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Preface

I became interested in the matrix exponential during the prepar-
ation of a talk I gave on the subject in 1974 here at Manchester. Since
then I have been motivated by the work of B.N. Parletti?O]and by C.B.

Moler with his "n bad ways to compute the matrix exponential (n >»9)".

Although this numerical analysis report is more analysis than
numerical, I hope that it will provide a framework within which more
practical research on the subject can take place. To this end I have
included in the references some papers of a computational nature which,
though not actually cited in the text, may be worth scrutinizing in
the future.

Readers will find that the Schur decomposition figures heavily
in this report. It was Parlett who, with his algorithm for computing
functions of triangular}matrices, convinced me that this decomposition
had an important role to play in the analysis and computation of the
matrix exponential. This view is consistent with one of the most basic
tenets of numerical algébra, namely, anything that the Jordan decom=

position can do, the Schur decomposition can do better!



Abstract

This report brings together a wide variety of facts concerning
the matrix exponential. Against a background of familiar results, we
present an analysis of matrix functions (the exponential in particu~
lar) which exploits the Schur decomposition theorem. This helps us
explore the behavior of a function of a matrix whose eigensystem is
poorly conditioned. Finally, we investigate Padé approximation of the
matrix exponential and feature in the discussion, a potentially use-

ful inverse error analysis.
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Notationst

! n¥En s )
& and € i gtand for complex n-vectors and nxn matrices vespect—

A * ,
ively. If % & €™ then fxf =(x x)i denotes the Euclidean or Z-norm of

x. Similarly, A e‘ﬁnxn5§p KAll = max &AXEJEX% If A= (aij) e g H
O¢xech
* , s i 2 .4 i
A e P az J
then A (aji) , A (!aiji)” and %AAF { .2, laiii }J* . Notice

o ) f"wJ
1at EA@§ = %!AEQF . For nxn matrices A and B, ;Ai ¢ |8{ means that

; . y s . A -1 . ..
ta. i € gmi,ﬁ for all i and j and Y denotes AB ~ {(provided B 1is in-

[ =)

, . 3\
If f{r) is differentiable, E% firy) = £y = f(l}(t}a If higher

k .

srder derivatives exist, E%ﬁ £(t) = f<k)(t} . 1 Afe) = (aij(tﬁ)é gt

4 i l {
where t is a real variable, then 3% Aty = A{L) = (aij(t)) and

a§h A(t)de = (afb aij(t)dt ) . Similar definitions hold for vectors.



1. Functions of Matrices.

Let A be an nxn complex matrix with eigenvalues Xl seees An . We

shall define the matrix f£(A) by

(1.1) FQA) = — ég.f(z)(zI—A)_ldz
2Mi 7

Here T consists of a finite number of simple, closed curves Fk with in-

teriors Qk such that (a) f(z) is analytic on Tk andiﬂk and (b) each Xisis

contained in some Qk. Equation (1.1) is just the matrix version of Cauchy's

integral formula and we refer the reader to Dunford and Schwartz

[9 ,pp.566“57i] for a discussion of it. .
[

There are other ways of defining f£(A). For example, if f(z) = ;Z: akzk
k=0
and each eigenvalue of A lies inside the circle of convergence for

this series, then
f= )

(1.2) £(A) = :Z: a, Ak
k=0

A discussion of this power series representation can be found in Mac-
Duffee[17] .

Some leading examples of matrix functions are

]
A A

e = —

=
]

(@

=

which converges for all A and

<O
L

=0

(1 - a)"t

]

-

which converges for all A with spectral radius less than one.

Suppose A = X B X“; represents either the Jordan or Schur decompo@it—
ions of A. As will be shown in the next two sections, it is possible to
express f(B) in "closed" form. This implies that an explicit fepresentatién
of f(A) can be given because |

(1.3) A=XBX £(A) = X £(B) X
| 1 a=%> 1



2. The Jordan Canonical Form and f(A)

The Jordan Canonical Form (JCF) Theorem guarantees the existence of

an invertible matrix X such that

-1
(2.1) X AX = Jm (Al) e ... 08 Jm (Ap) = J

1 P

where on the right we have the direct sum of Jordan "blocks':

F"}\ 1
K 1 0 0
o Xk 1 ¢
2.2) J, =3 () = ., (m, x m)
k mk k 3 ¢ N\ N mk mk
[ * N
’ . 1
o N
-O "'0 )\k‘

The matrix X in (2.1) is not unique, but we ghall always assume that it is
chosen to minimize k(X) =‘lX|‘|‘X—1". We say that the eigenvalue A; occurs
with algebraic multiplicity m, (m1 + ...+ m.p = n) . Because J has such

simple structure it is possible to directly specify f(J) and hence, f(A) =

X £(J) X L.

Theorem 1. (See MacDuffee r17] )

If the JCF of A is given by (2.1) and (2.2) and if f(A) is defined by

(1.1), then

-1
2. £ = £(J ..
(2.3) @ =x[eapo...ozu)] x
where
- (my -1) T
£Q) f(l)(}\k) . e s £k Ty
(m ~1)!
°© £O) N .
~N ~ o
(2.4) f(Jk) = . i ~ N
1] I N h 4
N N
* . ~N (1)
£ (A
0 0 . e . £(\
i () ]




As an application of Theorem 1, we prove the following result:

Theorem 2.

I1f the Jordan decomposition of A is given by (2.1) and (2.2) and

if £(A) is defined by (1.1), tﬁen

(r)

(2.5) NE@WN 2 «@® m  max £ @ |
z e A(A) !
Ogrgm-1 :

where m = 1nax(m1 ,...,mp73.

Proof.

If C = (c.,) is a qxq matrix, it can be shown that

i

llcl’: ‘[ max\cij‘ .

Thus, from (2.4)

(r)
Neooll & m  max £ 0 |
O$rsmk-1 i,
4 m max 1£®) (z) |
osreml oy
z € A(A)

The theorem now follows becaﬁse from (2.3)

Ne@l & x0T max BN
\eKsp

(r)
£ k(X)) m max £ (2) |
Ogrsmrl '
r.
z € A(A)

Q..E. D.



3. The Schur Decomposition and f(A).

The Schur decomposition provides an interesting alternative when it
comes to the specification and analysis of f(A). This decomposition states

that there exists a unitary matrix Q such that
* .
(3.1) QAQ = T = dlag(ki) + N

where T = (tij) is upper triangular (tij =0, 1> 3) and AiA= tii (i=l,...,n}.
Since Q* = Q—l, (3.1) represents a similarity transformation and thus,

A(A) = {Al,...,kn}. We also observe that the matrix N in (3.1) is strictly
upper triangular and hence, N? = 0 . The matrix Q can be chosen such that
the eigenvalues Ai appear in any order. A discussion of the Schur decomposi-

tion can be found in Stewart 126] .

In order to obtain an explicit representation of f(A) using (3.1) we
must investigate f(T). To motivate the general result we consider the ex-

ample eT where

Mootz B3
T = 0 XZ t23
_ O 0 A3 _
It can be shown that -
—e}\l t,.E t..E.. + t, t..E
12712 13713 127237123
T Ap
e = 0 e t23E23
0 0 eA3
As A3
el - " . . E - E
where Eij = (i < j) and E123 12 23
Ai - Aj Al - A3

. T . . .
From this example we observe that e  is an upper triangular matrix

whose entries involve divided differences of the eki . As we shall find,



similar remarks apply for general f(T). To make this precise we shall

need some definitions and a lemma.

Definition 1.
Suppose f(z) is analytic on some open set {I containing points
Wy seees By o We deniote the k~th order divided difference of f at

these points by UO,---,U£] . TL.e.

. . U T o b
e l) [uyyoeeny mgl = L o e “kJ

po - uk

]

(k = 0) (v 1= £G)

If any of the By 's are repeated, then a limit argument can give meaning

to[ﬁo yeess u?}. (See Ostrowski [19]. )

Definition 2.
For i< j , Sij denotes the set of all strictly increasing sequences

of integers which begin at i and end at j:

1]
il

{cr[@=(co,...,crk} s i=o <o <co<o =j )

543 1 k

For example, $,; = { 2,5, ,3,5), (2,4,5) , (2,3,4,5) }

Definition 3.
If o = (do senesy Ok) € sij , then 2(o) = k . That is, 2(o) is the

"length" of o.

Definition 4.

s 2 g sijlz(c) =k} .



Lemma 1. (Parlett [20] )

Suppose T = (tij) is an nxn upper triangular matrix and that F = f(T) =

(fij) is defined by (1.1). If the diagonal entries ti; © Xi are distinct, then

0 i> 3)
(3.2) £ = £0,;) G =)
£.. - £, i-%1
B F 20 fate T tafig (< 3)
I, =, k=i+1 ) )
1 ] )‘i - >‘j
Proof.

From (1.1) we have that f.. = f; f(z)[ﬁzI - T)-Il.. dz . Since
1] 1]
r

(z1I - T)"1 is upper triangular for all zer,we have that fij =0 for iy j.

2 i

: N N | . } . _
Since [(zI T) ]ii = (z Xi) , we obtain fii = f(Ai) . Thus, fij is cor

rectly specified Yor all i2j .

Now assume i < j and equate the (i,j) entries of the identity FT = TF

which follows from (1.1). We obtain

P t.. £ .
k=1 ik kj k=i ik kj
whereupon -1
f.. - £.. £, t . -¢t, £,
— ;1 _ x!! . jZ: ik ki ik kj
+ AT k=i+l Y

Q.E.D.

Two remarks are in order. First, sense can be made of (3.2) if any of
the ki are repeated. However, for our purposes we do not have to worry about

this possibility. Second, (3.2) indicates a systematic way in which f(T) can

be computed “superdiagonal at a time". We refer the reader to Parlett[20]for



more details , For now we remark that an element on the p-th superdiagonal

of F (fi s i=l,...,n~p ) is a linear combination of elements from the

s 1+p

superdiagonals O ,..., p~1 . Schematically:

X X X X X
0 |: :'avx X
0 0 (f24 is a linear combination
b'e X
£
o o0 o x of £395 £595 f4yp and £5,)
0 0 0 0 X

This observation follows from the (i « j) case of (3.2)

We are now ready to give an explicit expression for £(T).

Theorem 3.
Let T = (tij) be an upper triangular matrix with Ai = tii . Suppose
f(T) is defined and given by (1.1), If F = (fij) = £(T), then for i > j ,

fij =0; fori=13, fij = fCAi) ; and for i< j ,

(3-3) f.. = Z t t see L . L)\ sy }\ 1
(go’.“’gk) . Sij 00,01 01,02 Tem1 295 90 Oy

By observations made in the proof of Lemma 1, we see that the theorem
correctly specifies fij for i 3 j. To verify (3.3), we first assume that
the Ai are distinct. Hence, (3.2) is applicable and when we set j = i+l in
that formula we obtain
Lii 7 finin

ij ti,i+1 A
1 i+l

Ei iel Y ki+1]

This shows that (3.3) is true whenever 1 = j-i , Now assume (3.3) is true
whenever 14 j~-i « p for some p 2 1 . To establish (3.3) by induction we
must show that it holds whenever 14 j-i<« p+l . Without loss of general-

ity, it suffices toset 1 =1, j=n, and p =n - 2 and show

(3.4) f = Z t PR t . [AO'Q jees 2 Ao_kj

In ce s, 209 Ok~129
1]



From (3.2) we have

n=1
t t, f
(3.5) £ =t A+ 2y laam 14 an
1n In 1’ n - N
4 1 n
By the inductive hypothesis,
Z.
(3.6) f = see 0 t_ A ey A
lq oe S 0,91 Tp-12% L oo” "’ "k]
1q
and
(3.7) tm ~ :Z: te,t 00 B T 000 M j]
4 TeS 0571 k-1°"k 0 k
qn
for ¢q = 2,...,n-1 . Now in each term of (3.6) g = 1 and o = 4 and thus
n-1 n-1
(3.8) £Eo = 2 S tn{)\c""’}\o‘]
=2 119 q=2 oes 0% k1% 9B 00 k
= Z s &« @ t )
0Qs0 Gy 40 Y_?\ gesey A _]
a € S1n k=1"k “"ap e
2(a)>1
Similar manipulation of (3.7) gives
n~-1 )
(3.9) Ztlfn= Z Cyr on * by a[i\a...,xa]
g=2 141 o€ S 0,%1 S e k
2(a)>1
Substitution of (3.8) and (3.9) into (3.5) gives
£ =‘t)\l’)\n-:l fin 7 ag,a  Fa Y)\ao’”,xo‘k—g-bal’“’)\“
n ae s, 0 k-1*"k
In
Q(a)>1 )\1 - )\n
= Z ta a v ¢ ta N (a"‘., Aa]
o« e 8 G»™1 k=1, k k

which completes the proof of the inductive

step.



There remains the derail of ropeated eivenvalues, Suppose we
write T = diag(ki) + N wheve N is the strictly upper triangular por-

tion of T (nij = (1 - éij)tij ). Define a sequence of upper triangular

matrices Tq by a
Tq = diag( A£Q)) + N

such that (2) lim Tq =T and (b) each.Tq has distinct eigenvalues

A{q> sy Aéq) . Clearly we can choose the Aéq) to be interior to
the contour ' in (1.1). Thus,
| S : ~1
f(T) = —=—— §£(z)(zI - T) dz = lim £(z)(z1 - Tq) dz
. e 3
27 r g 2100 i T
= lim £(T))
o 7

Another continuity argument shows that

{':g {Aég))”ée’ }\é;l)j = {Adojgao) Aok‘]

. . P () N
for any (0 ;00 ok) € Sij (i< 3). If Fq (iij ) = f(Tq) . then

we clearly obtain

£, = lim £ (@
j e M
-y ,
= lim IZS t = , E_x(q) — A(q)(]
490 5 ¢ s]’_j SLFESH Olk_,l’Ok qp 97 ok ’
D [r vy a ]
ces,, ‘0% Ok-12% ~ 90 %

1]
This shows that (3.3) holds even though T might have repeated eigenvalues.

Q .E. D.

(Professor Parlett has mentioned in private correspondence that Theorem

3 was known to him although the result does not appear in[Zd]“)



10.

As a preliminary application of Theorem 3, we prove the following re-

sult,
Theorem 4.

*
Let QAQ = T = diag(%i)'+ N be the Schur decomposition of
A where N is the strictly upper triangular portion of T. Suppose f(A)

is defined by (1.1) and that the contour ' in that expression encloses

Q , a convex set containing the spectrum A(A),T§, for r = 0,...,n-1

sup |f(r)(z)| = Sr
z £ Q
then
n-1 _ r
(3.10) tm| ¢ 2y O IN
) r=0 '
r!

and
(3.11) el < sl - [n) H7H,
where

§ =  max S

ogrgn-1 r!
Proof.
- - . : 25 (x) . el
Set F = (f..) = £(T). Since 8., = S.. (see Definition 4)
1] lJ r=1 1]
we have from (3.3)
s > [ 1
- n ¢ e N ?\ ’oon’>\ (i<j)

(3.12) fij = oes§§) 0Q,01 9129, L 90 g

where N = (nij)' Now because £l is convex, it is possible to bound the

divided differences which make up F:

. (r) 8
(3.13) ITra. ,oo0, 2] ¢ swp | 9@ = °r
9 ’ ’ % ze ! !

(see Ostrowski [1Q}) . It is possible to give an explicit expression



11.

for the (i,j) entry of |N|® which we denote by \nij((r), From Parlett

IZO] we obtain, (¢ =21)

0] j<i+r
(x)
(3.14) alnijl = izi
o e S§¥)'n00’01 n(‘r-l’orr‘ Jzisr
1]

Taking absolute values in (3.12) and applying (3.13) and (3.14) for

i< j gives

5 7
‘fij\ < r:ZII o€ ng) l ngo’sl". n01:--1’61“ l Y;\cxo ""’Aojll
ij T
‘Zj_ij ° (r) S (r)
< r r) _ r
r=1 «r. !nijl rjzll '—EE lnijl

This result together with the fact that fij =0 (1 > j) and Ifij' N

(i = j) proves (3.10) .

To establish (3.11) notice from (3.10) that

n-1

lE(T)| < & 2 IN|T = a(I—iNl)"1
r =20

and consequently,
he@ll, =lleeaa’ly =lel, = llliemill, « Wa- wp™hy,

Q. E. D.



4. Definitions of the Matrix Exponential.

The exponential of an nxn complex matrix A shall be denoted by

eAt and can be defined in a number of equivalent ways:
(4.1) S .‘ § e®t (21 - &) laz

< kw
4.2) AL 2L Ak

k=0 k!

At Yk

4.3) e = 1im I+ At

ko k
by ox@ =™ ey X oCiey L xmy e

dt

(4.5) X(t) = 2 &S coyx) =0 xo) = aF , k=0,...,0-1 .

d
Y = - - o —
(c(x) det(A - xI) , D Tt )

Formulas (4.1) and (4.2) arise directly from the definitions in
Section 1. (0f course, the spectrum of A is encircled by the closed con-

- : Ayt s N ey A .
tovr T o) Formula {(4.3) is discussed ip &arto 314 p 47881 |, (4.4) in

£

hs T 2 ce i ¢ ¢ = . e ¢ i
Bellman L2 ,p.165ff § , and (4.5} in Zieburidb) .

At

As (4.4)-(4.5) suggest, the matrix exponential e has a deep

connection with initial value problems. This connection will be exploit-

. . . . . At
ed in the next few sections as we investigate the properties of e .



5. Salvaging the Additive Property.

Unfortunately, not all of the properties of the scalar exponential

a At . .
e t carry over to ¢ . The leading example of such a property is e

at bt
e e

*

Theorem‘:‘_i_o

(A+B)t = eAteBt for all t if and

1f A and B are nxn matrices then e
only if AB = BA.
Proof.

) . . . , At Bt
( =>») Substituting the power series vepresentations of ¢ , e~ and

‘ A+ t . -
e<A+B)t asB)e | eAfeBt and then equating the coefficients cf t2

into e
gives

B(A ¥ B)2 = AR + JA” 4 %BZ
whence, AB = BA.

(&=) If A and B commute then

5%_ EeAteBt} o pAt Bt Aty Bt o At Bt

Thus, X{t) = eAteBt sclves X(t) = AX(t) , X(0) = I and from (4.4), this
. , . +
implies that X(t) = e(A Bt .
0. E. D.
eAt e“At = ¢ and thus, eAt is nonsingular for ail t.

porollarz 2.
A A A(s+
e s e t . e (s+t)

(a+B)t to eAt and eBt be~

In the noncommutative case, relating e
comes complicated. However, some tractable results can be obtained by

exploiting (4.4).

(a+tb)t_

13.



L4,

Theorem 6.

A+ At . . . .
&\A B)t = e  Z(t} where Z(t) is the unique golution to

21(e) = o Bty At ooy
{5.1)

20 = 1
Proof.

If Z(t) satisfies the above initial value problem, then

At . At X
E%m e Z(ti} = A eAt Z{t} + e g FARED
At N At At At
= Ae  Z{t)+ e e Be Z(t)
: N at N
= (A + B} E;gf Z{ty
) (A+BS ¢ , . ]
By (6.4, Q“A Jt eAtZ(t) gince ?e tZ'xﬁj =1 .
} r=0
Qa E«t Dn
. , ] e o . {A+B)t , .
It 1s poszible to get an explicit representation of e by iterating

the following resuit:

Lemma 2.
(5.2) e(Ad.B)t = eAt + ‘g eA(t“T) B e(A*B)I dt
O
. Ar Y ateeny {(A+RYy7T
Diftersnriacion of ¥(ty = e+ % =& T ge
.0
reveals g% X(t) = (A+B)X(t). Since X(0) = I, X(r) = e MBIt ¢y
Q. E. D.
Theoxem 7.
; At A f .
1f Ao(t) = e and Ak(t) (k 2 1) is defined by
-t t1 £, - i
Ak(t) . S g S: k-1 eA(t, c]‘)B @:A(tl ty) . BeAtk
) 0 0 0

s
y

then e("HB)t = :Ei Ak(t) .
k=0

dtka”dti



15.

Proof.

k
Since “eAs“e_e“As“ it is easy to show “Ak(t)“é “EEU e“At“ .
k!

Thus the above series converges uniformly on bounded sets of t because
it is majorized

&
\ i (t)“ . Jdad 2 dsd® | _dial s uBbe
1<==oAk -

=0 k!
Thus, differentiation inside the summand is allowable and since

A AO(t) (k = 0)

d
& & -
AA(E) + BA_(t) (k > 1)

) @
we have 4 Z A (t) = (A + B) Z Ak(t) . The Theorem now
dt k
k=0 k=0
follows from (4.4) because Ak(O) = 1.

k=0 Q.E.D.

Lemma 2 can be found in Bellman EZJ . Theorems 6 and 7 can
essentially be found in Gantmacher [121 where he discusses the
"matrizer". The analysis there is in the more general setting of the

variable coefficient problem A(t)X(t) = X(t).

We conclude with some rather different approaches to the prob-
lem of salvaging the addition law. Trotter [291 proves the following
"product formula':

JasB)e [eAt/k eBt/k] k
k—yeo

(5.3)

When A and B commute, (5.3) of course gives e(A+B)t = eAteBt .
When A and B do not commute, it is not surprising that the com-

(A+B) t At Bt
e e .

mutator [A,B] becomes involved in expressions for e and

Two results confirming this are the Campbell-Baker-Hausdorff formula



eAt eBx: - eC(t;)

(5.4)
where
(5.5) c(t) = (a+B)t + 3[A,B] t% + ré(]];\,n_‘(, 8| -|[.51 . A]) L.

and the related Zassenhaus formula

2 3 4
(5.6) e(A+B)t - eAteBt eCzt eC3t: eCAt
where
[ = - .;_l \ l ¥ -
(5.7) C, 3[a8] Cy GE[A,B] A} +3 [{A,B‘}, ﬁ} 5 Cp = eees

We refer the reader to Weiss and Maradudin[30] for a complete specification
of C(t) in (5.5) and to Bellman [3 ,p.36] for a technique which can be

used to derive the matrices C2, C3 yee. 1n (5.6) .



17.

6. The Growth of eAt

Ht

For the scalar exponential e (4 € C) we have

(6.1) sup |e“t| =1 = Re(n) € 0
t20

In this section we prove a corresponding result for eAt . To this end

define the scalars o (A) and u(A) by
(6.2) o(A) = max {Re(A) | det(A - AI) =0}

%
(6.3) p(A) = max { A I det(é——}é - AI) = o§

These two quantities obey the following inequality:
(6.4) -u(-A) < a(A) < u(a)

This follows directly from Rayleigh quotient theory and the fact that if

Ax = Ax with Re(}A) = a(A) and “xil= 1 , then a(A) = ix*(A*+ A)x .

The scalar p(A) is an example of a "logarithmic norm" , a con-
cept which is useful in the study of errors which arise during the num-
erical solution of systems of ordinary differential equations. The
reader should consult Dahlquist [8] and StrountZ?,ZS] for a discuss-—

ion of u(A) in this connection.

Now as with the scalar case,

(6.5) 1im |2t} = o a(A) < 0
t oo

This can be proven, for example, by using (7.1). Unlike the scalar case

however, sup “eAt" may be strictly greater than 1 even though a(A) is
- tz0
negative. For example,

-1 10! - e 4L e 1 10

A = % eA = -2
(0] -2

ond thus, sup “eAt“)\‘eA“ > 10 even though a(A) = -1 <O
tzo
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Since {1l = 1 , we always have supl)eAtﬂ > 1 . The following
t20
result indicates exactly when we have equality and thus constitutes a

generalization of (6.1).

Theorem 8.

At

(6.6) sup Nl =1 <= u(a) €0
20

Proof.

For any unit vector v € c” , define the functional ¢v(t) by

*
- “eAtvnz - V* eA t At

(6.7) ¢, (t) e v (£ 2 0)

and notice that

E] 3
(6.8) i) = (PTT@T ¢ )y
Now,
* * . n
HA) €0 => y (A +A)YSO all y e € .
= ¢;(t) £ 0 all unit v € ¢" , t20
= b (1) €1 all unit v € €, t30
=3 ‘ieAt“Z =  sup ¢V(t) g1 t 30
ivi=1

(The third line follows from the fact that ¢v(0) = 1 .) The converse fol-

lows with comparable ease:

sup “eAt“ = 1= ¢ (t) g1 all unit ve € ,tz0
+ 20 v

= ¢;(O) §£0 all unit v € C"

)
=2 v (A +AvVEO all unit v e c*

= u@) <o

Q.E.D.
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. At
7. Representations of e

(a) eAt and the Jordan Canonical Form.

If (2.1) and (2.2) represent the JCF of A then the application of

(2.3) and (2.4) to the exponential gives

(7.1) eAt = X {e‘]lt ® ® eJkt}X_l
where -
- m -1
.
2! (my-1) 1
0 1 t N \
. N ~ |
Tt At] voN Y ~ |
(7.2) ek.= e~k ’ | "\\ \\ \‘\ {
{ 4 . '~ . \“CZ
i ; ‘ 2!
0 0 0 - 0 1 t
0 0 O ¢« ¢4 0 0 1
- p

(b) eAt and’the'Schur‘CanoniCal Form,

We can certainly apply the results of Section 3 and express eAt
in terms of eTt where T is the Schur Canonical Form of A, Instead, we
shall obtain a slightly more elegant representation of eA’t by using
Theorem 7.

Theorem 9,
kit AL

*
Let QAQ=T =D + N be the Schur decomposition (3.1) of A with
D and N the diagonal and strictly upper triangular portions of T respect=

ively. If

eDt (k = 0)
(7.3) T, (t) =
Kk = t t - - - £
5 PR ; k 1 eD('t tl)NeD(tl t2)-—»NeDt dtk‘ "dtl iKﬁé}
o 0

then



o
i

5 famen

-

At

a
I

4§
oY N

P
%
-l
R

Proof.

D, B=0N) we clearly have
oo

e’rt - e(D+N)t - Z Tk(t)
k=0 ‘

From Theorem 7 (A

il

However, the product of n or more nxn strictly upper triangular matrices

is zero and the integrand of Tk(t) (k% n) is just such a product:

Een(t—-tl)N‘] EQD(trtz)N] cee fe13(tk~1.”tk)m @Dﬁki}

oy

;o
iz
*

At Tt _*
e - S

[}
P
L]
Fo
|3
fo
e
i
]
]
=
o~
(2
N’
!‘G

Q. E. D,

Tt is possible to relate the matrices Tk(t) to divided differ-

. . . . zt
ences involving the function f(z) = e” .

Gorol lary.

(o]

(itk » j)
{15) ETk(t)]ij -

ok 109 90 k
E D, .
i]

5 e s b . ' (i+k € i
T m e o Vg e
g £

where the eigenvalues of A (and T) are given by Xl ""’Arz and the

divided differences in (7.5) are with respect to the function f(z) = eZt.

We delete the proof of this corollary since it essentially involves

the same techniques used in the proof of Theorem 3.
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(e) eAt as _a Polynomial ‘in A.

The Jordan and Schur decompo;itions haye enabled us to express eAt
explicitly through the canonical forms J and T. Quite a different repre-—
sentation can be obtained by expressing eAt as a polynomial in A having
analytic coefficients in t. Such a representation is possible because of

the Cayley~Hamilton Theorem:

(7.6) c() = det(A - AL) = c() =0

By using (7.6) it is possible to show that Ak is a (not necessarily

unique) linear combination of I, A, ..., An—1 , say
n—-1

(7.7) Ak = 2 ck' AJ K‘.‘.O;‘,cv:
: J
i=0

By substituting (7.7) into (4.2) it can be shown that
n-1

(7.8) AL A 6, (£) A
k=0

where
&

(7.9) ¢, (t) = ;Z: c, . tJ

k 3=0 kj

The details of this analysis can be found in Mirsky [18] . One can,
in fact, work with the minimum polynomial of A(instead of c(})) when
deriving

. . A ..
a polynomial representation of e t , but this is not necessary

for our purposes.

Putzer [22] has developed a way of selecting the functions(ﬁk(t)
n-1

in (7.8). He has shown that if c(x) = det(aA - xI) = :2: Cr xk and
k=0
d
c(@)z(t) =0 ®= o )
2% 0y = 0 k=0 ,..., n=2

2Dy =1

then



oy - e P~ ~
¢0(t) ¢, Ch e oo Oy 1 z(t)
¢1(t) c, cy o e ! O z(l)(t)
P2 - | P 4 -~ O 0 ¢
‘ - P § [ «
¢ P / . f -
’ “amt b e 0 o |20y
(n-1)
¢n_1(t)“ . 1 0 .« .. O o‘_ (t)J

Suppose the matrices A0 s e oy Am—] span the same subspace of
nxn n-1 . At . . .
C as I , A, ... , A . Since e is a linear combination of

, i1t must also be a linear combination of the Ai :
n-1

et s :Zz %'(t) A
=0 k k

By choosing the Ai judiciously, the coefficients ?iﬁt) can be easily

specified.

For example PutzeﬂéZ] has shown that if A e IA are the
ple, b 1 *'n

eigenvalues of A, then

n-1
QAL B £ Y. ?1 (t) P . (E )
=0 AT
where
P = 1
13 ‘
i
p.o= T (- 2D i=1,,,, ol
J k=1 ‘
and
- . - °r .
£l \ [\ " . - *
rz(t) 1 ')\2 0 —— O, rz(t)
R
= N
* : N N 1 ¢
. : ™ ~. t ¢
N \ i ¢
% \\' ‘\
rﬂ(t)_ Lo - - - 1 An rn(t)
- -l !

with rl(O) = 1 and ri(O) =0, 3i=2,,..,n.
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The initial conditions

c® )y = ak (k=0, ...,n-1)

give us the requisite number of (linear) equations in order to solve for

the unknown matrices C1 seeny Cn . In tensor language we in fact have

AT
C1 I
van |% - | A
C An--l
. ] ol -~
where the tensor product is defined by
a8 3B e 3B
L] ‘ ¢
A®B = . . . (nzx n2)
a 1B anZB .- annBJ

and V is the Vandermonde matrix

p-

n=1 n~1 n-1
Lkl AZ ‘o xn 4

Since (V @ I)_l = V-1 ® I we have

L (v'lo 1) ‘

We refer the reader to Fulmer for a discussion of the multiple eigenvalue

case. Not surprisingly, confluent Vandermonde matrices are involved.



8. Bounds for “eAt“

In the preceeding sections we have seen that “eAt“ (t > 0) behaves

u(A)t a(A)t

initially like e and asymptotically like e . In this sec-

tion we add to our knowledge of “eAtu by obtaining several different

bounds of the form

At t
(8.1) Al 2 e ueey .
Among other things, these bounds will enable us to present perturb-
ation theorems in the next section.
Our first results are obtained by applving the Jordan and Schur
decompositions.

Theorem‘lg.

If the Jordan decomposition of A is given by (2.1) and (2.2)

then
T
(8.2) “ eAt“ PA e“(A)t m k{X) wmaxg L
. Osrgm-1 rt
° 1 “"1
where m = max {ui yeoos mp% and k(%) = WxhRx .
Proot
Applying (2.5) with f(z) = et gives
, r ozt r
%EeAt“gzm(X) m  max te L «®m LI L <
z ¢ A(A) r! Og¢rsm-1 rt

Osrsm-1

Theorem il.

(8.3)

and

(8.4)

If the Schur decomposition of A is given by (3.1) then for t2 O
n-1

! eAt“ IO 2 \\N%!k z;lf‘
k=0 k!

N eAt“ A “eAt“ . < ea.(A)t n e!N‘t“F ¢

e -



b e _ .
i » 0) , we obiain

€ v ‘
W7, ©i < § e (et DR gl -ee §ni ﬁiejjtk\%dtk« e,
, ) ’

- S%‘Nﬁk tk ea(A)t

QUSRS

ki

(The same reeult holds for k = U.) From (7.4) we thus have

o
ot
P =
g
o et
ﬁ‘éﬁ
Vil
=

i
&

=

)] “\ & t@a (At

& Py W mi St € é!‘};ﬁﬁ £

0
<
B oA
&L
&

Ky
. . v . o ‘ ‘ afa)t ¢
To esbablish (8.43, just apply Theorem 4 5? = @ (&)
= -
b
This gives a1
v S H k Y
Ty AR T 4 alA)e afart [n|e
i e g s &{__& & ug&; e e
k=0 i
n Teg  f Te! IAYT e
A ] A =) il £ i “ : i
gt o Wk € E‘ d»‘f;t <l = (=4 i W

For metrices with i1l conditioned eigensystems K(X} may be extreme-

 eads one to believe

-

1y large (see Wilkinsonl3l ,p.87f£3 ). This fact
that for such matrices, the bounds (8.3 and (8.4 are superior to the

tound (8.2). We shall show later on that this is not always the case.

. . Aty . .
Ye now specify upper and lewer bounds for e "W irvolving the con-

stant U{A) defined in (6.3).
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Theorem 12,

(8.5) Hertll s HE (DAhlquist [8] )
(8.6) )] 5 oM (Copple[6] )
Proof.

1f ¢v(t) = heAtvnz (Hv“z = 1) , then from (6.8) we have
\J
oo (t) ¢ 2 ua) ¢ (1)
*
since 2 u(A) is the most positive eigenvalue of A + A . Thus,

b (0 = P2 < P

Inequality (8.5) now follows since the above result holds for all

unit vectors v. To prove (8.6), just observe that
1 = “ eAt e-—At “ ¢ eAt“ “ e—At\\ ya “eAt“ oM (-A)t
Q.E.D.

We remark in passing that the lower bound in (8.6) is inferior to

the obvicus result
N t i ¢
(8,7) I\{ eA {i ,}) eo!v ‘A)t

(This follows from the fact that |Ci» max { |A| | det(C - AI)=0 }

for any square matrix C and a(A) 3 -u(-A) .)
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It is possible for w4(A) to be positive even though #(A) is negative

-1

0 “éx shows. {af{a) = -1 , u{&) = 1,) With such ex~
L

as the example A = (
amples, the bound in (8.6) becomes less meaningful as t increases, It is
possible to somewhat corfect this situation as the following theorém will
show .
Theorem 13,

For any invertible matrix §

, el
(8.8) LBl oo MG A

For any ¢ > O there exists an invertible matrix S such that

o -1
(8.9) (s a8y & afA) + ¢
qemes, if nfA) < O, it ie possible to choose S such that the upper

bound in (8.8) decays as t increases.

Proof,
-1« -1
From (8.86) ﬁes AStaiﬁ e“(s AS)t and thus
. At s"lase -1 g 5 Tasy (s As)
iée‘“&%z lES e~ S"u%ﬁSﬂ HES W%EE@ TR 2 w(8) e

establishing (8.8),

*
To prove (8.9), let § AQ = diag(hi) + ¥ be the Schur decomposition

L 1} of AL Since N is stricily upper trisngulav, it is possible to find

. . ; . : -l ;
a diagonal matrix T = diag(l , 0, ... , @ 3 such that

Wt Nl « e
For example, if © = min'§1 . £ then
N,

S n-1 n
EiT“lNTl\zellT"lNTl\g - 2 Z n‘iz. o2 1) ezwui ¢ ¢
i=1 j=i+1 HJ

From Dahlquist [8] we have the properties



u(A + B) < u(A) + u(B)

lu@) | s Nall

and thus 1f S = QT we have

n(s~lasy = u(diag(r,) + T INT) < u(diag(h)) + (T INT)
< a(A) +i\T—1NT|\< a(A) + ¢
Q.E.Dl
We refer the reader to the work of Strom [ZZ] for a more detailed

discussion of log norms and related results.like (8.8) and (8.9).

We next present an upper bound for'“eAt“‘by using the definition
{4.3). This bound may be found in Kato§}4 ,Chapter 1Q} where the dis-
cussion takes place in a considerably more general setting than just

nxn matrices.

Theorem'lfd

Let B8 > a(A) and suppose there exists a constant M > O such that

for every y, Re(y) 2 B, we have

ot - m7™N s mhey - )74
for all k greater than some k0 = ko(y). Then
[ eAt“ &M Ot

Proof.

Fix t and choose k6 such that ko >B . For all k > ko we have

N2 J T -y

From (4.3) we thus have

e = uim || A - Y

k9 ko k

it

QE.D,

29.

-k
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Theorem 14 is not a particularly useful result in that it replaces one
difficult problem (that of bounding “QAt“ ) with an equally difficult prob-
lem (that of determining M and B abéﬁe); We mention in passing, however,
that this theorem points to the deep connection between the exponential and
the resolvent function R(y) = (yI - A)-l. This connection is expressed by

the following identity:
a

(I - a7t o= S A mabt 4 Re(y) > 0.(A)
0

We shall not pursue the matter further.

We conclude this section by contrasting some of the bounds which have

thus far been presented. Consider the matrix

-1 + 8 4 -6
A = § =10

0 -1 -39
The Schur and Jordan results (8.3) and (8.2) give us respectively
(a) “ eAt“ < e(—1+6)t (1 + 4t)

(b) fleAel) ¢ 1T (w10

On the other hand, since pu(A) = -1 + (4 + dz)i and u(S—lAS) =

-1 + (.25 + 62)5 (8 = diag(4,1) ) , we have from (8.5) and (8.6) respect-

ively
) 2.4
i\ At -1 + (4 + 8 t
© DAt ¢ el v 8D
At [-1 + (.25 + 52)%3t
(d) “e Il § e
The following table compares theee bounds for t = 0,1,...,30 . We notice

that in this example the constant k(X) in (8.2) is large making the bound (b)
considerably weak. This is in contrast to the Schur result (a) which provides
very accurate upper bounds as the table indicates. The log norm results (c)
and (d) are also interesténg. Because L(A) is positive, the exponential bound
(c) deteriorates with increasing t, but by performing the indicated similar-

ity transformation S-lAS above, we can derive a decaying bound (d).
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o
L3

The Scfmr result (8.3) does not always produce a bound as superior

as the above example would indicate. For example, if

<1 -6 4 =6 4 -6 & -6 4 -6 4 =6 |
0O =7 5 =7 5 =7 5 =7 5 -7 5 =3
0 0 -2 -6 4 =6 4 -6 4 -6 4 =6
0o © 0 =8 5 =7 5 =7 5 =7 5 =7
0 0 0 0 -3 -6 4 -6 4 -6 4 =6
o 06 0 0 0 =% 5 =7 5 =7 5 =3
*“1lo o 0 o0 0 0 -4 -6 4 -6 4 -6
6 06 0 6 0 0 0 =10 5 =7 5 =7
© 0o 0 0 0 0 0 0 -5 -6 4 -6
© 06 o6 ©06 0 0 0 0 0 -1 5 =7
© o6 0 0 0 0 0 0 0 0 -6 -6

Lo o 0o 0o 0o o0 0o 0 0o o o -2 |

then ftocan be shown that |l et W<.57 . However, from (8.3) we obtain
He*ll ¢ e (2.0 %1010

whereas (8.2) renders
He*ll & etwro

since x{X) % 70 for this choice of A.

As the above examples show,it is impossible to rank the upper
bounds in the preceeding pages in terms of effectiveness. The sharpness
of a given inequality will depend upon A and t. However, if A is 2 norwal
matrix (A*A - AA*), then all the results of this section point to the same

fact, namely

(8.11) A normal = ‘eAtu - SW

There are many ways of proving (8.11) For ﬁ-.:t:mnpkl«vaﬂ one can show U(A) =

afA) and then apply (8.5) and (8.7).
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&, Perturbation Bounds for e

To this section we examine the problem of howiing e 7= & |

for © 2 & . When A and £ commute, this is pavticulariy easy.

Theorem 15.

AN
{(
s
o~
=
i
-
%
R

» . o

4 {§.3) rvespectively we obtain the following twe cors=

3,

{8.2y an

b2

Coroliary 1.

1f AE = EA and the Jordan decompositicn of A ig given by (2.1} and

{(Z2.2), with wm = max {ml,,ump}ethen for tz O
At niAde P
e 3 ¥ 2 - N ER %
(9,23 | & iz e m k{X) max )
Derem=1 1!
1f A% = EA and the Schur decomposition of A iz given by {3.1),

then for ¢ 2 O

n~1
3 e o k i ik
(#.2) 5%6<Aﬁh)t = eAt§§ & P (tiﬂﬁﬁﬁa“hit gzi e il )

R

k=0 k!

=

The problem of deriving perturbation bounds is considerably more

difficult when A and E do not commute. Instead of manipulating the power

(A+E) t , At

series for the exponentials e and e {a very cumbersome approachj,

we will use equation (3.2). This gives us
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ave the following result:



35.

Lemma 3.

1 (1A < M &P (£ 2 0) , then \‘\e(A+E)t“ <M o (BMIEIDE

Proof.

From Theorem 7 (B = E) we have for k > 1

iAol < OS P B TIC ST Nelifletl| at, - - ar,

0]

k

4 ———

k!

Since the same result holds when k = 0 we have

o
i BB £ Z “Ak(t)n £ Me 2 MK YEbk & - M e(B+M“E“)t

k=0 k=0 k!

Q.E.D.

Theorem 17.

Suppose | eAt“ My et and lle(A+E)t” <M, e®2t  for all

t>0.If M= max{Ml,Mz} and o = max{al,az} then

(9.7) | e AHEIE _ At)] L 2t o et
Also,
(9.8) : (| BB _ Aty e(or.1+M1“E\\)t (Mi WENe )
Proof.
From (9.5)
“e(A+E)t _ At “ 4 (E\ S M eou(t'-‘f) Mz 22T 4 & St GIE Mzt)

0
On the other hand, by using Lemma 3 we obtain
L i
| @B L ATY i g (e aglElT
0

Q.E.D.
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Corollary 1.
if the Jordan decomposition of A is given by (2.1) and (2.2) and if

J is diagonal (i.e. m=1 ), then

(9.9) | c@EXE ALl 2 E e @A) + KEOREDE

Corollary 2.
(9.10) \ L A*E)E _ At NEN ¢ e(u(A) + EDt
Corollary 3.

.If A and A+E are both normal, then

(9.11) o A*EYE _ Aty L@ +ilEDE

<VWEW| ¢

One can also attempt to derive perturbation bounds from (4.1). If

I is a contour enclosing the spectrums of A and A+E, then we have

1 ’ .
\ JA*E)E Aty 5: ezt{[zI _ (A+E)]—-1 - (eI - A)-l?s iz
2Wi T
1
= § &%t (21 - MEN T E (21 - &)L dz
2Ti T

Perturhation bounds can be obtained by taking norms in the above expres-—
sion and then bounding the right hand side. We delete the results of this

approach because the inequalities so obtained are no better than the omes -

already given.

We conclude this section with a word about the relative perturbation

fle(A+E)t - eAt" /4 eAtﬂ . In particular, this quantity does not necessarily

At (A+E) t d

decay even though e ~ and e o. For example, if

-1 0 Lok
A = ( and AE = =0
0o -1 o -1

then (\e(A+E)t - eAt“ /\\eAt(i= et
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10. Approximation of a Function of a Matrix.

Suppose the matrix functions f(A) and g(A) are defined. If £(z)
approximates g(z) on a set containing A(A), then f(A) will approximate

g(A). We can quantify this by using either (2.5) or (3.11).

Theorem 18.
If the Jordan decomposition of A is given by (2.1) and (2.2) and

if £(z) and g(z) are analytic functions defined on X (A), then

(x) (r)
(10.1) £ - gl ¢ mk® max \f Y(z) - gt (z)\

zeA (A) o
O<rsm-1 '
Proof.
Use (2.5) with f= f-g . Q.E.D.

Theorem 12,

Suppose the Schur devomposition of A is given by (3.1) and that
Q is a convex set containing A(A). If £(z) and g(z) are analytic func-

tions on  and

max If(r)(Z) - g(r)(x>| E (0srgn-1)
2ef) r
then
(10.2) New -ewlly ¢ slla- b,
where 6 is a constant satisfyiing & > :i; , r=0,...,n"1 .
r!
Proof.

Use (3.11) with f = f-g . (Notice that if N = O we need omly re-

quire 6260.) Q.E.D.

By using Cauchy's integral formula we can obtain an interesting
variation of (10.2) which does not require information on how well the

derivatives of f(z) approximate the derivatives of g(z).



Theorem 20.

Suppose the Schur decomposition of A is given by (3.1) and that
is a convex set containg A(A). In addition assume that f(z) and g(z) are
analytic fupctions inside and on a closed contour [' whose interior con-

taing Q . If

d = inf |z -w| >0
zeQ
wel’

L(I') = the "length" of I’

y

£ = max |fG) - gl(w)]
we '
then

L@ - sl 4 ¢ X2 jla - BEH7h
h 2n d d

Proof .

For z £ §2 and r 2 0 we have the following inequality from Cauchy's

integral formula:

I -

£

By using (3.10) we obtain

n—1 . S o :
i P - 5 ! = {,-1
VE(r) - i & S ert L@ W <i_’:§.’) a - '8
% o 4t L T o d

and thus

ey - gl - %;(;12 I a - Bi,!)”lggF
2nd d

Q.E.D.



39.

11. Pade Approximation and eAt

The (p,q) Pade function qu(z) is a rational approximation to

ez of the form

_ n_ (z)

(11.1) qu(z) = 'pq

dpq(z)
where
(11.2) 2 (z) = % (p+q-j): p! 23

Pd i=0  (p*+@)! i! (p-=i)!

and

q,
(11.3) d (z) = Z (p*q-j): q -3 .

j=0  (p*+@)! i! (a-i)!
The error of this approximation is given by

(-1 )1 gPratl

1
(11.4) e (2) = e*-R_(2) § 2wy 3014y Pay
pd Pd (p+)! d (2) o

In view of the previous section, if A is a matrix such that
dpq(A) is invertible, then

n_ (A _ -1
pa® =0 wle @]

dpq (A)

(A)

L]

R
Pq

may be regarded as an approximation to eA. The convergence properties
of these approximants for general matrices was establ ished by Wragg and
Davies [32] . They extended the work of Varga[‘%‘\] and Fair and Luke 138}

and showed that for any matrix A

lim R (A) = e (fixd p)
q=ro Pq
, A .
lim R (@A) = e (fixed q)
pr
lim R (A)= eA (a = 0,%1)
+a oA
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and Bavies express a desive for
«iK} = free” bounds on the errow KR (hY = & 5%, To this end they developed

rror in the 222 case which did not involve the fac-




tor K(X). For general nxn matrices, an exact expression for "eA - qu(A)“
would be a very difficult result to obtain. However, some interesting
"k (X)-free" upper bounds can be derived and these will be presented on the

following pages.

But first, it is worth mentioning the relevance of this pursuit. The
. A . e . .
fact that qu(A) approximates e has important ramifications when it comes

to the numerical solution of the initial value problem

Au(t) = u(t) Ac¢
(11.6)

u(0) = u, uy € C

This is because with time step At > 0 we have the following for k =0,1,.. :

a(kht) = At - (eAAt)kuo > (qu(AAt))kuO = T(kAt)

Precisely how one implements Padé approximation to solve (11.6) (and its

generalizations) depends upon the form of the matrix A.

If A is large and sparse, then the comments which appear in'Varga‘94]
Sieminiuch and Gladwell[Zﬁ], and Blue and Gummell{4l(and the references in
these papers) are relevant. These types of probleﬁs arise in connection with
the solution of parabolic partial differential equations which have been

discretized in space.

The system (11.6) also arises in the study of linear, time invariant,
dynamical systemsf&jl. The matrix A may often be regarded as small and
dense in these applications. When this is the case, the ideas espoused in
Wragg and Davies[33], Scraton[Zﬁ], and Zakian{35]are of interest. For the
special case of Rpo approximation (i.e. truncated Taylor series approxim—
ation) we mention the papers of Gall[11], Lioul16], [40], and PlantIZfl.

Our remarks on the subject of Padé approximation of the matrix expo-
nential are ostensibly theoretical although they may be of practical inter-
est in those situations where A has limited dimension. WE begin by bounding
Ir  caney - 26U
spectively. Such bounds could represent a preliminary step in the rigorous
bounding of the global error “((qu(AAt}k - eAkAt

mainly regard the two theorems which follow as merely a specific demonstra-

using Theorems 19 and 20 in the q=0 and >0 cases re-
)uOH . However, we shall

tion of how our Schur analysis can be applied.

41.
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Theorem 21.

If the eigenvalues of AAt 1lie in the ha\§ disc Q defined by
2 = {x+iy| GP+yh) s @® ,x<0,a%08

and if the Schur decomposition of A is given by (3.1), then

, . p+l _ p+2
ar.n lr__caae) - AAE | e S @ Nor + [NHPH 4 ‘.‘.(.I.E.I.é.t_)_-_“F “e'N'At“F
P (p+1)! F (p+2) !
Proof.
s i G)
Since Rpo(z) = ;Zg .5? , Rpi (z) = Rp—j,o(z) (j=0,...,p) and thus

from (11.4) we can deduce that

zeER = lR;g)(z) - ezl < ej

where

(o At)p+1—3
(p+1-3)! ] =0,1,...,p+l

—
.
]

p+2,ooo

If the Schur decomposition of A is specified by (3.l), then from Theorem 19

n-1

j
IR (1ae) - eTAE| ¢ DV e, Mot

If (p+l) < (n-1) then by substitution of the definition of Ej we obtain

p+l . . n=-1 .

p+l-j J 3 3

R (e - eTAtI < Z‘ (o At) [NAt | . Z |NAE|
F i (p1-i)! it i=p+2  j!

1 2
AP 1. NPl [mae[P jwac]
(p+1)! (p+2)!

7N

Result (11.7) follows by taking the F-norm of both sides of the abcve inequality.
The reader can check that the same result holds when (p+l) > (n-1). (Hint:

p+2 _
|| =0 Q.E.D.



Aat
It is also possible to use Theorem 19 to bound \\qu(ALt) - e “ F

when q 2 1. However, when q-$ 0 it is quite awkward to obtain the
necessary bounds on \Rég)(z) - &? \ . A simpler approach 1is to use
Theorem 20,
Theorem 22.

Suppose the eigenvalues of AAt lie inside the Wo\§ disc Q
defined by

Q= {x4iy | 2+ yz)é @a)? ¢z0,x<0}

If @( a t) <\ » 42 1, and the Schur decomposition of A is given by
2 ’ :

(3.1), then

ptq+l , -
(11.8) Ir o) - MO0 g B QAT aty g [Ny
q' (ptq+l)! d

Proof.

Let the contour I' be defined by I' = {w/| inf|z-w| = aAt } .
ZeQ

In accordance with Theorem 20,

L(T) € 12 aAt
(11.9)

d = oAt

Now Saff and VargaEE%]have shown that dpq(x + iy) cannot be zero

when yz £ 4(q+l) (-x+q+l) . Graphically we have

Yy
r 4= 4lgr) (-xg+)
7 X
Q_ x= lb-\"\

— R Y= -2 (g0)

By using this result, we can produce a lower bound for ldpq(w)'(w e ).

43.
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If wel' and dpq(z) = 0 , then one can show that |w—z|> q . Hence, if

i2A
Za

.l,...,zq are the zeros of dpq(z), then
' q q
wel = la @) = | 2. W (g _w)) p! q
Pd (ptq)! i=l (p+q) !

Thus, for wel' we have from (11.4) that

p+q+l) 1
(w) - ew] < ,..,(20‘ at) eO"At Y ud(1-u)Pdu
“ra (p+q)tld_ ()} 0
Pq
\
g (ZocAt:)p"'q'+~l eb'.__‘l!____._ =g

(prq+1)!

With this result and (11.9) we can employ Theorem 20 which gives:

A +q+l ,,
|| 28t (20At)P 4! gh 1200t i a - INAtI)—ln

- R (o)l <
Pq q? (p+q+l)! 2a1l'At alt

4 (2aAt)p+q+lﬂ_ \a |NI)-1“
1 (ptg+1)!

.

Q.E.D.

Although the upper bounds (11.7) and (11.8) do not involve the factor
€(X), they may nevertheless be very large. We discussed this kind of behav-
iour with an example on page 32. It ostensibly arises from the fact that pow-

ers of N may be large in norm.

AS we mentioned earlier, U(kAt) = qu(AAt)kuo represents an approximate
solution to (11.6) at t = kAt. Since
i (AKAE UH4 - = caner® Mo X

o ky |
Ru(rat) —‘u(kAt)“ - R, (4At) )uo"’:

we see that an upper bound on the error can be obtgined by bounding

ﬂeAkAt - R q(AAt)kl. Manipulation of Theorems 21 and 22 c an be used for this



end. However, a more illuminating analysis results by showing that

R (AAt) = e(A+E)At
Pq

for some perturbation matrix E. To simplify the proof of our main re-

sult in this direction (Theorem 23), we state the following two lemmas.

Lemma 4.

If§H§ < 1 then log(I + H) exists and

(11.10) | log(z + B & - i Hlé“ "
- kH

Proof.

1f §H{ < 1 then log(I + H) can be expressed in terms of a power

series: &
K
log(I +H) = /2, L (-t
k=1 k

By taking norms we find

s ©
C ook v .
fiogcx + mil < 2 i < i . pate - NEl
0

k=l k = 1 - ¥ait
Q.E.D.
Lemma 5.
If fAliAt e {.S—) <1, then
p+q
-1 1
fa o™y <
P4 q
1 - AAt e [a
P*q

Proof.

When q = 0 , dpq(AAt) = I and thus the above inequality holds.

Yor q 2 1 , we see from (11.3) that

d_ (Aat) = I +F
pqtAat)

where



Q6.

q
¥ L ! , i
po= o eramddioat o agd

5;1 (p+q)3 EMCEA D

Thus, q )
§FY g j% q(g~1) ¢ « « (q=j+1) AAe
i=l  (p*q) « ¢ « (p+q-j+l) it
‘2 (e
WAALll 4 = {aAth e < 1
=t ’ IE p+q

Since %%d {AAKEMI%% = %k(l + F}mlmré —t . the Lemnma follows.
e I b
Q0.E.D,

Theorem 23. -

P ) +R
EE fAjAt e <}, then R _{Adt) = (A )t where

pa

) @*Q"'i v '
(11 .11} Beth ¢ 32 Hai P an)P™
.prq>@ ap*q 1)!
Proof.

By setting E = -A , we see that the theorem holds when p=q=0. Hence,

we must prove the Theorem for the case p+q Z 1 . From (11.4)

‘ el
aat (=1 Ay
( +a) 'd (A[\tg O
p;q Pq

g AA{(LW@) q(l_u)p

(__1 3

Ycﬁ}

(11.12) R (AAt) = e

Pa

By substituting

{11.13) R (Ade) = QAbE EAL

into (11,12) and left multiplying by emAAt we obtain

(11.14) L L1 s
where
_1nd pg+l .
{11.15) o= (-1) " (Ade)” 1 mublt dy ) Pdu

(pa)! d__(akt) | 0



By using Lemma 5

YARAL e < } = Mo @™l 2
and so by taking norms in (11.15) we obtain

(11.16) Els 20anepPrert b __Biat
(p+q) ! (p+q+l):

Since §AAtll e < 4 and p+q > 1,

« 2
2 ot 1§AA::'@§"+"”1 £ 2 o} (;.1._"
2e s

and thus from (11.16) it can be shown that

(11.17) HEls o™t < 1/5

This implies that log(I + H) exists and so from (11.14)

log(I + H)
At

{11.18) E

The necessary bound on \\E fl can be obtained by (11.16), (11.17) and Lemma

5:
fet< L Mmoo 105, haaeiP*atl p! q!
At 1 -¥HM At 4 (p+q) ! (p+q+l) !

5 JAgPre g gt
(p+q) ! (p+q+l)!

< (ae)PHe

From (11.15) and (11.18), it is clear that E commutes with A and hence

we may arrange (11.13) as qu(AAt) = e(A+E)At.

‘ ' Q.E.B.



Lf Balde ¢ < 4 . then

4 ¥ " v fit ) ) . 5
[1:.19) li =, qthbk a = MR e A (eae e ST
(11.20) i qu(AAt)k ©ARAE | AL e EIRAE
b ek akae fl o j ket _ o smee
I (han) SRS XC ety
£ | At @Wﬂ Ceat el WEb ket

Theorem 23 represents an inverse error aunalysis of Pade approwimacion
to the watrix exponential. It shows that our approximate solution Ww(kat) =

N Lk . . . o
R {Aet) u to (11.6) is the exact solution to the perturbed system

(A + E)v{t) = v(t)

v{0) u

o)

eor o= et (ke 1,...). If the entries of A arve correct only to the r-th

‘crimal olare, then there would seem to be little justification in chosing
« e o -

2. g, and £ such that ME@kéIO , for then the accuracy of the method

woulid not be consistent with the accuracy of the data. Im view of (11.11),

ove would thus expect that

+q+l
SHAPTT pl gl Pt 5 0T
(p+q) ! (p+g+l)

For amy particvliar iwplementation of Pade approximates.

=3

tlevy gives an upper bound for the relative ervor of nur ap~

e

The coro

(=
£

sroximate solution to the system (11.6):



“ qu(AAt)kuo - eAkAtuO!‘

“ eAkAtUO “

HENKAt

2 (kat |EN e )

By manipulation of this inequality and the upper bound (11.11), one
can ascertain the values of p, q, and At which are necessary to keep
the relative error gelow a prescribed tolerance. Techniques based upon
this type of error bound control have been discussed in connection
with Rpo approximants (i.e. truncated taylor series approximation).
The method of Liou 16 is an example of this. However, his concern

is with absolute error. Because eAt can grow initially even though
4(A) £ 0, we feel that the relative error is the more proper quaﬁtity

to control.
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