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We report the first calculations of eigenmodes (quantum states) of a mushroom billiard of the type
proposed by L. Bunimovich in this journal, 11, 802 (2001). The phase space of this mixed system
has a single regular region and a single ergodic region, and no KAM hierarchy. For a symmetric
mushroom with a square foot, we find: i) low-eigenvalue modes with very high relative eigenvalue
accuracy of order 10−10, and ii) high-eigenvalue modes at mode number around 105. We outline the
simple but highly-efficient mesh-free boundary collocation methods which make such calculations
tractable. We test Percival’s conjecture that almost all modes localize either to regular or ergodic
regions, report the relative frequencies of such modes, and examine Husimi distributions on the
Poincaré surface of section.

Quantum chaos is the study of the quantum
(wave) properties of Hamiltonian systems whose
classical (ray) dynamics is chaotic. Billiards are
some of the simplest and most studied exam-
ples; physically their waves analogs are vibrating
membranes, or resonant quantum, electromag-
netic, or acoustic cavities. Yet despite 150 years
of study such wave resonance problems continue
to provide a wealth of theoretical challenges. In
particular ‘mixed’ systems, where the ray phase
space has both regular and chaotic regions (the
generic situation), are difficult to analyse. Five
years ago Bunimovich described [1] a mushroom-
shaped billiard whose mixed dynamics is free
of the usual island hierarchies of Kolmogorov-
Arnold-Moser (KAM). Its simplicity allowed a
rigorous description of its dynamics. Bunimovich
concluded by anticipating the growth of “quan-

tum mushrooms”—it is precisely this gardening
task that we achieve here. We use, and outline
below, state-of-the-art, accurate and efficient nu-
merical methods which compute eigenmodes us-
ing boundary information alone. Thus we are able
to verify the conjecture of Percival [2] that in the
high eigenvalue (short-wavelength) limit, modes
live exclusively in invariant (regular or chaotic)
phase space regions. We also show that these
two mode types occur with a proportion given by
their phase space volume ratio. We also show a
multitude of pictures of modes in configuration
space, on the boundary, and on the boundary
phase space (the so-called Husimi function on the
Poincaré surface of section).

∗Electronic address: ahb(AT)math.dartmouth.edu
†Electronic address: t.betcke(AT)tu-bs.de

a=1
foot

hat

b=1

R=3/2

q=L

q=0

θ
r

qc

a) b)

Ω ’

Γ

Γs

Ω

FIG. 1: Left: Mushroom billiard Ω used in this work. The
dotted line shows the reflection symmetry. Right: Desym-
metrized half-mushroom domain Ω′ used for mode calcula-
tion, and polar coordinates. Dashed lines meeting at this
corner are zeros enforced by basis functions. The remaining
part of ∂Ω′ is Γ, comprising two pieces: Dirichlet boundary
conditions on the parts shown as solid, while boundary con-
ditions vary (see text) on the dash-dotted vertical line Γs.
Boundary coordinate q ∈ [0, L] parametrizes Γ.

I. INTRODUCTION

The nature of eigenfunctions of linear partial differ-
ential operators in the short wavelength, or semiclassi-
cal, limit remains a key open problem which continues
to engage mathematicians and physicists alike. When
the operator is the quantization of a classical Hamilto-
nian dynamical system, the behavior of eigenfunctions
depends on the class of dynamics. In particular, hy-
perbolic dynamics (exponential sensitivity to initial con-
ditions, or chaos) leads to irregular eigenfunctions, the
study of which forms the heart of a field known as ‘quan-
tum chaos’ [3] or ‘quantum ergodicity’ [4, 5]. The planar
billiard, or free motion of a point particle trapped in a
cavity Ω ⊂ R

2 undergoing elastic reflections at the walls,
forms one of the simplest examples since trajectories do
not depend on overall energy, and the motion may be eas-
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ily reduced to a one-dimensional area-preserving map on
the boundary phase-space (i.e. locations and tangential
velocities of collisions).

Billiards exhibit a menagerie of dynamical classes [6, 7,
8] ranging from complete integrability (ellipses and rect-
angles) to complete ergodicity (e.g. the stadium, known
also to be mixing and Bernoulli [7]). Recently in this
journal, Bunimovich introduced the so-called ‘mushroom’
billiard [1] with the novel feature of a well-understood di-
vided phase-space comprising a single integrable (KAM)
region and a single ergodic region. [49] As seen in Fig. 1a,
the mushroom is the union of a half-disk (the ‘hat’) and a
rectangle (the ‘foot’). Only trajectories reaching the foot
are chaotic, thus as its width varies there is a continuous
transition from integrability (the disk) to ergodicity (the
stadium); for a review see [9]. The simplicity of its phase
space allows detailed study of the general phenomenon
of ‘stickiness’ (power-law decay of correlations) in the
ergodic region [10, 11]. Bunimovich concludes by antici-
pating ‘quantum mushrooms’: this is the inspiration for
our paper.

The quantum-mechanical system corresponding to bil-
liards is the spectral problem of the Laplacian in Ω
with homogeneous boundary conditions (BCs). Choos-
ing Dirichlet BCs (and units such that ~ = 2m = 1) we
have

− ∆φj = Ejφj in Ω, (1)

φj = 0 on ∂Ω. (2)

This is known as the ‘drum problem’, and has a wealth of
other applications to electromagnetic, optical, mechan-
ical and acoustic resonance problems [12]. Eigenfunc-
tions φj (which we will refer to as eigenmodes, or simply
modes) may be chosen real-valued and orthonormalized,

〈φi, φj〉 :=

∫

Ω

φi(r)φj(r)dr = δij , (3)

where dr := dxdy is the usual area element. ‘Energy’
eigenvalues E1 < E2 ≤ E3 ≤ · · · → ∞ may be written
Ej = k2

j , where the (eigen)wavenumber kj is 2π divided
by the wavelength.

For domain shapes other than ellipses and rectangles
(where separation of variables can be used to reduce it to
a 1D problem), a fully 2D numerical computation is re-
quired to find modes and eigenvalues. Traditional meth-
ods employing finite differences or finite elements can
handle a variety of shapes but have two major flaws: i) it
is very cumbersome to achieve high convergence rates and
high accuracy, and ii) they scale poorly as the eigenvalue
grows. To illustrate the latter point, at eigenvalue E of
order E1/2 wavelengths span the system size, and since
several nodes are needed per wavelength, of order E de-
grees of freedom are needed in a finite element basis. The
resulting difficulty of short-wavelength numerical calcula-
tion of eigenmodes is highlighted by the fact that analog
computation with microwave cavities is still a popular

method in awkward geometries [13, 14]. In order to com-
pute mushroom eigenmodes we use mesh-free boundary
collocation methods which i) achieve exponential conver-
gence (spectral accuracy), allowing eigenvalue computa-
tions approaching machine precision, and ii) require only
of order E1/2 degrees of freedom (a feature shared by
more standard boundary integral methods [15]). Further-
more at high eigenvalue we use an acceleration technique
(the scaling method [16, 17, 18]) which results in another
speed gain of order E1/2. These improvements allow us
to find large numbers of modes up to E ≈ 5 × 105.

Our goal in this paper is to compute eigenmodes of a
mushroom billiard, at both low (Sec. III) and high eigen-
value (Sec. V), and provide some basic analysis of their
properties, in particular their boundary functions (Sec.
IV). We are motivated by a growing interest in quantum
ergodicity [19, 20]. For ergodic dynamics, the Quantum
Ergodicity Theorem [21, 22, 23, 24] (QET) states that
in the E → ∞ (semiclassical) limit almost all modes
become equidistributed (in coordinate space, also mi-
crolocally in phase space, and on the boundary [25, 26]).
Since the mushroom phase space is divided, this theo-
rem cannot be applied. However it is a long-standing
conjecture of Percival [2] that for such mixed systems,
modes tend to localize to one or another invariant re-
gion of phase space, with frequency in proportion to the
phase space volumes, and that those in ergodic regions
are equidistributed. Recently such a conjecture has been
proven for certain piecewise linear quantum maps [27].
No rigorous results exist for billiards, although numer-
ical work has been done in a smooth oval billiard [28].
We test this numerically for the mushroom in Sec. V,
and show some computed Husimi (microlocal) distribu-
tions of high-eigenvalue modes on a Poincaré surface of
section (a subset of the boundary).

With this goal in mind we first proceed by outlining
and advertising our accurate and efficient numerical tech-
niques for computing modes (Section II), with the hope
that other researchers will use these tools to push beyond
this preliminary study. Those interested purely in results
should skip to Sec. III.

II. NUMERICAL METHODS

A. The Method of Particular Solutions

Our task is to compute Dirichlet eigenmodes of a do-
main Ω. Mesh-based methods (finite elements, etc) typi-
cally use approximating functions that satisfy the bound-
ary conditions (BCs) but not the partial differential equa-
tion (1). In constrast, we use a global approximation
method where this situation is reversed: our set of basis
functions, or particular solutions, {ξm(r)}m=1···M satisfy
the Helmholtz equation

−∆ξm = Eξm (4)
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FIG. 2: The tension tm(E) plotted as a function of trial eigen-
value parameter E. The minima indicate the eigenvalues of
this domain. Close to E = 44 there is a cluster of two eigen-
values. The half mushroom with zero Dirichlet boundary con-
ditions was used (see Sec. IIB).

at some trial eigenvalue parameter E, but do not indi-
vidually satisfy (2). The goal is now to find values of
E such that there exists nontrivial linear combinations
x1ξ1 +x2ξ2 + · · ·+xMξM , which are small on the bound-
ary. These are then hopefully good approximations for
an eigenfunction.

Let us make this precise. We define the space H(E) of
trial functions at a given parameter E as

H(E) = Span{ξ1, . . . , ξM}.

If we denote by ‖u‖∂Ω and ‖u‖Ω the standard L2-norm
of a trial function u ∈ H(E) on the boundary ∂Ω and
in the interior Ω we can define the normalized boundary
error (also called the tension) as

t[u] :=
‖u‖∂Ω

‖u‖Ω
(5)

It is immediately clear that t[u] = 0 for u ∈ H(E) if and
only if u is an eigenfunction and E the corresponding
eigenvalue on the domain Ω. However, in practice we
will rarely achieve exactly t[u] = 0. We therefore define
the smallest achievable error as tm(E) = minu∈H(E) t[u].
This value gives us directly a measure for the error of
an eigenvalue approximation E, namely there exists an
eigenvalue Ej such that

|E − Ej |
Ej

≤ Ctm(E), (6)

where C is an O(1) constant that only depends on the
domain Ω. This result is a consequence of error bounds
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FIG. 3: Exponential convergence of tm(E1) with M the num-
ber of particular solutions used, for the first odd mode of the
mushroom billiard. Here the eigenvalue parameter was held
fixed at E1, our best approximation to the eigenvalue (see
Table Ia).

of Moler and Payne [29, 30]. Hence, by searching in E for
minima of tm(E) we find approximate eigenvalues with
relative error given by a constant times tm(E). Fig. 2
shows such a plot of tm(E) for our mushroom domain.

The implementation of this Method of Particular So-
lutions (MPS) depends on i) basis set choice, and ii)
how to evaluate tm(E). The former we address in the
next section. The latter requires a set of quadrature
points {yi}i=1···N on which to approximate the bound-
ary integral ||u||∂Ω. One must take into account that
Helmholtz basis sets tend to be ill-conditioned, that is,
the N × M matrix A with entries Aim := ξm(yi) be-
comes numerically rank-deficient for desirable choices of
M . The tension tm(E) can then be given by the square-
root of the lowest generalized eigenvalue of the matrix
pair (ATA,BTB), or by the lowest generalized singu-
lar value of the pair (A,B), where B is identical to A
except with the replacement of {yi} by interior points
[12, 17, 31]. These different approaches are discussed in
[32]. Here, we use the generalized singular value imple-
mentation from [32], which is highly accurate and numer-
ically stable. We note that these methods are related to,
and improve upon, the plane wave method of Heller [33].

B. Choice of basis functions

In order to obtain accurate eigenvalue and eigenfunc-
tion approximations from the MPS it is necessary to
choose the right set of basis functions. In this section
we propose a basis set that leads to exponential conver-
gence, i.e. errors which scale as e−cM for some c > 0, as
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M the number of basis functions grows.
To achieve this rate we first desymmetrize the problem.

The mushroom shape Ω is symmetric about a straight
line going vertically through the center of the domain
(see Fig. 1). All eigenmodes are either odd or even sym-
metric with respect to this axis. Hence, it is sufficient
to consider only the right half, Ω′. The odd modes are
obtained by imposing zero Dirichlet boundary conditions
everywhere on the boundary ∂Ω′ of the half mushroom.
The even modes are obtained by imposing zero Neumann
conditions on the symmetry axis Γs and zero Dirichlet
conditions on the rest of ∂Ω′.

Eigenfunctions of the Laplacian are analytic every-
where inside a domain except possibly at the bound-
ary [34]. Eigenfunctions can be analytically extended
by reflection at corners whose interior angle is an integer
fraction of π [12]. The only singularity appears at the
reentrant corner with angle 3pi/2 (where dashed lines
meet in Fig. 1b). Close to this corner any eigenfunction
φj can be expanded into a convergent series of Fourier-
Bessel functions of the form

φj(r, θ) =

∞
∑

m=1

akJ 2m
3

(kjr) sin
2m

3
θ, (7)

where the polar coordinates (r, θ) are chosen as in Fig. 1b.
The function Jα is the Bessel function of the first kind of
order α.

The expansion (7) suggests that the basis set ξm :=
J 2m

3
(kr) sin 2m

3 θ, where k2 = E, might be a good choice

since these functions capture the singularity at the reen-
trant corner and automatically satisfy the zero bound-
ary conditions on the segments adjacent to this corner
(dashed lines in Fig. 1b). Hence, we only need to min-
imize the error on the remaining boundary Γ which ex-
cludes these segments. The boundary coordinate q ∈
[0, L] parametrizes Γ; its arc length is L = 3(1 + π/4).
This Fourier-Bessel basis set was originally introduced by
Fox, Henrici and Moler [35] for the L-shaped domain. In
[36] the convergence properties of this basis set are inves-
tigated and it is shown that for modes with at most one
corner singularity the rate of convergence is exponential.

In Fig. 3 we demonstrate the exponential convergence
of tm(E1) for the eigenvalueE1 of the first odd-symmetric
mode of the mushroom. We have tm(E1) = O(e−cM ) for
some c > 0 as the number M of basis functions grows.
Hence, for the minimum Ê of tm(E) in an interval con-
taining E1 it follows from (6) that

|Ê − E1|
E1

≤ Ctm(Ê) ≤ Ctm(E1) = O(e−cM ),

which shows the exponential convergence of the eigen-
value approximations Ê to E1 for growing M .

C. Scaling method at high eigenvalues

For all but the lowest modes we used an accelerated
MPS variant which is much more efficient but less ac-

FIG. 4: The first 10 odd modes of the mushroom shape, shown
as density plots. Eigenvalue increases rightwards from the top
left. They are obtained by imposing zero Dirichlet boundary
conditions on the symmetry axis. White corresponds to pos-
itive and black to negative values. Expressed as a fraction
of ‖φj‖L∞(Ω), the level curves range from −0.9 to 0.9 with a
spacing of 0.2.

FIG. 5: The first 10 even modes of the mushroom shape, plot-
ted as in the previous figure. They are obtained by imposing
zero Neumann boundary conditions on the symmetry axis.

curate than the MPS. The scaling method [16, 17, 18]
makes use of a basis of particular solutions; we used the
above basis. To our knowledge the scaling method has
not been applied to a re-entrant corner before. At large
eigenvalues E > 103, rather than determine the basis
size M by a convergence criterion as in Sec. II B, we use
the Bessel function asymptotics: for large order Jα(x)
becomes exponentially small for x/α < 1 (the turning
point is x = α). Equating the largest argument kR (with
R = 3/2) with the largest order 2M/3 gives our semiclas-
sical basis size M ≈ 9k/4.

Given a center wavenumber k0 and interval half-width
∆k, the scaling method finds all modes φj with kj ∈
[k0 − ∆k, k0 + ∆k]. This is carried out by solving a sin-
gle indefinite generalized eigenvalue problem involving a
pair of matrices of the type ATA discussed above. The
‘scaling’ requires a choice of origin; for technical reasons
we are forced to choose the singular corner. Approxima-
tions to eigenvalues lying in the interval are related to
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the matrix generalized eigenvalues, and the modes to the
eigenvectors. The errors grow [17] as |kj − k0|3, thus the
interval width is determined by the accuracy desired; we
used ∆k = 0.1 which ensured that tm(E) errors asso-
ciated with the modes rarely exceeded 3 × 10−4. Since
the search for minima required by the MPS has been
avoided, and on average O(k) modes live in each interval,
efficiency per mode is thus O(k) = O(E1/2) greater than
the MPS. By choosing a sequence of center wavenumbers
k0 separated by 2∆k, all modes in a large interval may
be computed.

We are confident that the scaling method finds all odd
modes in a desired eigenvalue window. For instance we
compute all 1746 odd symmetry modes with kj < 100,
using 500 applications of the scaling method (at k0 =
0.1, 0.3, . . . , 499.9). We verify in Fig. 7 that there appears
to be zero mean fluctuation in the difference between the
(odd) level-counting function N(k) := #{j : kj ≤ k} and
the first two terms of Weyl’s law [3],

NWeyl(k) =
vol(Ω′)

4π
k2 − |∂Ω′|

4π
k, (8)

where |∂Ω′| is the full perimeter of the half mushroom
domain. The scaling method is restricted to Dirichlet
BCs only, hence we cannot find even symmetry modes
this way. We note the method is still not well-understood
from the numerical analysis standpoint [17, 18].

In applying the scaling method to the mushroom, the
vast majority of computation time involves evaluating
Bessel functions Jα(x) for large non-integral α and large
x. This is especially true for producing 2D spatial plots
of modes as in Fig. 10, for which of order 109 evalua-
tions are needed. We currently use independent calls to
the GSL library [37] for each Jα(x) evaluation. This is
quite slow, taking between 0.2 and 50 µs per call (2.4GHz
Opteron CPU, linux/GNU), with the slowest being in
the region α < 50, 102 < x < 103. However, we note
that Steed’s method [38, 39], which is what GSL uses
in this slow region, is especially fast at evaluating se-
quences Jα(x), Jα−1(x), Jα−2(x), . . ., and that since α is
a multiple of a rational with denominator 3, only 3 such
sequences would be needed to evaluate all basis functions
{ξm(r)}m=1···M at a given location r. We anticipate at
least an order of magnitude speed gain could be achieved
this way.

III. LOW EIGENVALUE MODES

In this section we present results for the first few
even and odd modes on the mushroom billiard. The
odd modes are obtained by solving the eigenvalue prob-
lem with zero Dirichlet boundary conditions on the half
mushroom shape from Fig. 1b, using the MPS, by locat-
ing minima in the tension function of Fig. 2. In Table Ia
the eigenvalues are listed to at least 10 significant digits,
and in Fig. 4 the corresponding modes are plotted. We
emphasize that it is the exponentially convergent nature

a) j Ej

1 11.50790898

2 25.55015254

3 29.12467610

4 43.85698300

5 44.20899253

6 53.05259777

7 55.20011630

8 66.42332921

9 69.22576822

10 82.01093712

b) j Ej

1 5.497868889

2 13.36396253

3 18.06778679

4 20.80579368

5 32.58992604

6 34.19488964

7 41.91198264

8 47.37567140

9 54.62497098

10 65.18713235

TABLE I: Tables of a) lowest 10 odd and b) lowest 10 even
eigenvalues of the mushroom. All digits shown are believed
to be correct.

FIG. 6: The 10 odd modes of the mushroom whose eigen-
wavenumbers lie in the range 90 < kj < 90.35, at mode num-
ber about j ≈ 8100. Intensity |φj |

2 is shown with zero white
and larger values darker.

of our method that makes reaching such high accuracies
a simple task.

As explained in Sec. II B the even modes require im-
posing Neumann BCs on Γs and Dirichlet BCs on the
remaining part of Γ. This was achieved in the MPS by
modifying the tension function (5) to read

t[u] :=

(

‖∂nu‖2
Γs

+ ‖u‖2
Γ\Γs

)1/2

‖u‖Ω′

(9)

where the normal derivative operator on the boundary is
∂n := n · ∇, the unit normal being n. Table Ib, gives the
smallest 10 even modes on the mushroom billiard, and
the corresponding modes are plotted in Fig. 5.

Although we are far below the semiclassical regime
some odd and even functions already show properties of
the underlying classical dynamical system. For example,
the 8th odd and the 6th even mode live along a caustic
and therefore show features of the classically integrable
phase space while the 7th odd and 10th even mode already
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shows features of the classically ergodic phase space. For
comparison, in Fig. 6 we show some modes with interme-
diate eigenvalues of order 104 (mode number j = 8×103),
and in Section V we will present high-lying modes around
j = 4× 104. Here we plot the intensity |φj |2 rather than
φj since at such short wavelengths this shows large-scale
features better. In these cases it becomes clearly visible
that in the semiclassical regime the modes of the mush-
room either correspond to the integrable or to the ergodic
regions of phase space.
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FIG. 7: Difference between the mode counting function N(k)
and the two-term Weyl’s prediction NWeyl(k) defined by (8).
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FIG. 8: Poincaré surface of section (PSOS), that is, the clas-
sical phase space in boundary coordinates q (as shown in
Fig. 1b) and p (sin of incidence angle). Vertical dashed lines
shows location of corners. The vertical dotted line shows lo-
cation of qc the focal point of the hat. The dark line shows
the border of integrable phase space; note that q = 2 corre-
sponds to the smallest possible caustic for integrable phase
space. Families of orbits defined by constant angular momen-
tum are shown by lines in the integrable region. Note that
they exchange vertical ordering at the corner, as indicated by
their grayscale color labeling.

IV. BOUNDARY FUNCTIONS

We choose a Poincaré surface of section (PSOS) [3] de-
fined by Birkhoff coordinates (q, p) ∈ Γ × [−1, 1] =: Z,
where q is the boundary location as before (see Fig. 1b)

q

j

0 1 2 3 4 5

100

200

300

400

500

600

FIG. 9: Intensity of boundary normal-derivative functions
|∂nφj(q)/kj |

2, plotted vs boundary coordinate q on the hori-
zontal axis and mode number j ∈ [1, 600] on the vertical. The
density plot shows white as zero, and larger values darker.

and p the tangential velocity component, in the clock-
wise sense, for a unit speed particle. (If the incident
angle from the normal is θ then p = sin θ). The struc-
ture of this PSOS phase space is shown in Fig. 8. Our
choice (which differs from that of Porter et. al. [9]) is nu-
merically convenient since it involves only the part of the
boundary on which matching is done (Sec. II). Despite
the fact that it does not cover the whole boundary ∂Ω′,
it is a valid PSOS since all trajectories must hit Γ within
bounded time.

Integrable phase space consists of precisely the orbits
which, for all time, remain in the hat [1] but which never
come within a distance b/2 from the center point qc. This
latter requirement is needed to exclude the zero-measure
set of marginally-unstable periodic orbits (MUPOs) in
the ergodic region which nevertheless remain in the the
hat for all time [10, 11]. Simple geometry shows that the
curved boundary between ergodic and integrable regions
consists of points (q, p) satisfying

q − qc =
b/2

√

1 − p2
, for p2 ≤ p2

0 := 1 − b2

4R2
. (10)
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For our shape, qc = a + b/2 = 3/2, p2
0 = 8/9. In the

domain q ∈ [qc + R,L] the boundary occurs at the lines
p = ±b/2R = ±1/3. Successive bounces that occur on
Γ are described by the PSOS billiard map f : Z → Z.
Any such Poincaré map is symplectic and therefore area-
preserving [3].

The quantum boundary functions ∂nφj(q) for q ∈ [0, L]
are natural representations of the modes. They are con-
venient to work with at high eigenvalue because of their
reduced dimensionality: compared to a 2D representa-
tion of φj they are much faster to compute and require
less storage (by factor O(k) in each case). Note that they
are not L2(∂Ω) normalized; rather they are normalized
according to a geometrically-weighted L2 boundary norm
via the Rellich formula (see [18, 40])

∫

∂Ω

(r · n) |∂nφj |2 dq = 2Ej , (11)

where r(q) is the location of boundary point q relative to
an arbitrary fixed origin.

In Fig. 9 we show the first 600 odd-symmetry boundary
functions. More precisely, intensities (squared values) are
shown, divided by Ej so as to remove the overall scaling
of their norm evident in (11). Several features are visible.
Typical spatial frequencies increase with j. There is an
absence of intensity near the corners (over a region whose
size scales as the wavelength). The region 3 < q < L,
in which phase space is predominantly integrable, has a
more uniform intensity than 0 < q < 2, which is exclu-
sively ergodic. The region 2 < q < 3 is almost exclusively
integrable, but is dominated by classical turning-points
corresponding to caustics; these appear as localized re-
gions of high intensity with the form of an Airy function.
In 1/2 < q < 3/2 there are horizontal bright streaks
corresponding to horizontal ‘bouncing-ball’ modes (with
various vertical quantum numbers) in the foot. An in-
teresting feature in Fig. 9 is a series of slanted structures
visible for 3/2 < q < 2. These are fringes which move
as a function of wavenumber, and we refer the reader to
another publication for their analysis [41].

V. HIGH EIGENVALUE MODES AND

PERCIVAL’S CONJECTURE

In Fig. 13 we show a sequence of 20 modes with consec-
utive eigenvalues near wavenumber k = 500 (eigenvalue
E = 2.5 × 105). These modes are a subset of the modes
produced via a single generalized matrix eigenvalue prob-
lem (of size M ≈ 1200) using the scaling method at
k0 = 500. The full set of 77 modes (including evalu-
ating boundary functions) took 20 minutes to compute
(2.4GHz Opteron CPU). Typical tension tm(E) values
were below 10−3. Naively applying (6) we would con-
clude only about 3 significant digits of accuracy on eigen-
values. However, it is possible to rigorously improve this

bound by factor O(E
1/2
j ) [31], which in fact means we

have about 6 significant digits. At short wavelength the

FIG. 10: High-energy eigenmode with kj = 499.856 · · · , at
around j ≈ 45000. This mode appears to live in the ergodic
region.

2D spatial plots such as Fig. 13 take much longer to com-
pute than boundary functions; this figure took a couple of
hours to produce. Fig. 10 shows the 14th in the sequence
in more detail. Clearly in this small set, Percival’s conjec-
ture seems to hold: modes are either regular or chaotic
but not a mixture of both. We will now study this in
more detail on the PSOS phase space.

A. Husimi distributions of boundary functions

We define the Husimi transform [42] of functions on R,
for convenience reviewing the coherent state formalism
in dimensionless (~-free) units. Given a width parameter
(phase space aspect-ratio) σ > 0, it is easy to show that
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FIG. 11: a) the mode of Fig. 10 Husimi distribution
H∂nφj ,σ(q, p) defined by (15) (top), density plot of |∂nφj |

2

(middle), and graph of ∂nφj (bottom). Note the q coordinate
is common to the three plots. b) Similar representation of the
next highest mode at kj = 499.858, the 15th in the sequence
of Fig. 13, which lives in the regular region.

the annihilation operator

a :=
1√
2

( q

σ
+ σ∂q

)

(12)

has a kernel spanned by the L2-normalized Gaussian

ψ0(q) := (πσ2)−1/4e−q2/2σ2

. We work in L2(R), in which

the hermitian adjoint of a is a† = (q/σ−σ∂q)/
√

2. From
the commutator [a, a†] = 1 it follows, ∀z ∈ C, that the
coherent state

ψz := e−|z|2/2eza†

ψ0 (13)

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

4

k
j

f j

500 501 600 675 750

FIG. 12: Foot-sensing matrix elements fj defined by (16),
plotted vs kj , for the complete set of odd modes with kj < 100
and smaller intervals at higher energy: 499.8 < kj < 501,
599.8 < kj < 600.2, 674.8 < kj < 675.2 and 749.8 < kj <
750.6 (there are 2316 total modes).

is an eigenfunction of a with eigenvalue z. The fact that
it is L2-normalized requires the Hermite-Gauss normal-
ization ‖(a†)nψ0‖2

2 = n!, ∀n ∈ N, which can be proved
by induction. The Bargmann representation [43, 44] of a
function v : R → C is then 〈ψz, v〉; the Husimi represen-
tation is its squared magnitude Hv,σ(z) := |〈ψz , v〉|2. We

need a more explicit form than (13). ψz = eza†−z∗aψ0 fol-
lows by the Baker-Campbell-Hausdorff formula eA+B =
e−[A,B]/2eAeB for [[A,B], A] = [[A,B], B] = 0. Applying

this formula again and writing z := (q0/σ + iσk0)/
√

2
where q0, k0 ∈ R gives

ψz(q) = eik0q0/2eik0qψ0(q − q0). (14)

This shows that the coherent state is localized in posi-
tion (around q0) and wavenumber (around k0), thus the
Husimi is a microlocal (phase space) represention,

Hv,σ(q0, k0) :=

∣

∣

∣

∣

∫ ∞

−∞

v(q)eik0qψ0(q − q0)dq

∣

∣

∣

∣

2

. (15)

This also known as the Gabor transform or spectrogram
(windowed Fourier transform), and it can be proven equal
to the Wigner transform convolved by the smoothing
function ψ2

0 . Given a normal-derivative function ∂nφj

we periodize it in order to apply the above. We also
scale the wavenumber by kj , thus the Birkhoff momen-
tum coordinate is p = k0/kj . The choice of σ is somewhat
arbitrary, but it is expected [45] that phase space struc-
tures have spatial scale O(k−1/2), therefore we chose a
scaling similar to this. At k = 500 we used σ = 0.076.

In Fig. 11 we show boundary functions, their intensity,
and Husimi distributions, for two modes. By comparing
to the classical PSOS (Fig. 8), we see the first mode (the
same as shown in Fig. 10) lives exclusively in the ergodic
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phase space, whereas the second lives exclusively in regu-
lar phase space. In the first mode, the only large part of
ergodic phase space not covered is that corresponding to
bouncing-ball modes in the foot (the white ‘box’). Also
a scar is visible as the 9 darkest spots: 4 pairs of spots
surrounding the white box correspond to 4 bounces in
the foot, and a single spot at q ≈ 5 corresponds to a
normal-incidence bounce off the circular arc. This scar
(as well as hints of other ones) is also somewhat visible
in Fig. 10.

In Fig. 14 we show Husimi distributions for the 20
modes of Fig. 13; in the 19th the same scar discussed
above is even more dominant. We remind the reader
that in purely ergodic systems boundary functions obey
the QET [25, 26] with almost every ∂nφj/kj tending to

an invariant Husimi density of the form C
√

1 − p2. We
might expect a similar result to hold for the ergodic sub-
set of modes in the ergodic phase space of the mushroom.
However, Fig. 14 shows that despite being at a high mode
number of roughly 4 × 104 we are still a long way from
reaching any invariant density: the 7 ergodic modes have
highly nonuniform Husimi distributions.

B. Fraction of regular modes

Finally we give more quantitative results on Percival’s
conjecture. Since the PSOS phase space in 0 < q <
3/2 is ergodic for all p, we may use the L2 norm of the
boundary function in this region as an indicator that a
mode has an ergodic component. We define the ‘foot-
sensing’ quadratic form

fj :=

∫ 3/2

0

∣

∣

∣

∣

∂nφj(q)

kj

∣

∣

∣

∣

2

dq. (16)

This may be thought of as the square of a diagonal matrix
element of an operator which acts on boundary functions.
Fig. 12 shows fj vs kj for the first 1746 odd modes (those
discussed in Sec. IV) and a sample of 615 modes in the
approximate range 500 < kj < 750. The highest shown
correspond to mode number j ≈ 105.

Percival’s conjecture would imply in the semiclassical
limit the sequence {fj}j=1···∞ has (for all but a set of
vanishing measure) two limit points: zero (for regular
modes), and some positive constant (for ergodic modes).
Note that dividing by kj as in (16) is necessary to scale
the boundary functions so that matrix elements of a fixed
operator can have a limit [25, 46]. The data shows a frac-
tion of modes have fj very close to zero and the rest have
distribution around 1, whose width decreases somewhat
as kj increases; this supports the conjecture. Results
on the rate of quantum ergodicity [18] lead us to expect
slow convergence of such matrix elements in the ergodic
region, even at high mode numbers of order 105. This,
combined with the long correlations in the ergodic dy-
namics, may explain why the nonzero fj values have not
reached anything like the constant value we would expect
if the ergodic modes obeyed a QET.

We need to know the integrable phase space fraction
µint. The total phase space (restricting to the unit-speed
momentum shell) has volume Vtot = vol(Ω′ × S1) =
2π volΩ′ = 2π(ab/2 + πR2/4). Let us define the func-
tion α(r) := 2π− 4 sin−1(b/2d(r)), where d(r) is the dis-
tance from r to the center point qc. When r is a location
in the hat for which d(r) ∈ [b/2, R], this function gives
the measure of the set of angles in S1 for which orbits
launched from r are integrable (i.e. never leave the annu-
lus d(r) ∈ [b/2, R]). The integrable phase space volume
is found by integrating α(r) over this annulus, for which
we use polar coordinates (ρ, φ) with origin at qc. Thus,
we calculate,

Vint =

∫ π/2

0

dφ

∫ R

b/2

α(ρ)ρdρ

=
π2

2

(

R2 − b2

4

)

− 2π

∫ R

b/2

ρ sin−1 b

2ρ
dρ

= 2π

(

π

4
R2 − bRp0

4
−R sin−1 b

2R

)

.

For our shape this gives µint = Vint/Vtot = 0.3987 · · ·
We categorize modes by calling them regular if fj <

10−2. The choice of this cut-off is somewhat arbitrary,
however in the j → ∞ limit it should become irrelevant.
Counting all 2361 odd modes in Fig. 12 we have 977 reg-
ular ones, thus a fraction 0.414±0.01 (here the standard
error assumes a model in which each mode independent
Bernoulli trial). To give an idea of reliability of this fig-
ure, a cut-off of 10−1 gives 0.434, and a cut-off of 10−3

gives 0.398; smaller values start to be affected by nu-
merical errors in modes. If we restrict to the 615 high
modes kj > 499.8, the fraction is 0.441± 0.02, almost in-
dependent of any reasonable cut-off choice. This would
lead one to reject the null hypothesis that the underly-
ing probability of any mode being regular is µint, with
p-value 0.04, not a very significant deviation. Thus, the
observed regular fraction is reasonably consistent with
(within 2 standard errors of) the conjectured value of
µint.

VI. CONCLUSION

We have presented the first known high-lying eigen-
mode calculations of Bunimovich’s mushroom domain,
which has a simple divided phase space without KAM
hierarchy. Using a basis set adapted to the re-entrant
corner, the Method of Particular Solutions achieves very
high accuracy for low modes, and the scaling method
enables us to find high modes orders of magnitude more
efficiently than any other known numerical approach. We
find strong numerical evidence that Percival’s conjecture
is satisfied, and with the two mode types occurring with
frequencies given by their invariant phase space volumes.
Without doubt this result could be strengthened using
a more selective phase-space measure and by collecting
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more statistics. We note that if a quantum ergodicity re-
sult is to hold for the ergodic subset of modes, we are far
from having reached this regime despite being at mode
numbers in the tens of thousands. This slow convergence
to quantum ergodicity has been studied in detail in com-
pletely ergodic systems [18].

This study is by necessity preliminary, and many
questions remain. What is the level-spacing distribu-
tion? What are the spectral manifestations of stickiness
[10, 11]? On the numerical methods side there remain
many open issues [18, 31, 32], and a probable order of

magnitude speed-up possible due to the currently slow
evaluation of high-order Bessel functions.
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FIG. 13: 20 high-eigenvalue modes with consecutive eigen-
values, covering the range kj ∈ [499.800, 499.869], with mode
number around j ≈ 45000. Mode number increases horizon-
tally from the top left. |φj |

2 is shown with zero white and
larger values darker.
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FIG. 14: Husimi distributions H∂nφj ,σ(q, p) of the 20 high-
eigenvalue modes shown in Fig. 13, in the same order. The q
and p axes are as in Fig. 11.


