
Nonlinear thoughts about linear signal processing

Broomhead, D. S. and Huke, J. P. and Muldoon,
M. R. and Brown, A. G.

2002

MIMS EPrint: 2006.381

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


     

Nonlinear Thoughts about Linear Signal
Processing

D.S. Broomhead, J.P. Huke, M.R. Muldoon
University of Manchester Institute of Science and Technology

and

A.G. Brown
Defence Evaluation Research Agency

Abstract
Recent work on modelling digital channels using iterated function systems sug-
gests a general approach to the theory of signal processing in digital communi-
cations which uses so-called delay methods developed for deterministic nonlinear
timeseries analysis. Here we make the connection between this work and the
more conventional approach to digital communications by casting linear channel
models as iterated function systems and showing how the use of delay methods
gives a nice connection with the theory of observability in the control of linear
systems.

1 Introduction
The culture of signal processing is steeped in the mathematics of linear systems.
Linear models are used across the range of signal processing applications and
can be very effective. In contrast, the mathematics of nonlinear processes has
had comparatively little impact. Nonlinearity—it is often suggested—leads to
a confusion of special cases with no unifying theoretical picture. This is an
unfortunate state of affairs since it is easy to anticipate circumstances in which
nonlinearities unavoidably—by accident or design—play a significant role in the
transmission of information. Indeed, we might imagine that a better developed
theory of nonlinear signal processing might encourage the design of novel systems
capable of exploiting nonlinear phenomena.

The assumption of linearity permits the invocation of a well-developed math-
ematical framework and with it, the possibility of making generalisations about
signals: that they can be added together, for example, and that filtering sums of
signals is equivalent to summing the separately filtered signals. The disadvantage
is, of course, that these generalities may not be relevant. We would like, there-
fore, to develop an approach to signal processing which has a general utility but
which is based on less specialised assumptions 3; 4. Of course, something should
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be assumed, and in our approach—which focuses on digital signal processing—it
is the discreteness of the alphabet of input symbols which is exploited. Digi-
tal technology imposes discrete structures on continuous natural processes; by
understanding better the implications of this we hope to make progress.

The starting point of this work is the inclusion of a model of the signal source
within the model of the digital channel. As a result, a class of mathematical
objects known as iterated function systems (IFS) 7; 2 arises in a natural way.
Moreover it is possible, for these systems, to adapt methods for the analysis of
time series data which were first developed for deterministic, nonlinear dynamical
systems 1; 13; 10; 9; 11. This marriage of the theory of IFS with so-called delay
methods for time series analysis is at the heart of our approach to digital signal
processing.

In this paper we focus on establishing a connection with the usual theory
of linear digital channels. It would make a pleasing picture if our results were
to take a sensible form when restricted to the linear case. We shall show that
this is indeed the case and that linear digital channels fall naturally within the
ambit of the IFS-based theory. Actually, it is a peculiarity of the mathematical
arguments employed here that we shall need a special theorem to deal with the
particular case of linear channels. This will be the main result of the paper. Dur-
ing the discussion it will emerge that an IFS model of a digital linear channel
is not actually linear. We shall show, however, that there is an elegant theo-
retical foundation on which we can build quite simple—nonlinear—equalisation
algorithms.

2 State Space Models of Linear Filters
In the following we make a strong appeal to geometry to provide a picture of the
basic concepts. In this spirit it is helpful to cast linear channel models in the
language of state space 6.

A linear, mth order, all-pole filter subject to a sequence of inputs {bn} can
represented by the following system of non-homogeneous linear difference equa-
tions

xn+1 = Axn + bn+1 (2.1)

where the states, xn ∈ Rm, of the filter can be thought of as sequences of m
numbers specifying the contents of a tapped delay line, and the input vectors,
bn ∈ Rm, have the form bn = (bn, 0, . . . , 0)T . The matrix A—which specifies
the filter—has the form of a companion matrix

A =


a0 a1 . . . am−2 am−1

1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
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where the usual filter coefficients are given by the top row, aT . The structure of
A has the effect of shifting all the components of xn down one place (the mth
component is thereby lost) and replacing the first component with the linear
combination aT · xn.

The output of the filter is generated by making measurements corresponding
to a linear function v : Rm → R of the state of the filter. This is equivalent to
forming the scalar product of the state with a fixed vector vT , v(x) = vT ·x. The
sequence of observations {v(xn)} is then the output of a pole-zero filter given
the input sequence {bn}.

Let us now shift the viewpoint slightly. Our particular interest here is in
digital channels and so we can assert that the possible values taken by the inputs,
{bn}, are drawn from a finite alphabet (containing, say, p symbols). A different
interpretation of equation (2.1) is that the channel state evolves in one sampling
interval under the action of one of p different maps wb : Rm → Rm defined as
follows

wb(x) = Ax + b (2.2)

Assume, for simplicity, that the sequence of symbols input to the channel is
an independent, identically distributed random process. (This is a reasonable
initial assumption—efficiently coded data will appear random—but is not crucial
to what follows.) The channel state xn then evolves under a random iteration
procedure according to which one of the p maps is selected at random at each
time step and applied to the current state. Thus the nth state is obtained from
the initial state by composition of a random sequence of maps:

xn = wbn ◦wbn−1 ◦ · · · ◦wb1(x) (2.3)

and the corresponding output is given by

vn = vT · wbn ◦wbn−1 ◦ · · · ◦wb1(x) (2.4)

From this point of view, the digital channel is seen as an IFS. There is now a
considerable amount of interest among pure and applied mathematicians in this
kind of dynamical system (see, for example, the recent review by Diaconis and
Freedman 5). A few basic results will suffice here. We shall assume that in some
suitable norm the maps of the IFS are contractions, so that for each map wb

‖wb(x)−wb(y)‖ < ‖x− y‖
for all x and y in some closed bounded subset of Rm. This assumption is es-
sentially one about the stability of the channel. It implies, for instance, that if
the channel is repeatedly subjected to the same input symbol, the output will
converge to a constant value which is independent of the initial state of the chan-
nel. (There has been a lot of recent interest in obtaining results for IFSs under
weaker conditions than strict contractivity, and it is possible that these results
could be of relevance to the modelling of digital channels. This, however, is work
for the future.)
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For the present purposes we note that with the above assumptions the IFS
has a unique attractor, A, which is a compact invariant subset of the region of
Rm. Supported on this set is a unique ergodic probability measure. We note
also that A satisfies the following equation

A =
⋃
b

wb(A) (2.5)

That is to say, the attractor is the union of p sets, each of which is the image
of the attractor itself under one of the mappings in the IFS. This result has (at
least) two interesting consequences: the first is that A is often a fractal set since
it is the union of contracted copies of itself, each of which is a union of contracted
copies, and so on; the second—related—result is that every point in A has an
“address”. A way to see this is to think of the backward iteration of the IFS

x̄n = wb1 ◦wb2 ◦ · · · ◦wbn(x0) (2.6)

(note the reverse ordering of the subscripts compared with (2.3)). Since the maps
are contracting on a closed bounded subset of Rm, this process generates—for
each choice of symbol sequence {bk : k = 1, 2, . . .}—a convergent sequence
{x̄k : k = 1, 2, . . .} whose limit is a point in A which is independent of the
choice of x0. For any given point x ∈ A, any symbol sequence giving a convergent
sequence under backward iteration which has x as its limit can be regarded as
an address of x. Each point in A has at least one address 2. If the images
wb(A) are all disjoint then the address is unique and we say that A is totally
disconnected. The implication of this for digital channels is that if we can at
any time identify where we are on the attractor of the channel, then implicitly
this gives information about the history of inputs to the channel. In the case
that the channel has a totally disconnected attractor then there is a unique
sequence of input symbols which produces a given channel state. Of course, it
would be necessary to measure the channel state with infinite precision to get
a complete history, but as we shall see less complete measurements nonetheless
provide useful information.

2.1 an example
A simple example will be useful to illustrate the various stages of the develop-
ment. The constraints imposed by the need to represent the results graphically
limit this to a 2nd-order IFS model of a binary channel. Specifically, we use
equation (2.2) with

A =
(

0.8 −0.5
1 0

)
(2.7)

and b = ±1. We take vT = (1, 0). Random iteration of this model gives the
attractor shown in figure 1 where two scales of grey have been used to label the
sets w+1(A) and w−1(A), that is, the parts of the attractor which correspond
respectively to the last input being +1 and −1. We note that the attractor does
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Fig. 1. Attractors of a 2nd order linear recursive channel—see equation (2.2)—
with A, defined in equation (2.7) and b = ±1. The darker points are in the
set w+1(A) and the lighter points are in w−1(A).

not appear to be totally disconnected—there appears to be a region of overlap of
the two differently shaded regions—and so we expect that points in the attractor
will not be uniquely addressable. Despite this, the channel can be equalised by
virtue of being an all-pole system. To see this we note simply that according to
equation (2.1)

bn+1 = xn+1 −Axn (2.8)

that is, a suitable linear combination of two successive state vectors recovers the
input to the channel.

We have assumed so far that the output of the channel is the first component
of x, or, in terms of the observation function introduced earlier, that vT = (1, 0).
A more general choice of vT = (cos θ, sin θ) with θ ∈ (0, π) but not equal to π/2,
will produce an output time series which is harder to invert since the linear
inverse of an FIR filter is an IIR filter and hence requires an infinite history
of the FIR output. Figure 2 shows a typical output time series obtained from
the pole-zero filter defined by equation (2.7) with vT = ( 1

2 ,
√

3
2 ), driven by an

equiprobable independent sequence of inputs with b = ±1.



    � � �  � �    

6 D.S. Broomhead, J.P. Huke, M.R. Muldoon and A.G. Brown

200 400 600 800 1000 1200 1400

-3

-2

-1

1

2

3

Fig. 2. Typical time series of output from the pole-zero filter defined by equa-
tion (2.7) with vT = ( 1

2 ,
√

3
2 ) driven by an equiprobable independent sequence

of inputs with b = ±1.

3 Delay embedding of linear channels
The second part of our development is the introduction of the method of delays
(for a nice description see the book by Ott, Sauer and Yorke 8). The essentials
of this are that there is a smooth dynamical system defined on a state space
and a smooth measurement which is a real-valued function of the state. The
basic results of this theory establish a link between the dynamical system and a
construction based on time series data obtained by making successive measure-
ments on the system. As an example, consider a dynamical system consisting
of a linear map A which acts on a vector space Rm. Starting with an arbitrary
initial state x0 ∈ Rm, repeated application of the map gives a sequence of new
states, {xn = Anx0}, of the system. If at each time step we record only the
projection of the state onto some fixed vector vT we obtain a scalar time series
{vn = vT · xn}. The construction of interest is based on the tapped delay line,
that is, we consider vectors of the form: (vn, vn+1, . . . , vn+d−1)T . This vector
can be thought of as being a function of the point xn ∈ Rm since

(vn, vn+1, . . . , vn+d−1)T = (vT · xn,vT ·Axn, . . . ,vT ·Ad−1xn)T

To be more formal, we use this tapped delay line approach to define a map
Φ : Rm → Rd taking points from the state space of the dynamical system to the
space of states of the d-tap delay line.

Φ(x) = (vT · x,vT ·Ax, . . . ,vT ·Ad−1x)T (3.1)

This map—which is clearly linear—arises in linear control theory in connec-
tion with the observability of a system. A well-known result from control theory
asserts that Φ is full rank if all the eigenvalues of A are distinct and none of
its eigenvectors is orthogonal to v. Thus, if d ≥ m, the image Φ(Rm) is an
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m-dimensional linear subspace of Rd. This result is a statement of the ‘usual’
or ‘generic’ situation in the sense that special conditions must hold for it not
to be the case. It provides a strong link between the original dynamical system
and the tapped delay line data by showing that the information preserved in
the tapped delay line representation is that which is preserved when making a
change of coordinates. For example, consider the relationship xn+1 = Axn and
write yn = Φ(xn). Then it follows that yn+1 = Φ(AΦ−1(yn)); the states of
the tapped delay line evolve according to a linear map ΦAΦ−1 which, since it
is similar to A, has the same spectrum as A. (Note that the inverse Φ−1y is
meaningful whenever y ∈ Φ(Rm).)

The theorems of Aeyels 1, Takens 13 and Sauer, Yorke and Casdagli 11
extend this analysis to nonlinear dynamical systems and nonlinear measurement
functions. In this case the map corresponding to Φ is nonlinear and an embedding
of the state space for generic choices of the measurement function. This means
that the derivative of Φ is well-defined and full rank at every point in the state
space of the dynamical system and, in addition, that the map is invertible (in
the linear case these properties are equivalent). Delay embedding, even in this
nonlinear case, preserves the information preserved by a (nonlinear) smooth
change of coordinates.

The development of these ideas to make them applicable to digital signal pro-
cessing requires that we enlarge their scope to include iterated function systems.
We have reported results in this direction elsewhere 12; 4 and, in 4, described
how to extend IFS models to include oversampling of channels and how to exploit
the resulting structure through a further development of the method of delays.

Here we shall focus on linear channels sampled at the baud rate and ask,
what happens if we apply the tapped delay line idea to the output of a digital
linear channel? Equation (2.4) expresses the output of the channel in terms of
the sequence of input symbols and the initial state of the channel. Using this,
we can define, for each input symbol sequence, a delay map ΦΩ : Rm → Rd by

ΦΩ(x) = (vT · x,vT · wb1(x), . . . ,vT · wbd−1 ◦wbd−2 ◦ · · · ◦wb1(x))T (3.2)

where the subscript Ω labels the input sequence: Ω = (b1, b2, . . . , bd−1). Intro-
ducing the explicit form of the {wb} given in equation (2.2), reveals that the
delay map is affine

ΦΩ(x) = Φ(x) + ΦΩ(0) (3.3)

where Φ—which is independent of Ω—is the linear delay map defined in equa-
tion (3.1). The remaining term is a fixed offset which depends on Ω, but is
independent of the channel state x

ΦΩ(0) = (0,vT ·b1,vT · (b2 + Ab1), . . . ,vT · (bd−1 + Abd−2 + . . . + Ad−2b1))T

(3.4)
The fact that the observability matrix, Φ, arises naturally here makes the

point that delay methods reduce to well-established theory in the special case
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Fig. 3. The attractor shown in figure 1 mapped using the delay maps ΦΩ :
R2 → R3 based on time series data shown in figure 2. The shading corre-
sponds to that used in figure 1, for the darker points the latest symbol was
+1 and for the lighter points the latest symbol was −1 .

of linear channels. The linear theory shows that for generic choices of vT , the
rank of Φ is m when d ≥ m and, therefore, that the map ΦΩ is an embedding
for each Ω. Thus, ΦΩ(A) is A, apart from a smooth change of coordinates.
This has important implications for channel equalisation since there will be a
correspondence between the addresses of points in A and addresses of points in
ΦΩ(A) which is constructed using the channel output.

The additional complication that IFSs bring to the use of delay embedding
is that each sequence Ω generates a different embedding ΦΩ. For a p symbol
alphabet and using d delays there are pd−1 of these. The question is, therefore,
are the images of the attractor under the different delay maps all disjoint? The
answer is given by the following theorem

Theorem 3.1 If A has all distinct eigenvalues, then for generic choices of v
each of the delay maps ΦΩ : Rm → Rd, with d ≥ m, is an embedding. Moreover,
if d > m, the generic case is that the images ΦΩ(Rm) and ΦΩ′(Rm) are disjoint
when Ω $= Ω′.

The theorem has two parts. The first is just the observability condition al-
ready described. The second can be shown using a dimension-counting argument
which often arises in this sort of proof. In this particular case the argument is
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Fig. 4. A plot of the uppermost of the 4 sheets evident in figure 3. In this figure,
the darker points are in the set Φ(−1,−1)(w+1(A)) and the lighter points are
in Φ(−1,−1)(w−1(A))

based on the observation that a sufficient condition for the result to hold is that
there is no x ∈ Rm such that Φ(x) = ΦΩ′(0) − ΦΩ(0) for any pair of symbol
sequences Ω #= Ω′. Figure 3 shows what happens typically in the case of the
example described in section 2.1. The delay maps are constructed using time
series data as shown in figure 2. Choosing d = 3 > m = 2 and recalling that
the channel input is binary (p = 2), we anticipate 22 images of the attractor
as, indeed, are seen in figure 3. The fact that m = 2 implies that each image
should be a subset of a plane—that is, a displaced copy of Φ(R2). These should
all be parallel because they are simply translations of one another. Again, this
is evident from the figure. In figure 4, the image of A under the action of one of
the ΦΩ is shown. Since this plot is essentially of ΦA, it is interesting to make a
comparison with the untransformed form of A shown in figure 1.

Our example also illustrates the meaning of the statement that “generically”
the images ΦΩ(Rm) and ΦΩ′(Rm) are disjoint when Ω #= Ω′. In figure 5 we
show how the choice of v changes the positions of the different image planes
corresponding to the different values of Ω. This is done by calculating the points
of intersection of the planes with their common normal. These are shown as a
function of θ which parameterises v through v = (cos θ, sin θ). The interpretation
of “generic” here is that at any value of θ except an exceptional set, E , of isolated
values, the four planes intersect their common normal at four different points.
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Fig. 5. The projections onto their common normal of the four parallel planes
ΦΩ(R2) (where Ω = (+1,+1) (solid), (−1, +1) (dashed), (+1,−1) (dash-
dotted), and (−1,−1) (dotted)) plotted as a function of θ where the mea-
surement function is v = (cos θ, sin θ) with θ ∈ [0,π].

The figure shows that E = {0, π
4 , π

2 , 3π
4 , π}.

There is a subset of E , {0, π
2 ,π}, which is benign in the sense that for θ in this

set the delay vectors are essentially state space vectors of the all-pole channel
model specified by equation (2.7). Recall that the state space dynamical system
described in section 2 is based on the structure of the tapped delay line just as
is the method of delays. Therefore, a measurement function v that picks out a
single component of the natural basis of the state space will give rise to delay
vectors which are state vectors or—in the case of using d > m—vectors such that
every m consecutive components are state vectors. It follows in these cases that
all of the information about A is contained unambiguously in the delay plot.
This is not true of the remaining points in E which correspond to measurements
which confuse the time ordering of symbols.

4 Some remarks on the equalisation of IFS channels
Given that we observe the output sequence of a digital channel and are able to
construct—at least in principle—an object such as is shown in figure 3, how is
this of any help in reconstructing the corresponding input sequence? Leaving
aside any attempt to do blind equalisation let us assume that we know the
input sequence which generated some part of the output. In the first instance,
we can use this information to label each of the planes shown in figure 3. By
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focussing on each separately, estimates of their common normal can be obtained
by, for example, forming a matrix of the differences between delay vectors in a
chosen plane and computing its singular value decomposition. Alternatively, if
the channel model—specified by A , b and v—is known, then there is a direct
way to obtain this information using equation (3.4).

Assuming without loss of generality, that we choose d = m + 1, the common
normal of the planes is unique. Let us call this n. A direct way to equalise
the channel is to compute the projections of the delay vectors onto n and then
to identify which of the projections of the image planes they correspond to.
Formally, this amounts to the construction of a map from the delay space to
the set of symbol sequences, g : Rd → {Ω}. If we denote the projection of
ΦΩ(Rm) onto n as nΩ then g(x) = Ω̃ where Ω̃ minimises |n ·x−nΩ|. Of course,
there are more sophisticated ways of doing this which can, for example, take
into account noise on the output. The point is, however, that this (nonlinear)
function equalises our linear pole-zero channel using x which is a finite history of
the channel output. If, on the other hand, we were to try to invert the channel
without assuming the discreteness of the input, we would require an infinite
impulse response filter.

There is another, different, way of achieving the same end. This requires
that we find the inverse of the ΦΩ. The most direct way to do this is to assume
that the channel models, equation (2.2), are known or have been estimated using
the input/output data. This allows us to compute explicitly the components of
the affine form given in equation (3.3). The inverse of the delay maps are then
simply Φ−1(y−ΦΩ(0)) (where Φ−1 can be computed as the pseudo-inverse of Φ).
In practice, something like the g defined above will be needed to decide which of
the offsets to subtract from the delay vector. The result of applying the inverses
of the delay maps in our example is a set which is indistinguishable from the
original attractor shown in figure 1. In particular the addressing of the points of
the attractor is preserved by this process. In order to recover the input sequence,
however, we need only apply the inverse filter given in equation (2.8). Moreover,
it is not clear that the extra complication involved in finding the inverse of the
delay maps could ever lead to a method which is superior to simply finding g.

Finally, we come to nonlinear channels. It is clear that a function like g,
which maps delay vectors to symbols, can be constructed in this more general
case, provided that the images ΦΩ(Rm) are disjoint. We do not need to assume
planarity of the embedded images of the channel attractor, we could, for instance,
use a radial basis function expansion to fit the characteristic functions of the
different sets of image points. The issue here is whether or not there is a result for
nonlinear channels which is analogous to Theorem 3.1. The answer is that there
is a result for nonlinear systems which is like the first part of Theorem 3.1 12.
Indeed, it is possible to show that—generically—distinct points in the attractor
do not become identified by different delay maps. However, there is a counter-
example which limits our scope in the nonlinear case. It is easy to write down a
hyperbolic IFS—which must be a model of some nonlinear channel—for which
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the images of the attractor under different ΦΩ intersect. This property holds
for any continuous measurement function and is stable in the sense that it holds
also for any small perturbation of the IFS. Physically, such a “difficult” channel
is required to have a state, say x∗, which evolves to the same new state, x′∗,
following the input of either of two different symbols. It is apparent that this
is an extremely undesirable property for a communications channel to have, but
unfortunately it is a possibility with nonlinear channels. For this reason we view
this example is a limitation on our ability to make the simple generalisation
of Theorem 3.1 rather than a practical limitation on the use of delay methods
for nonlinear signal processing. In this context, it is worth recalling that the
approach described in 4—which uses an oversampling technique—does not suffer
from this mathematical difficulty. In this case a more detailed model of the way
the channel is driven must be used. For channels which can be thought of as
being driven by short pulses the issue of multiple embeddings of the attractor
does not arise. Naturally, a channel which is as ambiguous as in our counter-
example is likely to cause practical difficulties in this case too.

5 Conclusions
This paper has been about drawing connections between different approaches to
digital signal processing. We have related the use of iterated function systems
as models of digital channels to the more familiar state space models of linear
channels, and we have contrasted the use of delay methods applied to IFS models
with the more familiar linear methodology. Our main point has been that where
the two approaches talk about the same thing there is a fundamental connec-
tion which is essentially the issue of observability of the channel. We have not
discussed at any length the exciting prospect of a systematic and general theory
of nonlinear signal processing of digital channels that the IFS work represents.
This has been mentioned elsewhere 3; 4, and will be discussed in more detail in
future publications.
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