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ELECTROMAGNETIC INVERSE PROBLEMS FOR NEMATIC
LIQUID CRYSTALS AND CAPACITANCE IMAGING.

NICK POLYDORIDES

Abstract. The aim of this study is to formulate and solve the high-frequency
electromagnetic problem of wave propagation through nematic liquid crystal
cells of arbitrary shape, and subsequently approach the inverse problem of re-
constructing the orientational order by means of recovering the dielectric ten-
sors in the interior from a finite set of boundary polarization measurements.
The numerical solution of the forward electromagnetic problem is achieved by
hybridizing the conventional vector finite elements with a boundary integral
method, so that to preserve the necessary continuity conditions for the electro-
magnetic fields at the boundary of the domain. Combining the finite element
equations with a magnetic field integral boundary equation yields surface inte-
grals involving Green’s function and its gradient. These integrals have kernels
that become asymptotically singular as the distance between the observation
and integration points reduces to zero, essentially making the numerical inte-
gration process problematic. For their computation a new basis of functions
are introduced for the surface current density, the so-called Rao-Wilton-Glisson
functions, which effectively substitute the tangential components of the mag-
netic field in the original boundary integrals. The transformed integrals are
then treated with the singularity extraction method, essentially separating the
smooth from the singular components of the kernels, the former of which are
computed using conventional numerical integration and the later using closed
form expressions derived for the RWG functions. The forward problem is then
linearized with the aid of the Fréchet derivative of the forward Maxwell op-
erator and subsequently regularized using a Tikhonov type regularization. In
regularization we construct a penalty term based on Frank’s distortion energy
functional, which is known to have a minimum in the neighborhood of stable
liquid crystal director configurations. The inverse problem of reconstructing
the orientation of the director vector in a uniaxial nematic liquid crystal using
a finite set of noise infused boundary polarization measurements is approached
as a special case of the inverse permittivity tensor problem, where the dielec-
tric tensors are symmetric and expected to vary most significantly along the
directions of their two biggest eigenvalues, which correspond to the associated
Euler angles of the director vector.

1. Introduction

Grating aligned nematic liquid crystals (NLC) are of interest to the researchers
and manufacturers of displays and other optical devices. In order to understand
and optimize these devices one needs to be able to probe the liquid crystal di-
rector orientation profile around and beyond the grating structure. According to
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Figure 1. Image of a biaxial nematic liquid crystal cell as ob-
tained for a polarized microscope. On the image note the distinc-
tive oval shape of the molecules and the nonuniform profile of the
director.

a recent report by Newton et al. [25], in the design of liquid crystal displays,
the optimum goal for displays is to maximize the contrast and achieve at least a
300 dpi resolution. To achieve this, researchers have resorted in numerical models
that allow them to obtain an understanding on how the light propagates inside
the liquid crystal. In this context, monitoring how the polarization state of the
laser changes as it propagates along the liquid crystal cell, can yield information
about the orientational order of its molecular structure. For the bistable NLC in
particular the aim is to generate a model which is accurate enough to track the
various stable states and also efficient enough to be implemented for laboratory
research using realistic design space. This hints to the need for considering the
inverse problem of recovering the interior electro-optical properties of the devices
from acquired boundary observations. The high-frequency liquid crystal problem
is closely related to other electromagnetic problems at lower frequencies, in partic-
ular the use of low-frequency electrostatic and electromagnetic measurements for
location, detection and imaging problems [28].

The aim of this work is to solve the ill-posed inverse electromagnetic (EM) prob-
lem of determining the profile of the orientation of the director vector in a uniaxial
NLC using a finite set of noise infused optical measurements. This will be treated
as a special high-frequency case of the inverse permittivity tensor reconstruction
problem in Maxwell’s time-harmonic equations. Parts of the derived methodol-
ogy will subsequently extended to cover the low-frequency electrical capacitance
imaging problem, seeking to recover the distribution of permittivity tensors in the
half space from boundary current intensity measurements. A complete suite of
MATLAB [23] routines for solving the forward and ill-posed inverse anisotropic
permittivity problems on finite domains, will be designed as part of this research.
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1.1. Existing technology. In their technical report [25], the authors follow an
electro-optical strategy in deriving a model that enables the recovery of the direc-
tor configuration within the cell by minimizing the free energy stored inside the
liquid crystal. This approach preserves the stability of the reconstructed solution
as well as its compliance with Maxwell’s equations. The total energy is known to
be the sum of the elastic distortion energy density, the surface energy density, the
dielectric energy density and the flexoelectric energy density, all of which can be ex-
pressed in terms of the director and its spatial derivatives. For more details see the
textbooks by Chandrasekhar [5] and de Gennes et al. [11]. The authors make use of
the Berreman 4×4 matrix approach for wave propagation in layered media [2], and
some of its computationally efficient variants like the extended 2× 2 Jones matrix
method [10], often providing sufficient accuracy for many one-dimensional prob-
lems. In these, a medium consisted of a finite sequence of homogenous anisotropic
layers is considered, with the layers aligned perpendicularly on the z axis while
extending to infinity in x and y axes, and the permittivity tensors are taken to vary
periodically only along the direction of the propagation. In Berreman’s model,
the six components of the electromagnetic radiation Ei and Hi for i = x, y, z are
effectively reduced to four, the so called Berreman vector, by expressing the com-
ponents of the electromagnetic fields along the axis of propagation (longitudinal
components) in terms of the transverse. For incident monochromatic plane waves
of arbitrary polarization, impinging the model obliquely in its origin, e.g. the z = 0
plane, the component of propagation along the x direction is taken constant, while
that along the y direction vanishes. In essence, these assumptions cause Maxwell’s
equations to reduce to the linear ordinary differential equation

(1.1.1)
dψb

dz
= −jk0∆ψb

where k0 = 2π/λ, ∆ is the 4×4 Berreman matrix and ψb =
[
Ex Hy Ey −Hx

]T

is the Berreman vector. This vector will appear also in our numerical model to be
described further on.

While these analytic methods offer acceptable results in some simple NLC config-
urations [41], in general these are inadequately equipped to handle realistic models
of arbitrary boundary shape, e.g. gratings, and permittivity distributions that
vary in all spatial dimensions. In two and three dimensional problems involving
cells whose lateral dimensions are comparable to their thickness, a number of sta-
ble director configurations are possible for a given geometry and electrical driving
conditions, making the modelling more complicated. Overall, the modelling com-
plexity increases considerably when the third dimension is considered, but at the
same time the shortcomings of the one-dimensional modelling strategies are ex-
posed. The geometry of the problem must be defined in the three-dimensional
Cartesian space in a way to incorporate possible deformations and distortions in
the orientation of the liquid crystal layers along with any local defects and the
respective boundary conditions. In particular, liquid crystals with gratings present
a number of practical difficulties for the Berreman model, and therefore the use
of numerical approximation technique such as the vector finite element method is
more appropriate in this respect.

Consider a monochromatic plane wave of arbitrary polarization pin driven acutely
into a NLC cell at the incidence part of the boundary, then propagating through
the liquid crystal and subsequently emerging out of the cell and through a collinear
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polarimeter which records a polarization pout. This experiment is repeated for a
number of input polarization settings and incidence angles until enough data is
gathered. In this case, the objective of the corresponding inverse problem is to
reconstruct images of the profile of the director vector x in its interior from mea-
surements of polarization perturbations pin − pout. The problem is regarded as a
special case of the generic permittivity reconstruction problem, since the dielectric
tensor within the nematic liquid crystal is known to vary more significantly along
the direction of its two most distinguished eigenvalues, say λ1 and λ2, which in
fact are directly related to the two Euler angles of the unitary director vector 2. In
response our aim is to recover dielectric tensors of the form

(1.1.2) ε = (λ1 − λ2)x⊗ x + λ2 I

where x ∈ R3, ‖x‖2 = 1 is the director and I is the 3× 3 identity matrix. Nematic
liquid crystals can be described on the continuum level by a director field x(r)
which is the average direction of a small sample of molecules around the point r.
Since x represents only a direction, the modulus is fixed, x2 = 1. The inversion of
a nematic molecule does not change its physical properties. This fact is reflected
in the further symmetry requirement x = −x, which makes nematics different
from a simple vector-field system [30]. From the elasticity theory stable director
configurations in nematics with no interior defects minimize the bulk distortion
energy functional (Kriezis et al. [20])

(1.1.3) arg min
x

∫

Ω

(Fν + Fs) dΩ

where

(1.1.4a) Fν =
1
2

(
K11(∇ · x)2 + K22(x · ∇ × x)2 + K33

(
x× (∇× x)

)2
)

and

(1.1.4b) Fs =
1
2

(K11

a1
(x · n̂s1)2δ(p1) +

K11

a2
(x · n̂s2)2δ(p2)

)

In the equations above a1, a2 are the anchoring extrapolation areas on the surfaces
upon which the light enters and leaves the liquid crystal, n̂s1, n̂s2 are the outward
unit normals on these surfaces and δ(p1), δ(p2) are delta functions restraining the
energy within the liquid crystal. The presence of topological defects with their core
surfaces tangible on the boundary of the cell makes the surface term Fs problematic
to compute, thus for the needs of of this study we assume Fs ∼ 0.

In uniaxial dielectrics the dielectric tensor is described by an axis parallel to the
director (x‖), and a degenerate axis lying in any direction perpendicular to the
plane of the director (x⊥), while for the biaxial dielectrics, the permittivity tensor
is specified with the aid of the three principal axes, x1 6= x2 6= x3, like

(1.1.5) εuniaxial =



x⊥ 0 0
0 x⊥ 0
0 0 x‖


 and εbiaxial =



x1 0 0
0 x2 0
0 0 x3




From the Q tensor theory as in [24] and [11], the director of the uniaxial nematic
can be parameterized in terms of the two azimuthal Euler angles as

(1.1.6) x(θ, φ) =
[
cos θ cos φ cos θ sin φ sin θ

]

The angles are those appearing in the schematic of figure 2. Using the scalar
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Figure 2. The director x in terms of the Euler angles θ and φ.

order parameter S, which is a measure of how much the main axes of the nematic
molecules deviate from the director, and the two Euler angles we can write a 3× 3
matrix M = S(x⊗x) that describes the nematic state. More conventionally though,
instead of M one forms the Q tensor

(1.1.7) Q = S (x⊗ x)− 1
3
S I

The entries of the symmetric traceless Q are given by


q1 q2 q3

q2 q4 q5

q3 q5 −q1 − q4




where q1 = S cos2 θ cos2 φ − 1/3 S, q2 = S cos2 θ sin φ cosφ, q3 = S sin θ cos θ cosφ,
q4 = S cos2 θ sin2 φ− 1/3 S, and q5 = S cos θ sin θ sin φ, while in a uniaxial nematic
diagonalizing Q yields a matrix with three eigenvalues (entries)of multiplicity one
and two, λ1 = 2/3 S, and λ2,3 = −1/3 S, therefore in agreement with the expression
in (1.1.5).

This study refers primarily in the recovery of the director vector in a uniaxial
nematic liquid crystal cell, in which case the molecules are oriented on the average
along the director. However, the presence of thermal fluctuations or confining sur-
faces impairs this ideal configuration, causing a local distortion of the orientational.
This distortion, a perturbation in director orientation, has a profound impact on
Frank’s energy functional (1.1.3) and can be traced and localized by formulating
the appropriate inverse problem director problem. In order to derive the inverse
problem one has to formulate and solve the forward problem of wave propagation
within the nematic cell. The starting point for this is Maxwell’s time-harmonic
equations which is discussed in some detail next.

2. Maxwell’s equations

The mathematical framework for electromagnetics is derived from Maxwell’s
equations. In a closed domain Ω, where the material properties behave linearly
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with respect to the applied electromagnetic fields, Maxwell’s equations are given
by

∇×E(r, t) = −∂B(r, t)
∂t

+ J(r, t)

∇×H(r, t) =
∂D(r, t)

∂t
−M(r, t)

∇ ·D(r, t) = 0

∇ ·B(r, t) = 0

(2.0.8)

where E is the electric field in [V/m], H is the magnetic field in [A/m], J is the
electric current density in [A/m2], M is the magnetic current density in [V/m2],
while D and B are the electric and magnetic flux density fields in [C/m2] and
[Wb/m2] respectively. Moreover, the constructive relations

D(r, t) = ε(r)E(r, t)

B(r, t) = µ(r)H(r, t)
(2.0.9)

hold, where ε is the electrical permittivity in [F/m] and µ the magnetic permeability
in [H/m]. In media with isotropic electrical properties, that is where ε and µ
are scalar fields, E and D differ only in magnitude, while the same holds for the
magnetic field and its flux density. In anisotropic media on the other hand, where
ε and µ are tensor fields, this resemblance is no longer valid, in that EM field
intensities and fluxes are vector fields that point in different directions. The total
current density in the domain is evaluated as the sum of the impressed electric and
magnetic sources in the interior or the boundary of the domain and the induced
currents as

J = Ji + σE

M = Mi + σmH
(2.0.10)

where Ji, Mi are the i’th electric and magnetic current sources respectively, σ is
the electrical conductivity of the domain in [S/m] and σm is the magnetic current
conductivity in [Ω/m]. The space-frequency formulation of Maxwell’s time har-
monic equations can be derived by assuming a time dependence of exp(−jωt) in
the set of equations (2.0.8), where ω = 2πf is the angular frequency of the signals
in [Hz], and j =

√−1. In effect, the electromagnetic fields inside Ω satisfy

∇×H(r, ω)− (
σ(r) + jωε(r)

)
E(r, ω) = J(r, ω)

∇×E(r, ω) + jωµ(r)H(r, ω) = −M(r, ω)

∇ ·D(r, ω) = 0

∇ ·B(r, ω) = 0

(2.0.11)

In the remaining text, the frequency dependence and the position vector of the
fields are suppressed when implied to improve clarity in the notation. Substituting
the magnetic field from the first equation into the second and solving for the electric
field yields

−∇×
( 1

µ
∇×E

)
+

(
ω2ε− jωσ

)
E = jω J +∇× 1

µ
M
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Multiplying with (−µ0), we arrive at the electric field dependent equation

(2.0.12) ∇×
( 1

µr
∇×E

)
+

(
jk0Z0σ − k2

0εr

)
E = −jk0Z0 J−∇× 1

µr
M

Similarly, substituting and solving for the magnetic field leads to the dual of (2.0.12)

(2.0.13) ∇×
( 1

εr
∇×H

)
+

(
jk0Y0σ − k2

0µr

)
H = −jk0Y0 M−∇× 1

εr
J

where ε = ε0εr, µ = µ0µr, k0 = 2πλ−1
0 = ω

√
ε0µ0, Z0 =

√
µ0ε

−1
0 and Y0 = Z−1

0

In the above relations, ε0 = 8.854 × 1012 is the free-space permittivity number in
[F/m], µ0 = 4π × 10−7 is the free-space permeability number in [H/m], k0 is the
free-space wave number in [1/m] and λ0 is the free-space wavelength in [m], Z0 is
the free-space impedance in [Ω] and Y0 the corresponding admittance in [S]. Using
the vector identity

∇× (uA) = ∇u×A + u∇×A

equation (2.0.12) can be written as

(2.0.14) µ−1
r ∇×∇×E− k2

0εrE +
[
∇µ−1

r ×∇×E
]

= −jk0Z0J−∇× µ−1
r M

In a homogeneous, source and charge free medium of εr = µr = 1, ∇µ−1
r = 0,

J = M = 0 and ∇ · εD = 0, hence the above equation simplifies to

(2.0.15) ∇×∇×E− k2
0E = 0

and using the property

∇×∇×A = ∇(∇ ·A)−∇2A

we arrive at the familiar form of the scalar wave Helmholtz equation

(2.0.16) ∇2u− k2
0u = 0

satisfied for each u = E(x),E(y),E(z).
Liquid crystals in general are known to be inhomogeneous and electrically anisotropic

with source-free interior [11]. To model the propagation of light through such me-
dia, avoiding the spurious modes observed with equation (2.0.16) [39], we choose
to work with the vector wave equation which we formalize next. In addition, the
electrical properties of the domain are now expressed in terms of 3 × 3 symmetric
tensors. The relative permittivity for example we be denoted as

εr(r) =




εxx
r εxy

r εxz
r

εyx
r εyy

r εyz
r

εzx
r εzy

r εzz
r


 for all r(x, y, z) ∈ Ω

In the conditions of the experiment we are investigating, the magnetic permeability
tensor µ is considered fixed and isotropic, while the electrical conductivity σ is
negligibly small in the operating frequency, thus our main property of interest is
the relative electric permittivity or dielectric tensor εr which relates to the refractive
index n of the material via

n(r) =
√

εr(r)

In a similar manner, applying the source and charge free conditions to the equation
(2.0.14) for a domain of arbitrary electrical properties εr > 0 and µr > 0 we arrive
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at the vector wave equation with respect to the electric field, which is the main
partial differential equation (pde) of the problem in consideration:

(2.0.17)
1

µr
∇×∇×E− k2

0εrE = 0

This elliptic pde has a non trivial solution under the influence of some boundary
conditions. The appropriate boundary conditions that guarantee the uniqueness of
the solution are those given by the uniqueness theorem which is stated next [17].

Theorem 2.0.1. In a closed region Ω, completely occupied with dissipative media,
the pair of the time-harmonic vector fields (E,H) is uniquely determined by the
impressed currents in the interior of Ω and the tangential components of the electric
or magnetic field on the closed boundary ∂Ω.

Corollary 2.0.2. In corollary of the above uniqueness theorem, if a harmonic field
has zero tangential components of the electric or magnetic field on the boundary of
the domain, then the field in its interior vanishes.

2.1. Function spaces and the variational formulation of the problem. For
the weak-variational formulation of the problem, we introduce the following Sobolev
spaces for the variables of interest, following the notation of [3]. The Hilbert space
L2(Ω)3 denotes the vector space of all the square integrable scalar functions in Ω

(2.1.1) L2(Ω)3 = {u ·
∫

Ω

|u|2 dΩ < ∞}

while we the space L2(Ω)3 is that of all square integrable vector functions in the
domain

(2.1.2) L2(Ω)3 = {E ·
∫

Ω

|E|2 dΩ < ∞}

Using these definitions, for the scalar electrostatic or magneto-static potential we
construct the space

(2.1.3) L2
grad(Ω)3 = {u ∈ L2(Ω)3,∇u ∈ L2(Ω)3}

where the Sobolev space L2
grad(Ω)3 is an alternative notation for the Hilbert space

H1(Ω)3. For the electric and magnetic fields we introduce the appropriate vector
spaces

(2.1.4) L2
curl(Ω)3 = {E ∈ L2(Ω)3,∇×E ∈ L2(Ω)3}

and

(2.1.5) L2
curl(∂Ω)3 = {E ∈ L2

curl(Ω)3, n̂×E = g on ∂Ω}
The spaces L2(Ω)3 are equipped with the inner products

(2.1.6a) 〈u, φ〉L2(Ω)3 =
∫

Ω

uφ dΩ

∀u, φ ∈ L2(Ω)3, and

(2.1.6b) 〈E,F〉L2
curl(Ω)3 =

∫

Ω

EF dΩ +
∫

Ω

(∇×E) (∇× F) dΩ

∀E,F ∈ L2
curl(Ω)3 and the norms

(2.1.7a) ‖u‖L2(Ω)3 = 〈u, u〉1/2
L2(Ω)3



HIGH FREQUENCY EM INVERSE PROBLEMS IN ANISOTROPIC MEDIA 9

z 

y 
x 

w 

v 

u 

o 

o 

o 

o 

1 (0,0,0) 

2 (1,0,0) 

3 (0,1,0) 

4 (0,0,1) 

(x
1
,y

1
,z

1
) 

(x
2
,y

2
,z

2
) 

(x
3
,y

3
,z

3
) 

(x
4
,y

4
,z

4
) 

o 

o 

o 

o 

Figure 3. The isoparametric mapping from the master element
in the local coordinate system L to the k’th element in global set
of coordinates G.

for the scalar functions, and

(2.1.7b) ‖E‖L2
curl(Ω)3 = 〈EE〉1/2

L2
curl(Ω)3

for the vector fields, where φ and F are the test functions associated with the electric
scalar potential and the field respectively, while φ and E denote the corresponding
complex conjugates. The electrical parameters of the domain are tensors and thus
we will denote their space as a tensor product of two vector spaces such as X ⊂
L2(Ω)3 ⊗ L2(Ω)3. For clarity in our notation we introduce the spaces of complex
vectors Y for the applied Neumann boundary components of {n×H}q

i=1 on ∂Ω, and
Z for the boundary measurements {n×Ei}m

i=1, where q the number of experiments
performed and m the total number of measurements gathered.

Let Ω ⊂ R3 be a Lipschitz domain with closed boundary ∂Ω. In the high-
frequency range, if no magnetic or electric sources are present inside the domain
the governing elliptic partial differential equation derived from the time-harmonic
space-frequency Maxwell’s equations with respect to the electric field is

∇×
( 1

µr
∇×E(r)

)
− k2

0 εr E(r) = 0 r ∈ Ω

∇ · (ε0εrE(r)
)

= 0
(2.1.8a)

or in terms of the magnetic field

∇×
( 1

εr
∇×H(r)

)
− k2

0 µrH(r) = 0 r ∈ Ω

∇ · (µ0µrH(r)
)

= 0
(2.1.8b)

To derive the weak formulation we follow a Galerkin approach. Multiplying
(2.1.8a) with an arbitrary test function F ∈ L2

curl(Ω)3 and integrating over the
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domain gives

(2.1.9)
∫

Ω

{
F · ∇ ×

( 1
µr
∇×E

)
− F · k2

0 εr E
}

dΩ = 0

and using the vector calculus identity

(2.1.10) A · (∇×B) = (∇×A) ·B−∇ · (A×B)

we arrive at∫

Ω

(∇× F
) · ( 1

µr
∇×E

)
dΩ−

∫

Ω

∇ ·
(
F× ( 1

µr
∇×E

))
dΩ

−
∫

Ω

F · k2
0 εr E dΩ = 0

(2.1.11)

Invoking the divergence theorem

(2.1.12)
∫

Ω

∇ ·A dΩ =
∮

∂Ω

A · n̂ ds

and the vector calculus identity

(2.1.13) (A×B) · n̂ = −A · (n̂×B)

yields ∫

Ω

( 1
µr

(∇× F) · (∇×E)− k2
0εrF ·E

)
dΩ

+
∮

∂Ω

F ·
(
n̂× 1

µr
∇×E

)
ds = 0

(2.1.14)

where n̂ is the normal outward unit vector at ∂Ω. Substituting for the curl of the
magnetic field from equation (2.0.11) into (2.1.14), yields the variational formula-
tion of the problem, In this context, we seek to find the distribution of the electric
field E(r) ∈ L2

curl(Ω)3 in the interior of a finite domain Ω ⊂ R3 with electrical
properties µr and εr, so that the relations

(2.1.15a)
∫

Ω

( 1
µr

(∇×F) ·(∇×E)−k2
0εrF ·E

)
dΩ = jk0Z0

∮

∂Ω

F ·
(
n̂×H

)
ds = 0

(2.1.15b) ∇ · (ε0εrE(r)
)

= 0 r ∈ Ω

(2.1.15c) n̂×H(r) = g r ∈ ∂Ω

hold for all F ∈ L2
curl(Ω)3, given the frequency of the applied signal ω and the

distribution of the tangential component of the magnetic field at the boundary g.
The problem (2.1.15) has a unique solution for εr > 0.

3. Finite elements

In their book Volakis et al. [39] quote that the order of the differential equation
to be solved determines the order of the shape function to be used in the Galerkin
formulation. For elliptic PDEs of order 2k, with k = 1, 2, . . ., the continuity require-
ment is Ck−1. In effect, for the electromagnetic problem in (2.1.8) C0 continuous
functions are often used since the discontinuous first derivatives are piecewise inte-
grable. Nodal based shape functions (of the Lagrange family) or Whitney 0-forms
derived in triangles and tetrahedra are C0 continuous across the element interfaces.
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Whitney form Element type Elliptic PDE operator Continuity
W 0 Nodal elements grad C0 function cont.
W 1 Edge elements curl tangential component
W 2 Face elements div normal component

Table 1. The continuity requirements for shape functions used in
computational electromagnetic problems.

In contrast, edge or Nedélec shape functions, or Whitney 1-forms, maintain continu-
ity only in their tangential component of the, thus allowing the normal component
of the field to be discontinuous across the inter-element interfaces. This makes them
well equipped to approximate the behavior exhibited by electromagnetic fields in
highly anisotropic domains. Moreover, face shape functions or Whitney 2-forms,
have their normal component continuous in the domain of interest.

For the derivation of the finite element method we use three-dimensional sim-
plices, or linear tetrahedral similar to those appearing in figure 3. For the isopara-
metric mapping we use two sets of coordinates. The k’th simplex in the model
is positioned in the global coordinates G(x, y, z), while the local-master element is
located in the local coordinates L(u, v, w), as indicated in the figure. For the local-
global mapping, functions defined on elements in G can be transformed to functions
on the master element in L using the coordinate transformation formulae

x(u, v, w) =
4∑

i=1

xiNi(u, v, w)

y(u, v, w) =
4∑

i=1

yiNi(u, v, w)

z(u, v, w) =
4∑

i=1

ziNi(u, v, w)

(3.0.16)

where the linear nodal Lagrangian shape functions Ni ∈ L2
grad(Ω)3 for the master

simplex are defined as

N1(u, v, w) = 1− u− v − w

N2(u, v, w) = u

N3(u, v, w) = v

N4(u, v, w) = w

(3.0.17)



12 NICK POLYDORIDES

resembling the barycentric coordinates on the standard tetrahedron, and satisfying∑4
i=1 Ni = 1. On the k’th element in G, the shape functions are defined as

N1(x, y, z) =
1

6V

∣∣∣∣∣∣∣∣

1 x y z
1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣
, N2(x, y, z) =

1
6V

∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x y z
1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣

N3(x, y, z) =
1

6V

∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x y z
1 x4 y4 z4

∣∣∣∣∣∣∣∣
, N4(x, y, z) =

1
6V

∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x1 y1 z1

1 x3 y3 z3

1 x y z

∣∣∣∣∣∣∣∣

(3.0.18)

where V is the volume of the k’th tetrahedron. Having defined the nodal shape
functions we can proceed to the definition of the standard basis of linear edge shape
functions {Li}ne

i=1 defined on each edge of the model as

(3.0.19) Li = li (N i
m∇N i

n −N i
n∇N i

m) i = 1 : ne, and n,m ∈ V

where li is the length of the i’th edge, N i
n, N i

n are the definitions of the nodal shape
functions at the two vertices across the edge, and V is the set of indices for the nodes
in the model. It must also be quoted that vector finite elements have magnitude
as well as direction, thus the shape function in (3.0.19) is defined from the vertex
m towards the vertex n. The selection of the particular class of basis functions has
some important properties. They have a constant tangential component upon the
edge on which they are defined. This is convenient for the boundary conditions we
seek to apply, e.g. tangential components of the magnetic field on a subset of the
boundary. They are divergence-free and hence they satisfy by default the gauge
conditions of the problem as in (2.1.8), hence avoiding the spurious modes observed
in the solution of the scalar wave equation. From the definition (3.0.19) it is clear
that the edge elements are divergence free

(3.0.20) ∇ · Li = ∇ · (N i
m∇N i

n)−∇ · (N i
n∇N i

m) = 0

hence satisfy by default the gauge conditions in (2.1.8). Moreover if êi is the unit
tangent vector on the edge i pointing to the direction of the shape function, it is
easy to show that Li has a constant (unit) tangential component along the i’th
edge

(3.0.21) êi · Li =
(
(N i

m + N i
n)/li

)
li = 1 i = 1 : ne

To derive the finite element formulation of the problem the domain Ω is dis-
cretized in linear tetrahedra, effectively approximating the infinite dimensional
space L2

curl(Ω)3 with a sequence of finite dimensional subspaces L2
curl(Ωh)3. Using

this subspace, the electric field in the discrete model of the computational domain
can be expanded as

(3.0.22) Eh =
ne∑

i=1

Ei Li

where Eh ∈ L2
curl(Ωh)3, Ei is the tangential component of the electric field on

the i’th edge, and ne is the total number of edges in the mesh. Introducing the
definition (3.0.22) into the weak formulation and if no electric or magnetic sources
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are present, the finite element formulation of the problem is to find the electric
field Eh ∈ L2

curl(Ωh)3 so that

(3.0.23a)
∫

Ω

( 1
µr

(∇×F) · (∇×Eh)− k2
0εrF ·Eh

)
dΩ = jk0Z0

∮

∂Ω

(
n̂×H

) ·F ds

(3.0.23b) ∇ · (εr(r)Eh(r)
)

= 0 r ∈ Ω

(3.0.23c) n̂×H(r) = g r ∈ ∂Ω

for all F ∈ L2
curl(Ωh)3.

3.1. Boundary conditions. From the the weak formulation (2.1.15) as well as
from the finite element formulation (3.0.23) it becomes apparent that for the prob-
lem to yield a unique nonzero solution it requires the knowledge of the tangential
components of either field on the surface of the domain, or a relation between the
two. The first option is rather unrealistic since there are no means by which we
can measure the complete set of Dirichlet (tangential of electric field) or Neumann
(tangential of magnetic field) data for the pde (2.1.8a). The second option is some-
what more realistic and it is sometimes employed in the context of the Letonovic
boundary condition, also known as surface impedance boundary condition (SIBC)
in antenna and microwave engineering systems [17, 39].

The boundary conditions we seek to apply for this problem is the knowledge
of the Berreman vector ψb at entering the model through a small subset of the
boundary Γ1 ⊂ ∂Ω. Realistically though, the excitation conditions we acquire are
actually known at a small distance outside the computational domain, e.g. where
the source of polarized light is places, thus to be able to enforce the boundary
conditions relations that couple near-field ‘actual’ excitation conditions to those
which describe the fields at the incident point on Γ1 are required. The knowledge of
ψb(r) at Γ1 provides the opportunity to work with either Dirichlet or Neumann data,
and here we choose to enforce Neumann boundary conditions. In order to achieve
this a surface expansion of the magnetic field at the boundary of the domain must
be introduced, thus if {Qi}ns

i=1 is a basis of linear edge shape functions spanning
over the boundary edges of the model, the surface magnetic field is approximated
as

(3.1.1) Hsh =
ns∑

i=1

HiQi

with Hsh ∈ L2
curl(∂Ωh)3 and ns the total number of boundary edges. The proposed

methodology shares various similarities with the technology traditionally used in
far-field wave propagation, antenna and scattering problems, although no artificial
boundary is needed to truncate the computational domain. As in many microwave
and antenna problems we use an integral equation to relate the tangential com-
ponents of the two fields at the boundary, hence the hybrid technology of finite
elements with boundary integral equations is known as Finite Element - Boundary
Integral method (FEBI). The specific boundary condition to be enforced is known
as Magnetic Field Integral Equation (MFIE) which is an integral form of a Neu-
mann boundary condition. The derivation of the FEBI method is based on the
surface equivalence principle, which we state next for completeness.
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Theorem 3.1.1. The sources that produce the same field within a region are said to
be equivalent within that region. In this case, the field exterior to the boundaries of
the model may be exactly represented by equivalent currents placed on its boundary.
These are given in terms of the exterior electromagnetic fields as

(3.1.2) Js(r, ω) = n̂×Hext and Ms(r, ω) = Eext × n̂ ∀ r ∈ ∂Ω

where Hext and Eext are taken on the external side of the boundary ∂Ω+.

4. Finite Element Boundary Integral method

A closer look at the system of equations (3.0.23a) reveals its underdetermined
status. The reason for this is that while the test functions F are exclusively as-
sociated with the electric field in the closure of the domain, both E in Ω and H
in ∂Ω are to be evaluated. To resolve this, more equations must be imported into
the system in order to guarantee the uniqueness of the solution. To formulate the
required equations we attempt to model how the magnetic field at the surface re-
lates to the applied excitation conditions just outside the boundary of the domain.
More precisely, for a plane wave travelling impinging the surface of the domain, the
exterior excitation is given by

(4.0.3) Hext = Hi + Hr + Hs

where the overall external magnetic field is expressed as the sum of the incident
Hi, the reflected Hr and the scattered Hs components of the magnetic field at the
boundary. Using the surface equivalence theorem Hs can be expressed in terms of
the surface equivalence current densities Js and Ms, and (4.0.3) can be cast as a
‘magnetic field integral equation’ (MFIE)

−n̂× (Hi(r) + Hr(r)) =− Js(r)
2

−
∮

S′
n̂× (∇×G(r, r′)) · Js(r′) ds′

+ jk0Y0

∮

S′
n̂×G(r, r′) ·Ms(r′) ds′

(4.0.4)

valid for closed scattering surfaces S. In the original notation of the MFIE the
first term on the right hand side is −Js and the integral immediately after is a
Cauchy integral. The simplified version given here is due to the fact that A.J.
Poggio and E.K. Miller have proved that the difference between the principal value
of the surface integral and the total value of the integral is Js/2. For finite models
in the near-field approximation, Green’s function can be replaced with a free-space
dyadic Green’s function G(r, r′),

(4.0.5) G(r, r′) =
(
I +

∇∇
k2
0

)
G(r, r′)

whose curl is related to the gradient of the scalar Green’s function via the identity

(4.0.6) ∇×G(r, r′) = −∇G(r, r′)× I

In the above, I is the unit dyad tensor, R is the distance between observation (field)
point r and integration (source) point r′, and the scalar Green’s function for r 6= r′

is given by

(4.0.7) G(r, r′) =
e−jk0R

4πR
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with gradient

(4.0.8) ∇G(r, r′) = −∇′G(r, r′) = −
(
jk0 +

1
R

)e−jk0R

4πR
R̂

where the unit vector R̂ = (r − r′)/R and R = ‖R‖ = |r − r′|. In the above the
differential operators ∇,∇· and ∇× are with respect to r and ∇′,∇′· and ∇′×
are with respect to the source variable r′. Using these identities and some trivial
algebra the MFIE can be written in a compact form as

(4.0.9) −n̂× (Hi(r) + Hr(r)) = −Js(r)
2

− n̂×K(Js)− n̂× L(Ms)

where the integral operators are given by

(4.0.10a) K(Js) =
∮

S′
Js(r′)×∇G(r, r′) ds′

(4.0.10b) L(Ms) = jk0Y0

∮

S′

(
Ms(r′)G(r, r′) +

1
k2
0

∇′ ·Ms(r′)∇G(r, r′)
)

ds′

When working with the MFIE care must be taken since the integral operator L
becomes singular at the resonant frequencies of the liquid crystal, causing the for-
mulation to yield spurious forward solutions since the operator has a nonempty null
space. This problem can be avoided by carefully selecting to work at a non-resonant
frequency range or by formulating the combined field integral equations (CFIE) as
suggested by Jin [17] and Tzoulis et al. [38] , effectively resulting in an integral
operator whose resonant frequencies are strictly complex. As the finite element
formulation (3.0.23) involves the fields in the closure of the domain, while those
in the boundary integral (4.0.4) refer to the outer region, these must be coupled
together in order to combine in a system of equations with a unique solution. This
is done by enforcing tangential continuity of the fields across the boundary of the
computational domain. In particular,

n̂× [∇×E(r)
]∣∣∣

r∈∂Ω−
= n̂× [ 1

µr
∇×Eext(r)

]∣∣∣
r∈∂Ω+

(tangential H continuity)

n̂×E(r)
∣∣∣
r∈∂Ω−

= n̂×Eext(r)
∣∣∣
r∈∂Ω+

(tangential E continuity)

(4.0.11)

where ∂Ω−, ∂Ω+ refer to the inner/internal and outer/external side of the bound-
ary, hence the fields on the left hand side of the equations in (4.0.11) without the
subscript are those in the closure of the domain. The continuity condition associ-
ated with the magnetic field (in this formulation a natural boundary condition) is
implicitly enforced allowing

(4.0.12) Hext(r)
∣∣∣
r∈∂Ω+

= H(r)
∣∣∣
r∈∂Ω−

as long as the essential boundary condition for the electric field is explicitly imposed
in the formulation. Applying the Galerkin method on the integral equation (4.0.4)
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and using the relations in the equivalence principle (3.1.2) yields

− 1
2

∮

S

T(r) · (n̂(r)×Hsh(r)
)

ds

−
∮

S

T(r) · n̂(r)×
(∮

S′
∇′G(r, r′)× (

n̂(r′)×Hsh(r′)
)

ds′
)

ds

+ jk0Y0

∮

S

T(r) · n̂(r)×
(∮

S′

(
n̂(r′)×Esh(r′)

)
G(r, r′) ds′

)
ds

− j
Y0

k0

∮

S

T(r) · n̂(r)×
(∮

S′
∇′ · (n̂(r′)×Esh(r′)

) ∇′G(r, r′) ds′
)

ds = ψext

(4.0.13a)

where Esh is the subset of Eh restricted on the boundary of the domain, the exterior
excitation term ψext is given by

(4.0.13b) ψext = −jk0Z0

∮

S

T(r) · (n̂(r)× (Hi + Hr)
)

ds

The vector functions T ∈ L2
curl(∂Ωh)3 are the test functions for the surface magnetic

field and have support restricted on the boundary edges of the domain. In the
double integrals of (4.0.13) above notice that the inner integral is evaluated at the
source triangle S′ whose unit outward normal is denoted by n̂(r), while the outer
integral is evaluated on the observation triangle S with unit normal n̂(r′). In the
system of equations (4.0.13) there are three field unknowns, namely the interior
electric field E, the exterior or surface electric field Eext and the exterior or surface
magnetic field Hext. We can now proceed to impose the continuity of the two fields
at the boundary as in equation (4.0.11). To enforce the continuity in the tangential
component of the magnetic field outside and at the boundary of the domain we
use (4.0.12), which constitutes to the mere assumption that the magnetic field at
the point of incidence on the boundary is the same to the magnetic field at a point
just before the boundary. In order to impose the continuity on the electric field we
explicitly set the shape functions for Esh and Eext

h to be the same. Hence if the
exterior electric field can be expressed as a linear combination of the basis {Ξi}ns

i=1

for Ξi ∈ L2
curl(∂Ωh)3, then we set

(4.0.14) {Ξ}ns
i=1 = {L}ns

i=1 =⇒ Esh(r)
∣∣∣
r∈∂Ω+

= Eext
h (r)

∣∣∣
r∈∂Ω−

Using the expansions for Eh and Hsh and setting F = Li ∈ L2
curl(Ω)3 leads to the

finite element formulation of the problem

ne∑
n=1

〈
∇× Lm,

1
µr
∇× Ln

〉
L2(Ω)3

− k2
0

〈
Lm, εrLn

〉
L2(Ω)3

=
ns∑

n=1

jk0Z0

∮

S

Lm · (n̂(r)× Ln

)
ds

(4.0.15a)

for m = 1 : ne. If the basis functions for the magnetic field are chosen to be identical
to those for the electric (although it is not imperative for the FEBI method), and
use their tangential components as test functions, for the required surface integrals
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are

−
ns∑

n=1

1
2

∮

S

(
n̂(r)× Lm(r)

) · (n̂(r)× Ln(r)
)
ds

−
ns∑

n=1

∮

S

(
n̂(r)× Lm(r)

) · n̂(r)×
∮ c

S′

(
∇′G(r, r′)× (

n̂(r′)× Ln(r′)
))

ds′ ds

+ jk0Y0

ns∑
n=1

∮

S

(
n̂(r)× Lm(r)

) · n̂(r)×
∮

S′

(
n(r′)× Ln(r′)

)
G(r, r′) ds′ ds

− j
Y0

k0

ns∑
n=1

∮

S

(
n̂(r)× Lm(r)

) · n̂(r) ×
∮

S′
∇′ · (n(r′)× Ln(r′)

) ∇′G(r, r′) ds′ ds = ψext

(4.0.15b)

for m = 1 : ns. The reason for choosing this class of test functions for the MFIE
will become apparent in the next section. Adopting this approach we can write two
equations, each one involving the electric field in the closure of the domain and the
magnetic field at the surface of the domain, for the interior and the exterior of the
domain.

We begin with the interior electric field testing equation which we can write in
matrix notation as

(4.0.16) AE + BH = ψint

where E and H are the finite element coefficients in (3.0.22) and (3.1.1), A ∈ Rne×ne

is a real sparse matrix with entries

(4.0.17) Am,n =
∫

Ω

( 1
µr

(∇× Lm)(∇× Ln)− k2
0εrLm · Ln

)
dΩ

for m,n = 1 : ne, and B ∈ Cne×ns a sparse matrix given by

(4.0.18) Bm,n = −jk0Z0

∮

S

Lm · (n̂× Ln) ds

for m = 1 : ne and n = 1 : ns. Finally, as no interior charges or sources are present
within the liquid crystal ψint = 0 is a ne× 1 zeros vector. The second equation is
that of the exterior surface magnetic field testing which in a similar fashion we can
write in a matrix notation as

(4.0.19) CH + DE = ψext

where C ∈ Cns×ns is a dense matrix with complex entries given by

(4.0.20a) Cm,n = C1
m,n + C2

m,n

for m,n = 1 : ns where

C1
m,n = −1

2

∮

S

(n̂× Lm) · (n̂× Ln) ds

C2
m,n = −

∮

S

(n̂× Lm(r)) ·
(
n̂(r)×

∮

S′
∇′G(r, r′)× (

n̂(r′)× Ln(r′)
)

ds′
)

ds

(4.0.20b)



18 NICK POLYDORIDES

0 100 200 300 400 500 600 700 800

0

100

200

300

400

500

600

700

800

nz = 166738

Figure 4. Sparsity plot of the FEBI system matrix indicating the
sparse finite element and the dense boundary integral components.
The matrix refers to a model with a total of 604 edges, out of which
288 lie on the boundary.

Note that the integrants in the single surface integrals are considered at the ob-
servation triangle only, so they are functions of the observation space variable (r),
while at the double integrals functions of both (r) and (r′) appear hence we use
the extra notation to distinguish between them and enhance clarity. The matrix
D ∈ Cns×ne is also a dense matrix whose entries are given by the surface integrals

Dm,n = jk0Y0

∮

S

(
n̂× Lm(r)

)·n̂(r)×
∮

S′

[(
n̂(r′)× Ln(r′)

)
G(r, r′)

− 1
k2
0

(
∇′ · (n̂(r′)× Ln(r′)

) ∇′G(r, r′)
)]

ds′ ds

(4.0.21)

for m = 1 : ns and n = 1 : ne. Combining the two matrix equations we arrive in a
system of nt = ne + ns equations and nt unknowns

(4.0.22)
[
A B
D C

] [
E
H

]
=

[
0

ψext

]

From the equations describing the integrals required for the forward computations,
it is clear that the fem parts of the system matrix in (4.0.22), namely A, B, are
sparse, whilst the boundary integral compartments C and D are dense. This is
graphically illustrated in figure 4 that refers to a system with 604 edges out of
which 288 are located at the boundary.

4.1. Singularity in the surface integrals. In evaluating the entries for the ma-
trices C and D one should come across situations where the integrants become
singular functions. This is due to the Green’s function and its derivatives as these
are involved in the above equations, which become asymptotically singular as the
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distance between the observation and integration points goes to zero. In this sec-
tion we describe the singular behavior in these integrants as R → 0 and derive the
methodology necessitated to treat the singularity and extract accurate estimates
on the surface integrals required in (4.0.22). In particular, splitting the singular
integral D into D1 and D2, so that D = D1 + D2 we have

D1
m,n = jk0Y0

∮

S

(
n̂× Lm(r)

) · n̂(r)×
(∮

S′
G(r, r′)

(
n̂(r′)× Ln(r′)

)
ds′

)
ds

(4.1.1)

and

D2
m,n = −j

Y0

k0

∮

S

(
n̂× Lm(r)

) · n̂(r)×
(∮

S′

(
∇′ · (n̂(r′)× Ln(r′)

) ∇′G(r, r′)
)

ds′
)

ds
(4.1.2)

As the edge shape functions Lm (and Qn) and their tangential surface components
are in this case linear, their divergence is constant, hence the integral above can be
further simplified to

D2
m,n = −j

Y0

k0

∮

S

(
n̂× Lm(r)

) · n̂(r)×
(
∇′ · (n̂(r′)× Ln(r′)

) ∮

S′
∇′G(r, r′) ds′

)
ds

(4.1.3)

where the divergence of E, and thus its shape and test functions, is independent of
the coordinate system and therefore ∇ ·E(r) = ∇′ ·E(r′). As the integrals D1 and
D2 involve only the scalar Green’s function, for R → 0 these are known to become
(1/R) singular. This form of singularity causes low-order numerical integration rules
to fail in approximating the values of the above integrals, as Gaussian quadrature
rules are most suited for smooth functions. Conventionally, see [34], [39] and [17]
the singular integrals are treated by extracting one singular term from the kernel
of Green’s function, such as

(4.1.4) G(r, r′) =
{e−jk0R

4πR
− 1

4πR

}
+

1
4πR

leaving a ‘rather smooth’ function, inside the braces, to be integrated numerically,
where

lim
R→0

{e−jk0R

4πR
− 1

4πR

}
=
−jk0

4π
while the singular term is integrated using analytic formulae. In effect, for R → 0
the integration is split as

(4.1.5)
∮

S′

e−jk0R

R
ds′ =

∮

S′

e−jk0R − 1
R

ds′ +
∮

S′

1
R

ds′

However, recent studies [26], demonstrate that extracting just a single term out of
Green’s function does not guarantee the smoothness of the remaining part of the
integrant, in order to be accurately computed with a low order numerical integration
rule. A more robust elimination of the singularity requires the extraction of a second
term. Here we follow the latter approach, to take advantage of the low order of
numerical integration given the large dimension of the problem.
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5. The singular integrals

Recall that Qn(r′) are the basis functions for the surface magnetic field, through
the surface equivalence principle it follows that

n̂′ ×Qn(r′) = Js(r′), n̂×Qm(r) = Js(r)

where Js(r′) the surface current density at the source-integration point r′. As a
first common approach for all the singular integrals to be tackled in this section we
begin by introducing a basis for the electric current density on the surface of the
domain, and consequently replace the tangential component of the magnetic field
or its test function with the current density vector. In this context we can write
the electric current density on the surface of the domain as a linear combination of
the vector basis functions fn as

Js(r) =
ns∑

n=1

αnfn(r)

where the function fn(r) is defined on the n’th boundary edge and has its support
over the two triangular patches sharing the edge,

(5.0.6) fn(r) =





lnρ
+
n (r)

2A+
n

r ∈ T+
n

lnρ
−
n (r)

2A−n
r ∈ T−n

0 elsewhere

where
ρ+

n (r) = (r− n), ρ−n (r) = (n− r)

with n the free vertex of the triangle, i.e. the one opposite edge n, ln the length
of the edge, and A±n the areas of the two triangles. The above basis functions
illustrated in figure 5 are also known as RWG functions due to the authors who have
suggested them in 1984. The same figure indicates also that the RWG functions
have span over pairs of surface triangles, hence we shall quote Sn the support of
the function fn(r), referring to the pair of patches sharing the edge n, i.e. Sn =
{T+

n , T−n }.
In the following we argue the case that the singularity in the integrals involving

the Green’s function or its derivatives is evoked when the field point; and therefore
the field triangle, is close to the source triangle S′. For consistency in the following
we define the term ‘closeness’. Two triangular surface elements are said to be
close if they share one or more nodes (vertices in simplex elements). Alternatively,
as in Hodges et al. it is possible to define manually the closeness by setting an
appropriate upper bound on the distance measured from the centroid of the source
triangle to the observation point.

5.1. The singular integral D1. The simplified expression for the surface integral
D1, involving the product of the scalar Green’s function with an RWG function
indicates that it is (1/R) singular when the boundary surfaces {S, S′} are located
close. Here we present the procedure for extracting its singularity. The process
is rather similar to that we shall apply for the singular integral D2 albeit that
is (1/R2) singular as it contains the gradient of the Green’s function. We begin
demonstrating the technique with D1 as its simpler form will enhance the clarity
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Figure 5. The basis of Rao-Wilton-Glisson functions used for the
expansion of the surface equivalence currents in the MFIE. The
vertex n on the facet T+

n is the free vertex of the patch located
opposite the n’th edge.

of the derivations. Recall that the integral we seek to evaluate has the form

D1
m,n = jk0Y0

∮

S

(
n̂× Lm(r)

) · n̂(r)×
(∮

S′
G(r, r′)

(
n̂(r′)× Ln(r′)

)
ds′

)
ds

and it becomes singular for r in the support of Ln. As pointed out in Yla-Oijala et
al., Eibert et al., we begin by extracting two terms from the kernel of the Green’s
function, transforming the above integral into a sum of integrals

D1
m,n = jk0Y0

∮

S

fm(r) · n̂(r)×
[ ∮

S′

(e−jk0R − 1
4πR

+
k2
0R

8π

)
fn(r′) ds′

+
1
4π

∮

S′
R−1 fn(r′) ds′

− k2
0

8π

∮

S′
R fn(r′) ds′

]
ds

(5.1.1)

where fn(r′) is numerically equivalent to
(
n̂(r′)× Ln(r′)

)
and their definitions are

given in (5.0.6). Also, notice that the singular integrants above are of the form
Rk fn(r′) for k = 1 and k = −1, while the remaining part of the integrant is a
sufficiently smooth function with

(5.1.2) lim
R→0

{e−jk0R − 1
4πR

+
k2
0R

8π

}
= −j

k0

4π

For the singular integrals the common practice is to apply Gauss integral theorems
so that to transform the integration from the surface of the triangular patch, to a
sum of line integrals over the edges of the patch, e.g.

(5.1.3)
∮

S

Rn ds = f

(
3∑

i=1

∮

∂iS

Rn dl

)



22 NICK POLYDORIDES

Provided the integrant in the first term of (5.1.1) is continuously differentiable
functions, (at least C2), this is evaluated numerically, while the singular integrals
will be computed using analytical expressions. In general terms our strategy is to
express the pertinent singular integrals in terms of

∮

S′

1
R

ds′ and
∮

S′
R ds′

for which we have analytic expressions based on the geometry of the surface ele-
ments, e.g. triangles, from [40], [14], [16] and [26]. According to these,

∮

S′

1
R

ds′ =
3∑

i=1

t0i

∮

∂iS′

1
R

dl′ for w0 = 0

= −w0

(
w0

∮

S′

1
R3

ds′
)

+
3∑

i=1

t0i

∮

∂iS′

1
R

dl′ for w0 6= 0

(5.1.4)

where

(5.1.5)
∮

∂iS′

1
R

dl′ = ln
(R+

i + s+
i

R−i + s−i

)

and

(5.1.6) w0

∮

S′

1
R3

ds′ = sgn(w0) β

with

(5.1.7) β =
3∑

i=1

(
arctan

( t0i s
+
i

(R0
i )2 + |w0|R+

i

)
− arctan

( t0i s
−
i

(R0
i )2 + |w0|R−i

))

Similarly,
∮

S′
R ds′ =

1
3

3∑

i=1

t0i

∮

∂iS′
R dl′ for w0 = 0

=
1
3

(
w2

0

∮

S′

1
R

ds′
)

+
3∑

i=1

t0i

∮

∂iS′
R dl′ for w0 6= 0

(5.1.8)

where

(5.1.9)
∮

∂iS′
R dl′ =

1
2

(
s+

i R+
i − s−i R−i + (R0

i )
2 ·

∮

∂iS′

1
R

dl′
)

The integral D1 involves the integral of the product of the Green’s function with
an RWG function. As above we proceed by extracting two singular terms out of
Green’s function, while we focus our attention to the (1/R) singularity case in
which S and S′ are close. For clarity also allow, fm(r) and fn(r′) to be the two
RWG functions involved in the integral belonging to the m’th edge of S and n’th
edge of S′ respectively. According to this notation the pertinent integral is

D1
m,n = jk0Y0

∮

S

fm(r) · n̂(r)×
∮

S′

[
2(e−jk0R − 1) + k2

0R
2

8πR

+
1

4πR
− k2

0R

8π

]
fn(r′) ds′ ds

(5.1.10)
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Substituting the definitions of the basis and test functions

fm(r) =
lm

2AS
(r−m), fn(r′) =

ln
2AS′

(r′ − n)

we get

D1
m,n = jk0Y0

lmln
4ASAS′

[ ∮

S

(r−m) · n̂(r)×
(∮

S′
(r′ − n)

2(e−jk0R − 1) + k2
0R

2

8πR
ds′

+
1
4π

∮

S′
(r′ − n)

1
R

ds′ − k2
0

8π

∮

S′
(r′ − n)R ds′

)
ds

]

(5.1.11)

where the vectors (r −m) and (r′ − n) are defined from the free vertices m, and
n, toward r and r′ respectively. As before, the first term is now smooth enough to
undergo a low order numerical integration, while the remaining two involving the
integral of R and R−1 will be evaluated via analytic formulae. Using the results
from the previous section (on D2), for the pertinent integrals in D1 we have

(5.1.12)
∮

S′
(r′ − n)

1
R

ds′ =
3∑

i=1

m̂i ·
∮

∂iS′
R dl′ + (ρ− n)

∮

S′

1
R

ds′

with ρ = r− w0n̂, and

(5.1.13)
∮

S′
(r′ − n)R ds′ =

1
3

3∑

i=1

m̂i

∮

∂iS′
R3 dl′ + (ρ− n)

∮

S′
R ds′

where

(5.1.14)
∮

∂iS′
R3 dl =

1
4

(
s+

i (R+
i )3 − s−i (R−i )3 + 3(R0

i )
2 ·

∮

∂iS′
R dl′

)

5.2. The singular integral D2. The singular integral D2 is given by

D2
m,n = −j

Y0

k0

∮

S

(
n̂× Lm(r)

) · n̂(r)×
(
∇′ · (n̂(r′)× Ln(r′)

) ∮

S′
∇′G(r, r′) ds′

)
ds

where the inner integral over the source triangle is obviously 1/R2 singular due
to the gradient of the Green’s function. In response, following the singularity
extraction approach as before we write the scalar Green’s function as

(5.2.1) G(r, r′) =
(
G(r, r′)− 1

4πR
+

k2
0

8π
R

)
+

1
4πR

− k2
0

8π
R

Taking the gradient with respect to the source variable on both sides of the above
and integrate over the source element yields

(5.2.2)
∮

S′
∇′G(r, r′) ds′ =

∮

S′
∇′q(R) ds′ +

1
4π

∮

S′
∇′ 1

R
ds′ − k2

0

8π

∮

S′
∇′R ds′

where q(R) is the smooth bracketed function above with gradient

(5.2.3) ∇′q(R) =
(2e−jk0R(jk0R + 1)− k2

0R
2 − 2

8πR3

)
R
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and limit

(5.2.4) lim
R→0

∇′q(R) = −j
k3

12π
R

Whilst the integral of ∇′q(R) can be computed numerically using Gaussian quadra-
ture rules, the two singular integrals can be computed using analytically extracted
formulae. See [14] and [26]. More specifically,

(5.2.5)
∮

S′
∇′R ds′ =

3∑

i=1

m̂i

∮

∂iS′
R dl′ − n̂(r′) · w0

∮

S′

1
R

ds′

and

(5.2.6)
∮

S′
∇′ 1

R
ds′ =

3∑

i=1

m̂i

∮

∂iS′

1
R

dl′ + n̂(r′) · w0

∮

S′

1
R3

ds′

5.3. The singular integral C2. Let us begin with the first integral involving the
dyadic Green’s function in free-space

C2
m,n = −

∮

S

(n̂× Lm(r)) ·
(
n̂(r)×

∮

S′
∇′G(r, r′)× (

n̂(r′)× Ln(r′)
)

ds′
)

ds

Let us focus our attention for a while on the second integral in the above which
describes the scattered magnetic field. For a pair of triangles {S, S′}, which are
close together but not on the same plane, this integral contains a (1/R2) singularity,
however, if the two triangles are on the same plane or overlapping the value of the
integral vanishes. To verify this, let p be the plane of S and S′. Now the gradient of
the green’s function will be a vector tangential on p and so is n̂(r′)×Ln(r′), in fact
in this case n̂(r′) = n̂(r). This implies that the cross product of the inner integral
(over S′) is a vector normal to p. In effect, the inner integrant is orthogonal to the
tangential of the shape function Lm, and hence their dot product is zero. Now, for
clarity we isolate the inner integral as

(5.3.1) Hn(r) =
∮ c

S′
∇′G(r, r′)× (n̂′ × Ln(r′)) ds′

Plugging in the formula for the gradient of the scalar Green’s function (4.0.8) with
respect to the primed coordinates yields

Hn(r) =
1
4π

∮ c

S′

(
jk0 +

1
R

)
R̂× Js

n(r′)
e−jk0R

R
ds′

and therefore the overall integral is now

C2
m,n = − 1

4π

∮

S

fm(r) ·
[
n̂(r)×

∮

S′

(
jk0 +

1
R

)
R̂× Js

n(r′)
e−jk0R

R
ds′

]
ds

We shall now consider the evaluation of the integral in the situations were the RWG
functions involved have supports which are close to each other but these are defined
on edges whose parent triangles are on different planes. If ρ′n = ρn(r′) = (r′ − n),
then substituting into the formula for Hn(r) gives

Hn(r) =
ln

8πAS′

∮

S′

(
jk0 +

1
R

)
R̂× ρ′n

e−jk0R

R
ds′



HIGH FREQUENCY EM INVERSE PROBLEMS IN ANISOTROPIC MEDIA 25

The vector R can be expressed in terms of the source related vector ρ′n and the
observation related vector Rn which is constant with respect to the variable of
integration, so the cross product in the above can be further developed to

(5.3.2) R̂× ρ′n =
R
R
× ρ′n =

Rn − ρ′n
R

× ρ′n =
1
R

(Rn × ρ′n)

yielding,

(5.3.3) Hn(r) =
ln

8πAS′
Rn ×

∮

S′
ρ′n

(jk0R + 1)e−jk0R

R3
ds′

where Rn is the vector from the n’th vertex in the source face to the observation
point r. This substitution effectively removes the cross product outside the integral,
hence simplifying its computation. Following the singularity extraction approach
the above can be expanded as

Hn(r) =
ln

8πAS′
Rn ×

[ ∮

S′
ρ′n

(jk0R + 1)e−jk0R − (1 + 1
2k2

0R
2)

R3
ds′

+
∮

S′

ρ′n
R3

ds′ +
k2
0

2

∮

S′

ρ′n
R

ds′
](5.3.4)

where the pertinent singular integrals are of the form

(5.3.5)
∮

S′
(r′ − n)

1
R3

ds′ and
∮

S′
(r′ − n)

1
R

ds′

while the remaining integrant multiplying ρ′n is now smooth enough with

(5.3.6) lim
R→0

{ (jk0R + 1)e−jk0R − (1 + 1
2k2

0R
2)

R3

}
= −1

3
jk3

0

The formula for calculating the integral on the right has already been provided as
the same integral appears also in the construction of D2, while for the one in the
left we have

(5.3.7)
∮

S′
(r′ − n)

1
R3

ds′ = −
3∑

i=1

m̂i ln
(R+

i + s+
i

R−i + s−i

)
+ (ρ− n)

∮

S′

1
R3

ds′

where for w0 6= 0

(5.3.8)
∮

S′

1
R3

ds′ =
sgn(w0)

w0
β

In effect, the singular entries of the integral C2 are given by

C2
m,n =− lmln

16πASAS′

∮

S

(r−m) · n̂(r)×
{

(r− n)×
[∮

S′
(r′ − n)

(jk0R + 1)e−jk0R − (1 + 1
2k2

0R
2)

R3
ds′

+
∮

S′
(r′ − n)

1
R3

ds′ +
k2
0

2

∮

S′
(r′ − n)

1
R

ds′
]}

(5.3.9)
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(a)

(b)

(c)

Figure 6. The surface triangular patch in the local set of coordi-
nates L used in the analytical integration. Figures extracted from
[14].
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Variable Description
n̂ Unit normal on S.
r The observation point in S.
r′ The integration point in S.
O Origin point. (e.g. geometric center of S).
O′ Projection of the origin to S.
w0 Distance from r to S, w0 = (r− n̂)v.
R Vector from r to r′.
ρ Vector from O′ to r, ρ = (r− w0n̂)
ρ′ Vector from O′ to r′.
ρn Vector from O′ to the vertex n.
ρ′n Vector from vertex n to r′.
Rn Vector from vertex n to r.
ŝn Unit vector on edge n in the direction of Tn.
m̂n Unit normal on edge n in the plane of S.
t0n Distance from ρ to the edge n.
t̂0n Unit vector in the direction of t0n.
s−n Distance from t0n to the beginning of the edge n.
s+

n Distance from t0n to the end of the edge n.

t+n The distance
√

(t0n)2 + (s+
n )2.

t−n The distance
√

(t0n)2 + (s−n )2.
R0

n The distance
√

(t0n)2 + w2
0.

R+
n The distance

√
(t+n )2 + w2

0.

R−n The distance
√

(t−n )2 + w2
0.

Table 2. The parameters used in the computation of the singular
integrals on the triangular surface patches S.

5.4. Numerical evaluation of singular integrals. For the numerical evaluation
of the singular integrals we follow the convention that the n’th edge of any surface
triangle, where n = 1 : 3, is the one positioned across the n’th vertex of the
same surface element, the so called free vertex. This reflects the sequence in the
elements of the rows of srf and srfedg matrices, which denote the connectivity
of the surface triangular patches in vertices and edges respectively. If Pn, denote
the column coordinate vectors for the vertices of the k’th triangle, the edge unit
(tangential) vectors are

(5.4.1) ŝ1 = (P3 − P2)/l1, ŝ2 = (P1 − P3)/l2, ŝ3 = (P2 − P1)/l3

where the length ln of the n’th edge of the k’th surface is obtained as ln =
deg(srfedg(k,n)). The above should satisfy

∑3
i=1 liŝi = 0. Next, the unit out-

ward normal vectors on each of the edges can be computed using

(5.4.2) m̂n = ŝn × n̂

and these satisfy
∑3

i=1 lim̂i = 0. Now, in the local coordinates (û, v̂, ŵ), the unit
vectors on the local axes are

(5.4.3) û = (P2 − P1)/l3, v̂ = n̂× û, ŵ = n̂
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with [
û · ŝi

v̂ · ŝi

]
=

[−v̂ · m̂i

û · m̂i

]

If the patch in the local coordinate system lies on the (û, v̂) plane with two of its
vertices at (0, 0, 0) and (l3, 0, 0), then the coordinates of the third vertex (û3, v̂3, 0)
and the observation point r(x, y, z) are given by

(5.4.4) û3 = (P3 − P1) · û, v̂3 = ‖n̂‖/l3 and




u0

v0

w0


 =




û
v̂
ŵ


 · (r− P1)

where w0 is the distance from the observation point to the plane of the integration
S′, measured positively in the direction of n̂. The cross section of the line ŵ = w0

with S′(û, v̂, 0), yields the coordinates of the projected observation point ρ(u0, v0, 0)
for which we can compute

s−1 = − (l3 − u0)(l3 − u3) + v0v3

l1

s+
1 =

(u3 − u0)(u3 − l3) + v3(v3 − v0)
l1

= s−1 + l1

s−2 = −u3(u3 − u0) + v3(v3 − v0)
l2

s+
2 =

u0u3 + v0v3

l2
= s−2 + l2

s−3 = −u0, s+
3 = l3 − u0

(5.4.5)

as well as the quantities

t01 =
v0(u3 − l3) + v3(l3 − u0)

l1
, t02 =

u0v3 − v0u3

l2
, t03 = v0

t−1 =
√

(l3 − u0)2 + v2
0 , t+1 =

√
(u3 − u0)2 + (v3 − v0)2, t−2 = t+1

t+2 =
√

u2
0 + v2

0 , t−3 = t+2 , t+3 = t−1

(5.4.6)

The distance from the observation point to each of the edges of S′ is

(5.4.7) R0
1 =

√
(t01)2 + w2

0, R0
2 =

√
(t02)2 + w2

0, R0
3 =

√
(t03)2 + w2

0

while if r is on the plane of S′, the distance w0 is zero and R0
i = t0i . Similarly, R+

i

and R−i are the distances from the observation point towards the beginning and
end of the i’th edge in S′, so that

(5.4.8) R±1 =
√

(t±1 )2 + w2
0, R±2 =

√
(t±2 )2 + w2

0, R±3 =
√

(t±3 )2 + w2
0

6. Excitation conditions: The physical experiment

The external excitation conditions we wish to apply reflect those of the physical
experiment described in [25]. In brief, a monochromatic and arbitrarily polarization
impinges the outer surface of the liquid crystal at the part of the boundary Γ1, and
propagates in the arbitrary direction set by the pair of azimuthal incidence angles
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(φi, θi). Here we assume the the incident signal is a plane wave. In this situation,
the exterior excitation term ψext

i is given by

(6.0.9) ψext
i = −jk0Z0

∮

S

Ti · n̂× (Hi + Hr) ds

where Ti = n̂×Li are the test functions associated with Hext. For the plane wave,
the incidence magnetic field is given by

(6.0.10a) Hi(r) = Y0

(
k̂i ×Ei(r)

)

where

(6.0.10b) Ei(r) = p̂i exp
(−jk0(k̂i · r))

where p̂i is the polarization and k̂i is the direction of the incident field given as

(6.0.10c) k̂i = − [
cos φi sin θi sin φi sin θi cos θi

]T

where (φi, θi) denote the polarization angles of the incident plane wave. In a similar
manner for the reflected magnetic component of the incident wave we have

(6.0.10d) Hr(r) = Y0

(
k̂r ×Er(r)

)

where

(6.0.10e) Er(r) = p̂r exp
(−jk0(k̂r · r))

with

(6.0.10f) k̂r = − [
cos φi sin θi sin φi sin θi − cos θi

]T

For example, if the incident field is p̂i =
[
pix piy piz

]T and the direction of

propagation is k̂i =
[
kix kiy kiz

]T then at a point r(x, y, z) ∈ Γ1, such that
k̂i · r = α and r ∈ Γ1, the incident electric field is evaluated as

Ei(r) =
[
pix exp(−jk0α) piy exp(−jk0α) piz exp(−jk0α)

]T

subsequently yielding Hi = Y0(k̂i × Ei). A similar procedure is repeated for the
reflected component of the plane wave.

7. Forward computations

On a non empty subset of the boundary Γ1 ⊂ ∂Ω we apply excitation by means of
an input polarized plane wave ψext. For a fixed set of interior electrical parameters
this leads to a Neumann to Dirichlet operator Λε : Y → Z of the form

(7.0.11) Λε , n̂(r)×H(r) ½ n̂(r)×E(r) r ∈ ∂Ω

This smooth injective operator maps uniquely the tangential components of the
magnetic field to their corresponding tangential components of the electric field
at the surface of the domain. Fixing the Neumann conditions we can proceed to
formulate the nonlinear forward operator Φ : X → Z

(7.0.12) Φ , ε(r)
∣∣
r∈Ω

7→ n̂(r)×E(r)
∣∣
r∈Γ2

where Γ2 ⊂ ∂Ω, Γ2 6= Γ1 is the part of the boundary where the polarization
measurement is gathered. Operator Φ is nonlinear in ε, is non-injective and (at
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least) twice continuously differentiable in the domain of interest, Φ ∈ C2(Ω). Let
us define the Maxwell operator M(ε) : X → L2

curl(Ω)3

(7.0.13) M(ε) =
[
A B
D C

]

and the direct forward problem as

(7.0.14) M(ε)

[
E
Hs

]
=

[
0

ψext

]

where E and Hs are the tangential components of the electric field in the closure of
the domain and that of the magnetic field at the boundary of the domain respec-
tively. Moreover, allow a measurements operator P : L2

curl(Ω)3 → Z which extracts
a set of boundary electric field measurements at the positions of the detectors given
a distribution of electric field

(7.0.15) P (E) = ζ

where ζ ∈ Z is a vector of complex measurements.

7.1. Linearization. Once the forward operator has been constructed the next ob-
jective is to linearize the problem. Provided that Φ is at least twice continuously
differentiable in the spaces X and Y, taking a strictly feasible point δε ∈ X one can
compute the Fréchet derivative of Φ, which maps perturbations in the interior per-
mittivity distribution to perturbations in the boundary electric field measurements.
Operator Φ′ : X → Y is linear, compact and bounded while in the discrete sense,
evaluating Φ′ at an admissible point in X yields an ill-conditioned matrix, the so
called Jacobian or sensitivity matrix, with exponentially decaying singular values.
The assembling of this matrix is conventionally performed via the perturbation
method [28], however here we demonstrate a computationally efficient method for
computing the Jacobian based on the adjoint fields technique [8]. For the derivation
we consider piecewise constant permittivity tensors on the elements of the model.

Taking the Taylor expansion of Φ and linearizing around an admissible point as
in the Newton-Raphson method, neglecting second-order and higher terms we have
the linearized forward problem

(7.1.1) Φ′(ε) δε = δζ

where Φ′(ε) is the Fréchet derivative of Φ at ε and δζ = P
(
E(ε)

)− P
(
E(ε + δε)

)
.

Moreover δζ solves

(7.1.2) M(ε)

[
δζ

δHs

]
=

[
δεE

0

]

In conjunction with the direct problem , if X is the complex conjugate of X, we
can also define the adjoint forward problem as

(7.1.3) M∗
(ε)

[ E
Hs

]
=

[
0
s

]

where

(7.1.4) M∗
(ε) =

[
A B
D C

]

and s is the vector of adjoint sources for the problem [8]. If the k’th measurement
is captured at Γ2 ∈ ∂Ω, then the corresponding adjoint source is that which causes
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Figure 7. At the top: A finite element grid of a liquid crystal cell
with gratings, indicating also the point of incident for the incoming
laser beam. Below: The computed electric field solution.

a plane wave incident on Γ2 to propagate backwards into the domain. This sets
up the so-called adjoint fields which we denote E and Hs associated with the k’th
measurement. In a mathematical sense, the back-propagation is expressed via the
use of the negative frequency (−ω) in the definition of the k’th adjoint source sk

given by

(7.1.5) sk
i = jk0Z0

∮

Γ2

Fi · (n̂×Hir)k ds
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To derive the sensitivity of the system which indicates how perturbations on the
permittivity δε affect the boundary measurements of the form n̂×E we require the
Fréchet derivative of the forward operator. Recall that the weak formulation of the
problem assuming homogeneous and isotropic unit magnetic permeability is

(7.1.6)
∫

Ω

(∇×E)(∇× F)− k2
0εrE · F dΩ = jk0Z0

∮

∂Ω

(n̂×H)F ds

In the case where F = E the above becomes∫

Ω

|(∇×E)|2 − k2
0εr|E|2 dΩ = jk0Z0

∮

∂Ω

(n̂×H) ·E ds

where the right hand side surface integral can also be written as∮

∂Ω

(n̂×H) ·E ds = −
∮

∂Ω

(n̂×E) ·H ds = −
∮

∂Ω

(E×H) · n̂ ds

so that to indicate the type of measurement available for the problem and thereafter
that the total energy flux Ψ crossing the boundary of the domain is stored and
dissipated within its interior, since

(7.1.7) Ψ = Re
∮

∂Ω

n̂ · (E×H) ds = Re
∮

∂Ω

(n̂×E)Hds

where E×H is the Poynting vector. Keeping the weak equation which includes the
measurements we have for the problem we allow perturbations in each component
of the permittivity tensor ε → ε+δε, and boundary data E → E+δE. Substituting
into the above yields∫

Ω

|(∇×E)|2 − k2
0(ε + δε)EE dΩ = −jk0Z0

∮

∂Ω

(n̂× (E + δE))H ds

and simplifying by neglecting second and higher order terms in δε and δ(n̂×E) we
get

(7.1.8)
∫

Ω

δε E E dΩ = jk−1
0 Z0

∮

∂Ω

δ(n̂×E) H ds

In the above note the distinction between δε ∈ X the perturbation in the dielectric
tensor, and δε ∈ R the perturbation along the i’th axes of the permittivity ten-
sor, where i ∈ {xx, xy, xz, yy, yz, zz}. Recall that initially we have taken the test
function to be equal to the electric field so that we get an estimate on the power
dissipation in the system. When the permittivity is perturbed the electric field in
the domain will change. We now focus our attention to the left hand side of (7.1.8)
to quantify exactly the two electric fields involved. To simplify our notation we con-
sider the k’th element in the model, the ψext excitation and the m’th measurement
with adjoint source sm. The relation

(7.1.9)

〈
M(ε)

[
δE(ψext)
δHs(ψext)

]
,

[
E(sm)
Hs(sm)

]〉

L2

=

〈[
δε E(ψext)

0

]
,

[
E(sm)
Hs(sm)

]〉

L2

by virtue of (7.1.2), indicates that the perturbation in the total power within the
domain can be recovered by one direct and one adjoint forward solutions. The right
hand side of the above can be developed into

(7.1.10)

〈[
δε E(ψext)

0

]
,

[
E(sm)
Hs(sm)

]〉

L2

=
∫

Ωk

δε E(ψext) E(sm) dΩ
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Figure 8. The normalized singular values of the Jacobian matrix
revealing its ill-conditioning.

hence the element of the Jacobian matrix corresponding to the k’th element in the
model, the ψext experiment and the m’th measurement is given by

(7.1.11) Jk
(ψext,m) =

δ(n̂×E)
δε(i,w)

= −jk0Y0

∫

Ωk

Ei(ψext) Ew(sm) dΩ

for i, w ∈ {x, y, z}. Relevant proofs for the Jacobian and its adjoint operator can
be found in Somersalo et al. [36] and Dorn et al. [8]. The Fréchet derivative of
the forward operator is linear, bounded and compact in the Hilbert spaces under
consideration, and hence the Jacobian matrix is ill-conditioned. The degree of
ill-posedness in the inverse problem is often assessed by examining the properties
of the induced Jacobian in the linear formulation. A rather conventional tool for
operator with exponentially decaying singular values. Computing the singular value
decomposition of the Jacobian matrix reveals that these decay exponentially which
is indicative of the severe form of ill-posedness in the problem. A plot of Jacobian’s
singular values for a typical configuration appears in figure 8. From this graph
it becomes apparent that the matrix is badly scaled-conditioned with respect to
inversion, and most importantly that the smallest singular values are well below
the noise level in the system, making their filtration essential for preserving the
stability in the reconstructed solution.

8. Inverse problem

For the inverse problem we assume the knowledge of a finite element model of
the problem and an array of noise infused boundary measurements ζ̃ ∈ Z so that
if ζ∗ = Φ(ε∗) ∈ Z are the exact boundary data due to the target distribution then
ζ̃ = ζ∗+N (0, σ2). Without any loss of generality we may further assume a Gaussian
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noise signal of zero mean and standard deviation σ. For the construction of the
inverse problem we first formulate the error norm residual function f : X → R

(8.0.12) f(ε) =
1
2

∥∥ζ∗ − ζ̃
∥∥2

Z

which by substituting the forward operator yields the required inverse solution ε∗

by means of a nonlinear minimization problem

(8.0.13) ε∗ = arg min
ε∈X

1
2

∥∥Φ(ε∗)− ζ̃
∥∥2

Z

If ε0 ∈ X is a strictly feasible initial guess on the dielectric tensor profile in a uni-
axially anisotropic hybrid aligned (HAN) cell, so that ε0 6= ε∗ and the perturbation
δε = ε∗ − ε0 satisfies ‖δε‖X ≤ t for a small scalar t, then from a first-order Taylor
expansion of f around ε0 we obtain the linearized inverse problem as

(8.0.14) δε∗ = arg min
δε∈X

1
2

∥∥Φ′(ε0)δε− δζ̃
∥∥2

Z

where δζ̃ = ζ̃ − Φ(ε∗). While for the generalized permittivity tensor imaging one
would approach the problem (8.0.14), for the special case of the inverse director
problem one has to formulate the optimization problem with respect to the distri-
bution of directors x. In this respect, we allow the following assumption.

Proposition 8.0.1. In the special case of the uniaxial nematic liquid crystals, a
perturbation in the boundary polarization measurements can be caused only by a
perturbation in the directors. In effect, δε implies δx, and if the operator Φx :
L2(Ω)3 → Z maps distributions of directors in the interior of the domain to their
corresponding boundary data

(8.0.15) Φx , x
∣∣
Ω
→ n̂×E

∣∣
Γ1

then

(8.0.16) Φ′(ε) = Φ′x(x)

for all ε, x satisfying (1.1.2).

As before x∗ ∈ L2(Ω)3 is the target solution we seek to reconstruct, and for
which we possess an array of noisy measurements ζ̃. In this setting the inverse
problem is expressed as

(8.0.17) min
x∈L2(Ω)3

1
2

∥∥Φx(x∗)− ζ̃
∥∥2

Z

Repeating the linearization procedure for the new objective at the point x0 sat-
isfying ε0 = x0 ⊗ x0 + I, and computing the Fréchet derivative of Φx at x0 we
can formulate a linearized inverse problem for estimating the optimum value of the
perturbation δx∗ = x∗ − x0 as

(8.0.18) δx∗ = arg min
δx∈L2(Ω)3

1
2

∥∥Φ′x(x0)δx− δζ̃
∥∥2

Z

where δζ̃ = ζ̃ − Φx(x∗). For the formulation of the problem (8.0.18) it suffices to
compute the Jacobian Φ′x(x0) with respect to the directors. Writing the weak form
of the forward problem with respect to the directors we have

(8.0.19)
∫

Ω

|(∇×E)|2 − k2
0(x⊗ x + I)EE dΩ = −jk0Z0

∮

S

(n̂×E)H ds
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Taking perturbations on the measurements and each vector component of the di-
rector xi → xi + δxi for i ∈ {x, y, z}, and simplifying we arrive at

(8.0.20) −k2
0

∫

Ω

E(2xiδxi + δxiδxi)F dΩ = −jk0Z0

∮

S

δ(n̂×E)H ds

Neglecting second order term δxiδxi and rearranging yields an expression for the
k’th element of the discrete Jacobian matrix as

(8.0.21) Jk
(x0,i,ψext,m) =

δ(n̂×E)
δxi

= −2jk0Y0

∫

Ωk

x0,i Ei(ψext) E i(sm) dΩ

for i = x, y, z. With the computed Jacobian the linearized inverse problem (8.0.18)
becomes

(8.0.22) δx∗ = arg min
δx∈L2(Ω)3

1
2

∥∥J(x0,ψext,m)δx− δζ̃
∥∥2

Z

where J(x0,ψext,m) ∈ C3m×3k, δx ∈ R3k and δζ̃ ∈ C3m. As the problem is ill-posed,
we augment the program (8.0.22) with a regularizing prior information inequality
constraint C(x) ≤ t, where C : X → R is derived from Frank’s energy formula like

(8.0.23) C(x) =
1
2
K11

(∇ · x)2 +
1
2
K22

(
x · (∇× x)

)2 +
1
2
K33

(
x× (∇× x)

)2

for t ∈ R is a small constant. Under the assumption that the three elastic constants
are of the same magnitude we adopt the one constant approximation of C [11],
where the elastic constants are taken to be the same, e.g. K11 = K22 = K33 = K.
In this case the energy constraint simplifies to a Dirichlet integral term

(8.0.24) C(x) ' K|∇x|2 = K
∑

i=x,y,z

(∂ix)2

which is known to minimize C locally in stable and quasi-stable configurations
of x [22]. Alternative regularization priors for nematic cells can be derived from
Landau–de Gennes free energy [24], which is based on temperature, volume, the
local tensor order and its spatial derivatives. For the regularized problem, we seek
a perturbation in the director that satisfies
(8.0.25)

δx∗ = arg min
δx

1
2

∥∥∥J δx− δζ
∥∥∥

2

2
such that

{‖Dxδx‖22 + ‖Dyδx‖22 + ‖Dzδx‖22
} ≤ t

where Dx = ∂x ∈ R3k×3k, Dy = ∂y ∈ R3k×3k and Dz = ∂z ∈ R3k×3k are positive
definite gradient matrix operators as in (8.0.24). In this context the generalized
Tikhonov solution of (8.0.25) is

(8.0.26) δx =
(
J∗J + κ2

(
(Dx)∗(Dx) + (Dy)∗(Dy) + (Dz)∗(Dz)

))−1

J∗δζ

for a regularization parameter κ > 0.

9. Numerical results

Consider a closed domain Ω ∈ [0, 1] × [0, 1] × [0, 1] with a piecewise constant
director profile

x∗i =

{[
cos(2zi) cos(2xi) cos(2zi) sin(2xi) sin(2zi)

]
at element i,

0 otherwise.
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(a) Side view of x∗.

(b) Top view of x∗.

Figure 9. The target distribution of director vectors in a HAN
uniaxial liquid crystal cell.
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Figure 10. The point at which the incident radiation enters the
liquid crystal cell.

where (xi, yi, zi) denotes the center of the i’th element in the model. The distri-
bution of directors in consideration is shown in figure 9. The wavelength of the
incoming radiation was taken to be five times the mean length of the edges in the
model, resulting in wave propagation constant of k0 = 2.0521. The incident polar-
ization angles were taken at θ = π/2 and φ = 0, yielding an incident polarization
vector p̂i =

[
1 1 0

]
. Figure 10 shows the part of the boundary where the in-

coming radiation enters the liquid crystal. Based on the model x∗, an array of 27
measurements ζ∗, have been simulated at detector positions located on horizontal
boundary edges throughout the periphery of the model. To the exact data we have
subsequently added a Gaussian noise signal of zero mean and standard deviation
σ = 0.001 · ‖Re(ζ∗)‖, yielding ζ̃, so that to incorporate the effect of physical noise
and instrumentation precision.

Taking an initial guess on the solution x0 ∈ X, so that ‖x∗ − x0‖X is small, for
nonzero displacements in the Euler angles of the director δθ = 0.06 and δφ = 0.04
radians, we have

x∗0 =








cos(2zi + δθ) cos(2xi + δφ)
cos(2zi + δθ) sin(2xi + δφ)

sin(2zi + δθ)


 at element i,

0 otherwise.

For the initial guess we compute the forward solution Φ(x0), δζ̃ = ζ∗ − Φ(x0) and
thereafter evaluate the Jacobian matrix at x0 using equation (8.0.21). Assembling
the gradient operators using [29], we set up the linearized problem (8.0.22), and
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(a) Side view of reconstructed x.

(b) Top view of reconstructed x.

Figure 11. The reconstructed distribution of director vectors in
a HAN uniaxial liquid crystal cell.
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setting the regularization parameter k = 2σ, we compute the Tikhonov solution
using (8.0.26). Images of the reconstructed solution appear in figure 11. The im-
ages illustrate a close resemblance between the original-target and reconstructed
director distributions but at the same time are indicative of the impact of noise to
the problem, causing some local discontinuities in the otherwise smooth orienta-
tion profile. The algorithm can easily be extended for nonlinear reconstruction by
feeding the Tikhonov linear step solver within the Newton’s iterative scheme as in
[28].

10. Conclusions

In this report we have derived the forward problem for high-frequency wave prop-
agation in nematic liquid crystals. We have developed a numerical model based on a
hybridization of vector finite elements with a boundary integral equation imposing
the Neumann boundary conditions. This formulation yields surface integrals with
singular kernels in the combinations of nearby located elements which we treat nu-
merically using a special basis of surface functions, numerical integration and closed
form expressions. In the resulted forward problem we solve for the electric field in
the closure of the domain as well as the tangential of the magnetic field at the
boundary, thus the problem leads conveniently to the formulation of the linearized
inverse problem via the computation of the Jacobian of the forward mapping via
the method of the adjoint fields. The inverse director orientation problem in the
uniaxial nematic crystal cell, we approached as a special case of the anisotropic
permittivity tensor imaging problem, aiming to recover the two distinctive eigen-
values of the permittivity tensor. For the linearized inverse problem we adopt a
generalized Tikhonov regularization approach, using a prior information functional
derived from Frank’s energy minimization formula that holds in stable nematic
configurations. The numerical results indicate that the director orientation profile
can be reconstructed from an adequate set of boundary polarization measurements
gathered perimetrically.
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