truncated)
eigenvalues are:

−1.0001, −2.0002, −3.0002, −3.9872 of positive type,

−5.0030, −6.0033, −7.0258, −7.9963 of negative type.

The variation from integer values is to be expected given the truncated
entries of M , D, and K. At Step 6 we obtain

X =

2664
1.0001 −0.0001 −0.0001 −0.0005 −0.2012i −0.8032i 0.3959i 0.3972i

0 1.0002 0.0003 −0.0025 −0.8025i −0.1932i −0.4015i −0.3972i
0 0.0001 −1.0001 −0.0022 −0.3999i 0.4040i −0.1871i 0.8013i
0 0 −0.0001 0.9909 −0.3880i 0.3894i 0.7983i −0.2061i

3775 .

The eigenvectors are not to be updated and the new spectrum is taken
to be

−1 − 2 − 3 − 4 of positive type,

−10 − 11 − 12 − 13 of negative type.

The updated coefficients are found to be :

M =

2664
0.0965 0.0065 −0.0045 −0.0009

0.1152 0.0114 0.0084
0.1112 0.0105

0.1358

3775 , D =

2664
1.1928 0.195 −0.0182 −0.0041

1.4607 0.0570 0.0526
1.6672 0.0752

2.1046

3775 ,

K =

2664
1.0963 0.0130 −0.0137 −0.0032

2.4604 0.0684 0.0714
4.0004 0.1310

6.2459

3775 ,

2
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8 Confining perturbations to D and K.

Our analysis has assumed that all three coefficient matrices M, D, and K
are accessible for the implementation of updating. Given our hypothesis
that M > 0, it is possible to confine the perturbations to the damping and
stiffness matrices, but at the expense of perturbing eigenvectors. This may
be particularly useful if the precise nature of the eigenvectors is unimportant.
The main advantage of such a strategy is likely to be that updates in D and
K can be achieved by state and velocity feedback mechanisms (at least in
theory).

Suppose that the updating process of L(λ) has been completed and results
in a system L̂(λ) = M̂λ2 + D̂λ + K̂. Since M > 0 and M̂ > 0 both matrices

have unique positive definite square-roots, M
1
2 and M̂

1
2 . It is clear that the

system
M

1
2 M̂− 1

2 L̂(λ)M̂− 1
2 M

1
2

has the spectrum of L̂ and the leading coefficient, M , of the original system,
L. The cost of this maneouvre is to replace each eigenvector, xj of L̂(λ) by

the transformed vector M− 1
2 M̂

1
2 xj. This simplifies, of course, if the original

system happened to be monic, i.e. had M = I. Let us illustrate by re-
examining Example 2.

Example 4: Note that for the undisturbed problem of Example 2, M =
I. After applying the strategy immediately above it is found that, for the
updated system,

M̂ =

[
0.5334 −0.0118

0.6959

]
,

and then

M = I2, D =

[
7.2126 1.4955

5.7874

]
, K =

[
28.0250 10.4572

8.4693

]
,

and the eigenvectors are premultiplied by

M̂
1
2 =

[
0.7303 −0.0075

0.8342

]
.

2
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9 Conclusions

It has been shown how spectral updating of L(λ) (or “pole placement” of the
transfer function L(λ)−1) can be achieved when complete spectral data for
L(λ) is suitably formulated. In the course of the analysis, it is shown that the
(formerly) theoretical spectral analysis of real symmetric matrix polynomials
can be used to advantage in a computational setting. The reader is reminded
that, although second degree polynomials are the objects of study of this
paper, the methods apply immediately to real symmetric matrix polynomials
of any degree with positive definite leading coefficient.

Attention has been confined to real symmetric systems, but it is clear that,
if symmetry is not an issue, then the techniques used here can be applied more
widely - to nonself-adjoint problems. (In particular, the notion of positive
and negative real eigenvalue types does not arise.) Updates of selected parts
of the spectrum and/or eigenvectors can be made once a Jordan triple of
eigenvalues and eigenvectors for the undisturbed system has been determined
(see [5], [11], for example). This may be a topic for further investigation.

10 APPENDIX: Computing a self-adjoint triple

for problems with distinct eigenvalues

This discussion applies quite generally to the real symmetric eigenvalue prob-
lem (λA−B)ξ = 0 with detA 6= 0 provided that no eigenvalues are defective.

1. Use the matrices M, D, K to form matrices A and B of (9).

2. Apply a standard algorithm to compute eigenvector and eigenvalue
matrices V and J of A−1B.
(For example, in “Matlab” call [V, J ] = eig(inv(A)∗B).) (Ensure that
real eigenvalues have real eigenvectors.)

3. If there are no real eigenvalues go directly to the next step.
Otherwise, compute v∗j Avj for each real eigenvalue to determine their
types (see (13)).

4. Apply a permutation matrix Q (so that QT JQ → J and V QT →
V ) to obtain the eigenvalue ordering of equation (2) and record the
corresponding matrix P of (5).
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5. Compute a (generally complex) diagonal matrix S := (V T AV )−
1
2 .

(In “Matlab”, S = sqrt(inv(V.′ ∗ A ∗ V ).)

6. Compute XE = V S.
(In “Matlab”, XE = V ∗ S.)
The first n rows of XE form matrix X.
(In “Matlab”, X = XE(1 : n, :).)
THE COLUMNS OF X ARE THE NORMALISED EIGENVECTORS.

7. Confirm by checking that XPX∗ = 0, (XJPX∗)−1 = M .
(In “Matlab”, X ∗ P ∗X ′ = 0, inv(X ∗ J ∗ P ∗X ′) = M .)
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