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Abstract. Routines exist in LAPACK for computing the Cholesky fac-
torization of a symmetric positive definite matrix and in LINPACK there
is a pivoted routine for positive semidefinite matrices. We present new
higher level BLAS LAPACK-style codes for computing this pivoted fac-
torization. We show that these can be many times faster than the LIN-
PACK code. Also, with a new stopping criterion, there is more reliable
rank detection and smaller normwise backward error. We also present
algorithms that update the QR factorization of a matrix after it has had
a block of rows or columns added or a block of columns deleted. This
is achieved by updating the factors Q and R of the original matrix. We
present some LAPACK-style codes and show these can be much faster
than computing the factorization from scratch.

1 Pivoted Cholesky Factorization

1.1 Introduction

The Cholesky factorization of a symmetric positive definite matrix A ∈ R
n×n

has the form

A = LLT ,

where L ∈ R
n×n is a lower triangular matrix with positive diagonal elements. If

A is positive semidefinite, of rank r, there exists a Cholesky factorization with
complete pivoting ([6, Thm. 10.9], for example). That is, there exists a permu-
tation matrix P ∈ R

n×n such that PT AP has a unique Cholesky factorization

PT AP = LLT , L =

[
L11 0
L12 0

]
,

where L11 ∈ R
r×r is lower triangular with positive diagonal elements.
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1.2 Algorithms

In LAPACK [1] there are Level 2 BLAS and Level 3 BLAS routines for com-
puting the Cholesky factorization in the full rank case and without pivoting.
In LINPACK [2] the routine xCHDC performs the Cholesky factorization with
complete pivoting, but effectively uses only Level 1 BLAS. For computational
efficiency we would like a pivoted routine that exploits the Level 2 or Level 3
BLAS.

The LAPACK Level 3 algorithm cannot be pivoted, so we instead start with
the Level 2 algorithm. The LAPACK ‘Gaxpy’ Level 2 BLAS algorithm is:

Algorithm 1 This algorithm computes the Cholesky factorization A = LLT of

a symmetric positive definite matrix A ∈ R
n×n, overwriting A with L.

Set L = lower triangular part of A
for j = 1: n

(∗) L(j, j) = L(j, j) − L(j, 1: j − 1)L(j, 1: j − 1)T

(#) if L(j, j) ≤ 0, return, end % Quit if A not positive definite.

L(j, j) =
√

L(j, j)
% Update jth column
if 1 < j < n

L(j + 1: n, j) = L(j + 1: n, j) − L(j + 1: n, 1: j − 1)L(j, 1: j − 1)T

end
if j < n

L(j + 1: n, j) = L(j + 1: n, j)/L(j, j)
end

end

This algorithm requires n3/3 flops.
We can introduce pivoting into Algorithm 1, for L = (ℓij), by finding the

largest possible ℓjj at (∗) from the remaining n − j + 1 diagonal elements and
using it as the pivot. We find

q = min
{
p : L(p, p) − d(p) = max

j≤i≤n
{L(i, i)− d(i)}

}
, (1.1)

where d is a vector of dot products with

d(i) = L(i, 1: j − 1)L(i, 1: j − 1)T , i = j: n, (1.2)

and swap rows and columns q and j, putting the pivot ℓqq into the lead position.
This is complete pivoting.

For computational efficiency we can store the inner products in (1.2) and
update them on each iteration. This approach gives a pivoted gaxpy algorithm.
The pivoting overhead is 3(r + 1)n− 3/2(r + 1)2 flops and (r + 1)n− (r + 1)2/2
comparisons, where r = rank(A).

The computed rank, r̂, of A can be determined by a stopping criterion at (#)

in Algorithm 1. At the jth iteration if the pivot, which we will denote by χ
(j)
jj ,
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satisfies an appropriate condition then we set the trailing matrix L(j: n, j: n)
to zero and the computed rank is j − 1. Three possible stopping criteria are
discussed in [6, Sec. 10.3.2]. The first is used in LINPACK’s code for the Cholesky
factorization with complete pivoting, xCHDC. Here the algorithm is stopped on
the kth step if

χ
(k)
ii ≤ 0, i = k: n. (1.3)

In practice r̂ may be greater than r due to rounding errors. In [6] the other two
criteria are shown to work more effectively. The first is

‖S̃k‖ ≤ ǫ‖A‖ or χ
(k)
ii ≤ 0, i = k: n, (1.4)

where S̃k = A22 − AT
12A

−1
11 A12, with A11 ∈ R

k×k the leading submatrix of A, is
the Schur complement of A11 in A, while the second related criterion is

max
k≤i≤n

χ
(k)
ii ≤ ǫχ

(1)
11 , (1.5)

where in both cases ǫ = nu, and u is the unit roundoff. We have used the latter
criterion, preferred for its lower computational cost.

We derive a blocked algorithm by using the fact that we can write, for the
semidefinite matrix A(k−1) ∈ R

n×n and nb ∈ R [3],

A(k−1) =

[
A

(k−1)
11 A

(k−1)
12

AT (k−1)

12 A
(k−1)
22

]
=

[
L11 0
L21 In−nb

] [
Inb

0
0 A(k)

] [
L11 0
L21 In−nb

]T

,

where L11 ∈ R
nb×nb and L21 ∈ R

(n−nb)×nb form the first nb columns of the
Cholesky factor L of A(k−1). Now to complete our factorization of A(k−1) we
need to factor the reduced matrix

A(k) = A
(k−1)
22 − L21L

T
21, (1.6)

which we can explicitly form, taking advantage of symmetry.
From this representation we can derive a block algorithm. At the kth step we

factor nb columns, by applying a pivoted Algorithm 1 to the leading principal
nb×nb submatrix of A(k) and then update the trailing matrix according to (1.6)
and continue.

At each step the Level 2 part of the algorithm requires (n − (k − 1)nb)n
2
b

flops and the Level 3 update requires (n− knb)
3/3 flops. The Level 3 fraction is

approximately 1 − 3nb/2n.

1.3 Numerical Experiments

We tested and compared four Fortran subroutines on a 1400MHz AMD Athlon:
LINPACK’s DCHDC, DCHDC altered to use our stopping criterion, and LAPACK-
style implementations of a level 2 pivoted Gaxpy algorithm (LEV2PCHOL) and
level 3 pivoted Gaxpy algorithm (LEV3PCHOL) .
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Fig. 1. Comparison of speed for different n.

We first compared the speed of the factorization of the LINPACK code and
our Level 2 and 3 routines for different sizes of A ∈ R

n×n. We generated random
symmetric positive semidefinite matrices of order n and rank r = 0.7n. For
each value of n the codes were run four times and the mean times are shown
in Figure 1.3. We achieve a good speedup, with the Level 3 code as much as 8
times faster than the LINPACK code.

We also compared the speed of the unpivoted LAPACK subroutines against
our Level 3 pivoted code, using full rank matrices, to demonstrate the pivoting
overhead. The ratio of speed of the pivoted codes to the unpivoted codes varies
smoothly from 1.6 for n = 1000 to 1.01 for n = 6000, so the pivoting overhead
is negligible in practice for large n (recall that the pivoting overhead is about
3rn − 3/2r2 flops within the O(n3) algorithm). The use of the pivoted codes
instead of the unpivoted ones could be warranted if there is any doubt over
whether a matrix is positive definite.

We tested all four subroutines on a further set of random positive semidefinite
matrices, this time with pre-determined eigenvalues, similarly to the tests in [5].
For matrices of rank r we chose the nonzero eigenvalues in three ways:

– Case 1: λ1 = λ2 = · · · = λr−1 = 1, λr = α ≤ 1

– Case 2: λ1 = 1, λ2 = λ3 = · · · = λr = α ≤ 1

– Case 3: λi = αi−1, 1 ≤ i ≤ r, α ≤ 1

Here, α was chosen to vary κ2(A) = λ1/λr.
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For each case we constructed a set of 100 matrices by using every combination
of:

n = {70, 100, 200, 500, 1000},

κ2(A) = {1, 1e+3, 1e+6, 1e+9, 1e+12},

r = {0.2n, 0.3n, 0.5n, 0.9n},

where r = rank(A). We computed the relative normwise backward error

‖A − P̂ L̂L̂T P̂T ‖2

‖A‖2
,

for the computed Cholesky factor L̂ and permutation matrix P̂ .

Table 1. Maximum normwise backward errors.

n 70 100 200 500 1000

DCHDC 3.172e-13 1.498e-13 1.031e-12 2.823e-12 4.737e-11

DCHDC with (1.5) 7.778e-15 9.014e-15 1.810e-14 7.746e-14 1.991e-13

LEV2PCHOL 4.633e-15 9.283e-15 1.458e-14 7.290e-14 1.983e-13

LEV3PCHOL 4.633e-15 9.283e-15 1.710e-14 8.247e-14 2.049e-13

There was little difference between the normwise backward errors in the
three test cases; Table 1 shows the maximum values over all cases for different
n. The codes with the new stopping criterion give smaller errors than the original
LINPACK code. In fact, for all the codes with our stopping criterion r̂ = r, and
so the rank was detected exactly. This was not the case for the unmodified DCHDC,
and the error, r̂ − r, is shown in Table 2.

Table 2. Errors in computed rank for DCHDC.

n 70 100 200 500 1000

min 0 0 1 4 4

max 10 12 16 16 19

The larger backward error for the original DCHDC is due to the stopping
criterion. As Table 2 shows, the routine is often terminated after more steps
than our codes, adding more nonzero columns to L̂.

1.4 Conclusions

Our codes for the Cholesky factorization with complete pivoting are much faster
than the existing LINPACK code. Furthermore, with a new stopping criterion
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the rank is revealed much more reliably, and this leads to a smaller normwise
backward error.

For more detailed information on the material in this section see [7].

2 Updating the QR Factorization

2.1 Introduction

We wish to update efficiently the QR factorization

A = QR ∈ R
m×n,

where Q ∈ R
m×m is orthogonal and R ∈ R

m×n is upper trapezoidal. That is
we wish to find Ã = Q̃R̃, where Ã is A with rows or columns added or deleted.
We seek to do this without recomputing the factorization from scratch. We will
assume that A and Ã have full rank.

We consider the cases of adding blocks of rows and columns and deleting
blocks of columns. Where possible we derive blocked algorithms.

2.2 Adding a Block of Rows

If we add a block of p rows, U ∈ R
p×n, just before the kth row of A we can write

Ã =




A(1: k − 1, 1: n)

U
A(k: m, 1: n)





and we can define a permutation matrix, P , such that

PÃ =

[
A
U

]
,

and [
QT 0
0 Ip

]
PÃ =

[
R
U

]
. (2.1)

Thus to find Ã = Q̃R̃, we can define n Householder matrices to eliminate U to
give

Hn . . . H1

[
R
U

]
= R̃,

so we have

Ã =

(
PT

[
Q 0
0 Ip

]
H1 . . .Hn

)
R̃ = Q̃R̃.

The Householder matrix, Hj ∈ R
(m+p)×(m+p), will zero the jth column of U .

Its associated Householder vector, vj ∈ R
(m+p), is such that

vj(1: j − 1) = 0, vj(j) = 1,
vj(j + 1: m) = 0,

vj(m + 1: m + p) = x/(rjj − ‖ [ rjj xT ] ‖2), where x = U(1: p, j).

We can derive a blocked algorithm by using the representation of the product
of Householder matrices in [8].
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2.3 Deleting a Block of Columns

If we delete a block of p columns, from the kth column onwards, from A, we can
write

Ã = [ A(1: m, 1: k − 1) A(1: m, k + p: n) ]

and then
QT Ã = [R(1: m, 1: k − 1) R(1: m, k + p: n) ] . (2.2)

Thus we can define n − p − k + 1 Householder matrices, Hj ∈ R
m×m, with

associated Householder vectors, vj ∈ R
(p+1) such that

vj(1: j − 1) = 0, vj(j) = 1,

vj(j + 1: j + p) = x/((Q̃T Ã)jj − ‖
[
(Q̃T Ã)jj xT

]
‖2),

where x = QT Ã(j + 1: j + p, j),

vj(j + p + 1: m) = 0.

The Hj can be used to eliminate the subdiagonal of QT Ã to give

(Hn−p . . .HkQT )Ã = Q̃T Ã = R̃,

where R̃ ∈ R
m×(n−p) is upper trapezoidal and Q̃ ∈ R

m×m is orthogonal.

2.4 Adding a Block of Columns

If we add a block of p columns, U ∈ R
m×p, in the kth to (k + p− 1)st positions

of A, we can write

Ã = [ A(1: m, 1: k − 1) U A(1: m, k: n) ]

and

QT Ã =




R11 V12 R12

0 V22 R23

0 V32 0



 ,

where R11 ∈ R
(k−1)×(k−1) and R23 ∈ R

(n−k+1)×(n−k+1) are upper triangular.
Then if V32 has the (blocked) QR factorization V32 = QV RV ∈ R

(m−n)×p we
have

[
In 0
0 QT

V

]
QT Ã =




R11 V12 R12

0 V22 R23

0 RV 0


 .

We then eliminate the upper triangular part of RV and the lower triangular part
of V22 with Givens matrices, which makes R23 full and the bottom right block
upper trapezoidal. So we have finally

G(k + 2p− 2, k + 2p − 1)T . . . G(k + p, k + p + 1)T G(k, k + 1)T

. . . G(k + p − 1, k + p)T

[
In 0
0 QT

V

]
QT Ã = R̃,

where G(i, j) are Givens rotations acting on the ith and jth rows.
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3 Numerical Experiments

We tested the speed of LAPACK-style implementations of our algorithms for
updating after adding (DELCOLS) and deleting (ADDCOLS) columns, against LA-
PACK’s DGEQRF, for computing the QR factorization of a matrix.

We tested the codes with m = {1000, 2000, 3000, 4000, 5000} and n =
0.3m, and the number of columns added or deleted was p = 100. We timed our
codes acting on QT Ã, the starting point for computing R̃, and in the case of
adding columns we included in our timings the computation of QT U , which we
formed with the BLAS routine DGEMM. We also timed DGEQRF acting on only the
part of QT Ã that needs to be updated, the nonzero part from row and column
k onwards. Here we can construct R̃ with this computation and the original R.
Finally, we timed DGEQRF acting on Ã. We aim to show our codes are faster than
these alternatives. In all cases an average of three timings is given.
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Fig. 2. Comparison of speed for DELCOLS with k = 1 for different m.

To test our code DELCOLS we chose k = 1, the position of the first column
deleted, where the maximum amount of work is required to update the factor-
ization. We timed DGEQRF on Ã, DGEQRF on (QT Ã)(k: n, k: n−p) which computes

the nonzero entries of R̃(k: m, p + 1: n) and DELCOLS on QT Ã. The results are
given in Figure 2. Our code is much faster than recomputing the factorization
from scratch with DGEQRF, and for n = 5000 there is a speedup of 20. Our code is
also faster than using DGEQRF on (QT Ã)(k: n, k: n−p), where there is a maximum
speedup of over 3.
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Fig. 3. Comparison of speed for DELCOLS for different p.

We then considered the effect of varying p with DELCOLS for fixed m = 3000,
n = 1000 and k = 1. We chose p = {100, 200, 300, 400, 500, 600 700, 800}. As
we delete more columns from A there are fewer columns to update, but more work
is required for each one. We timed DGEQRF on Ã, DGEQRF on (QT Ã)(k: n, k: n−p)

which computes the nonzero entries of R̃(k: m, k: n − p) and DELCOLS on QT Ã.
The results are given in Figure 3. The timings for DELCOLS are relatively level
and peak at p = 300, whereas the timings for the other codes obviously decrease
with p. The speedup of our code decreases with p, and from p = 300 there is
little difference between our code and DGEQRF on (QT Ã)(k: n, k: n − p).

To test ADDCOLS we generated random matrices A ∈ R
m×n and U ∈ R

m×p.
We set k = 1 where maximum updating is required. We timed DGEQRF on Ã and
ADDCOLS on QT Ã, including the computation of QT U with DGEMM. The results
are given in Figure 4. Here our code achieves a speedup of over 3 for m = 5000
over the complete factorization of Ã.

We do not vary p as this increases the work for our code and DGEQRF on
(QT Ã)(k: m, k: n + p) roughly equally.

3.1 Conclusions

The speed tests show that our updating algorithms are faster than computing
the QR factorization from scratch or using the factorization to update columns
k onward, the only columns needing updating.

For more detailed information on the material in this section see [4].
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