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Abstract. This paper studies bifurcations from a homoclinic orbit to a degenerate
fixed point. We consider reversible Z2-symmetric systems of ODEs and assume the
existence of a symmetric homoclinic orbit to a fixed point which itself undergoes a
pitchfork bifurcation. We are interested in bifurcations from the primary homoclinic
orbit in an unfolding of the degenerate situation.

The studies are motivated by numerical investigations on a model-system of second
order ODEs. There one finds a similar behaviour in the local and the global bifurcation.
While locally two new fixed points are created numerical computations show that at
the same time two homoclinic orbits to these fixed points bifurcate from the primary
orbit. We call the global scenario a reversible homoclinic pitchfork bifurcation.

An analysis of this homoclinic bifurcation is performed in a general frame.
Depending on the sign of a higher order coefficient in the normal form we distinguish
two cases of the local pitchfork bifurcation: the eye case (which is the one encountered
in the model-system) and the figure-eight case. Adopting Lin’s method to the
non-hyperbolic situation the bifurcation of one-homoclinic orbits to the local centre
manifold of the fixed point is investigated. Rigorous existence results for homoclinic
orbits to fixed points and periodic orbits are derived. The global bifurcation picture is
found to depend crucially on the local bifurcation.

AMS classification scheme numbers: 37C29, 37C80, 37C25

1. Introduction

Homoclinic solutions of reversible ordinary differential equations (ODEs) have attracted

a lot of attention. On one hand such solutions are of importance since they can

describe solitary wave solutions of partial differential equations which are of interest in

a variety of applications. On the other hand homoclinic solutions can strongly influence

the dynamics of a system and are therefore of mathematical interest themselves. For

instance, near such orbits bifurcations of periodic orbits can occur and under certain

conditions complicated dynamics can arise. While the behaviour of homoclinic orbits to

hyperbolic fixed points is a classic issue of the theory (see [5, 21] or the survey [1]) the case

of homoclinic orbits to non-hyperbolic or degenerate fixed points has been considered

only recently (see for instance [2, 3, 11]).
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In this paper we will consider bifurcations from an orbit homoclinic to a degenerate

fixed point with double zero eigenvalue which is supposed to bifurcate in a reversible

pitchfork bifurcation. Thereby we will restrict to systems that are reversible with

respect to two distinct linear involutions. We will study what generically happens to

the homoclinic orbit in an unfolding. In particular, we will investigate the bifurcation

of one-homoclinic orbits to the corresponding ‘centre-manifolds’, that is to the (locally

invariant) manifolds in which the local bifurcation of the fixed point will be studied. Our

analysis uses both analytical and geometrical tools. We employ Lin’s method which has

been proved to be a powerful tool for the investigation of bifurcations from and the

dynamics near connecting orbits [16, 12, 21] and which was recently adapted to the case

of orbits connecting non-hyperbolic fixed points in [11]. Geometrical methods are used

to derive a complete description of the bifurcation scenario for one-homoclinic orbits.

Our studies are motivated by numerical investigations in [13] on a system of two

second-order ODEs. Let us first describe these investigations shortly.

1.1. An introductory numerical example

We consider the following system of second order ODEs

v̈ = 2vw + 2µv

ẅ = −v2 − w2 + 2µw − κ,
(1)

for v, w : R → R, depending on parameters µ, κ ∈ R. This system has been obtained

as an unfolding of a degenerate fixed point with fourfold eigenvalue zero in [22, 23].

There also analytical existence results for homoclinic and heteroclinic orbits have been

derived. It is shown that a rich variety of bifurcations involving connecting orbits can

be found in (1).

Here we will deal with a homoclinic bifurcation occurring for parameter values

µ > 0 and κ = −3µ2. We will consider (1) in (v, v̇, w, ẇ)-phase space. First observe

that (1) is reversible with respect to the involutions

R1 : (v, v̇, w, ẇ) → (v,−v̇, w,−ẇ)

and

R2 : (v, v̇, w, ẇ) → (−v, v̇, w,−ẇ).

Consequently, the map S := R1R2 forms a Z2-symmetry for (1). Note that in addition

(1) is a Hamiltonian system but this property will not be of concern here. (Readers

not familiar with the notion of reversibility are referred to Section 2 where the basic

terminology is introduced, see also [21] as a standard reference.)

For the following we will fix µ = 1 and consider (1) as a system depending on

a single parameter κ; this procedure is justified by a scaling property of (1), see [13].

Then for κ = −3 we find a fixed point ξ2 = (0, 0, 1 − √1− κ, 0) ∈ Fix (R1) ∩ Fix (R2)

which undergoes a reversible pitchfork bifurcation giving rise to two real saddles

ξ3 = (−√−3− κ, 0,−1, 0), ξ4 = R2ξ3 and turning from a real saddle into a saddle-centre

itself if κ is decreased. (The fixed points are labelled as in the original papers [22, 23]
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Figure 1. Phase portrait after the reversible pitchfork bifurcation of ξ2. The figure
shows plots of periodic orbits and the heteroclinic cycle connecting ξ3 and ξ4 for µ = 1,
κ = −3.2. (Projection in (v, v̇, w)-space.)

to which we also refer for the complete bifurcation diagram.) A numerical analysis of

this local bifurcation for κ < −3 results in the phase portrait shown in Figure 1. In this

figure we show the bifurcating periodic orbits that emerge in the pitchfork bifurcation

of ξ2. In addition, we can compute a small symmetric heteroclinic cycle connecting the

fixed points ξ3 and ξ4. We remark, that since we cannot draw in R4 this plot shows

a projection onto (v, v̇, w)-space. It is not very hard to verify this bifurcation picture

analytically, see [23].

Besides the information about the local behaviour near ξ2 another result from [23] is

of interest. Theorem 4.2 in that paper ensures the existence of a symmetric homoclinic

orbit γhom to ξ2 for all κ < µ2. In particular, γhom exists for µ = 1, κ = −3 and the

existence of this orbit is also unaffected by the local bifurcation of ξ2. The reason for

this is simple. The orbit is contained in the invariant subspace Fix (S) and within this

space ξ2 is hyperbolic for all κ < µ2. Therefore γhom cannot be destroyed. Nevertheless,

the non-hyperbolicity of ξ2 at κ = −3 makes it interesting to study bifurcations from

γhom.

We have studied this situation numerically in [13] using the software package

AUTO/HomCont, [6]. Since an analytical expression for γhom is known, [23], it is

rather convenient to perform a bifurcation analysis of this orbit with AUTO/HomCont.

For (1) we are mainly interested in the existence of orbits connecting fixed points of

the system wherefore we restricted the computations to this point. We have used the

continuation methods for symmetric connecting orbits in reversible systems that are

implemented in AUTO.
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Figure 2. Reversible homoclinic pitchfork bifurcation for (1). The figure shows
how homoclinic solutions to ξ3,4 bifurcate from the primary orbit γhom at µ = 1,
κ = −3. The orbit γhom is contained in the w-axis because of the chosen projection.
Also incorporated is the heteroclinic cycle which is created in the reversible pitchfork
bifurcation of ξ2. Notice the different scales for the x, y-axes and the z-axis.

It turns out that when we move the parameter κ through κ = −3 then not only

the fixed point ξ2 bifurcates in a pitchfork bifurcation but also the orbit γhom follows a

similar scenario. Indeed, for κ < −3 we find a new homoclinic orbit to the fixed point

ξ3, and - by reversibility - another one to ξ4, both being copies of the original orbit γhom.

We term this phenomenon a reversible homoclinic pitchfork bifurcation. An illustration

of this bifurcation is given in Figure 2 where we show plots of the computed orbits. Note

that in these plots the primary orbit γhom is completely contained in the w-axis due to

the chosen projection. For an impression of the proportions we have also incorporated

a plot of the heteroclinic cycle connecting ξ3 and ξ4.
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The goal of this paper is to understand and describe the observed effects

analytically. Instead of considering the specific system (1) we turn to a general class of

Z2-symmetric, reversible ODEs possessing a fixed point which is assumed to bifurcate

in a pitchfork bifurcation and which is connected to itself by a symmetric homoclinic

orbit. Moreover, we do not restrict the analysis to four-dimensional systems but consider

arbitrarily even-dimensional systems.

1.2. Contents and main results

The paper is organized as follows: In the next section we introduce the class of systems

we will be dealing with. The assumptions about the fixed point and its local bifurcation

are discussed in detail. We perform a centre manifold reduction and depending on the

sign of a higher order term in the normal form of the reduced system we distinguish two

cases: the eye case, which is the one encountered in the model-system (see also Figure

3), and the figure-eight case, see Figure 4.

The centre manifold reduction also allows to introduce suitable centre-stable and

centre-unstable manifolds. In Sections 3.1 and 3.2 we employ Lin’s method to study the

intersection of these manifolds in some cross-section to the primary homoclinic orbit

and compute one-homoclinic orbits to the centre manifolds. Note that as usual an

orbit is called one-homoclinic if it is contained in some neighbourhood of the primary

homoclinic orbit and if it intersects the cross-section exactly once. Using the symmetries

of the system it is shown first that the primary orbit exists robustly. Afterwards we

demonstrate that under suitable non-degeneracy assumptions for each parameter value

there exist two families of one-homoclinic orbits to the centre manifolds. Their points

of intersection with the cross-section lie on two smooth curves that intersect in a point

corresponding to the primary homoclinic orbit (Theorem 3.8). We remark that the

results so far do not depend on the type of the local bifurcation.

Finally, in Section 4 the asymptotic behaviour of the detected homoclinic solutions

is discussed. For this we perform a projection along stable fibres. This method allows to

directly read off the results from the bifurcation diagrams in Figure 6 and 7. We derive

a complete description of bifurcating one-homoclinic orbits to fixed points and periodic

orbits. The results depend considerably on the type of the local bifurcation. In the

eye case we show that generically the local bifurcation is accompanied by the reversible

homoclinic pitchfork bifurcation that was found numerically in the model-system. In

addition we prove the emergence of a second heteroclinic cycle between the fixed points

that are created in the reversible pitchfork bifurcation. By construction this cycle lies

in a neighbourhood of the primary homoclinic orbit. It is therefore different from the

(small) cycle shown in Figure 3 that emerges in the local bifurcation. The situation in

the figure-eight case contrasts remarkably with this. Here we prove that generically no

additional homoclinic orbits to fixed points bifurcate from the primary orbit. There are

also differences in the bifurcation of homoclinic orbits to periodic orbits. In the eye case

we find homoclinic orbits to each periodic orbit in the centre manifold. In the figure-
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eight case, however, only the orbits encircling the ‘middle’ fixed point are connected by

homoclinic orbits, see Theorems 4.1 and 4.2 for precise statements.

2. Basic assumptions and conclusions

Throughout this paper we consider a family of ODEs

ẋ = f(x, λ), (x, λ) ∈ R2n+2 × R (2)

with f smooth and λ as a real parameter. We will assume the system to be reversible

and Z2-symmetric, more precisely we assume

(R1) There exist linear involutions Ri : R2n+2 → R2n+2, i = 1, 2 with R1R2 = R2R1

such that

Rif(x, λ) + f(Rix, λ) = 0 ∀(x, λ), i = 1, 2.

Of course, we assume R1, R2 to be distinct (see (R2) below for a detailed statement).

It is easy to see that (R1) implies a Z2-symmetry for (2), namely with S := R1R2 we

have

Sf(x, λ)− f(Sx, λ) = 0 ∀(x, λ). (3)

In particular this equality shows that the space Fix (S) := {x : Sx = x} is an invariant

subspace for (2). It is an immediate consequence from (R1) that within this space the

involutions Ri agree and that (2) reduced to this space is also reversible with respect to

the corresponding restriction RS of the involutions Ri.

Remark. Using a more formal notion we can reformulate assumption (R1) by saying

that (2) possesses the reversing symmetry group G := {I, R1, R2, S}; see [15] for the

concept of reversing symmetry groups. We also note that since G is compact, we can

introduce an inner product such that each Ri is self-adjoint.

Let us discuss a further property associated to the reversing symmetry group of

(2). In the following we will often use the fact that

Ri(Fix (±Rj) ⊂ Fix (±Rj), i, j ∈ {1, 2}. (4)

This is obvious for i = j. For i 6= j let us choose x ∈ Fix (R1). (The arguments for the

other cases are the same.) Then

R1(R2x) = R2R1x = R2x,

and therefore R2x ∈ Fix (R1), also. (Note that in (4) we even have equality since Ri is

a bijective map.)

2.1. Assumptions involving the fixed point

Although our main interest lies in bifurcations of a global object, namely a homoclinic

orbit, we will first describe the local bifurcation of the fixed point the homoclinic orbit

is connected to. We will assume
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(FP1) f(0, 0) = 0, σ(D1f(0, 0)) = {0} ∪ {±µ} ∪ σss ∪ σuu, with 0 being a double,

non-semisimple eigenvalue, µ ∈ R+, and |<(µ̃)| > µ ∀µ̃ ∈ σss ∪ σuu. (Here

σss(uu) denotes the strong-stable (strong-unstable) spectrum of D1f(0, 0).)

An important property of (2) is that due to reversibility the Ri-image of any orbit

Γ̃ is again an orbit. As usual in the theory of reversible systems, we will call an orbit

Γ̃ Ri-symmetric, if RiΓ̃ = Γ̃. Thus, 0 is a Ri-symmetric fixed point (i=1,2) which, in

particular, implies RiD1f(0, λ)+D1f(0, λ)Ri = 0, i.e. D1f(0, λ) is a Ri-reversible linear

operator. Therefore, its spectrum is symmetric with respect to zero (in the complex

plane) which yields that such fixed points generically occur in one-parameter families of

reversible vector fields, see for instance [14].

In order to study the local bifurcation we first distinguish the involutions Ri. For

this we denote the centre-subspace of D1f(0, 0) by Xc
λ=0 and observe that this space is

invariant under Ri, i = 1, 2. We want to study the situation when the involutions act

differently (and non-trivially) on Xc
λ=0 and consequently assume that

(R2) Xc
λ=0 6⊂ Fix (±Ri) for i = 1, 2, and Xc

λ=0 ∩ Fix (S) = {0}.
For the description of the local bifurcation of the fixed point 0 we can now apply

centre-manifold theory and perform a reduction of the local problem to a family of

2-dimensional reversible vector fields. For this purpose, let us consider the extended

system

ẋ = f(x, λ)

λ̇ = 0
(5)

which has a 3-dimensional local centre manifold W c
loc at the fixed point (0, 0). This

manifold is foliated into 2-dimensional invariant slices {λ = const.} which we will

denote by W c
loc,λ. Now, the centre-manifold-theorem [19, 8] shows that all small bounded

solutions of (5) are contained in W c
loc which means that for (2) we can follow the evolution

of small bifurcating solutions within the 2-dimensional slices W c
loc,λ. Similar we define

W
cs(cu)
loc,λ , W

s(u)
loc,λ as slices of the local centre-(un)stable W

cs(cu)
loc and (un)stable manifold

W
s(u)
loc of (0, 0) in (5). Dropping the loc-index we will later denote the globalized versions

of these manifolds. By abuse of language we will, for instance, also term the slices W cs
λ

as a centre-stable manifold.

Note that centre-stable, centre-unstable and centre manifolds are not unique, in

general. The next lemma shows that they can be chosen, such that the symmetries of

(2) are preserved.

Lemma 2.1. The manifolds W cs
loc,λ, W cu

loc,λ can be chosen such that W cs
loc,λ = RiW

cu
loc,λ.

Proof. We consider (5) which is easily seen to possess the reversing symmetry group

G := {I, R1, R2, S} where

Ri :=

(
Ri 0

0 1

)
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and S = R1R2. The key argument of the proof is that we can choose W
cs(cu)
loc such

that RiW
cs
loc = W cu

loc. In fact, this is a standard result for systems that are reversible

with respect to one involution, [10] or for systems symmetric with respect to a compact

symmetry group, [4]. The corresponding proofs can easily be generalized to the case

of a compact reversing symmetry group. And then the symmetry properties of the

corresponding slices W
cs(cu)
loc,λ are apparent.

For later purposes we will further simplify equation (2) around 0. Let X cs(cu) denote

the centre-stable (centre-unstable) subspace of the linearisation at (0,0) in (5). We can

then assume that

W
cs(cu)
loc ⊂ X cs(cu).

In fact, there exists a transformation T which pushes the manifolds into their respective

subspaces and moreover T can be chosen such that the symmetries of (5) are preserved,

since G is a compact reversing symmetry group; see for instance [11] for a computation

of T. Now setting W c
loc := W cs

loc ∩ W cu
loc we obtain a ‘flat’ centre manifold for (5) and

by Lemma 2.1 we have RiW
c
loc = W c

loc for i = 1, 2. Finally, for the invariant slices we

conclude that

W
cs(cu)
loc,λ ⊂ X

cs(cu)
λ , (6)

where X
cs(cu)
λ denote the corresponding slices of the linear spaces Xcs(cu), and moreover

that RiW
c
loc,λ = W c

loc,λ for i = 1, 2.

Therefore the vector field in W c
loc,λ is also reversible with respect to two distinct

involutions. Let us denote the corresponding system by

ẏ = g(y, λ). (7)

Assumption (FP1) yields

g(0, 0) = 0, D1g(0, 0) =

(
0 1

0 0

)
,

and in suitably chosen coordinates we find the following normal form for the

corresponding involutions Ri

R1 : y := (y1, y2) 7→ (y1,−y2), R2 : (y1, y2) 7→ (−y1, y2).

(Note that by slight abuse of notation we will use the same symbols for objects in W c
loc,λ

and in the full phase space.)

The bifurcation of the fixed point x = 0 can be studied using a normal form of the

vector field. More precisely, due to results by Dumortier [7] bifurcations of fixed points

in planar systems can be studied in polynomial systems, that is fixed points of finite

codimension in planar systems are finitely determined. For polynomial systems one can

then perform a transformation into some normal form which can be chosen such that
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λ < 0 λ = 0 λ > 0

0 0
η R2η0

Figure 3. Phase portraits for the reversible pitchfork bifurcation I: The eye case with
normal form (9).

the symmetries of the system are preserved. In our case this normal form is given in

[14, 15] by

ẏ1 = y2

ẏ2 =
∑

k odd

ak(λ)yk
1 .

(8)

Note that the normal form (8) for the reversible system (7) is also Hamiltonian.

By (FP1) we have a1(0) = 0 in (8) and we will consider a generic bifurcation by

demanding

(FP2) a3(0) 6= 0.

Depending on the sign of a3(0) we are then led to two unfoldings of the corresponding

singular systems. If a3(0) > 0 we obtain

ẏ1 = y2

ẏ2 = −λy1 + y3
1.

(9)

Note that we have neglected terms of order larger than three in (9). These terms do

not influence the qualitative local behaviour of the systems since (9) describes a versal

unfolding of the singularity, see again [14].

The (Hamiltonian) system (9) is easily analysed and gives the corresponding phase

portraits in Figure 3. Here we find the situation that was encountered for the illustrating

example (1). For λ > 0 there exist two additional fixed points η, R2η which are

saddles while 0 has turned from a real saddle into a centre. Moreover, we find a (small)

symmetric heteroclinic cycle which connects η, R2η. Because of the shape of this cycle

we will refer to this bifurcation scenario as the eye case.

If a3(0) < 0 a versal unfolding is given by

ẏ1 = y2

ẏ2 = λy1 − y3
1.

(10)

The phase portrait can be found in Figure 4. For λ > 0 the additional fixed points

η, R2η are centres in this case and the fixed point at 0 has become a saddle which is

connected to itself by two homoclinic orbits. Therefore we will name this scenario the

figure-eight case. (Note that the different sign in front of the λ-term was only chosen to

find a similar behaviour for the bifurcating fixed points compared to (9).)
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0 0

λ = 0 λ > 0λ < 0

0 R2ηη

Figure 4. Phase portraits for the reversible pitchfork bifurcation II: The figure-eight
case with normal form (10).

Let us take another look at the symmetries of (2). It is important to note that the

local bifurcation scenarios (9) and (10) imply the existence of a hyperbolic fixed point

0 ∈ Fix (R1) ∩ Fix (R2) for λ < 0 and λ > 0, respectively. Therefore we have a splitting

R2n+2 = Fix (Ri)⊕ Fix (−Ri), i = 1, 2

with dim(Fix (Ri)) = dim(Fix (−Ri)) = n + 1, see [21]. Similar conclusions can be

drawn for the system reduced to Fix (S) wherefore we conclude that this space must be

even-dimensional.

Remark. We see that the parameter λ was chosen to control the local bifurcation of

the fixed point 0. Since, however, we are interested in the bifurcation of a homoclinic

orbit one would expect at a first sight that this requires additional parameters. But in

the next section we will assume sufficient transversality conditions for the homoclinic

orbit which ensure our problem to be of codimension one.

2.2. Assumptions about the homoclinic orbit

Let us now describe the homoclinic orbit which will be of concern in the following.

(H1) For λ = 0 equation (2) possesses a solution γ(·) homoclinic to the origin, i.e.

limt→±∞ γ(t) = 0. Moreover, the corresponding orbit Γ := {γ(t) : t ∈ R} is

symmetric with respect to both R1 and R2.

It is well known, see [21], that a homoclinic orbit is Ri-symmetric if and only if

it intersects the fixed space Fix (Ri) := {x : Rix = x} at a unique intersection point,

say γ(0). Therefore, if we choose γ(0) ∈ Fix (R1), then R2γ(0) ∈ Fix (R1) by (4) and

thus we have γ(0) ∈ Fix (R2). This implies γ(0) ∈ Fix (S) and the invariance of Fix (S)

shows

Γ ⊂ Fix (S).

From (R2) we can immediately conclude that the orbit Γ is a global object which lies in

the intersection of W s
λ=0 and W u

λ=0. Thus, it does not approach the origin at the lowest

possible speed and generically such a situation would result in a reversible orbit-flip

bifurcation, see [17]. Here, however, this behaviour is forced by the symmetries of Γ
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and the forthcoming analysis will prove that no orbit-flip bifurcation occurs. Finally,

Γ ⊂ Fix (S) trivially shows that Fix (S) 6= {0} and therefore dim(Fix (S)) ≥ 2.

Let us impose a transversality condition upon the homoclinic orbit Γ. In order

to consider a generic situation we will assume that at λ = 0 the stable manifold of

0 intersects the centre-unstable manifold as cleanly as possible. More precisely, for

λ = 0 we denote the tangent space of the (un)-stable manifold of 0 at the point γ(0) by

Tγ(0)W
s(u)
λ=0 and demand

(H2) dim(Tγ(0)W
s
λ=0 ∩ Tγ(0)W

cu
λ=0) = 1.

We note that this assumption is automatically fulfilled in R4, since in this case

dim W s
λ=0 = 1.

Assumption (H2) has important consequences for the dynamics near Γ. Let us

first consider the situation in the invariant subspace Fix (S). Here the fixed point

at the origin is hyperbolic and moreover, the trace of the centre-unstable manifold

W cu
λ=0 is the unstable manifold W u

S of this fixed point. This immediately follows from

Fix (S) ∩W c
loc,λ = {0}, because of (R2). Thus, under (H2) the intersection of W u

S and

W s
S along Γ only contains the vector field direction, i.e. the orbit is non-degenerate

within Fix (S). As a consequence, we find that the intersection of W u
S and Fix (RS) is

transverse, see Lemma 4 in [21]. (Recall that RS is the restriction of the Ri to Fix (S).)

This point will be of importance in the proof of Lemma 2.2 below.

In the next section we will determine one-homoclinic orbits to W c
loc,λ by investigating

the intersection of W cs
λ and W cu

λ . Related studies in [11] reveal that the results crucially

depend on the relative position of the tangent spaces of the centre-(un)stable manifold

and the fixed spaces of the involutions. Due to the symmetries of our problem we can

determine this position (see Lemmas 2.2 and 3.7). As a first result in this context we

obtain

Lemma 2.2. Under the assumptions above the intersection of W cs
λ=0 and W cu

λ=0 is non-

transverse with

dim
(
Tγ(0)W

cs
λ=0 ∩ Tγ(0)W

cu
λ=0

)
= 3.

Proof. First observe that it suffices to prove the non-transversality of the intersection

of the manifolds. The second assertion is then an immediate consequence of (H2) and

of the dimension of W
cs(cu)
λ=0 .

So, seeking a contradiction let us assume that the intersection of W cs(cu) is

transverse and let us introduce a space Y c by setting

span{f(γ(0), 0)} ⊕ Y c := Tγ(0)W
cs
λ=0 ∩ Tγ(0)W

cu
λ=0,

(all appearing decompositions are assumed to be orthogonal with respect to the Ri-

invariant inner product). Since dim W
cs(cu)
λ=0 = n + 2 we have dim Y c = 1. Moreover,

again by counting dimensions we see that

dim
(
Tγ(0)W

cs
λ=0 ∩ Fix (Ri)

)
= 1,
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for i = 1, 2. By reversibility components of Tγ(0)W
cs
λ which are contained in Fix (Ri)

also belong to W cu
λ , and therefore Y c ⊂ Fix (R1) ∩ Fix (R2), i.e. we have Y c ⊂ Fix (S).

We will show that this is impossible because of (H2). For this introduce Ỹ cs by letting

Tγ(0)W
cs
λ=0 = span{f(γ(0), 0)} ⊕ Y c ⊕ Ỹ cs.

An important observation is that

R1Ỹ
cs = R2Ỹ

cs. (11)

In fact, since the spaces Tγ(0)W
cs
λ=0 and span{f(γ(0), 0)}⊕Y c are invariant under S this

also applies to Ỹ cs, i.e. we have SỸ cs = Ỹ cs. In particular, R1R2Ỹ
cs = R1R1Ỹ

cs, and

this yields (11). So we can similarly decompose

Tγ(0)W
cu
λ=0 = span{f(γ(0), 0)} ⊕ Y c ⊕ Ỹ cu,

with Ỹ cu := RiỸ
cs.

We will represent W
cs(cu)
λ=0 as graphs of functions

hcs(cu) : span{f(γ(0), 0)} ⊕ Y c ⊕ Ỹ cs(cu) → Ỹ cu(cs),

with Dhcs(cu)(0) = 0. Choosing (yc, h
cu(yc)) ∈ W cu with yc ∈ Y c ⊂ Fix (S) we have

R1(yc, h
cu(yc)) ∈ W cs, R2(yc, h

cu(yc)) ∈ W cs

and thus R1h
cu(yc) = R2h

cu(yc), wherefore (yc, h
cu(yc)) ∈ Fix (S).

Thus, we can again consider the reduced system within Fix (S). We recall that

this system is RS-reversible, and as above we denote the unstable manifold of the

(hyperbolic) fixed point 0 by W u
S . Then W u

S = W cu
λ=0 ∩ Fix (S), and a consequence

of our considerations is that W u
S intersects Fix (RS) non-transversally. Indeed, letting

dim Fix (S) = 2k (recall that because of reversibility Fix (S) is even-dimensional) we

have

dim Tγ(0)W
u
S = dim FixRS = k,

and since yc ∈ Fix (R1) ∩ Fix (R2) the above considerations yield

dim
(
Tγ(0)W

u
S ∩ FixRS

) ≥ 1.

But as it has already been discussed before, assumption (H2) implies a transverse

intersection of W u
S and Fix (RS). So we derive the desired contradiction.

3. Detection of one-homoclinic orbits to the centre manifold

The goal of our analysis is the description of bifurcating homoclinic orbits to the centre-

manifolds W c
loc,λ introduced in the last section. For this we employ Lin’s method, [16, 21].

The original version of this method allows to study the dynamics near orbits connecting

hyperbolic fixed points. Since we deal here with a homoclinic orbit to a degenerate

fixed point we use a generalization from [11]. Although our procedure runs completely

along the same lines as in [11] we will include some technical details for the sake of

self-containment of the present paper. We remark again that we concentrate on the
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bifurcation of one-homoclinic orbits. This corresponds to the ‘first step’ of the original

version of Lin’s method. Therefore, the spirit of our analysis will also be similar to [20].

We first remind the reader that we have chosen γ(0) ⊂ Fix (R1)∩Fix (R2). At this

point we will introduce a cross-section Σ to Γ by decomposing

R2n+2 = span{f(γ(0), 0)} ⊕ Y s ⊕ Y u ⊕ Z

with span{f(γ(0), 0)} ⊕ Y s(u) = Tγ(0)W
s(u) and setting

Σ := γ(0) + {Y s ⊕ Y u ⊕ Z}.
Again, we stress the fact that this decomposition is assumed to be orthogonal with

respect to an Ri-invariant inner product. Note that Z is complementary to the sum of

the tangent spaces of the stable and unstable manifolds of 0 and therefore (H2) implies

dim Z = 3. Using Lin’s method we will eventually detect one-homoclinic orbits by

solving a bifurcation equation in Z.

Let us discuss how the symmetries of (2) are reflected in this decomposition. Recall

that dim(Fix (Ri)) = dim(Fix (−Ri)) = n + 1. Now, using RiW
s = W u, and therefore

RiY
s = Y u for i = 1, 2 we obtain the equivalent of Lemma 2.4 and Lemma 2.5 in [11].

Lemma 3.1. The space Y s⊕Y u contains (n−1)-dimensional subspaces of both Fix (Ri)

and Fix (−Ri) for each i = 1, 2. The space Z contains a two-dimensional subspace Yi of

Fix (Ri) and a one-dimensional subspace of Fix (−Ri) for each i = 1, 2.

Even more so, we have Y1 6= Y2, because assuming Y1 = Y2 we can conclude

Z ⊂ Fix (S). However, within the invariant subspace Fix (S) assumption (H2) implies

that Γ is a non-degenerate orbit homoclinic to the hyperbolic fixed point 0. Since Z

is complementary to the sum of the tangent spaces of the corresponding stable and

unstable manifold we must have dim Z = 1 in contradiction to the above.

An immediate consequence of this observation is the next lemma

Lemma 3.2. For Z there exists a decomposition into one-dimensional subspaces Xi

Z = X1 ⊕X2 ⊕X3, (12)

where X1 ⊂ Fix (R1)∩Fix (−R2), X2 ⊂ Fix (−R1)∩Fix (R2), X3 ⊂ Fix (R1)∩Fix (R2).

Proof. We first consider the situation in Σ ∩ Fix (S). We recall again, that here the

one-dimensional space Z ∩ Fix (S) is complementary to the sum of the tangent spaces

of the stable and unstable manifolds of 0 and since Γ is non-degenerate in Fix (S) we

know from [21] that

(Z ∩ Fix (S)) ⊂ (Fix (R1) ∩ Fix (R2)),

which shows the existence of X3.

Now let X1 := Z ∩Fix (−R2). Then by Lemma 3.1 it holds dim X1 = 1. Moreover,

by (4) we have R1X1 ⊂ X1 and thus, either X1 ⊂ Fix (R1) or X1 ⊂ Fix (−R1); and the

second possibility is excluded because it would imply X1 ⊂ Fix (S) in contradiction to

dim Z ∩ Fix (S) = 1 and X1 ∩ X3 = {0}. In a similar manner we obtain the assertion

for X2.
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In a first step of Lin’s method we will look for one-homoclinic orbits to the origin.

In order to cope with non-hyperbolicity we will restrict to orbits approaching 0 with a

certain exponential rate.

3.1. Homoclinic orbits to the origin

Following Lin’s method for hyperbolic fixed points we would look for solutions γ± of

(2) defined on R± which start in Σ with a difference lying in a certain space and which

approach 0 for t → ±∞. Since 0 is a non-hyperbolic fixed point in our case we will

restrict to exponentially decaying solutions. (A geometric explanation for this is given

in the remark on page 16.) So, let us choose α such that 0 < α < µ (see (FP1) for the

definition of µ) and look for solutions γ± that fulfill

(Pγ) (i) The orbits of γ± are near Γ

(ii) γ+(0), γ−(0) ∈ Σ

(iii) sup {e±αt||γ±(t)|| : t ∈ R±} < ∞
(iv) γ+(0)− γ−(0) ∈ Z

Such solutions will be detected as perturbations of Γ for which we introduce functions

v± defined on R± by

γ±(t) = γ(t) + v±(t), t ∈ R±.

We will formulate an equivalent problem to (Pγ) for v±. First, the functions have

to solve the equation

v̇ = D1f(γ(t), 0)v + h(t, v, λ) (13)

where h(t, v, λ) = f(γ(t) + v, λ) − f(γ(t), 0) − D1f(γ(t), 0)v. In order to satisfy the

exponential rate for γ± we introduce spaces

V +
α := {v ∈ C0([0,∞),R2n+2) : sup

t≥0
eαt||v(t)|| < ∞}

V −
α := {v ∈ C0((−∞, 0],R2n+2) : sup

t≤0
e−αt||v(t)|| < ∞}.

The adopted version of (Pγ) then reads

(Pv) (i) ||v±(t)|| is small for all t ∈ R±
(ii) v+(0), v−(0) ∈ Y s ⊕ Y u ⊕ Z

(iii) v+ ∈ V +
α , v− ∈ V −

α

(iv) v+(0)− v−(0) ∈ Z

In order to find solutions of (13) that fulfill (Pv) we use the fact that the variational

equation along the homoclinic orbit Γ

v̇ = D1f(γ(t), 0)v (14)
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possesses exponential trichotomies on R±, see [11]. This means, there exist projections

P±
u (t), P±

s (t), P±
c (t) such that id = P±

u (t) + P±
s (t) + P±

c (t) ∀t ∈ R± and

Φ(t, s)P±
i (s) = P±

i (t)Φ(t, s), i = u, s, c,

where Φ(·, ·) denotes the transition matrix of (14). Moreover, for t ≥ s ≥ 0 and for all

αc with µ > α > αc > 0 we have

||Φ(t, s)P+
s (s)|| ≤ Ke−α(t−s), ||Φ(s, t)P+

u (t)|| ≤ Ke−α(t−s),

||Φ(t, s)P+
c (s)|| ≤ Keαc(t−s), ||Φ(s, t)P+

c (t)|| ≤ Keαc(t−s).

Using reversibility one can define P−
i (t) such that similar relations hold on R−. Of

importance for us is that

im P+
s (t) = Tγ(t)W

s
λ=0, im P−

u (t) = Tγ(t)W
u
λ=0, (15)

and that we can choose

ker P+
s (0) = Z ⊕ Y u, ker P−

u (0) = Z ⊕ Y s.

These results are proved in [9], see also [11].

Solutions of (13) satisfy the following fixed point problem

v+(t) = Φ(t, 0)η+ +
∫ t

0
Φ(t, s)P+

s (s)h(s, v+, λ)ds

− ∫∞
t

Φ(t, s)(id− P+
s (s))h(s, v+, λ)ds

v−(t) = Φ(t, 0)η− − ∫ 0

t
Φ(t, s)P−

u (s)h(s, v−, λ)ds

+
∫ t

−∞ Φ(t, s)(id− P−
u (s))h(s, v−, λ)ds,

(16)

where η+ ∈ Tγ(0)W
s
λ=0, η− ∈ Tγ(0)W

u
λ=0. Expanding f in the definition of h we obtain

the estimate

||h(t, v, λ)|| ≤ c1||v||2 + c2||λ||(||γ(t)||+ ||v||).
Thus, v±,∈ V ±

α implies h(·, v±(·), λ) ∈ V ±
α . Combining this with the exponential

trichotomy we see that the right-hand side in (16) is a map

Tγ(0)W
s(u)(0)× R2 × V ±

α → V ±
α .

Therefore the exponentially bounded solution of (13) are exactly the solutions of (16),

considered in V ±
α . By the Implicit Function Theorem this problem can be solved

around (η±, v±, λ) = (0, 0, 0) for v± = v±(η±, λ). Now, regarding the requirements

on v±(η±, λ)(0) in (Pv) we decompose

v+(η+, λ)(0) = η+ + yu(η
+, λ) + z+(η+, λ)

v−(η−, λ)(0) = η− + ys(η
−, λ) + z−(η−, λ),

with ys(u) ∈ Y s(u), z± ∈ Z. By (Pv) (iv) and (15) we must have

η+ = ys(η
−, λ), η− = yu(η

+, λ),

which again can be solved for η± = η±(λ). We thus obtain in complete analogy to

Lemma 2.7 in [11]
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Lemma 3.3. For each λ sufficiently small there exists a unique pair of solutions

(γ+(λ), γ−(λ)) of problem (Pγ).

Remark. We see that the solution of (Pγ) is not affected by the change of dimension

of the stable (unstable) manifold of the fixed point 0 for λ 6= 0. This (rather surprising)

fact can be explained by the assumed exponential bound for the solutions, because for

parameter values where 0 is hyperbolic we look for solutions of (Pγ) that are contained

in the strong stable (unstable) manifold of 0. Therefore the change in the dimension of

the whole stable (unstable) manifolds is not important.

We can find homoclinic orbits approaching the origin with some minimal

exponential rate by solving the bifurcation equation

ξ∞(λ) := γ+(λ)(0)− γ−(λ)(0) = 0.

The uniqueness of the pair (γ+(λ), γ−(λ)) then immediately implies

Riγ
+(λ)(0) = γ−(λ)(0), i = 1, 2.

Therefore ξ∞(λ) ∈ Fix (−Ri) for i = 1, 2 and since in Z

(Fix (−R1) ∩ Fix (−R2)) = {0}
we conclude

Theorem 3.4. For all λ sufficiently small there exists a homoclinic orbit Γ(λ) to 0

which is symmetric with respect to both involutions.

Remark.

a) The geometric reason for this result is very clear. We have already established the

fact that within Fix (S) the orbit Γ is non-degenerate. An application of Lemma

4 from [21] as in the proof of Lemma 2.2 then shows that the unstable manifold

W u
S of 0 intersects Fix (RS) transversally. So there is no chance for destroying this

homoclinic connection.
b) There may exist additional homoclinic orbits to 0 which approach the fixed point

with a smaller exponential rate and in fact such a smaller rate would be generic.

Only the symmetries of (2) prevent Γ from switching to the lowest exponential rate

available (reversible orbit-flip bifurcation). We will deal with the existence of such

orbits in the next part. 3

3.2. Homoclinic orbits to W c
loc,λ

In the second step of Lin’s method we will determine one-homoclinic orbits to W c
loc,λ.

This time the loss of hyperbolicity near the fixed point is overcome by looking for

solutions of (2) on a finite time-interval. Choosing a ‘time’ T we seek solutions

x+ : [0, T ] → R2n+2 and x− : [−T, 0] → R2n+2 that satisfy
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(Px) (i) The orbits of x± are near Γ

(ii) x+(0), x−(0) ∈ Σ

(iii) x+(0) ∈ W cs
λ , x−(0) ∈ W cu

λ

(iv) x+(0)− x−(0) ∈ Z.

Provided T is chosen large enough we can formulate an equivalent demand to (Px) (iii)

by requiring

(P̃x) (iii) x+(T ) ∈ W cs
loc,λ, x

−(T ) ∈ W cu
loc,λ

This time x± will be described as perturbations of γ±(λ)

x±(t) = γ±(λ)(t) + v±(t);

again giving a corresponding problem for v+ : [0, T ] → R2n+2, v−[−T, 0] → R2n+2. So

we will determine solutions of

v̇ = D1f(γ±(λ)(t), λ)v + h(t, v, λ) (17)

with

h(t, v, λ) = f(γ±(λ)(t) + v, λ)− f(γ±(λ)(t), λ)−D1f(γ±(λ)(t), λ)v

and we will require the solutions of (17) to satisfy

(Pc
v) (i) ||v±(t)|| is small for t ∈ [−T, 0], t ∈ [0, T ], respectively

(ii) v+(0), v−(0) ∈ Y s ⊕ Y u ⊕ Z

(iii) v+(T ) ∈ W cs
loc,λ, v

−(−T ) ∈ W cu
loc,λ

(iv) v+(0)− v−(0) ∈ Z

Note that (Pc
v) (iii) uses the linear structure in W

cs(cu)
loc,λ which is guaranteed in (6) for T

sufficiently large.

The search for solutions of this problem again relies on exponential trichotomies of

the equations

v̇ = D1f(γ±(λ)(t), λ)v.

Similar to Section 3.1 we get solutions

v± = v±(η±, λ), (18)

where this time

η+ ∈ (Y s ⊕ Y u ⊕ Z) ∩ Tγ+(λ)(0)W
cs
λ , η− ∈ (Y s ⊕ Y u ⊕ Z) ∩ Tγ−(λ)(0)W

cu
λ

according to (Pv)(iii) - again we refer to [11] for a detailed exposition.

In order to manage (Pv)(ii), (iv) we involve the space Y c introduced as in the proof

of Lemma 2.2 by

span{f(γ(0), 0)} ⊕ Y c = Tγ(0)W
cs
λ=0 ∩ Tγ(0)W

cu
λ=0
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and use the refined decomposition

R2n+2 = span{f(γ(0), 0)} ⊕ Y s ⊕ Y u ⊕ Ẑ ⊕ Y c,

with Ẑ⊕Y c = Z. Because of Lemma 2.2 we have dim Y c = 2, and we find that RiẐ = Ẑ.

We obtain a representation of Σ ∩W
cs(cu)
λ as the graph of some function

hcs(cu)(·, λ) : Y c ⊕ Y s(u) → Y u(s) ⊕ Ẑ,

which yields

η+ = y+
c + ys + D1h

cs(0, λ)(y+
c , ys)

η− = y−c + yu + D1h
cu(0, λ)(y−c , yu)

with some y±c ∈ Y c, ys(u) ∈ Y s(u). Substituting η+ with this relation in (18) we obtain

v+ = v+(y+
c , ys, λ), v− = v−(y−c , yu, λ).

In a similar way as in the preceding subsection we decompose v± at t = 0 to find

v+(y+
c , ys, λ)(0) = y+

c + ys + y+
u (y+

c , ys, λ) + z+(y+
c , ys, λ)

v−(y−c , yu, λ)(0) = y−c + yu + y−s (y−c , yu, λ) + z−(y−c , yu, λ).
(19)

Again, (Pv)(iv) implies

ys = y−s (y−c , yu, λ), yu = y+
u (y+

c , ys, λ), (20)

and this system of equations can be solved for ys = ys(y
+
c , y−c , λ), yu = yu(y

+
c , y−c , λ).

Putting things together we obtain

Lemma 3.5. For sufficiently small λ and for sufficiently small y+
c , y−c ∈ Y c there exists

a unique pair (x+(y+
c , y−c , λ), x−(y+

c , y−c , λ)) of solutions of problem (Px).

For the detection of one-homoclinic orbits to W c
loc,λ it remains to solve

ξ(y+
c , y−c , λ) := x+(y+

c , y−c , λ)(0)− x−(y+
c , y−c , λ)(0) = 0, (21)

which can be written

ξ(y+
c , y−c , λ) = (y+

c − y−c ) + (z+(y+
c , ys(y

+
c , y−c , λ), λ)

− z−(y−c , yu(y
+
c , y−c , λ), λ)) .

(22)

Here we have used the representation (19) and the fact that because of Theorem 3.4 we

have

γ+(λ)(0)− γ−(λ)(0) = 0, ∀λ.

In order to solve (21) we must have y+
c = y−c =: yc since these are the Y c-components

of ξ. Introducing ξ̃(yc, λ) := ξ(yc, yc, λ) it therefore suffices to consider the bifurcation

equation

ξ̃(yc, λ) = 0. (23)

We will view ξ̃ as a map ξ̃ : Y c × R→ Ẑ.

Our solution of (23) will to a large extend invoke the symmetries of (2). So we have

to consider their consequences for the equation. Let us explore this point before we go

on with the solution of (23).
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We return to the presentation (18): v+ = v+(η+, λ), v− = v−(η−, λ). Due to the

reversibility of the fixed point equation similar to (16) it holds that Riv
±(η±, λ)(t) =

v∓(η∓, λ)(−t) (as usual i = 1, 2). An immediate consequence for (20) is

Riy
+
u (y+

c , ys, λ) = y−s (Riy
+
c , Riys, λ),

Riz
+(y+

c , ys, λ) = z−(Riy
+
c , Riys, λ).

(24)

For the solutions of (20) we thus obtain

Riyu(y
+
c , y−c , λ) = ys(Riy

−
c , Riy

+
c , λ). (25)

These properties will be used to detect symmetries in (23) in Section 3.2.1.

The last result of this part shows that we have a one-to-one correspondence between

solutions (yc, λ) of (23) with yc ∈ Fix (Ri) and Ri-symmetric one-homoclinic orbits near

the primary one Γ.

Lemma 3.6. Suppose that the pair (yc, λ) solves the bifurcation equation (23) and let

x(yc, λ)(·) denote the corresponding solution of (2) with orbit Ξ(yc, λ). Then Ξ(yc, λ) is

Ri-symmetric if and only if yc ∈ Fix (Ri).

Proof. For the proof we note first that x(yc, λ)(0) ∈ Fix (Ri) is equivalent to

Riγ
+(λ)(0) + Riv

+(yc, ys(yc, yc, λ), λ)(0)

= γ−(λ)(0) + v−(yc, yu(yc, yc, λ), λ)(0).

Now suppose yc ∈ Fix (Ri). Since Riγ
+(λ)(0) = γ−(λ)(0) by Theorem 3.4 we only have

to consider the v±-part. Here the above symmetries provide

Riv
+(yc, ys(yc, yc, λ), λ)(0) = v−(Riyc, Riys(yc, yc, λ), λ)(0)

= v−(Riyc, yu(Riyc, Riyc, λ), λ)(0),

and from yc ∈ Fix (Ri) and the equivalence above we obtain x(yc, λ)(0) ∈ Fix (Ri) and

therefore the symmetry of the orbit.

On the other hand v+(yc, ys(yc, yc, λ), λ)(0) = v−(yc, yu(yc, yc, λ), λ)(0) and

therefore the only Y c-component in x(yc, λ)(0) is yc because of (19). Since the symmetry

of Ξ(yc, λ) is equivalent to x(yc, λ)(0) ∈ Fix (Ri) this requires yc ∈ Fix (Ri).

3.2.1. Geometry in Σ Before we solve the bifurcation equation (23) we will return

to a discussion of geometric properties of the primary homoclinic orbit Γ. In Lemma

2.2 we have already shown that Γ results from a non-transverse intersection of W cs
λ=0

and W cu
λ=0. Now we investigate the relative position of these manifolds with respect to

Fix (Ri). We will follow the convention in [11] and will call Γ elementary provided that

W cs
λ=0 intersects Fix (Ri) transversally for some i = 1, 2. In the other case when this

intersection is non-transverse the orbit will be called non-elementary. So this is nothing

but a suitably adopted version of the terms introduced in [21] for symmetric homoclinic

orbits to hyperbolic fixed points. (Note however, that in general elementary homoclinic

orbits in this sense will not survive perturbations in contrast to the hyperbolic case.)

We will show that due to the symmetries of the system Γ must be elementary.
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Lemma 3.7. Consider (2) and assume (R1), (R2), (FP1), (FP2), (H1), and (H2).

Then it holds W cs
λ=0 t Fix (Ri) at γ(0) where i = 1, 2.

Proof. The proof is by contradiction, so let us assume that for instance W cs
λ=0 intersects

Fix (R1) non-transversally, which implies

dim
(
Tγ(0)W

cs
λ=0 ∩ Fix (R1)

) ≥ 2.

Because of (H2) we therefore have Y c = Tγ(0)W
cs
λ=0 ∩ Fix (R1) and Ẑ ⊂ Fix (−R1) ∩

Fix (R2). Applying the decomposition (12) we thus have Y c = X1 ⊕ X3 and Ẑ = X2.

The idea of the proof is to show that for each yc ∈ X3 we have ξ̃(yc, 0) = 0. Since

(yc, 0) ∈ Fix (S) this would amount to a family of homoclinic orbits to 0 in Fix (S) and

as in the proof of Lemma 2.2 we derive a contradiction to the non-degeneracy hypothesis

(H2).

We shall show first that

ξ̃(yc, 0) = −ξ̃(R2yc, 0). (26)

The simple proof of this assertion uses the representation (22). We find that

ξ(yc, yc, 0) = z+(yc, ys(yc, yc, 0), 0)− z−(yc, yu(yc, yc, 0), 0)

and because of (24) we have

ξ(R2yc, R2yc, 0) = z+(R2yc, R2yu(yc, yc, 0), 0)− z−(R2yc, R2ys(yc, yc, 0), 0)

= z−(yc, yu(yc, yc, 0), 0)− z+(yc, ys(yc, yc, 0), 0),

since z± ∈ Fix (R2). This proves (26).

From the symmetry (26) we immediately deduce that for yc ∈ Fix (R2) we have

ξ̃(yc, 0) = 0, i.e. we deduce that ξ̃|X3×{0} ≡ 0. Then the application of Lemma 3.6

gives the R1- and R2-symmetry of the corresponding orbits, i.e. for the corresponding

solutions x(yc, 0)(·) we have x(yc, 0)(0) ∈ Fix (R1) ∩ Fix (R2) ⊂ Fix (S). By invariance

of Fix (S) it holds x(yc, 0)(t) ∈ Fix (S) ∀t ∈ R.

Hence, the above assumption implies the existence of a 1-parameter family of one-

homoclinic solutions in Fix (S) connecting W c
loc,λ=0 - and thus the fixed point 0 - to itself.

Assumption (H2), however, implies the non-degeneracy of Γ in Fix (S) which gives a

contradiction.

We recapitulate the result, namely that Tγ(0)W
cs
λ=0 t Fix (Ri), for i = 1, 2. By

transversality this relation persists for λ small and we conclude that

dim
(
Tγ(0)W

cs
λ ∩ Fix (Ri)

)
= 1 for i = 1, 2. (27)

In view of the decomposition (12) this results in Yc = X1 ⊕ X2 and Ẑ = X3. To

see this choose y ∈ Yc \ Fix (−R1). By Lemma 3.1 such y exists. Then we have for

Y := span(y + R1y) ⊂ Fix (R1) that R2Y ⊂ Y , and therefore we conclude that either

Y = X1 or Y = X3. The latter possibility can be ruled out since we would find that

in this case either Yc = X1 ⊕X3 or Yc = X2 ⊕X3 in contradiction to (27). We refer to

Figure 5 for an impression of the geometric relations in Z.



Reversible homoclinic pitchfork bifurcation 21

γ(0)

Y c

Fix (R2) ∩ Z

Fix (R1) ∩ Z

Ẑ

Figure 5. Position of the fixed spaces of the involutions in Z

For the solution of (23) we identify ξ̃ : X1⊕X2×R→ Ẑ with a map ξ̃λ : R×R→ R.

In a manner similar to the proof of Lemma 3.7 the symmetries of (2) yield in the present

situation

ξ̃λ(y1, y2) = −ξ̃λ(−y1, y2), ξ̃λ(y1, y2) = −ξ̃λ(y1,−y2);

note again that this is valid for all λ. In particular,

ξ̃λ(0, ·) ≡ 0 and ξ̃λ(·, 0) ≡ 0 (28)

for all λ. Thus, we can write

ξ̃λ(y1, y2) = y1y2 · rλ(y1, y2),

and in order to describe the solution set of (23) completely, we impose the following

non-degeneracy condition

(ND) rλ=0(0, 0) 6= 0.

This condition is equivalent to assuming D2ξ̃λ=0(0, 0) to be non-singular and it ensures

that the zero level set of ξ̃λ is given in (28). Again applying Lemma 3.6 we find for each

λ sufficiently small a curve of intersection points of W cs
λ and W cu

λ in Fix (R1) and one

in Fix (R2). Let us summarize this in the next

Theorem 3.8. Under the assumptions (R1), (R2), (FP1), (FP2), (H1), (H2), and

(ND) we find curves CΣ
1 and CΣ

2 in Σ such that for each point of CΣ
i the orbit through

this point is a Ri-symmetric one-homoclinic orbit to W c
loc,λ. The curves CΣ

1 , CΣ
2 intersect

in a unique point which corresponds to the homoclinic orbit to 0 provided by Theorem

3.4. There exist no other one-homoclinic orbits than those described above.

4. The bifurcation scenario

In the last section we have seen that for each λ sufficiently small the intersection

of W cs
λ and W cu

λ in Σ consists of two curves CΣ
1,2. To derive a complete description
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of the homoclinic bifurcation it remains to study the asymptotic behaviour of the

corresponding homoclinic orbits. For this we use the same technique as in [11] and

project the solution set of (23) along the stable fibres of W c
loc,λ onto this manifold. For

simplicity we will restrict to 4-dimensional problems in this section, i.e. we set n = 1 in

(2) since this allows a very convenient geometric arguing.

Let us introduce the method. Restricting to R4 we have dim W cs
λ = dim W cu

λ = 3

and we can think of W cs
λ as being foliated into 1-dimensional fibres, i.e. from each

x ∈ W c
loc,λ there originates a 1-dimensional manifold Mx,λ ⊂ W cs

λ , that is W cs
λ =

∪x∈W c
loc,λ

Mx,λ. In particular, M0,λ is nothing but the homoclinic orbit Γ(λ). We infer

that for λ sufficiently small there exists a neighbourhood U of 0 (independent of λ)

such that for each x ∈ U the fibre Mx,λ intersects Σ transversally which shows that the

projection along the fibre is injective. Moreover, this projection is smooth in both x

and λ, see [18].

Finally, the fibres enjoy a certain invariance property that is of fundamental

importance for the following discussion. Let φt(x) denote the solution of (2) with

φ0(x) = x, then we have

φt(Mx,λ) ⊂ Mφt(x),λ (29)

as long as φτ (x) ∈ W c
loc,λ ∀τ ∈ [0, t]. In particular each point in a fibre of a basis-point

which is part of a stable manifold of an orbit or fixed point will be transported to this

point under the flow.

For the discussion of one-homoclinic orbits to W c
loc,λ it suffices to consider the

projection of CΣ
1,2 at λ = 0 since we can infer the images for λ sufficiently small from this

by continuity. We see that the existence of one-homoclinic orbits does mainly depend

on the dynamics in W c
loc,λ and not on the behaviour in Σ. This, for instance, is contrary

to the situation that is analysed in [11].

Coming back to the problem, the above results immediately show that the images

C1,2 of CΣ
1,2 under the projection are curves which intersect only in 0. We impose a final

transversality condition concerning the projection.

(P) Ci t Fix (R1) in W c
loc,λ=0 for i = 1, 2.

Geometrically, we demand that CΣ
1,2 are projected on curves that are not tangent

to the fixed space of the involution R1. A further discussion of this assumption will

be postponed to Section 5 after the bifurcation results have been formulated. For the

moment (P) allows a complete classification of one-homoclinic orbits to W c
loc,λ. We will

treat each type of the local bifurcation separately.

4.1. The eye case - the reversible homoclinic pitchfork bifurcation

Let us redraw Figure 3 including the curves C1,2 of points x ∈ W c
loc,λ whose fibres intersect

Σ in points on one-homoclinic orbits to W c
loc,λ. We then obtain Figure 6.

We can now discuss which type of orbits we find. Let us start with λ ≤ 0. Note

first that (P) forbids intersection points of C1,2 with the stable and unstable manifolds
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λ < 0 λ = 0 λ > 0

R2ηη

0 0

0

C1 C1 C2 C2C2 C1

Figure 6. Dynamics in W c
loc,λ together with the curves C1,2 (dashed) needed for the

detection of one-homoclinic orbits I: The eye case

of 0 in W c
loc,λ others than the origin, since these manifolds become tangent to Fix (R1)

as λ → 0. Therefore the curves C1,2 only contain points whose orbits leave W c
loc,λ (apart

from 0). And hence, there only exists the one-homoclinic orbit to 0 whose existence has

been established in Theorem 3.4.

For λ > 0 we find a large variety of one-homoclinic orbits. Again intersection points

of Ci with bounded solutions in W c
loc,λ are of interest. First we observe from Figure

6 that each periodic orbit Γp in W c
loc,λ is intersected by each Ci two times. Using the

invariance property (29) of the fibre we see that every such intersection point corresponds

to a symmetric one-homoclinic orbit to the periodic orbit. First, (29) shows that the

corresponding solution that starts in Σ approaches Γp as t →∞. Moreover, considering

a point Γp∩Ci we know from the construction that this solution starts in Fix (Ri) which

immediately shows that for t → −∞ it approaches RiΓp = Γp.

Finally, we discuss the intersection points of Ci with the heteroclinic cycle. To these

points there correspond solutions in W cs
λ that approach the fixed points η, R2η as t →∞

by the invariance property (29). Moreover, the intersections of the cycle with C1 give

rise to R1-symmetric solutions which therefore approach R1η = η, R2η as t → −∞, i.e.

these solutions are homoclinic to the fixed points. Similarly, the intersection points of

the cycle with C2 show the existence of a (large) heteroclinic cycle near the primary

homoclinic orbit Γ. We hence obtain the next theorem.

Theorem 4.1 (One-homoclinic orbits in the eye case). Consider (2) under the

assumptions (R1), (R2), (FP1), (FP2), (H1), (H2), (ND), and (P) and assume

moreover that the normal form for the local bifurcation of the fixed point x = 0 is

given by (9). Then for each λ sufficiently small there exists a homoclinic orbit to the

origin which is symmetric with respect to both R1 and R2.

In addition for λ > 0 every periodic orbit in W c
loc,λ is connected to itself by two pairs

of R1-symmetric and R2-symmetric homoclinic orbits, respectively. Moreover, to η and

R2η there exists one R1-symmetric homoclinic orbit and these fixed points are connected

by a symmetric heteroclinic cycle.

Remark. We claim that for the example (1) this theorem also proves the occurrence of

the reversible homoclinic pitchfork bifurcation as introduced in Section 1.1. In fact, since
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λ = 0 λ > 0λ < 0

C1C1C1 C2 C2C2

η R2η

Figure 7. Dynamics in W c
loc,λ together with the curves C1,2 (dashed) needed for the

detection of one-homoclinic orbits II: The figure-eight case.

this is a 4-dimensional problem the assumptions of Section 2 can easily be checked or

they are even automatically fulfilled. Moreover, it is important that assumptions (ND)

and (P) were only imposed to exclude the existence of additional solutions homoclinic

to W c
loc,λ. Thus, they are not important for the existence of homoclinics solutions to the

fixed points ξ3,4 in this example.

We finally note that also the existence of the large heteroclinic cycle could be

numerically verified for the example (1), see [13].

4.2. The figure-eight case

The procedure for the second type of the local pitchfork bifurcation is completely

analogous to the one above. We start again by plotting the centre manifolds W c
loc,λ

together with the curves Ci in Figure 7. (Recall that the behaviour in Σ was completely

independent from the bifurcation of 0.)

We can analyse the intersection points of Ci with orbits in W c
loc,λ in a similar fashion.

So for λ ≤ 0 we see that each curve Ci intersects each periodic orbit surrounding the

centre 0 two times. Hence, there exist two Ri-symmetric homoclinic orbits to each

periodic orbit in W c
loc,λ.

The analysis for λ > 0 requires a closer look at the figure-eight in W c
loc,λ. It

is important that for λ → 0 the stable and unstable manifold of the saddle 0

(λ > 0) become tangent to Fix (R1). This is an immediate result of an analysis of

the corresponding (Hamiltonian) normal form system (9). So for λ sufficiently small

assumption (P) prevents intersections of the curves Ci with the region bounded by

the figure-eight. Therefore we only find intersections of Ci with the periodic orbits

surrounding all three fixed points.

Theorem 4.2 (One-homoclinic orbits in the figure-eight case). Consider (2) under

the assumptions (R1), (R2), (FP1), (FP2), (H1), (H2), (ND) and (P) and assume

moreover that the normal form for the local bifurcation of the fixed point x = 0 is given

by (9). Then for each λ sufficiently small exists a homoclinic orbit to the origin which

is symmetric with respect to both R1 and R2. No other one-homoclinic orbits to fixed

points exist.
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In addition for λ ≤ 0 every periodic orbit in W c
loc,λ is connected to itself by two

pairs of R1-symmetric and R2-symmetric homoclinic orbits, respectively. For λ > 0 we

find such two pairs of homoclinic orbits for the periodic orbits encircling all three fixed

points.

5. Discussion

In this paper we have studied bifurcations from an orbit homoclinic to a non-hyperbolic

fixed point that is supposed to undergo a reversible pitchfork bifurcation. Using Lin’s

method we have described the bifurcation of one-homoclinic orbits by considering the

intersection of centre-stable and centre-unstable manifolds W
cs(cu)
λ (as introduced in

Section 2.1) in some cross-section Σ. It is interesting to note that this intersection

is essentially determined by the symmetries of (2). In particular, the intersection

is independent of the concrete type of the local bifurcation we assume for the fixed

point. Nevertheless, the local bifurcation strongly influences the global bifurcation. This

influence has been made clear by a projection from Σ onto W c
loc,λ along stable fibres.

Here we have imposed a transversality condition (P) which shall now be considered more

closely. Let us for simplicity restrict the discussion to the figure-eight case.

Suppose that (P) is violated such that for instance C1 is tangent to Fix (R1) at

λ = 0. Then we would find that C1 intersects the figure-eight in W c
loc,λ for λ sufficiently

small. By the same arguments as in Section 4 the points of intersection correspond

to R1-symmetric homoclinic orbits to the origin. So in this situation we find another

version of a homoclinic pitchfork bifurcation. Here the two additional homoclinic orbits

are asymptotic to the same fixed point 0. One could treat this scenario as a codimension-

two bifurcation by letting λ := (λ1, λ2) ∈ R2 where λ1 is the original parameter in (2)

and controls the local bifurcation of 0, whereas λ2 controls how the curves CΣ
1,2 are

projected onto W c
loc,λ. Thus, λ2 has a very precise geometric meaning since it describes

the relations of the stable fibres of W c
loc,λ. It would, however, also be useful to associate

an analytical meaning to this parameter. We will not explore this point further here,

but we remark that the qualitative results can already be inferred from Figure 7 by

just thinking of C1,2 being rotated in W c
loc,λ. (In a similar manner problems of higher

codimension are created when assumption (ND) is violated. Since this assumption

concerns the relation in Σ one has to adopt (P) appropriately in this case.)

Another interesting project for further studies is a description of recurrent dynamics

near Γ. Let us turn to the eye case and provide some motivation. By a well known result

of Devaney [5], see also [21], symmetric non-degenerate homoclinic orbits in reversible

systems are accompanied by a family of symmetric periodic orbits with period tending

to infinity. As it has been observed before, assumption (H2) implies the non-degeneracy

of Γ in Fix (S). It therefore also ensures the existence of a family of periodic orbits in

Fix (S) near Γ. In the eye case we can also expect that the two homoclinic orbits to

η, R2η are non-degenerate because of their robust existence for λ > 0. This gives the

possibility of two further families of periodic orbits. Now, one could look for connecting
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orbits between these families of periodic orbits which may result in the existence of very

complicated dynamics near Γ.

Of particular relevance is the investigation of bifurcating n-homoclinic orbits to

the centre manifold. These orbits are also contained in the intersection of W cs
λ and

W cu
λ such that in principal our approach can be used to detect them. There are,

however, additional difficulties since these orbits have to pass the centre manifold. Thus,

the analysis requires a precise knowledge of the behaviour in a neighbourhood of this

manifold. No analytical results exist at the moment.

We finally remark that the methods used in this paper can also be adapted to

different bifurcation scenarios involving homoclinic orbits to non-hyperbolic fixed points.

Examples of such problems have been found in models from nonlinear optics or in the

theory of water waves. A discussion of several cases can be found in a joint paper with

A. R. Champneys, [24].
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