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1 Introduction

Let G be a locally compact group and let P (G) denote the topological
semigroup of probability measures on G, where the multiplication in P (G)
is convolution of measures, and the topology on P (G) is the weak topology.
A measure µ ∈ P (G) is said to be infinitely divisible on G if µ has an nth
root in P (G) for each n ∈ N, and is said to be continuously embedded on
G if there is a continuous one-parameter semigroup (µt)t≥0 in P (G) such
that µ = µ1.

The first explicit statement of what became known as the embedding
problem (for connected Lie groups) occurs in the 1967 paper of K.R. Partha-
sarathy [20], where he asks “whether one can directly imbed an infinitely
divisible distribution (on a connected Lie group) in a one-parameter convo-
lution semigroup.” But we should also note the earlier important paper of
Böge [1], where the relationship between the compactness of the root sets
of the measure and (rational) embedding of the measure is first indicated.

Taking a wider viewpoint, the embedding problem is now seen as the
problem of understanding the relationship between two classes of measures,
the infinitely divisible measures and the continuously embedded measures,
on any locally compact group. The problem has been an active research
area for nearly forty years, and has attracted the attention of a number of
authors. Yet in spite of the very considerable progress that has been made
to date, the question is still not settled for all connected Lie groups.

Between 1991 and 1996, the embedding problem was solved for certain
important classes of locally compact groups. The paper of Shah [22] solves
the embedding problem for p-adic algebraic groups, the papers of Dani and
McCrudden [5], [6] solve the problem for connected coverings of linear Lie
groups, and discrete linear groups respectively, and the paper of Dani and
Shah [7] solves it for finitely generated matrix groups with entries in any
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332 Mick McCrudden

number field. All these proofs depend on the concept of an almost factor
compact group, and the realisation that real almost algebraic groups and p-
adic algebraic groups are indeed almost factor compact (see Theorem 2.3).
But the property of almost factor compactness also finds application in
the work of Dani and colleagues on asymptotic behaviour of measures, and
plays an important role in the lecture course by Professor Dani.

Newcomers to this area of research may find it initially useful to con-
sult the author’s article [16], where an overview of the proofs of the three
embedding results mentioned above is presented. While there is some over-
lap between [16] and the present lecture course (particularly in sections 2
and 3 below), the focus of the present course is on the connected Lie case,
and includes recent work on the embedding problem for subsemigroups of
connected Lie groups.

For work on the embedding problem prior to 1977, there is no better
source than Chapter III of Heyer’s monograph [10]; the historical comments
and references at the end of the chapter are particularly useful. The 1986
and 1989 papers by the same author ([11], [12]) can also be recommended
for an overview of work on the problem between 1977 and the end of the
1980’s.

Acknowledgements It is a pleasure to thank both the organisers of the
conference (S. G. Dani, Piotr Graczyk and Yves Guivarc’h) for their kind
invitation to present these lectures, and CIMPA and the Tata Institute for
financial support and hospitality.

2 Factors and Factor Compactness

Let G be a locally compact group, and denote by P (G) the topological
semigroup of probability measures on G, furnished with the weak topol-
ogy and with convolution as the multiplication ([10], Theorem 1.2.2; [21],
Chapters 2, 3).

For µ ∈ P (G) we denote by G(µ) the smallest closed subgroup of G con-
taining suppµ (the support of µ), and we write N(µ, G) for the normaliser
of G(µ) in G, and Z(µ, G) for the centraliser of G(µ) in G. We use F (µ, G)
for the two-sided factor set of µ in G, namely

F (µ, G) = {λ ∈ P (G) : µ = νλ = λν for some ν ∈ P (G)} .

We write T (µ, G) =
{
x ∈ G : xµx−1 = µ

}
, and we note that T (µ, G) is

a closed subgroup of N (µ, G), and that Z (µ, G) ⊆ T (µ, G) ⊆ F (µ, G) ,
while

T (µ, G)F (µ, G) = F (µ, G) = F (µ, G)T (µ, G) .
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Proposition 2.1 (i) F (µ, G) is a closed subset of P (G), and for every
λ ∈ F (µ, G) there exists x ∈ N(µ, G) such that suppλ ⊆ xG(µ).

(ii) If G (µ) is abelian, then every λ ∈ F (µ, G) is supported on T (µ, G).

Proof (i) The second assertion is 1.1 of [3], and the first assertion follows
from 1.2.21(ii) of [10].

(ii) Suppose λ ∈ F (µ, G), then there exists ν ∈ F (µ, G) such that
λν = νλ = µ. By (i), there exists x, y ∈ N (µ, G) such that

suppλ ⊆ xG (µ) , suppν ⊆ yG (µ) .

Then if p : N (µ, G) → N (µ, G) /G (µ) is the canonical homomorphism, we
have

1 = p (µ) = p (λ) p (ν) = p (x) p (y) ,

which implies p (y) = p
(
x−1

)
. Hence

suppλ ⊆ xG (µ) , suppν ⊆ G (µ)x−1.

So we can write λ = xα and ν = βx−1, for some α, β ∈ P (G (µ)). Then
since G (µ) is abelian,

αβ = βα = νλ = µ = λν = xαβx−1,

which implies that x ∈ T (µ, G). But clearly G (µ) ⊆ T (µ, G), so suppλ ⊆
T (µ, G) as required.

�

For µ ∈ P (G) we write

F (µ, G)/Z(µ, G) for {p(λ) : λ ∈ F (µ, G)} ,

where p : N(µ, G) → N(µ, G)/Z(µ, G) is the canonical homomorphism,
and p is also used for the corresponding induced map from P (N(µ, G))
into P (N(µ, G)/Z(µ, G)). We note that Z(µ, G) is a normal subgroup of
N(µ, G).

Definition 2.2 (i) A measure µ ∈ P (G) is said to be factor compact on G
if and only if F (µ, G) is compact.

(ii) A measure µ ∈ P (G) is said to be almost factor compact on G if and
only if F (µ, G)/Z(µ, G) is a relatively compact subset of P (N(µ, G)/Z(µ, G)).

(iii) A locally compact group G is called an almost factor compact group
if and only if every µ ∈ P (G) is almost factor compact on G.
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Theorem 2.3 (The AFC Theorem) The following locally compact
groups are almost factor compact groups.

(i) Any real almost algebraic group.

(ii) Any p-adic algebraic group.

(iii) Any discrete subgroup of GL(d, R), d ∈ N.

(iv) Any covering of a real almost algebraic group.

Proof Result (i) is Theorem 3.2 of [5], and a similar argument suitably
adapted gives (ii) as Theorem 2 of [22]. Result (iii) is an easy consequence
of (i) and is given as Theorem 2.1 in [6]. Result (iv) follows from (i) and
Proposition 6.2 of [5].

Problem A Which other locally compact groups are almost factor compact
groups?

Example 2.4 ([3, Remark 3.5(ii)]) There is a three-dimensional con-
nected nilpotent Lie group which is not almost factor compact.

Let G be the Lie group whose underlying space is R2 × S1, and whose
multiplication is given by

(
x1, y1, e

iθ1
) (

x2, y2, e
iθ2

)
=

(
x1 + x2, y1 + y2, e

i(θ1+θ2+x1y2)
)

.

G is a quotient of the three-dimensional simply connected nilpotent Heisen-
berg group by a discrete central subgroup. The centre of G is a circle and
equals the commutator subgroup of G, so writing Z for the centre we have
that G/Z is abelian.

Let λ ∈ P (G) such that G (λ) = G, and let µ = wZλ, where wZ is a
normalised Haar measure on Z. Then µ is Z-invariant, and because G/Z is
abelian, any Z-invariant measure on G is a factor of µ. But Z (µ, G) = Z,
so F (µ, G) /Z (µ, G) = P (G/Z) = P

(
R2

)
and G is not almost factor

compact. But we also have T (µ, G) = G, hence F (µ, G) /T (µ, G) is a
point, so it is compact.

Definition 2.5 (i) A measure µ ∈ P (G) is said to be weakly factor com-
pact on G if and only if F (µ, G)/T (µ, G) is a relatively compact set in
P (N(µ, G)/T (µ, G)).

(ii) A locally compact group G is called a weakly factor compact group
if and only if every µ ∈ P (G) is weakly factor compact on G.
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Problem B Which locally compact groups are weakly factor compact
groups?

Let R∗
+ denote the additive semigroup of positive reals. Any subsemi-

group S of R∗
+ is called a real directed semigroup (also called a submono-

geneous semigroup) if and only if for any s, t ∈ S, there exists u ∈ S such
that s = mu and t = nu, for some m, n ∈ N.

Given a real directed semigroup S and a locally compact group G, a
homomorphism t 7→ µt of S into P (G) is said to be locally tight if and only
if for each r ∈ S, the set {µt : t ∈ S, t ≤ r} is a relatively compact set in
P (G).

Definition 2.6 A locally compact group G is called convolution bounded
(abbreviated to CB group) if and only if for every real directed semigroup
S, every homomorphism of S into P (G) is locally tight.

Theorem 2.7 Any closed subgroup of any connected locally compact group
is a CB group.

Strategy of Proof (i) It is clearly enough to prove that any locally com-
pact connected group is a CB group.

(ii) By an easy shift compactness argument (i.e. an argument using
[10, 1.2.21(iii)]) it is easy to see that if G contains a compact normal sub-
group K such that G/K is a CB group, then G a CB group. But any con-
nected locally compact group is a projective limit of connected Lie groups
([10, Theorem G, p. 12]) so it suffices to prove the CB property for con-
nected Lie groups.

(iii) If G is a connected Lie group with centre Z and G/Z is a CB group,
then G is a CB group.

(iv) For any connected Lie group G, G/Z can be realised as a closed
subgroup of some SL(d, R).

(v) SL(d, R) is a CB group. This is the substantial step in the argu-
ment and relies on the AFC Theorem for almost algebraic groups, which is
Theorem 2.3(i).

Full details of the proof of Theorem 2.7, for G a connected Lie group,
are given in [3, Section 2].
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3 Root Compact Measures, Rational and

Continuous Embedding

For µ ∈ P (G), where G is a locally compact group, we write for n ∈ N,

Rn (µ, G) = {ν ∈ P (G) : νn = µ}

R (µ, G) =
⋃

{Rn (µ, G) : n ∈ N}

Rn (µ, G) =
{
νk : ν ∈ Rn (µ, G) , 1 ≤ k ≤ n

}

and

R (µ, G) =
⋃{

Rn (µ, G) : n ∈ N
}
.

We note that R (µ, G) is a subset of F (µ, G).

Definition 3.1 Let µ ∈ P (G).

(i) µ is said to be infinitely divisible on G if and only if for each n ∈ N,
Rn (µ, G) 6= ∅.

(ii) µ is said to be root compact on G if and only if for all n ∈ N, Rn (µ, G)
is compact in P (G).

(iii) µ is said to be strongly root compact on G if and only if R (µ, G) is a
relatively compact subset of P (G).

(iv) µ is said to be rationally embedded on G if and only if there exists a
homomorphism t 7→ µt of Q∗

+ into P (G) such that µ1 = µ.

(v) µ is said to be locally tightly rationally embedded on G if and only
if there exists a homomorphism t 7→ µt of Q∗

+ into P (G), which is
locally tight, and such that µ1 = µ.

(vi) µ is said to be continuously embedded on G if and only if there exists a
continuous homomorphism t 7→ µt of R+ into P (G) such that µ = µ1.

Theorem 3.2 Let G be a locally compact group, suppose µ ∈ P (G) is
infinitely divisible on G.

(i) If µ is root compact on G, then µ is rationally embedded on G. If
further G is a CB group, then µ is locally tightly rationally embedded
on G.

(ii) If µ is strongly root compact on G, then µ is locally tightly rationally
embedded on G.
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Proof Assuming µ is root compact on G, a rational embedding is obtained
as follows. For m, n ∈ N such that n|m, we define fn,m to be the (m/n)

th

power map on P (G). Then fn,m : Rm (µ, G) → Rn (µ, G), and we have a
projective system of non-empty compact spaces and maps, so the projective
limit is not empty, which implies we have a map n 7→ µ 1

n

of N into P (G)
such that for all n ∈ N,

µ 1
n

∈ Rn (µ, G) and for all r, s ∈ N, (µ 1
rs

)
r

= µ 1
s

.

This map extends uniquely to a homomorphism r 7→ µr of Q∗
+ into P (G),

with µ1 = µ. This homomorphism is automatically locally tight if G is
a CB-group, and in the case where µ is strongly root compact on G, lo-
cal tightness follows because R (µ, G) is relatively compact and contains{
µr : r ∈ Q∗

+, r ≤ 1
}
.

�

Definition 3.3 For any locally tight homomorphism t 7→ µt of Q∗
+ into

P (G), we can form

K ((µt)) =
⋂

0<t≤1

{
µr : r ∈ Q∗

+, 0 < r < t
}
.

It can be shown (see [10, Sections 3.4, 3.5] for details) that K ((µt)) is
a compact, abelian, divisible, and so connected subgroup of P (G), which
is called the accumulation group of

{
µt : t ∈ Q∗

+

}
. It is also clear that for

all ν ∈ K ((µt)), and all r ∈ Q∗
+, νµr = µrν. The identity of K ((µt)) is

the normalised Haar measure ωH of some compact group H , and if M (ωH)
denotes the maximal subgroup of P (G) which contains ωH , the continuous
map x 7→ ωHx is a homomorphism from N (H, G) (the normaliser of H in
G) onto M (ωH), whose kernel is H . From this it follows that there is a com-
pact subgroup K1 of N (H, G) such that H ⊆ K1, and K1/H ∼= K ((µt)).
Furthermore the connectedness of K ((µt)) shows that HK0

1 = K1.
This brings us to what is an indispensible tool in most work on the

embedding problem. The result is really a result from the existence theory
for one-parameter semigroups in topological semigroups, adapted for P (G).
Full details of its proof appear in [10, Sections 3.4, 3.5].

Theorem 3.4 Suppose t 7→ µt is a locally tight homomorphism of Q∗
+ into

P (G), where G is locally compact. Then there is a continuous convolution
semigroup {νt : t ∈ R+} in P (G), and a map t 7→ λt of Q∗

+ into K =
K ((µt)) such that

(i) for all t ∈ Q∗
+, νt = µtλt = λtµt and

(ii) ν0 = ωH , the identity of the accumulation group K.
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Definition 3.5 A locally compact group G will be called indecent if and
only if there exist compact subgroups H1 ⊳ H2 in G, such that H2/H1 is
abelian and connected, but is not arcwise connected; otherwise G is called
decent. We note that Dixmier [8] has given an example of an abelian, com-
pact, connected (and indeed locally connected) group which is not arcwise
connected, so indecent groups do exist. It is easy to see that all Lie groups
and all totally disconnected groups are decent.

Theorem 3.6 Let G be a decent locally compact group. Then for µ ∈
P (G), µ is continuously embedded on G if and only if µ is locally tightly
rationally embedded on G.

Proof Let t 7→ µt be a locally tight rational embedding of µ, then as G
is decent, the accumulation group K = K ((µt)) is compact, abelian and
arcwise connected, so in the notation of Theorem 3.4, λ1 lies on a continuous
one-parameter semigroup {αt : t ∈ R} in K, with α1 = λ1, and then µ1 lies
on the continuous semigroup t 7→ νtα

−1
t .

�

Corollary 3.7 Let G be a decent locally compact group.

(i) If µ ∈ P (G) is infinitely divisible and strongly root compact on G
then µ is continuously embedded on G.

(ii) If µ ∈ P (G) is infinitely divisible and root compact on G, and G is a
CB group, then µ is continuously embedded on G.

Proof Immediate from Theorem 3.2 and Theorem 3.6.
�

Remark 3.8 Suppose G is locally compact and totally disconnected. If
t 7→ µt is a locally tight homomorphism of Q∗

+ into P (G), then t 7→ µt is
continuous. This is because the accumulation group K ((µt)) is connected
and totally disconnected, so is trivial, and the result now follows from
Theorem 3.4.

Definition 3.9 A locally compact group G is called Böge strongly root
compact if and only if for any compact C ⊆ G there exists a compact set
C0 ⊆ G such that, for each n ∈ N, and each finite sequence {x1, . . . , xn} of
elements of G, with xn = 1, satisfying

CxiCxj ∩ Cxi+j 6= ∅

for all 2 ≤ i + j ≤ n, we have xi ∈ C0 for all 1 ≤ i ≤ n.
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This rather awkward looking condition on G was introduced by Böge [1]
and exploited by Siebert [23] to solve the embedding problem for a number
of classes of locally compact groups. The notion is important because of
the following result.

Theorem 3.10 ([10, 3.1.13]) If G is Böge strongly root compact then ev-
ery µ ∈ P (G) is strongly root compact on G.

Example 3.11 The following groups are Böge strongly root compact.
(i) Every compact group. (ii) Every discrete free abelian group. (iii) Ev-
ery compactly generated locally compact abelian group. (iv) Every con-
nected solvable Lie group with “real roots”. The reader is referred to [10,
Section 3.1] for a comprehensive account of the ideas and consequences
associated with the Definition 3.9.

The next proposition is an elementary result which is nevertheless often
useful when dealing with roots of a measure.

Proposition 3.12 ([5, Proposition 3.4]) Let G and H be locally com-
pact second countable groups and suppose there is a continuous surjective
homomorphism f : H → G whose kernel is a compactly generated central
subgroup of H. If µ ∈ P (H), and X ⊆ R (µ, H), then

(i) if f (X) is relatively compact in P (G), X is relatively compact in
P (H), and

(ii) if X is closed in P (H), f (X) is closed in P (G).

Definition 3.13 Suppose G is a locally compact group and t 7→ µt is a
continuous homomorphism of R+ into P (G). The supporting subgroup of
(µt)t≥0 is defined to be

S ((µt)) :=

〈
⋃

t≥0

suppµt

〉
,

the smallest closed subgroup of G containing the supports of every µt, for
t ≥ 0.

Definition 3.14 We say that a locally compact group G has Property A
if and only if for each continuous homomorphism t 7→ µt of R+ into
P (G), there exists some N ∈ N such that µ 1

N

is strongly root compact on

S = S ((µt)).
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Proposition 3.15 Every almost algebraic group has Property A.

Proof Let G be almost algebraic, and let t 7→ µt be a continuous homo-
morphism of R+ into P (G). Write µ for µ1, and let G̃ (µ) be the smallest

almost algebraic subgroup of G containing suppµ. We write Ñ (µ, G) for the

normaliser of G̃ (µ) in G, and we note that Ñ (µ, G) is an almost algebraic
subgroup of G.

Let p : Ñ (µ, G) → Ñ (µ, G) /G̃ (µ) be the canonical homomorphism,

then t → p (µt) is a continuous homomorphism of R+ into Ñ (µ, G) /G̃ (µ),
with p (µ0) = p (µ1), so if we write T = {p (µt) : t ∈ R+}, then either

(i) T = {1} or (ii) T is a circle group.

In case (i) µ is almost factor compact on G̃ (µ) by the AFC theorem, and

Z(µ, G̃(µ)) = Z(G̃), the centre of G̃(µ). Then by Proposition 3.12, µ is

strongly root compact on G̃ (µ), and clearly G̃ (µ) = S ((µt)) so Property A
holds here with N = 1.

In case (ii), we write M = p−1 (T ), then clearly S ⊆ M . Also M

is a subgroup of the almost algebraic group Ñ (µ, G), and contains the

normal subgroup G̃ (µ) with M/G̃ (µ) compact, so M is almost algebraic by
[5, Lemma 2.2].

By [3, Lemma 2.3], there exists t ∈ Q∗
+ such that for all s ∈ Q∗

+, µs

is supported on A = Z (Z (µt, M) , M), the centraliser of Z (µt, M) in M .
Then by continuity,

for all s ∈ R+, suppµs ⊆ A

and so S = S ((µt)) ⊆ A. As M is the smallest almost algebraic subgroup

of Ñ (µ, G) containing S, we conclude that M = A.
Let t = m

N
, for some m, N ∈ N, then since Z(µ 1

N

, M) ⊆ Z (µt, M),

and since by the proof of [3, Lemma 2.3], the choice of t ensures Z (µt, M)
is minimal among all Z (µs, M), for all s ∈ R+, we have Z(µ 1

N

, M) =

Z (µt, M), and so M = Z(Z(µ 1
N
, M), M). We conclude that Z(µ 1

N

, M) is
central in M .

By the AFC theorem for M , F (µ 1
N

, M)/Z(µ 1
N

, M) is relatively com-

pact, so R(µ 1
N

, M)/Z(µ 1
N

, M) is relatively compact. By Proposition 3.12(i),

this is enough to ensure that R(µ 1
N

, M) is relatively compact, and so µ 1
N

is
strongly root compact on M . Since S is a closed subgroup of M it follows
that µ 1

N

is strongly root compact on S. This completes the proof that G
has Property A.

�
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Corollary 3.16 Any closed subgroup of an almost algebraic group has Prop-
erty A.

Proposition 3.17 Suppose G is locally compact and Z is a compactly gen-
erated closed central subgroup of G such that G/Z has Property A. Then G
has Property A.

Proof Let p : G → G/Z be the canonical homomorphism and suppose
t 7→ µt is a continuous homomorphism of R+ in P (G). Then t 7→ p (µt) is
a continuous homomorphism of R+ into P (G/Z). We note that

S ((µt)) ⊆ p−1 (S ((p (µt)))) .

Since G/Z has Property A, there exists N ∈ N such that p(µ 1
N

) is

strongly root compact on S1 := S ((p (µt))). By Proposition 3.12, this is
enough to ensure that µ 1

N

is strongly root compact on p−1 (S1). Since

S ((µt)) is a closed subgroup of p−1 (S1), we conclude that µ 1
N

is strongly

root compact on S ((µt)). Hence G/Z has Property A.
�

Corollary 3.18 Any connected Lie group has Property A.

Proof Let G be a connected Lie group, whose centre we denote by Z.
Then as in Theorem 2.7(iv), G/Z can be realised as a closed subgroup of
some GL (d, R), and so G/Z has Property A by Corollary 3.16. Hence G
has Property A by Proposition 3.17.

�

Theorem 3.19 Any closed subgroup of a connected locally compact group
has Property A.

Proof It is enough to show that any connected locally compact group
has Property A. Any such group contains a compact normal subgroup K,
such that G/K is a connected Lie group. By Corollary 3.18, G/K has
Property A. Let p : G → G/K be the canonical homomorphism. Given a
continuous homomorphism t 7→ µt of R+ into P (G), there is some N ∈ N

such that p(µ 1
N
) is strongly root compact on S ((p (µt))). Also

S ((µt)) ⊆ p−1 (S ((p (µt)))) := W.

We note that
p(R(µ 1

N
,W )) ⊆ R(p(µ 1

N
), S((p(µt)))).
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Because the second set is relatively compact in P (G/K), and K is compact,
this suffices to show that R(µ 1

N
,W ) is relatively compact is P (W ). Since

S ((µt)) is a closed subgroup of W , it follows that µ 1
N

is strongly root

compact in S ((µt)). Hence G has Property A.
�

Theorem 3.20 Let G be a closed subgroup of a decent, connected, locally
compact group. Then for µ ∈ P (G), µ is continuously embeddable on G if
and only if there is some closed subgroup W of G and some N ∈ N such
that

(i) there exists some λ ∈ P (W ) such that λN = µ, and

(ii) λ is infinitely divisible and strongly root compact on W .

Proof (⇒) Suppose t 7→ µt is a continuous embedding of µ, with µ = µ1.
By Theorem 3.19, there exists N ∈ N such that µ 1

N
is strongly root compact

on S ((µt)). Now take W = S ((µt)), and clearly µ 1
N

is infinitely divisible
on W .

(⇐) Clearly W is decent, so by Corollary 3.7(i) λ is continuously em-
bedded on W , so µ = λN is continuously embedded on G.

�

4 The Three Major Embedding Theorems

In this section we give the statements of the major embedding theorems
currently known for (i) p-adic linear groups, (ii) discrete (real) linear groups
and (iii) connected coverings of linear (real) Lie groups. All three results
rely for their proof on the AFC Theorem 2.3 above.

For any prime p we denote by Qp the field of p-adic numbers. By a
p-adic algebraic group we mean an algebraic subgroup of GLn (Qp), for
some n ∈ N. By a p-adic linear group we mean a topologically closed
subgroup of GLn (Qp) for some n ∈ N. These groups are locally compact
and totally disconnected. We call an element of GLn (Qp) unipotent if all
its eigenvalues are 1.

Lemma 4.1 ([17, Proposition 5]) If G is a totally disconnected locally
compact group and (µt)t>0 is a continuous, one-parameter semigroup in
P (G), then for all s, t ∈ R∗

+, G (µt) = G (µs), and so Z (µt, G) = Z (µs, G).

So for any continuous, one-parameter semigroup (µt)t>0 in P (G), where

G is totally disconnected, we use the notation Z
(
(µt)t>0 , G

)
to denote the

common centraliser Z (µs, G) (any s > 0).
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The embedding problem for p-adic algebraic groups was solved in 1991
by R. Shah [22], and her arguments were later extended in 1999, by
McCrudden and Walker [17], to all linear p-adic groups.

Theorem 4.2 (Embedding Theorem for linear p-adic groups) Let
G be a linear p-adic group. Then ν ∈ P (G) is infinitely divisible on G
if and only if there exists a continuous one-parameter semigroup (µt)t>0 in

P (G), and some x ∈ Z
(
(µt)t>0 , G

)
, such that

(i) x is infinitely divisible in Z
(
(µt)t>0 , G

)
, and

(ii) ν = xµ1.

Remark 4.3 The element x appearing in the statement of Theorem 4.2
is necessarily unimodular, and belongs to the centre of G (ν). We give no
details of the proof of Theorem 4.2 here, but refer the interested reader to
[22], [17] and [16, Section 5].

The embedding problem for discrete linear groups was solved by Dani
and McCrudden in 1996 [6]. Their result is as follows.

Theorem 4.4 (Embedding theorem for discrete linear groups) Let
D be a discrete subgroup of GL (d, R) for some d, and suppose µ ∈ P (D) is
infinitely divisible on D. Then there is a continuous one-parameter semi-
group t 7→ θt in P (D (µ)) and an element z ∈ Z (D (µ)), the centre of
D (µ), such that

(i) z is infinitely divisible in Z (µ, D), and

(ii) µ = zθ1 = θ1z.

Remark 4.5 (i) There is a discrete subgroup D of SL (2, R) such that
−I ∈ D, −I is infinitely divisible in D, but is not rationally embedded on
D ([6, Remark 6.1]).

(ii) If in the statement of Theorem 4.4 we add the assumption that D is
a subgroup of a finitely generated subgroup of GL (d, R), then we can con-
clude that µ is in fact continuously embedded on D (µ) ([6, Theorem 1.1]).

We omit the details of the proof of Theorem 4.4, and refer the interested
reader to [6] and [16, Section 7].

We now turn to the case where G is a connected (real) Lie group. A
group G is said to have the embedding property if and only if every µ ∈ P (G)
which is infinitely divisible on G is continuously embedded on G. It has
long been conjectured that every connected Lie group has the embedding
property. The result for the special case of point masses is true and has
been known since 1981.
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Theorem 4.6 ([15]) Let G be a connected Lie group. Then x ∈ G is
infinitely divisible in G if and only if x lies on a one-parameter group in G.

Proof (i) We first suppose G is a closed connected subgroup of some

GL(d, R), and let G̃ denote the Zariski closure of G in GL(d, R). Since

G is connected it is normal in G̃, and so for g ∈ G, Z(g, G) is nor-

mal in Z(g, G̃). Now Z0(g, G̃)/Z0(g, G) is a connected Lie group, and

Z(g, G) ∩ Z0(g, G̃)/Z0(g, G) is a discrete normal subgroup, so is central

in Z0(g, G̃)/Z0(g, G). In particular Z(g, G) ∩ Z0(g, G̃)/Z0(g, G) is finitely
generated and abelian.

Since Z(g, G̃) is real algebraic, Z0(g, G̃) is of finite index and normal in

Z(g, G̃), so Z(g, G) ∩ Z0(g, G̃) is of finite index and normal in Z(g, G) ∩

Z(g, G̃) = Z(g, G). So Z(g, G) ∩ Z0(g, G̃)/Z0(g, G) is of finite index and
normal in Z(g, G)/Z0(g, G).

To summarise, for all g ∈ G, the group of components of Z(g, G) con-
tains a finitely generated abelian normal subgroup of finite index.

(ii) Now let G be a general connected Lie group, and let Z be the centre
of G. By the trick used in (iv) of the (strategy of) proof of Theorem 2.7, we
can realise G/Z as a closed subgroup of some GL(d, R). So if p : G → G/Z
is the natural homomorphism, we see from (i) that for all g ∈ G,

Z(p(g), G/Z)/Z0(p(g), G/Z)

is a finite extension of a finitely generated abelian group. Take g ∈ G, and
write

K = p−1 (Z (p (g) , G/Z))

K1 = p−1
(
Z0 (p (g) , G/Z)

)
.

Suppose g is infinitely divisible on G, then all roots of g lie in Z (g, G), and
so in K, since Z (g, G) ⊆ K. But

K/K1
∼= Z (p (g) , G/Z) /Z0 (p (g) , G/Z)

so we conclude that g is contained in and infinitely divisible in K1.
Since p : G → G/Z is surjective and Z0 (p (g) , G/Z) is an analytic

subgroup of G/Z, it follows by an obvious Lie algebra argument that
p

(
K0

1

)
= Z0 (p (g) , G/Z). We can write Z = Z0 · D, as a direct prod-

uct, where D is a discrete subgroup of Z, and so is finitely generated and
abelian.

We have K1 = Z ·K0
1 = DK0

1 , since clearly Z0 ⊆ K0
1 . So we can define a

homomorphism φ : D → K1/K0
1 by φ (d) = dK0

1 for all d ∈ D, and this map
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is surjective. Hence K1/K0
1 is finitely generated and abelian, from which

we conclude that g belongs to K0
1 and is infinitely divisible in K0

1 . Then g
belongs to and is infinitely divisible in the subgroup L = Z (g, G) ∩ K0

1 .
We check that Z (g, G) is normal in K, so L is a normal subgroup of the

connected Lie group K0
1 . But the group of components of a closed normal

subgroup of a connected Lie group is a finitely generated abelian group; this
is because when we go modulo the identity component of the subgroup, we
have a discrete normal subgroup of a connected Lie group, which therefore
has to be central.

Hence g must be contained in and infinitely divisible in the connected
Lie group L0, and is also central in this group. But then g lies the image
of the exponential map of L0, by [13, Theorem 1.2, Chapter XVI]. This
completes the proof.

�

Note The above argument is more direct than that given in [15]; it is a
previously unpublished argument due to S.G. Dani, who has kindly allowed
me to present it here.

In 1992, Dani and McCrudden [5] gave a proof of the embedding prop-
erty for a class of Lie groups that includes all connected semisimple Lie
groups and all simply-connected Lie groups. Their result is as follows.

Theorem 4.7 (Embedding theorem for connected coverings of lin-
ear Lie groups) Let G be a connected Lie group which admits a represen-
tation ρ : G → GL (d, R) for some d ∈ N, such that ker ρ is discrete. Then
G has the embedding property.

Remarks on the proof of 4.7 (i) The theorem follows for the general
case fairly simply, once it is established for the “middle case” when ρ (G)
is almost algebraic (see [5, Section 7]).

(ii) To deal with the middle case, we must first deal with the case when
G is almost algebraic, and this is the most technical part of the proof. We
first need a “reduction theorem” which allows us to replace G by an almost
algebraic subgroup G′, such that the infinitely divisible µ ∈ P (G) which we
start with is in fact infinitely divisible in P (G′), and such that Z (µ, G′) is
(essentially) simply connected and nilpotent. We are now in what we term
the “reduced almost algebraic case,” which we look at in detail in the next
section.

(iii) In order to be able to deduce the middle case from the almost
algebraic case, we require the added complication in the almost algebraic
proof of working throughout with a subset E ⊆ P (G) which is a so called
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admissible root set for µ (see [5, Section 5]). But in our discussion of
the reduced almost algebraic case in the next section we choose to work
throughout with P (G) rather than with a general admissible root set for
µ. We hope that this simplification will make the essential structure of the
proof more transparent to the reader.

5 Proof for the Reduced Almost Algebraic

Case

In this section we give a proof of the embedding theorem for the reduced
almost algebraic case. Specifically we prove the following.

Theorem 5.1 Let G be an almost algebraic group, and suppose that µ ∈
P (G) is infinitely divisible on G. Suppose also that Z0(µ, G) contains an
almost algebraic simply connected nilpotent Lie group L, with L normal in
N(µ, G), such that Z0(µ, G)/L is compact. Then there exists m ∈ N and
ν ∈ Rm (µ, G) such that, if W = Z(Z0 (ν, L), G) (i.e. the centraliser in
G of the subgroup Z0 (ν, L)), then ν is infinitely divisible and strongly root
compact on W . Hence µ is continuously embedded on W , and so also on G.

Two properties of nilpotent Lie groups

Definition 5.2 Let G be a topological group. We say that G is affine root
rigid if the following condition holds: given any m ∈ N, a sequence {αk}k≥1

of continuous automorphisms of G and a sequence {hk}k≥1 in G such that

(i) αm
k = IdG for all k ∈ N and

(ii) the sequence
{
αk (hk)α2

k (hk) · · ·αm
k (hk)

}
k≥1

is relatively compact,

there exist sequences {fk}k≥1 and {gk}k≥1 in G such that

(a) hk = gkfk for all k ∈ N,

(b) {fk}k≥1 is relatively compact and

(c) αk (gk)α2
k (gk) · · ·αm

k (gk) = e where e is the identity element in G.

We note that if τ is an automorphism of a group G, such that τm = IdG

and g ∈ G, then the element τ (g) τ2 (g) · · · τm (g) of G is the same as the
mth power of the affine automorphism τg in the usual multiplication in
the group Aff (G) of affine automorphisms. The property above therefore
signifies that if for a sequence of affine automorphisms {αkhk}k≥1 where
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αm
k = IdG for all k, the mth powers are bounded, then up to a bounded

perturbation, {αkhk}k≥1 are actually solutions in Aff (G) of the equation
xm = IdAff (G). This is the motivation for the term affine root rigidity.

Lemma 5.3 ([5, Theorem 4.2]) Any connected nilpotent Lie group is
affine root rigid.

Lemma 5.4 (D-McC, unpublished) Let N be a simply connected nilpo-
tent Lie group, and suppose α ∈ Aut (N) and x ∈ N such that αn = 1 and
(αx)

n
= 1 in Aff (N). Then there exists y ∈ N such that αx = yαy−1 in

Aff (N).

Proof We argue by induction of the nilpotent length of N .

Base case: N = V , a vector space. Then α ∈ Aut(V ), x ∈ V and

αm = 1 = (αx)
m

in Aff (V ) .

Then

(αx)
m

= (αx) (αx) · · · (αx) =
(
αxα−1

) (
α2xα−2

)
· · ·

(
αmxα−m

)
αm = 1

and so in V

α (x) α2 (x) · · ·αm (x) = 1

in multiplicative notation. Switch to additive notation, to get

(
α + α2 + · · · + αm

)
(x) = 0,

hence (
I + α + · · · + αm−1

)
(x) = 0. (5.1)

Since α has finite order, we have a decomposition

V = U ⊕ W

such that U , W are α-invariant, α|W = idW , and (I − α) is invertible on
W . All eigenvalues of α|W are non-trivial mth roots of unity, so for all
t ∈ W , (

I + α + · · · + αm−1
)
(t) = 0. (5.2)

We write x = x1 + x2, x1 ∈ U , x2 ∈ W . Then by (5.1) and (5.2),

0 =
(
I + α + · · · + αm−1

)
(x1 + x2) =

(
1 + α + · · · + αm−1

)
(x1) = mx1,

from which we conclude x1 = 0. Hence x = x2 ∈ W . So α (x) ∈ W , so as
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(I − α) is invertible on W , there exists y ∈ W such that

α (x) = (I − α) (y) = y − α (y) .

Going back to multiplicative notation gives

α (x) = yα
(
y−1

)
in V.

In Aff (V ), this gives
αxα−1 = yαy−1α−1,

so
αx = yαy−1,

as required.

Inductive step Now suppose the result is true for groups of nilpotent
length d, and let N be of nilpotent length d + 1 and write Z for the centre
of N . Write N = N/Z, which is of nilpotent length d. Suppose α ∈ Aut (N)
and x ∈ N such that in Aff (N)

(αx)
m

= 1 = αm.

As above, the condition (αx)m = 1 implies

α(x)α2(x) · · ·αm(x) = 1 in N. (5.3)

Let α be the automorphism of N induced by α, then by (5.3), for all x ∈ N ,

α (x)α2 (x) · · ·αm (x) = 1 in N,

and αm = id on N . Therefore by inductive hypothesis, there exists y ∈ N
such that

α (x) = y α
(
y−1

)
.

Then there exists z ∈ Z such that

α (x) = yα
(
y−1

)
z in N. (5.4)

We substitute this into (5.3) to give

(
yα

(
y−1

)
z
) (

α (y)α2
(
y−1

)
α (z)

)
· · ·

(
αm−1 (y)αm

(
y−1

)
αm−1 (z)

)
= 1.

As z is central we can rearrange to get

zα (z)α2 (z) · · ·αm−1 (z) yα
(
y−1

)
α (y)α2

(
y−1

)
α2 (y) · · ·

αm−1
(
y−1

)
αm−1 (y)αm

(
y−1

)
= 1.
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Therefore
zα (z)α2 (z) · · ·αm−1 (z) yαm

(
y−1

)
= 1.

Since αm = 1, this gives

zα (z) · · ·αm−1 (z) = 1,

whence α (z) · · ·αm (z) = 1, so (αz)
m

= 1 in Aff (Z). By the result of
base case (since Z is a vector space) we see there exists w ∈ Z such that

αz = wαw−1 (in Aff (Z)) .

Therefore
α (z) = wα

(
w−1

)
in Z. (5.5)

From (5.4) and (5.5),

α (x) = yα
(
y−1

)
z in N and z = w−1α−1 (w) in Z.

So in N ,

α (x) = yα
(
y−1

)
w−1α−1 (w) = yα−1 (w) α

(
y−1

)
α

(
α−1

(
w−1

))

= yα−1 (w) α
(
y−1

(
α−1 (w)

)−1
)

.

Set t = yα−1 (w), to give

α (x) = tα
(
t−1

)
in N,

or in Aff (N),
αxα−1 = tαt−1α−1, so αx = tαt−1,

as required.
�

Proof of Theorem 5.1

Step 1. Construction of a root set sequence. Let L be the subgroup
as in the hypothesis of Theorem 5.1. Let L = L0 ⊇ L1 ⊇ · · · ⊇ Ln = {e}
denote the usual central series of L. Let L be the Lie algebra of L and
for each j = 0, . . . , n let Lj be the Lie subalgebra of L corresponding to
Lj. We define a homomorphism p : N (µ, G) → Aut (L), where Aut (L)
is the group of Lie automorphisms of L, by p (x) (h) = xhx−1 for all x ∈
N(µ, G) and h ∈ L. For each x ∈ N(µ, G), p(x) leaves invariant Lj , for all
j, and hence induces quotient automorphisms on Lj−1/Lj, 1 ≤ j ≤ n. Let
pj : N(µ, G) → Aut(Lj−1/Lj), where 1 ≤ j ≤ n, be the homomorphism
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such that for all x ∈ N(µ, G), pj (x) is the quotient of p (x) on Lj−1/Lj;
namely pj (x) (hLj) = p (x) (h)Lj = xhx−1Lj for all h ∈ Lj−1.

For each j = 1, . . . , n let δj : Aut(Lj−1/Lj) → Aut(Lj−1/Lj) be the
homomorphism associating to each Lie group automorphism its derivative,
and write p̃j for δjpj .

Clearly p̃j (µ) is the point mass at the identity automorphism of Lj−1/Lj .
This implies that for any root λ of µ, p̃j (λ) is a point mass at an element
of finite order in Aut

(
Lj−1/Lj

)
; we write dj (λ) for the dimension of the 1-

eigenspace of the automorphism of Lj−1/Lj supporting p̃j (λ), for each 1 ≤
j ≤ n, and we denote by d (λ) the ordered n-tuple (d1(λ), d2(λ), . . . , dn(λ)).

�

Proposition 5.5 Let {mk} be a sequence of positive integers. Then there
exists a sequence {R∗

k (µ)} of closed subsets of P (G) such that the following
conditions are satisfied:

(i) R∗
0 (µ) = {µ};

(ii) if k ≥ 1 and λ ∈ R∗
k (µ) then λmk ∈ R∗

k−1 (µ);

(iii) if λ1, λ2 ∈ R∗
k(µ), for some k ≥ 1, then d(λ1) = d(λ2);

(iv) if λ ∈ R∗
k (µ), for some k ≥ 1, and ν ∈ P (G) is such that

a) νm1m2···mk = µ, and

b) (p̃1 (λ) , p̃2 (λ) , . . . , p̃n (λ)) = (p̃1 (ν) , p̃2 (ν) , . . . , p̃n (ν)),

then ν ∈ R∗
k (µ);

(v) for all k ≥ 1 and q ≥ 1 there exists a λ ∈ P (G) such that λq ∈ R∗
k (µ).

Proof We construct the sequence R∗
k (µ) inductively. Let R∗

0 (µ) = {µ}.
To define R∗

1 (µ) we write

R1 (µ) = {λ ∈ P (G) : λm1 = µ} ,

and we note that infinite divisibility of µ on G implies that R1 (µ) 6= {∅}
and

for all n ≥ 1 there exists ν ∈ P (G) such that νn ∈ R1 (µ) . (5.6)

The set {d (λ) : λ ∈ R1 (µ)} is clearly finite (its cardinality is no more than
(a + 1)n, where a = dimL); let its distinct elements be d1, d2, . . . , dr1

, and
for 1 ≤ j ≤ r1 write

R1 (µ, dj) = {λ ∈ R1 (µ) : d (λ) = dj} .
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Then

R1 (µ) =

r1⋃

j=1

R1 (µ, dj) (disjointly). (5.7)

We claim that for some 1 ≤ j ≤ r1 , R1 (µ, dj) contains an n-divisible
element for all n ≥ 1. For if not then for each 1 ≤ j ≤ r1, we can find Nj

such that no element of R1 (µ, dj) is Nj-divisible, and if we set N =
r1∏

j=1

Nj ,

then by (5.7), no element of R1 (µ) is N -divisible, which contradicts (5.6).
We can therefore select 1 ≤ jo ≤ r1, such that for all n ≥ 1, R1 (µ, djo

)
contains an n-divisible element, and we write R∗

1 (µ) for R1 (µ, djo
). It is

easy to check that R∗
1 (µ) is closed in P (G) and that (ii), (iii), (iv), (v) of

the statement of the proposition hold good for k = 1.
We now show how to construct R∗

s+1 (µ), given that R∗
0 (µ) , . . . , R∗

s (µ)
have already been defined, and that conditions (i), (ii), (iii), (iv), (v) hold
for all 0 ≤ k ≤ s.

Write R1(R
∗
s(µ)) = {λ ∈ P (G) : λms+1 ∈ R∗

s(µ)}, and note that by
property (v) for s, R1(R

∗
s(µ)) contains n-divisible elements for all n ∈ N.

The set {d(λ) : λ ∈ R1(R
∗
s(µ))} is finite; let its distinct elements be

d1,d2, . . . , drs+1
. If we write

R1 (R∗
s (µ) , dj) = {λ ∈ R1 (R∗

s (µ)) : d (λ) = dj}

then

R1 (R∗
s (µ)) =

rs+1⋃

j=1

R1 (R∗
s (µ) , dj) ,

where the right hand side is a disjoint union of closed subsets of P (G).
An argument as before shows that there is some 1 ≤ js ≤ rs+1 such that
R1 (R∗

s (µ) , djs
) contains an n-divisible element for all n ∈ N. We set

R∗
s+1 (µ) = R1 (R∗

s (µ) , djs
).

Clearly (i), (ii), (iii), (v) hold for k = s + 1, so it remains to check (iv).
So suppose λ = R∗

s+1 (µ) and ν ∈ P (G) such that νm1m2···ms+1 = µ, and

(p̃1 (λ) , p̃2 (λ) , . . . , p̃n (λ)) = (p̃1 (ν) , p̃2 (ν) , . . . , p̃n (ν)) , (5.8)

By property (ii), λms+1 ∈ R∗
s (µ), and

(p̃1 (λms+1) , p̃2 (λms+1) , . . . , p̃n (λms+1)) =

(p̃1 (νms+1) , p̃2 (νms+1) , . . . , p̃n (νms+1)) ,

so by property (iv) for k = s, we conclude that νms+1 ∈ R∗
s (µ).

Also by (5.8), d (ν) = d (λ), so by construction of R∗
s+1 (µ), we get ν ∈

R∗
s+1 (µ). This completes the proof of the proposition.

�
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We now choose and fix a sequence {mk} of positive integers with the
property that for each positive integer q there exists an integer r such that
q divides m1m2 · · ·mr. Let R∗

k (µ) be a corresponding root set sequence
chosen according to Proposition 5.5 above.

Step 2. A relatively compact sequence of roots. For each k ≥ 1 and
1 ≤ j ≤ n, let dj,k be the dimension of the 1-eigenspace of (equivalently,
of the largest subspace which is pointwise fixed by) the automorphism sup-
porting p̃j (λ), λ being any element of R∗

k (µ); by property (iii) of the se-
quence {R∗

k (µ)}
k≥0, the dimension of the 1-eigenspace is independent of

which λ we choose in R∗
k (µ). By property (ii) of {R∗

k (µ)}
k≥0 we get that

dj,k+1 ≤ dj,k for all j = 1, . . . , n and all k ≥ 0. Therefore there exists a
positive integer K such that dj,k = dj,K for all j = 1, . . . , n and all k ≥ K.

We note that this condition on K is equivalent to the condition that∑n
j=1 dj,k =

∑n
j=1 dj,K , for all k ≥ K. We also note that since p̃ (λ) is of

finite order in Aut (L), for each λ ∈ R∗
k (µ), the dimension of the subspace

of fixed points of p̃ (λ) equals
n∑

j=1

dj,k, and so

dimZ0 (λ, L) =
n∑

j=1

dj,k.

So the choice of K ensures that for all k ≥ K and all λ ∈ R∗
k(µ), the

dimension of Z0(λ, L) is constant.
For each k ≥ 1 we now select a λk ∈ R∗

k+K (µ) and write νk = λrk

k ,
where rk = mK+1 · · ·mK+k; by property (ii) of the root set sequence
ν ∈ R∗

K (µ). By Theorem 2.3 (the AFC theorem), R (µ, G) is relatively
compact modulo Z (µ, G), so is relatively compact modulo Z0 (µ, G), since
Z (µ, G) /Z0 (µ, G) is finite. But by hypothesis, Z0 (µ, G) /L is compact,
so R (µ, G) is relatively compact modulo L. Hence by shift compactness
(cf. [20, Theorem 2.2, Chapter III]) there exists a sequence {hk} in L such
that {νkhk : k ≥ 1} is relatively compact. Let m = m1m2 · · ·mK , then
{(vkhk)

m
: k ≥ 1} is also relatively compact.

We now need the following proposition.

Proposition 5.6 Let ν ∈ P (G) be of the form λg where suppλ ⊆ ker p
and g ∈ G. Then for each r ≥ 1 and all x ∈ L,

(νx)
r

= p (ν) (x) p (ν)
2
(x) · · · p (ν)

r
(x) νr.

In particular this equation holds for any root ν of µ.

Proof As for [4, Proposition 2], and Proposition 2.1(i) above.
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By the proposition and the fact that νm
k = µ we have

(νkhk)m = p (νk) (hk) · · · p (νk)m (hk) µ for all k ≥ 1.

By our observation above, this implies that

{p (νk) (hk) · · · p (νk)m (hk) |k ≥ 1}

is a relatively compact subset of L. Since L is a nilpotent Lie group, it is
affine root rigid (cf. Lemma 5.3) and therefore under the above condition
there exist sequences {fk}k≥1 and {gk}k≥1 in L such that hk = gkfk for all
for all k ≥ 1, {fk|k ≥ 1} is relatively compact and

p (νk) (gk) · · · p (νk)
m

(gk) = 1 for all k ≥ 1.

We now have p (νk)
m

= 1 in Aut (L) and (p (νk) gk)
m

= 1 in AffL, so
by Lemma 5.4, for all k ≥ 1 there exists xk in L such that

p (νk) gk = xkp (νk)x−1
k . (5.9)

But by Proposition 2.1(i), we can write νk = σkak, with suppσk ⊆ G (µ)
and ak ∈ N (µ, G), and then p (νk) = p (ak), for all k ≥ 1. Then by (5.9),
for all k ≥ 1,

xkνkx−1
k =

(
xkσkx−1

k

)
xkakx−1

k = σkakgk = νkgk.

Since {νkhk : k ≥ 1} and {fk : k ≥ 1} are relatively compact, so is
{νkgk : k ≥ 1}. Since p̃j (gk) is the identity automorphism for all 1 ≤
j ≤ n, and νk ∈ R∗

K (µ), we deduce from (iv) of Proposition 5.5 that
νkgk ∈ R∗

K (µ), for all k ≥ 1. We now write

C = {νkgk : k ≥ 1} =
{
xkνkx−1

k : k ≥ 1
}

and we note that C is a compact subset of R∗
K (µ).

�

Step 3. Compactness of the set Sk (C) . We now write, for all k ≥ 1,

Sk (C) =
{
α ∈ R∗

K+k (µ) : αrk ∈ C
}

,

where as above, rk = mK+1 · · ·mK+k.
We note that since p̃j (xk) is the identity automorphism, for all

1 ≤ j ≤ n, and λk ∈ R∗
K+k (µ), by (iv) of Proposition 5.5, xkλkx−1

k ∈
R∗

K+k (µ), and (
xkλkx−1

k

)rk

= xkνkx−1
k ∈ C.
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Hence xkλkx−1
k ∈ Sk (C), and Sk (C) is nonempty. Since C is compact and

R∗
K+k (µ) is closed, it is also clear that Sk (C) is closed.

Suppose Sk (C) is not compact, then Sk (C) contains a sequence
{αq : q ≥ 1} which is not relatively compact. By the hypothesis of The-
orem 5.1 and shift compactness, we can find a sequence {yq}q≥1 in L such

that {αqyq : q ≥ 1} is relatively compact, and then {yq}q≥1 is not rela-
tively compact. Then there exists a largest index 1 ≤ l ≤ n such that
{yqLl−1 : q ≥ 1} is relatively compact in L/Ll−1. By translating on the
right by a bounded sequence, we may assume without loss of generality
that yq ∈ Ll−1 for all q ≥ 1.

By Proposition 5.6, we have for all q ≥ 1

(αqyq)
rk = p (αq) (yq) p (αq)

2
(yq) · · · p (αq)

rk (yq)αrk

q .

Since {αrk

q |q ≥ 1} is contained in C, it is a relatively compact subset.
Since {(αqyq)

rk |q ≥ 1} is also relatively compact, by choice, the above equa-
tion implies that {p (αq) (yq) · · · p (αq)

rk (yq) |q ≥ 1} is a relatively compact
subset of Ll−1. Hence {p (αq) (yq) · · · p (αq)

rk (yq) Ll|q ≥ 1} is a relatively
compact subset of Ll−1/Ll.

Since yq ∈ Ll−1 we have pl (αq) = pl (αqyq) for all q ≥ 1 and, since
{αqyq|q ≥ 1} is relatively compact, this implies that {pl (αq) |q ≥ 1} is a
relatively compact subset of Aut (Ll−1/Ll). Hence {p̃l (αq) |q ≥ 1} is a rel-
atively compact subset of Aut

(
Ll−1/Ll

)
. It follows that the set

T :=

{
rk∑

s=1

p̃l (αq)
s |q ≥ 1

}

is a relatively compact subset of End
(
Lj−1/Lj

)
.

Proposition 5.7 There exists some c > 0 such that det(β) ≥ c, for all
β ∈ T .

Proof Let Lq be the 1-eigenspace of p̃l (αq), and note that since αq ∈
R∗

K+k (µ), we have dim Lq = r (say), for all q ≥ 1. Also αrk

q ∈ R∗
K (µ), so

by choice of K, the dimension of the 1-eigenspace of p̃l

(
αrk

q

)
is also r, and

so Lq is also the 1-eigenspace of p̃l

(
αrk

q

)
.

Let L∗
q be the unique p̃l (αq)-invariant subspace of Ll−1/Ll such that

Ll−1/Ll = Lq ⊕ L∗
q, then if we write Ml for Ll−1/Ll, we have

M l = Lq ⊕ L∗
q ,

where the bar denotes complexification. Thinking of p̃l (αq) as a linear
map on M l, we can find a C-basis {xq,1, . . . , xq,r} of Lq, and a C-basis
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{yq,1, . . . , yq,t} of L∗
q (where r + t = dimM l), with both bases consisting of

eigenvectors of p̃l (αq). Let βq,j be the eigenvalue of p̃l (αq) corresponding
to yq,j , then clearly βq,j 6= 1, but βq,j is a root of unity since p̃l (αq) has
finite order. Then

rk∑

s=1

p̃l (αq)
s
(xj,i) = rkxj,i (1 ≤ i ≤ r)

and

rk∑

s=1

p̃l (αq)
s
(yq,j) = (βq,j

(
1 − βrk

q,j

)
/ (1 − βq,j))(yq,j) (1 ≤ j ≤ t) .

We note that βrk

q,j is an eigenvalue of p̃l

(
αrk

q

)
, but cannot equal 1 since

Lq is also the 1-eigenspace of p̃l

(
αrk

q

)
(complexified). We conclude that for

all q ≥ 1,

det

[
rk∑

s=1

p̃l(αq)
s

]
= rr

k

t∏

j=1

[βq,j(1 − βrk

q,j)/(1 − βq,j)].

Since αrk

q ∈ R∗
K (µ), βrk

q,j is a nontrivial mth root of 1, hence for all 1 ≤ j ≤ t
and for all q ≥ 1,

|βq,j

(
1 − βrk

q,j

)
/ (1 − βq,j) | ≥ sin

π

m
.

Then for all q ≥ 1,

det

[
rk∑

s=1

p̃l (αq)
s

]
≥ rr

k

(
sin

π

m

)t

,

and setting c = rr
k

(
sin π

m

)t
completes Proposition 5.7.

�

Proposition 5.7 now implies that T is a relatively compact subset of
Aut

(
Ll−1/Ll

)
. By exponentiation this implies that if for all q ≥ 1, τq ∈

Aut (Ll−1/Ll) is the automorphism defined by

τq (xLl) = pl (αq) (xLl) · · · pl (αq)
rk (xLl)

for all x ∈ L, then {τq|q ≥ 1} is a relatively compact subset of Aut (Ll−1/Ll).
Recall that {pl (αq) (yqLl) · · · pl (αq)

rk (yqLl) : q ≥ 1} is relatively com-
pact. Hence the preceding conclusion implies that {yqLl : q ≥ 1} is a rela-
tively compact subset of Ll−1/Ll and hence of L/Ll. But this contradicts
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the choice of l. The contradiction shows that Sk (C) must indeed be com-
pact.

Step 4. The target measure ν and its embedding. We now write
Ck = {αrk : α ∈ Sk (C)}, then each Ck is non-empty and compact, and
by the properties of {R∗

k (µ)}
k≥0 the {Ck}k≥1 are decreasing. Hence there

exists ν ∈
∞⋂

k=1

Ck. We write

W = Z
(
Z0 (ν, L) , G

)
=

{
y ∈ G : yx = xy, for all x ∈ Z0 (ν, L)

}
.

We shall now show that ν is infinitely divisible and strongly root com-
pact on W .

Recall that by the choice of sequence {mk}k≥1 for any q ∈ N there exists
a r ∈ N such that q divides m1m2 · · ·mr. It follows therefore that for any
n ∈ N there exists a k ∈ N such that n divides rk = mK+1mK+2 · · ·mK+k;
choose q = n (m1m2 · · ·mK) to see this. In view of this, to prove infinite
divisibility of ν on W it is enough to prove that for each k ∈ N, ν has an
rk-th root on W . Let k ∈ N be given. The choice of ν shows that there
exists a λ ∈ R∗

K+k (µ) such that λrk = ν. We shall show that suppλ ⊆ W .
We observed at step 2 that for all k ≥ K, all λ ∈ R∗

k (µ), the dimension
of Z0 (λ, L) is constant. Since clearly Z0 (λ, L) ⊆ Z0 (ν, L), and both groups
are connected, we conclude Z0 (λ, L) = Z0 (ν, L). Then

suppλ ⊆ Z
(
Z0 (λ, L) , G

)
= Z

(
Z0 (ν, L) , G

)
= W,

and λ is supported on W . Hence ν is infinitely divisible on W .
We now need to check that F (ν, W ) /Z0 (ν, L) ∩ W is relatively com-

pact in P
(
W/Z0 (ν, L) ∩ W

)
. The argument to show this depends on The-

orem 2.3(i) applied to G; full details are given in the last two paragraphs
of page 254 of [5], to which the (still) interested reader is referred.

The proof of the theorem is now completed by observing that since
any root of ν in W belongs to F (ν, W ), and Z0 (ν, L) ∩ W is a compactly
generated central subgroup of W , the strong root compactness of ν on W
is assured by Proposition 3.12.

�

Remark on the proof of Theorem 5.1. The proof we have given above
is mostly taken directly from the proof of [5, Theorem 5.1]. However, there
are some differences.

(i) The use of Lemma 5.4 is new, and it avoids the need to use the concept
of affine root divisibility introduced in [5]. It also highlights the fact
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the set {νkgk : k ≥ 1} of m -roots of µ can be rewritten as conjugates
of {νk : k ≥ 1} by elements of L.

(ii) The construction of the root set sequence is different, in that in [5]
two elements in R∗

k (µ) have to have the same spectrum, but here we
require only that the dimensions of the 1-eigenspaces of the measures
in R∗

k (µ), acting on the abelian quotients of L, are the same.

6 Measures on Semigroups

Although there is an extensive theory of probabilities on locally compact
semigroups ([9], [19]), it is only recently (in the thesis of Seth Walker [24])
that a start has been made on the embedding problem for probabilities
on semigroups. Even when the semigroup is a subsemigroup of a linear
connected Lie group, the problem seems very difficult.

For a (locally compact Hausdorff) topological semigroup S, we write
P (S) for the topological semigroup of probabilities on S, with the weak
topology and convolution as the multiplication. The concepts presented
in Definition 3.1 for groups carry over verbatim to semigroups, so making
sense of notations such as Rn (µ, S) for µ ∈ P (S), and giving rise to the
sets

I (S) = {µ ∈ P (S) : µ is infinitely divisible on S}

and

E (S) = {µ ∈ P (S) : µ is continuously embedded on S} .

We may then ask which semigroups S have the embedding property (i.e.
I (S) = E (S) ), or which have the point embedding property (i.e. E (S) ∩
S = I (S) ∩ S).

By a subsemigroup of a locally compact group G we shall mean a closed
subset S of G which contains the identity, and is closed under multiplication.

Remark 6.1 The existence of the discrete subgroup D of SL (2, R) men-
tioned in Remark 4.5(i) shows that the point embedding property is not
possessed by all subsemigroups of a connected Lie group G. But a natural
question to ask is whether every connected subsemigroup of a connected
Lie group has the point embedding property. Even this fails spectacularly.

Example 6.2 ([24, Theorem 89]) Let D be the subsemigroup of
SL (2, R) as in Remark 6.1, and form the subset S of GL+ (2, R) given
by

S = [1, 2] D ∪ [2,∞)SL (2, R) .
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It is easy to check that S is a closed subsemigroup of GL+ (2, R), and
contains the element −I, which is infinitely divisible on S by Remark 4.5(i).
Clearly C = [2,∞)SL (2, R) is path connected, and for any A ∈ [1, 2] D,
the path [1, 2] A connects A to a point in C. Hence S is (path) connected.
However, −I is not continuously embedded on S, for if θ : R+ → S is
a continuous homomorphism such that θ (1) = −I, then t 7→ | θ (t) | is
a continuous homomorphism of (R+, +) into (R+,×) such that θ (1) = 1,
hence | θ (t) | = 1 for allt ∈ R+. Then

θ (t) ∈ SL (2, R) ∩ S = D for all t ∈ R+,

and −I is continuously embedded on D, contradicting discreteness of D.
Walker calls this semigroup S the discrete comb.

Proposition 6.3 ([18, Theorem 2.1]) Let S be a subsemigroup of a con-
nected Lie group, and suppose µ ∈ I (S), with µ root compact on S. Then
µ ∈ E (S).

Proof The same argument as in Theorem 3.2(i) gives a rational embed-
ding t → µt of Q∗

+ into P (S) such that µ1 = µ, and the result now goes
through as for Corollary 3.7(ii), because the accumulation group K ((µt))
remains within P (S).

�

Corollary Let G be a connected Lie group in which every µ ∈ P (G) is root
compact on G. Then every closed subsemigroup S of G has the embedding
property. In particular any closed subsemigroup of any connected nilpotent
Lie group has the embedding property.

In view of Example 6.2 above, the next result seems rather surprising.

Proposition 6.4 Any connected subsemigroup of SL (2, R) has the embed-
ding property.

Proof The details, which are quite elementary, are contained in Proposi-
tion 2.3, 2.4 and Remark 2.5 of [18]. The point is that because the dimen-
sion is small there are only two types of measure which are not strongly
root compact on G = SL (2, R), and these can be dealt with by ad hoc
argument.

�

Definition 6.5 Let S be a closed subsemigroup of a locally compact group
G, then the edge of S is the set

H (S) = S ∩ S−1 ⊇ {1} .
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Example 6.6 Let S be the semigroup S of Example 6.2. Then H (S) = D,
the discrete subgroup of SL (2, R), as in Remark 6.1. Hence S has a discrete
edge.

Definition 6.7 A subsemigroup S of a group G is called pointed if and
only if H (S) = {1}.

Proposition 6.8 ([18, Proposition 3.2]) If S is a pointed subsemigroup
of G = SL (2, C), then every µ ∈ P (S) is strongly root compact on S, and
so S has the embedding property.

Problem C For which connected Lie groups G is it true that for each
pointed subsemigroup S of G, every µ ∈ P (S) is (strongly) root compact
on S?

Example 6.9 For α, β ∈ R with β > 0, let us denote by Gα the simply
connected solvable Lie group which is C × R, with multiplication

(c, s) (d, t) =
(
c + eαisd, s + t

)

and write
Sβ = {(c, t) ∈ Gα : |c| ≤ βt} .

Then Sβ is a closed subsemigroup of Gα, which is pointed.
An elementary argument shows that Sβ has the property that every

µ ∈ P (Sβ) is strongly root compact on Sβ, whereas, if α 6= 0, the smallest
group containing Sβ , Gα, is not itself strongly root compact. To see this, we
note that the root set of the point mass at (0, 2π/α) contains the unbounded
set of point masses {(c, π/α) : c ∈ C}.

We now write G1 for the subgroup of upper triangular matrices in
SL (2, C).

Proposition 6.10 ([18, Theorem 3.4]) Let S be a subsemigroup of G1,
and suppose that H (S) is connected. Then S has the embedding property.

Problem D For which connected Lie groups G is it true that every sub-
semigroup S of G which has a connected edge has the embedding property?

Definition 6.11 A subsemigroup S of a group G is called invariant if and
only if xSx−1 ⊆ S , for all x ∈ G.

Theorem 6.12 ([18, Theorem 4.1]) Let S be an invariant subsemigroup
of a connected semisimple Lie group G. Then S has the point embedding
property.
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Proof It is enough to show that for x ∈ I (S)∩S and all n ∈ N, x has an
nth root, y ∈ S, such that y ∈ I (S). For given x ∈ I (S) ∩ S, we can use
this property repeatedly to construct a sequence (ym)m≥1 in I (S)∩S such
that

y1 = x and (ym+1)
m+1

= ym for all m ∈ N.

If we then write, for p, q ∈ N,

x (p/q) = (yq)
p(q−1)!

,

then r 7→ x (r) is a well-defined homomorphism from Q∗
+ into S, with

x (1) = x. The conclusion that x ∈ E (S) now follows from Theorem 2.7
and Theorem 3.6.

Fix x ∈ I (S). For all n ∈ N write {Rn,i : i ∈ In} for the set of conjugacy
classes of Rn (x, G) that intersect S non-trivially; as x ∈ I (S) this is non-
empty. Theorem 1 of [14] implies that we may choose In = {1, . . . , ln} for
some ln ∈ N. Also, as S is invariant,

Rn,i ⊆ S

for all n ∈ N and 1 ≤ i ≤ ln giving that

Rn (x, S) =

ln⋃

i=1

Rn,i. (6.1)

Now fix n ∈ N. As x ∈ I (S), there exists yk ∈ Rk!n (x, S) for all

k ∈ N. By (6.1), infinitely many of the elements from
{

(yk)
k!

: k ∈ N

}
lie

in R := Rn,i for some i. Note that choosing R like this means that for all
m ∈ N, there exists an xm ∈ S such that (xm)m ∈ R.

Choose y ∈ R. As all elements of R are conjugate, for all m ∈ N there
exists a zm ∈ G such that

y = zm (xm)
m

z−1
m =

(
zmxmz−1

m

)m

and as S is invariant, zmxmz−1
m ∈ Rm (y, S), as required.

�

Definition 6.13 For a subsemigroup S in a connected Lie group G we
define the tangent wedge of S, denoted by L (S), by

L (S) = {X ∈ L (G) : exp R+X ⊆ S} ,

where L (G) is the Lie algebra of G. We say that a subsemigroup S is a Lie
subsemigroup of G to mean that S =< exp L (S) >, i.e. S is the smallest
closed subsemigroup of G containing expL (S).



The Embedding Problem for Probabilities on Locally Compact Groups 361

Theorem 6.14 ([18, Theorem 4.3]) Let S be a pointed, invariant, Lie
subsemigroup of a simply connected solvable Lie group G. Then S has the
point embedding property.

Proposition 6.15 The semigroup End (V ), where V is a finite-dimensional
real vector space, has the point embedding property.

Proof We recall that if V is a finite-dimensional vector space and A ∈
End (V ), there exists a unique direct sum decomposition V = IA⊕NA such
that IA, NA are A-invariant, A|IA

is invertible and A|NA
is nilpotent.

Suppose A ∈ End (V ) is infinitely divisible in End (V ). Using the above
decomposition, we easily conclude that if the above decomposition corre-
sponding to A is V = I ⊕ N , then

(i) A|N is the zero map, and

(ii) A1 := A|I is infinitely divisible in GL+ (I).

Then by Theorem 4.6, we have a continuous homomorphism t 7→ A′
t of R

into GL+ (I) such that A′
1 = A1 and then t 7→ (A′

t, 0) is an embedding of
A in End (V ).

�

Problem E Does the subsemigroup

S+ =
{
A ∈ GL+ (d, R) : all entries of A are non-negative

}

of GL+ (d, R) have the (point) embedding property?

Remark 6.16 Even for Lie subsemigroups of connected Lie groups, the
results we have to date are far from impressive. So for example we do not
know if every Lie subsemigroup of SL (2, C) has the embedding property.
Problem C above does seem to point to one area where further progress
might be possible.
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