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Abstract. The enumeration of permutations with specific forbidden subsequences has applica-
tions in areas ranging from algebraic geometry to the study of sorting algorithms. We consider
a ranked poset of permutation matrices whose global structure incorporates the solution to the
equivalent problem of enumerating permutations which contain a required subsequence. We de-
scribe this structure completely for saturated chains of lengths one and two, so settling several
new and general instances of the original problem, and conclude with a superficial asymptotic
investigation of arbitrary chains whose length is small by comparison with the rank of its con-
stituent permutations. The value of this approach is reflected in the appearance of closed poly-
nomial formulae (related to the Robinson-Schensted correspondence) and of a framework for the
systematic analysis of associated combinatorial questions; indeed, we begin by studying a sim-
pler poset of 0-1 sequences as the natural environment in which to introduce our insertion and
deletion operators.
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1. Introduction and Notation

Throughout this work we are concerned with bijections of a finite set. If the set has m
elements we refer to the bijections as m-permutations, or permutations of dimension m;
with respect to composition of functions they form the symmetric group Sm. We find
it most convenient to represent each such permutation π as an m×m matrix, acting on
the vectors of the standard basis for R

m by permuting them accordingly. The entries are
given by

πi, j = δi,π( j), (1.1)

in terms of the Kronecker delta; thus ππ( j), j = 1 for all 1 ≤ j ≤ m. Occasionally, we
shall interpret π as a list (π(1)π(2) · · ·π(m)).
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We deem that a permutation π contains a permutation ν if the matrix π contains
the matrix ν as a submatrix; that is, if we may obtain ν from π by deleting rows and
columns. If the number of rows and columns deleted is k, we describe ν as having
codimension k in π. If π does not contain ν, then we say that π avoids ν. Given
any set P of permutations, possibly of different dimensions, we follow Simion and
Schmidt [13] in writing Sn(P) for the set of all permutations of dimension n which
avoid every element of P.

The original formulation of these definitions was in terms of sequences of distinct
integers, and is given in full in [15], for example. It is considerably more cumber-
some, and characterizes Sn(P) as those permutations which have the elements of P as
forbidden subsequences.

The problem of enumerating the sets Sn(P) for various n and P has received con-
siderable publicity over the last two decades, and applications have emerged in such di-
verse areas as algebraic geometry, combinatorics, and differential topology. For exam-
ple, Macdonald [8] (and others) have shown that the vexilliary permutations Sn(2143)
are relevant to the theory of Schubert polynomials, and therefore to the cohomological
structure of flag manifolds; Knuth [5] has demonstrated that the permutations Sn(231)
are exactly those which are stack sortable; and a beautiful theorem of Lakshmibai
and Sandhya [6] asserts that the permutations Sn(1324, 2143) are those whose corre-
sponding Schubert varieties are smooth. Recent work of Billey and Warrington [1] on
(321)-hexagon-avoiding permutations, and of Mansour and Vainshtein [9] on Sn(132),
has developed relationships with Kashdan-Lusztig and Chebyshev polynomials respec-
tively. The trend in these investigations has been for P to be small and n large, so
that asymptotic formulae are of major interest. For example, Bóna [2] has proved that
Sn(1423) < Sn(1234) < Sn(1324) for all suitably large n.

Our aim is to study a certain partially ordered set, whose structure unifies such
problems and suggests an alternative approach to their solution. This poset has made
several implicit appearances in earlier literature, such as the work of Laver [7] in 1976.
For basic information and terminology relating to partial orderings, we refer readers to
Stanley’s book [14].

Let S∞ denote the disjoint union of all the symmetric groups Sm for m ≥ 1, and write
ν ⊆ π whenever ν is contained in π. Clearly ⊆ is a partial ordering on S∞, with a zero
element given by the identity in S1. We may then also specify a rank function r by
setting

r(π) = m−1 for all π ∈ Sm.

It will be convenient to reserve the notation S for the resulting graded poset. Note that
a complete determination of the structure of S implies knowledge of Sn(P) for every n
and P.

To any set of permutations P in Sm we may associate the filter T (P), defined by

T (P) =
⋃

π∈P

{ν ∈ S : π ⊆ ν}. (1.2)

Each such filter is a disjoint union of finite subsets Tk(P), made up of those elements of
S in which some π in P has codimension k. Thus Tk(P) is a subset of Sm+k; we write
tk(P) for its cardinality. Clearly Sm+k(P) and Tk(P) are complementary in Sm+k, so their
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enumeration problems are equivalent. By analogy with (1.2), we may also associate to
P the ideal U(P), defined by

U(P) =
⋃

π∈P

{ν ∈ S : ν ⊆ π}. (1.3)

Thus U(P) is finite, and is a disjoint union of finite subsets Uk(P), made up of those
elements of S which are of codimension k in some element of P. Thus Uk(P) is a subset
of Sm−k; we write uk(P) for its cardinality.

Motivated by this change of emphasis, our aim is here to initiate investigation of
Tk(π) in cases where k is chosen to be small relative to the dimension of π. We refer
to the determination of all values of tk(π) as the codimension k problem for S . Its
solution is tantamount to determining the structure of the saturated chains of length
k. The corresponding study for Uk(π) and uk(π) is of equal interest, but much greater
difficulty, as we show by occasional example.

In fact the codimension 1 problem is relatively simple. Its solution is given by the
formula

t1(π) = m2 + 1 for all π ∈ Sm, (1.4)

which was originally obtained in 1990 by Bloomberg, but so far as we are aware remains
unpublished. Note that this identifies the number of elements covering each π in S , and
therefore indicates a fundamental regularity in the structure of the poset. We rederive
Bloomberg’s result in Section 7. Since (1.4) is polynomial in m, the same cannot be
true for the cardinality of Sm+1(π), whose value m!−m2 −1 follows immediately.

In contrast, we note by inspection that u1(1234), u1(1243), u1(3241) and u1(2413)
are given by 1, 2, 3, and 4 respectively, illustrating the observation of Section 7 that

1 ≤ u1(π) ≤ m for all π ∈ Sm.

At first sight, this linear bound is encouraging; but it is offset by the fact that, in di-
mension 4, u1(π) attains every possible value, whereas t1(π) depends on m alone. We
therefore regard the downward structure of S as considerably more elusive than its up-
ward counterpart.

As part of our analysis for the codimension 2 problem, we prove that t2(π) is again
a polynomial in m, although the polynomial now has degree 4, depends up to a linear
term on the choice of π, and is not valid for the special case m = 0. Thus, for example,
Theorem 8.7 states that

t2(ιm) =
1
2

(
m4 + 2m3 + m2 + 2m+ 6

)
,

where ιm is the identity m-permutation. In general, we conjecture that tk(π) is a poly-
nomial in m of degree 2k, that it depends up to a term of degree less than k on π, and
that it is only accurate for values of m greater than some small integer. In Section
9 we explain how supporting evidence arises from the Robinson-Schensted correspon-
dence [12]. The appearance of this correspondence offers the tantalising possibility that
the representation theory of the symmetric groups might have a role to play; otherwise,
we have found no way to utilize their group structure.



58 N. Ray and J. West

We shall continue to interpret the elements of S as matrices throughout, according
to (1.1). Indeed, we may extend the constructions above to form the poset M of all
matrices under inclusion, of which S is merely one of many subposets ripe for investi-
gation. Another is Y , the poset of 0-1 row vectors y, whose structure is considerably
simpler and provides the optimal environment in which to introduce certain basic oper-
ations. In so doing, we explain how to compute the statistics tk(y) for all values of k (in
contrast to S ).

We begin in Section 2 by investigating appropriate aspects of Y , introducing the
operations of insertion and deletion. We continue the analysis in Section 3, studying
synonymity classes of insertions, and related concepts which play an important subse-
quent role. We extend the insertion and deletion operators to S in Section 4, establishing
our matrix notation in the process, and plan the campaign for S in Section 5, outlining
our approach to the general codimension k problem in terms of upper and lower bounds
for T (π). We continue this study in Section 6, where we develop the notions of su-
perblocks and track matrices. In Section 7 we implement our strategy in codimension
1, which exemplifies the techniques in a suitably straightforward case, and develop the
theme in Section 8, where we analyse many aspects of the upward structure in codimen-
sion 2. Finally, in Section 9 we discuss certain features of the problem for codimensions
k > 2, obtaining some elementary polynomial approximations.

We shall regularly consider partitioned versions of matrices M, for which we use
the standard form 


M(0, 0) · · · M(0, q)

...
...

...
M(p, 0) · · · M(p, q)



 . (1.5)

We refer to the submatrices M(r, s) as blocks, and abbreviate each y(0, s) to y(s) in the
study of row vectors y.

Our conventions dictate that we write ιm for the m×m identity matrix, and it will be
convenient to reserve the notation ηm for the corresponding antiidentity. As a permu-
tation, ηm is the longest element of Sm, and reverses the order of the m elements upon
which it acts.

Several of our arguments concerning elements of S will proceed on a case by case
basis, and it is often possible to reduce the work by using symmetry. To formalize this
process we take any permutation matrix π, and define πrr and πcr to be the matrices
obtained by respectively reversing the order of its rows and its columns; we define πtr

to be its transpose, as usual. Thus

ιrr
m = ηm, ηcr

m = ιm, and ηtr
m = ηm,

for example. Of course, rr, cr, and tr generate an action of the dihedral group D4 on
S . This action induces a bijection between Tk(π) and Tk(πd) for any d in D4, whence
tk(π) and tk(πd) are equal. So far as the poset Y is concerned the only nontrivial such
symmetry which survives is cr, reversing the order of the entries in each vector and
generating a cyclic subgroup C2 of D4.

For each m, we always denote the set of natural numbers {1, 2, . . . ,m+1} by [m+1].
Whenever we select k elements from [m + 1], allowing repetitions, we insist that the
resulting multiset R on [m+ 1] be written in nondecreasing order, say as {r1, . . . ,rk}.
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Preparation of our final text has taken nine years longer than it ought, and further
study of the poset S has already been undertaken by others; for example see [3], where
a new infinite antichain is constructed.

2. Binary Sequences, Insertion and Deletion

In this section we consider the poset Y . We deduce basic properties of the insertion
and deletion operators; although not strictly necessary for the study of Y , they are
an important ingredient in our investigation of the analogous operators for S in later
sections.

For each m ≥ 0, we write Ym for the set of sequences of length m whose entries
are either 0 or 1, following the convention that Y0 contains only the empty sequence ∅.
Thus Ym has cardinality 2m, and we may express an arbitrary element y as y1y2 · · ·ym; we
often refer to y as a binary m-sequence. As hinted in Section 1, the disjoint union Y∞ of
all the Ym inherits the partial ordering ⊆, induced by x ⊆ y whenever x is a subsequence
of y. Thus the empty sequence is a zero element, and we may specify a rank function r
by setting

r(y) = m for all y ∈ Ym.

We refer to the resulting graded poset as Y .
As with S , each sequence y in Ym determines the filter T (y), and we let tk(y) denote

the cardinality of the subset Tk(y), consisting of all binary sequences x such that y has
codimension k in x. Of course, Tk(y) is a subset of Ym+k. We refer to the determination
of tk(y) as the codimension k problem for Y , and obtain its solution in this section and
the next; this is tantamount to describing the saturated chains of length k in Y .

We recall that the entire poset Y admits the group of symmetries C2, generated by
the involution cr. This induces a bijection between Tk(y) and Tk(ycr), so that tk(y) =
tk(ycr).

Every binary m-sequence y has the set [m+1] as its grid G(y), interpreted as the set
of gaps between successive elements yi, and we refer to any member of G(y) as a site
of y. Our aim is to attack the codimension k problem by inserting binary digits at k sites
of a generic y, since any element of Tk(y) may clearly be so constructed.

Let x and y respectively be binary k- and m-sequences, and let C be any k-element
multiset of [m+ 1], written in nondecreasing order as {c1, c2, . . . ,ck}. We define a new
(m + k)-sequence whose (ci + i− 1)-th entry is xi and whose remaining m entries are
made up of the entries of y in the natural order. We refer to the resulting binary (m+k)-
sequence as Ins(x; C; y), the insertion of x into y at C. Implicitly, we are exploiting the
natural correspondence

vi = ci + i−1. (2.1)

between a k-subset V of [m + k] and a k-multiset C of [m + 1]. We write V as C+ and
C as V • when emphasizing this bijective relationship. We also consider an associated
sequence v(h), where v is the surjection [m + k] → [2] defined by v(ci + i− 1) = 2 for
each i = 1, . . . ,k and v(h) = 1 otherwise. It is convenient to refer to the multiset C as
a k-multigrid (either of y, or [m+ 1], as the context dictates), and to refer to (x; C) as a
k-pair; if C is a singleton {c}, we may write the pair as (x; c).
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It is possible, but not necessary for our present purposes, to view the insertion op-
erators as specific elements of an appropriately defined category of operators. As such,
we expect them to have basic properties of associativity, commutativity and invertibil-
ity, which we now express in terms of the corresponding multigrids. We begin with
associativity, which is notationally trickiest.

Lemma 2.1 (Associativity Lemma). Let x be any binary m-sequence, and let y and z
be binary (k− l)- and l-sequences respectively; then for every l-multigrid B of [k− l+1]
and k-multigrid C of [m+ 1], we may define an l-multigrid B� of [k + m− l + 1] and a
(k− l)-multigrid C� of [m+ 1] such that

Ins(Ins(z; B; y); C; x) = Ins(z; B�; Ins(y; C�; x)) (2.2)

in Yk+m. Conversely, for every l-multigrid D of [k+m− l +1] and (k− l)-multigrid E of
[m+1], we may define an l-multigrid D� of [k− l +1] and a k-multigrid E� of [m+1]
such that

Ins(Ins(z; D�; y); E�; x) = Ins(z; D; Ins(y; E; x)) (2.3)

in Yk+m.

Proof. The lefthand side of (2.2) is characterized by the surjection [k + m] → [3], given
by

v(h) =






1, if h = ci + i−1 and ci = b j + j−1 for some i, j,

2, if h = ci + i−1 and ci �= b j + j−1 for some i, any 1 ≤ j ≤ l,

3, if h �= ci + i−1 for any 1 ≤ i ≤ k.

(2.4)

The hth element of the lefthand side of (2.2) is xq, yq, or zq, as v(h) is the qth 3, 2, or 1
respectively. Now define B� and C� by

B� = {cb1 + b1 −1, . . . ,cb j+ j−1 + b j −1, . . . ,cbl+l−1 + bl −1},
C� = {c1, . . . ,cb1−1, cb1+1, . . . ,bcj+ j−2, bcj+ j, . . . ,cbl+l−2, cbl+l , . . . ,ck},

respectively. Then a similar check reveals that the righthand side of (2.2) is determined
by the same surjection (2.4), as required.

The entire procedure may be reversed by defining D� by

D� = {i1, . . . , i j, . . . , il},

where ei j−1 ≤ d j − i j + 1 ≤ ei j for 1 ≤ j ≤ l, and E� by

E� = {e1, . . . ,ei1−1, d1 − i1 + 1, ei1 , . . . ,ei j−1, d j − i j + 1, ei j , . . . ,

eil−1, dl − il + 1, eil , . . . ,ek−l};

(2.3) may then be checked by the same method.
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Note that the construction of B� and C� depends on both B and C; so we write
(B, C)� for the pair (B�, C�), and say that it is obtained from (B, C) by forward as-
sociation. Similar remarks apply to (D, E)�, which we say is obtained from (D, E) by
backward association. These associations are, of course, related by the formulae

((B, C)�)� = (B, C) and ((D, E)�)� = (D, E). (2.5)

The Associativity Lemma may be applied repeatedly so as to exchange a string of in-
sertions between z and x.

We now turn to commutativity, considering x and C as above.

Lemma 2.2 (Commutativity Lemma). Given any binary k-sequence w, we may define
an m-multigrid C⊥ in [k + 1] such that

Ins(w; C; x) = Ins(x; C⊥; w) (2.6)

in Yk+m.

Proof. The surjection of [k + m] onto [2] corresponding to the righthand side of (2.6) is
obtained from that on the lefthand side by exchanging the roles of 1 and 2. If we define
C⊥ by

C⊥ = {1, . . . ,1, . . . , i, . . . , i, . . . ,k + 1 . . . ,k + 1},
where 1 appears c1 times, i appears ci − ci+1 times for 1 < i < k + 1, and k + 1 appears
m− ck times, then replacing C by C⊥ achieves the same effect, as sought.

The Commutativity Lemma indicates the existence of a certain duality between
the codimension k problem for m-sequences, and the codimension m problem for k-
sequences.

To express invertibility properties, we are led to the notion of a deletion operator.
For any k element subset V of [m], and any binary m-sequence y, we define the deletion
Del(V ; y) of entries V from y to be the binary (m− k)-sequence obtained by deleting
from y all elements yi with i ∈V ; it admits a standard partitioning into blocks bounded
by the deleted elements. The deleted elements themselves form a binary k sequence
y|V , the restriction of y to V , and both Del(V ; y) and y|V patently lie in U(y).

We consider w, C and y as in Lemma 2.2 above.

Lemma 2.3 (Invertibility Lemma). If we define C− to be (C⊥)+, then we have

Del(C+; Ins(w; C; y)) = y and Del(C−; Ins(w; C; y)) = w

in Ym. Given any k element subset V of [m], we also have

Ins(y|V ; V •; Del(V ; y)) = y (2.7)

in Sm.

It often happens that Del(V ; y) agrees with Del(W ; y), even though y|V �= y|W ; this
is one way in which distinct insertions in z may yield the same sequence y. Our main
effort in studying Y (and subsequently S ) is directed towards resolving such ambigui-
ties.

We finally consider the symmetry cr, with x and C as in Lemma 2.1.
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Lemma 2.4 (Symmetry Lemma). Given any binary k-sequence w, we may define a
k-multigrid C such that

(Ins(w; C; x))b = Ins(wb; C; xb)

in Yk+m.

Proof. If we define C by

C = {m+ 2− ck, . . . ,m+ 2− ck−i, . . . ,m+ 2− c1},

the required equation follows immediately.

Using the bijection (2.1) between multisets C of [m + 1] and subsets V of [m + k],
the subset V corresponding to the multiset C is constructed by replacing each v in V
with (m+ k)− v.

It will occasionally prove convenient to write a generic element of C+, C⊥, C−, or
C as c+

i , c⊥i , c−i or ci respectively.

3. The Structure of Y

In this section we compute tk(y) for any binary m-sequence y; our main aim is to es-
tablish methodology for the study of S in later sections. We begin by investigating
Tk(y).

It is clear (but also follows from the Invertibility Lemma 2.3) that any z in Tk(y) may
be obtained from y by the insertion of an appropriate k-pair (w; C), so it is convenient
to introduce the set Ψk,m of all such pairs. Insertion in y then defines a map

fy : Ψk,m −→ Tk(y) (3.1)

which is a surjection, but fails to be an injection, by (2.7) and the remarks following.
Note that the cyclic group C2 acts on Ψk,m according to the rule (w; C)cr = (wcr ; C).

Once we have introduced fy, it is natural to define two k-pairs (w; C) and (x; D)
to be y-synonymous, written (w; C)∼

y
(x; D), whenever Ins(w; C; y) and Ins(x; D; y) are

the same. Then fy extends to a bijection from the set of y-synonymity classes to Tk(y),
and we aim to enumerate these classes by determining the conditions under which two
arbitrary pairs are synonymous. Note that the action of cr transforms a y-synonymity
Ω into a ycr-synonymity Ωcr.

Let us order the k-multigrids C lexicographically, writing C ≺ D to denote the fact
that C precedes D. We then select from any y-synonymity class the unique pair whose
multigrid is greatest; this is its canonical representative, and is well defined because
w = x whenever (w; C)∼

y
(x; D) and C = D. We therefore consider the subset Cank(y)

of Ψk,m consisting of all canonical representatives, and observe that the map fy restricts
to a bijection between Cank(y) and Tk(y). Our quest is therefore to enumerate Cank(y).

We label a pair (w; C) as y-active if no element wj equals ycj for any 1 ≤ j ≤ k, and
let Actk(y) denote the subset of Ψk,m consisting of all active pairs; neither Cank(y) nor
Actk(y) is C2-invariant.
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Proposition 3.1. For any choice of y and k, we have

Cank(y) = Actk(y)

as subsets of Ψk,m.

Proof. We prove that a k-pair (w; C) is inactive if and only if it fails to be canonical.
Assume first that (w; C) is y-inactive, so that wj = ycj for some 1 ≤ j ≤ k and

Ins(wj; c j; y) = Ins(wj; c j + 1; y). (3.2)

We choose the minimal such j, and write z for Del({ j}; w) and B for { j}⊥; thus (2.7)
implies that Ins(z; B; wj) = w. Applying a forward association of the form (2.2) yields

Ins(Ins(z; B; wj); C; y) = Ins(z; B�; Ins(wj; C�; y)), (3.3)

where C� = c j. So we may appeal to (3.2) and rewrite the righthand side of (3.3) as
Ins(z; B�; Ins(wj; c j + 1; y)). We then apply a backward association of the form (2.3)
to obtain

Ins(Ins(z; B; wj); C; y) = Ins(Ins(z; D; wj); E; y),

in which (D, E)= (B�, c j +1)�. It is now simple to check from the definitions that ei =
ci for 1 ≤ i < j and that e j = c j + 1, whence C ≺ E . Since (w; C)∼

y
(Ins(x; D; wj); E),

we conclude that (w; C) is not canonical, as required.
Assume secondly that (w; C) fails to be canonical, so that for some C ≺ E we have

Ins(w; C; y) = Ins(x; E; y) in Yk+m. We denote their common value by v, and choose j
such that ei = ci for 1 ≤ i < j and e j > c j. Then xi = wi for 1 ≤ i < j, and vcj+ j−1 is
given by wj and ycj respectively. Thus wj = ycj , and (w; C) is y-inactive, as sought.

As will be the case for S , the main difficulty is with multiple insertions; inserting a
single character into a string is more straightforward. For example,

Ins(110,{3, 3, 3}, 10111) = Ins(101, {4, 4, 4}, 10111) = Ins(011, {5, 6, 6}, 10111)

have the common value 10110111. Clearly (101, {4, 4, 4}) is not active, because it
involves inserting a 1 immediately before a 1, whereas (110, {3, 3, 3}) is less obviously
inactive because the inserted 1s are buffered by an intervening 0; only (011, {5, 6, 6})
is active, and canonical to boot.

To compute tk(y) it remains to enumerate Actk(y).

Proposition 3.2. For any y in Ym, the cardinality of Actk(y) is given by

ak(y) =
k

∑
j=0

(
m+ k

j

)
.

Proof. Whenever a k-pair (w; C) is active, all elements of w are predetermined except
those which are inserted at the last site m + 1. So we partition the set of k-multigrids
according to the number of times j which any site other than the last is selected, where



64 N. Ray and J. West

1 ≤ j ≤ k. Since there are
((m

k

))
such multigrids (appealing to the multichoose notation

of [14]), and the last k− j entries of w are arbitrary, we deduce that

ak(y) =
k

∑
j=0

2k− j
((

m
k

))
.

The required formula follows by standard manipulation of binomial coefficients, as
described in [11], for example.

This result indicates a fundamental regularity in the poset Y ; the cardinality of each
Tk(y) is independent of y in Ym, and is given by a polynomial of degree k in m whose
leading terms are (mk + 1

2 k(k + 3)mk−1)/k!.

4. Insertion and Deletion in S

In this section we extend our insertion and deletion operators to the poset S , establishing
notational conventions as we proceed. We follow Section 2 closely.

For any m-permutation matrix π, its grid G(π) is the (m + 1)× (m + 1) matrix of
ordered pairs of natural numbers defined by

gi, j(π) = (i, j), where 1 ≤ i, j ≤ m+ 1.

Clearly G(π) is a subset of the plane which is independent of the choice of π, and
should be construed as the set of intersections of the m+1 horizontal and vertical lines
separating the rows and columns of π. As such, it will occasionally be referred to as
the (m + 1)-grid. We call any element of G(π) a site of π, and describe the collection
of sites for which i or j equals 0 or m as the boundary of G(π). We refer to any site
(i, j) for which both πi, j−1 and πi, j are zero as active in π, and to the remaining sites as
inactive. Since each nonzero element of π spawns 2 inactive sites, there are 2m in total,
and π therefore has m2 + 1 active sites.

Our insertion and deletion operators are defined analogously to those for Y except
we must now work with rows and columns separately. We must also take the whole
dihedral group D4 into account when discussing symmetry. We write our insertion
operator as Ins(ρ; R, C; π), where ρ and π are any k- and m-permutations, and where
(R, C) is a pair of k element multisets of [m+ 1]. This operator interleaves ρ and π by
inserting ρi, j at the site (ri, c j) of π, for all 1 ≤ j ≤ k, and we speak of the insertion of
ρ into π at (R, C). It is convenient to refer to the pair (R, C) as a k-multigrid, and to the
triple (ρ; R, C) as a k-triple. Sometimes, for example when k is small, it is helpful to
write (R, C) as (r1, . . . ,rk, c1, . . . ,ck). Of course a 1-multigrid of π is just a site.

We note that (R, C) determines a partitioning





π(0, 0) π(0, c1) · · · π(0, ck)

π(r1, 0) π(r1, c1) · · · π(r1, ck)
...

...
...

π(rk, 0) π(rk, c1) · · · π(rk, ck)




(4.1)
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of π, and that whenever R or C contains a boundary site or repeated element then the
corresponding blocks of (4.1) are empty. So long as we introduce the convention

r0 = c0 = 0 and rk+1 = ck+1 = ∞, (4.2)

we may describe the blocks of (4.1) by

π(ri, c j) = (πt,u) with ri ≤ t < ri+1 and c j ≤ u < c j+1.

If we write τ for Ins(ρ; R, C; π), we may describe it elementwise by

τp,q =






ρi, j, if p = r+
i and q = c+

j ,

πp−i, q− j, if r+
i < p < r+

i+1 and c+
j < q < c+

j+1,

0, otherwise.

(4.3)

We now turn to the associativity, commutativity, invertibility, and symmetry prop-
erties of our insertion operators in S . These follow directly from their counterparts in
Y , and proofs may easily be read off from Section 2.

Lemma 4.1. Let π be an arbitrary m-permutation, and let τ and σ be arbitrary (k− l)-
and l-permutations respectively. Given any l-multigrid (Q, B) of τ and any k-multigrid
(R, C) of π, we have

Ins(Ins(σ; Q, B; τ); R, C; π) = Ins(σ; Q�, B�; Ins(τ; R�, C�; π))

in Sm+k. Conversely, given any l-multigrid (S, D) in the (m + k− l + 1)-grid and any
(k− l)-multigrid (T, E) of π, we have

Ins(Ins(σ; S�, D�; τ); T�, E�; π) = Ins(σ; S, D; Ins(τ; T, E; π))

in Sm+k.

Lemma 4.2. Given any ρ, R, C and π as above, we have

Ins(ρ; R, C; π) = Ins(π; R⊥, C⊥; ρ)

in Sm+k.

To formalize the notion of deleting elements from an m-permutation matrix π, sup-
pose that V and W are k element subsets of [m]. Then the deletion Del(V, W ; π) of
rows V and columns W from π is the (m− k)× (m− k) matrix obtained by deleting all
elements πi, j with either i in V or j in W ; it admits a standard partitioning into blocks
bounded by the deleted elements. By construction, Del(V, W ; π) is itself a permutation
matrix if and only if there is a k-permutation ρ(V, W ) such that the entry 1 occurring in
column wi of π also occurs in row vρ(i), for each 1≤ i≤ k. Henceforth, we insist that this
condition holds; it is equivalent to recognizing that the pair (V, W ) is uniquely specified
by either one of its components. So Del(V, W ; π) ⊆ π by definition, and Del(V, W ; π)
lies in U(π) by (1.3).
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Lemma 4.3. Given any ρ, R, C and π as above, we have

Del(R+, C+; Ins(ρ; R, C; π)) = π and Del(R−, C−; Ins(ρ; R, C; π)) = ρ

in Sm. Given any k element subsets V and W of [m], we also have

Ins(ρ(V, W ); V •, W •; Del(V, W ; π)) = π

in Sm.

The third equation may be rephrased to state that, given any permutation ν of codi-
mension k in π, there is a k-tuple (ρ; R, C) such that π may be written as Ins(ρ; R, C; ν).
In many cases the choice of V and W will not be unique, and therefore nor will the
choice of ρ and (R, C). But because V (or W ) determines ρ(V, W ) and W (or V ), so R
(or C) always determines ρ and C (or R).

We conclude by considering the action of the dihedral group.

Lemma 4.4. Given any ρ, R, C and π as above, we have

(Ins(ρ; R, C; π))rr = Ins(πa; R, C; ρrr),

(Ins(ρ; R, C; π))cr = Ins(πb; R, C; ρcr),

and
(Ins(ρ; R, C; π))tr = Ins(πt ; C, R; ρtr)

in Sm+k.

5. Canonical Triples and Subsets

In this section we outline our strategy for computing tk(π) for π and any natural number
k. In particular, we describe an upper bound for the set Tk(π). Our approach to both
problems is motivated by the discussion of Y in Section 3.

By Lemma 4.3, any ν in Tk(π) may be obtained from π by the insertion of a k-triple
(ρ; R, C), so it is convenient to introduce the set ϒk,m of all such triples. Insertion in π
then defines a surjection

fπ : ϒk,m −→ Tk(π).

Although this map fails to be an injection, it is still instructive to obtain a crude upper
bound for tk(π) by enumerating ϒk,m. We obtain

|ϒk,m| = k!

((
m+ 1

k

))2

,

and therefore deduce that tk(π) is bounded above by a polynomial of degree 2k in m,
which for future reference we write as

1
k!

(
m2k + k(k + 1)m2k−1) (5.1)
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modulo lower powers of m. Since the coefficients of the powers of m in this expression
are themselves functions of k, (5.1) may only be used to approximate tk(π) when k is
sufficiently small by comparison with m; for example, if k! < m, then the terms of the
polynomial certainly decrease with the necessary speed.

Note that the dihedral group D4 acts on ϒk,m according to the rules

(ρ; R, C)rr = (ρrr; R, C), (ρ; R, C)cr = (ρcr; R, C) and (ρ; R, C)tr = (ρtr; C, R),
(5.2)

enabling arguments by symmetry to be made on triples.
Following Section 3, we define two k-triples (ρ; R, C) and (σ; S, D) to be π-synony-

mous whenever Ins(ρ; R, C; π) and Ins(σ; S, D; π) have the same value τ in Sm+k. As-
suming that R precedes S lexicographically, we write (ρ; R, C)∼

π
(σ; S, D); if S ≺ R

then we reverse the order of the triples. We refer to τ as the value of the synonymity,
and to (ρ; R, C) as its lefthand triple. Thus fπ extends to a bijection from the set of
π-synonymity classes to Tk(π), and we wish to enumerate these classes by codifying
the conditions under which two triples are π-synonymous. The action of any d in D4

transforms a π-synonymity Ω into a πd-synonymity Ωd , although we must interchange
the constituent triples whenever Sd ≺ Rd .

Proposition 5.1. Suppose given that (ρ; R, C)∼
π

(σ; S, D). Then the two triples are

equal if either R = S or C = D.

Proof. We have
Ins(ρ; R, C; π) = Ins(σ; S, D; π)

in Sm+k. Applying Lemma 4.3 (and subsequent comments), we deduce that R deter-
mines C and ρ, and S determines D and σ. Thus if R = S, then C = D and ρ = σ, as
sought.

The case of C = D follows by symmetry, under the action of tr in D4.

According to Proposition 5.1, we may select from any π-synonymity class Ω the
unique triple whose row multiset is lexicographically greatest; this is the canonical
representative of Ω, and our conventions ensure that it appears on the righthand side
of any synonymity. We write Cank(π) for the subset of ϒk,m consisting of all canonical
representatives, and observe that the map fπ restricts to a bijection between Cank(π)
and Tk(π). In order to enumerate Cank(π), we begin by establishing a more delicate
upper bound than provided by (5.1).

We label a triple (ρ; R, C) as π-active (or active, in the usual situation where π is
understood) whenever every site of the form (rρ(g), cg) is active in π for 1 ≤ g ≤ k, and
we write Actk(π) for the subset of ϒk,m consisting of all such triples. We say that a
π-synonymity (ρ; R, C)∼

π
(σ; S, D) is active if (ρ; R, C) is an active triple. If either a

triple or a π-synonymity fails to be active, we call it inactive.

Proposition 5.2. For any choice of π and k, we have

Cank(π) ⊆ Actk(π)

as subsets of ϒk,m.
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Proof. The proof proceeds by an appropriate modification of Proposition 3.1. We take
an inactive k-triple (ρ, R, C) and prove that it is not canonical.

By definition, either πrρ(g),cg or πrρ(g),cg−1 equals 1 for some 1 ≤ g ≤ k, so that

Ins(ι1; rρ(g), cg; π) = Ins(ι1; rρ(g) + 1, cg ±1; π). (5.3)

We choose such a g to minimize ρ(g), and then write µ = Del(ρ(g), g; ρ). From Lem-
mas 4.2 and 4.3, we find that Ins(µ; Q, B; ι1) = ρ, where Q = ρ(g)⊥ and B = g⊥. Now
we apply Lemma 4.1 to write

Ins(Ins(µ; Q, B; ι1); R, C; π) = Ins(µ; Q�, B�; Ins(ι1; R�, C�; π)); (5.4)

but R� = rρ(g) and C� = cg, so we may appeal to (5.3) and rewrite the righthand side
of (5.4) as Ins(µ; Q�, B�; Ins(ι1; rρ(g) + 1, cg ±1; π)). Thus

Ins(Ins(µ; Q, B; ι1); R, C; π) = Ins(Ins(µ; S, T ; ι1); U, V ; π),

where (S, U) = (Q�, rρ(g) + 1)� and (T, V ) = (B�, cg ±1)�. So by the minimality of
ρ(g), we deduce that U has the form {r1, . . . ,rρ(g)−1, rρ(g) + 1, . . .}. Therefore R ≺U ,
and (ρ; R, C)∼

π
(Ins(µ; S, T ; ι1); U, V ); so (ρ; R, C) is not canonical, as required.

We remark that the situation for S is more complex than that for Y , and invite
readers to construct examples of active triples in codimension 2 which are not canonical.
In general, our strategy will be to develop a controlled procedure for reducing Actk(π)
to Cank(π) by discarding all lefthand triples of active synonymities.

The action of cr on ϒk,m yields bijections between Cank(π) and Cank(πcr), and
Actk(π) and Actk(πcr), for any permutation π. In general, however, no such bijections
exist for rr or tr, and arguments by symmetry must therefore be handled with care.

We now define ak(π) to be the cardinality of Actk(π), and proceed to calculate a1(π)
and a2(π) explicitly.

Proposition 5.3. For any π ∈ Sm and m ≥ 1, we have

a1(π) = m2 + 1 and a2(π) =
1
2

(
m4 + 2m3 + m2 + 6m+ 2

)
.

Proof. In codimension 1, we are concerned with triples (ι1; r, c) for which (r, c) is
active in π; the formula for a1(π) follows at once. We note for reference that there are
2 inactive sites in each row of the grid except the last, where there are none. Likewise,
there are 2 inactive sites in each column, except the rightmost and leftmost, which each
have 1.

In codimension 2, we are concerned with triples (ρ; r1, r2, c1, c2), where ρ is either
ι2 or η2. We concentrate on the choice of insertion sites. If we select any two distinct
active sites, we obtain a unique active triple whenever neither of the equations r1 = r2

and c1 = c2 holds; for we insist that the two nonzero elements are inserted at the chosen
sites. However, if exactly one of the equations holds then either choice for ρ yields an
active triple, and we must count the selection once more to take account of this. For
all but the last of the m + 1 rows, and all but the first and last of the m + 1 columns,
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this yields
(m−1

2

)
extra triples; the last row and the extreme columns yield a further(m+1

2

)
and 2

(m
2

)
respectively. If both of the above equations hold then the insertion sites

coincide and we may again choose either value of ρ, thereby yielding an additional
2(m2 + 1) active triples. Summing all cases gives

(
m2 + 1

2

)
+(2m−1)

(
m−1

2

)
+

(
m+ 1

2

)
+ 2

(
m
2

)
+ 2(m2 + 1),

which simplifies to the formula given.

We shall consider a lower bound for Cank(π) in Section 9 below.

6. Superblocks and Track Matrices

In this section we study the properties of a generic π-synonymity Ω between k-triples
(ρ; R, C) and (σ; S, D), assuming throughout that R ≺ S and Ω has value τ. Our goal
is the determination of all active synonymities, which with the aid of Proposition 5.2
will begin the computation of tk(π) from ak(π). We focus on certain combinatorial
structures imposed by Ω on the matrices π and τ.

We define the pattern℘(Ω) to be an ordered pair of sequences of multisets of + and
− signs. The first sequence is derived by working down the (m+1)-grid, and recording
a + or − whenever a row appears in R or S respectively; every term is therefore a
singleton unless R and S have common or repeated elements. Since R ≺ S, the first
term to display an unequal distribution of signs will contain a majority of + signs.
The second sequence is derived from the columns of the grid by considering C and
D similarly. The dihedral group acts on ℘(Ω) in the obvious fashion, with rr and cr
reversing the orders of the row and column sequences respectively, and tr interchanging
the sequences themselves; however, we must modify the result by a final interchange of
+ and − signs for any d with Sd ≺ Rd .

Now consider π, and an arbitrary entry πp,q. We define the integers e(p) and f (q)
to be the number of elements of R and C which do not exceed p and q respectively; we
define g(p) and h(q) similarly, with reference to S and D respectively. Thus e(p) and
f (q) record the number of + signs up to the appropriate entries in ℘(Ω), and g(p) and
h(q) similarly record the number of − signs. We therefore have

re(p) ≤ p < re(p)+1, c f (q) ≤ q < c f (q)+1,

sg(p) ≤ p < sg(p)+1, dh(q) ≤ q < dh(q)+1.

Applying (1.5), the 2k-multigrid (R∪S, C∪D) partitions π into blocks




P(0, 0) · · · P(0, 2k)

...
...

...
P(2k, 0) · · · P(2k, 2k)



 , (6.1)

which we refer to as the difference blocks of Ω. We observe from the definitions that
the values of e(p), g(p), f (q) and h(q) are constant throughout each difference block
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P(a, b), and satisfy

a = e(p)+ g(p) and b = f (q)+ h(q).

As a result, we may assign difference coordinates

γ(a) = e(p)−g(p) and δ(b) = f (q)−h(q)

to the block P(a, b), and therefore also to its entries. Note that −k ≤ γ(a), δ(b) ≤ k for
all 1 ≤ a, b ≤ 2k, and that γ(0), δ(0), γ(2k) and δ(2k) are zero. Clearly γ(a) and δ(b)
may be obtained from ℘(Ω) by adding the appropriate signs of the row and column
sequences respectively.

On inserting the elements of ρ and the elements of σ into (6.1), we obtain partitions
τ′ and τ′′ of τ. Each difference block P(a, b) will in general occupy distinct positions
in the two partitions, which therefore overlap and interfere. The combinatorics of this
relationship is fundamental to our description of Ω, and we proceed to make it more
explicit. It is helpful to associate to πp,q the integers t(p) and u(q), defined to be the
number of elements of R+ and C+ which do not exceed p + g(p) and q + h(q) respec-
tively; we define v(p) and w(q) similarly, with reference to S+ and D+ respectively.
Thus

r+
t(p) ≤ p + g(p) < r+

t(p)+1, c+
u(q) ≤ q + h(q) < c+

u(q)+1,

s+
v(p) ≤ p + e(p) < s+

v(p)+1, d+
w(q) ≤ q + f (q) < d+

w(q)+1.

These integers measure the relative distribution of each multigrid in terms of the other
after the insertions have taken place. Their importance stems from the following simple,
but fundamental formulae.

Lemma 6.1 (Replication Lemma). With the data and notation above, we have

πp,q =






σv(p),w(q), if s+
v(p) = p + e(p) and d+

w(q) = q + f (q),

πp+α(p), q+β(q), if s+
v(p) < p + e(p) < s+

v(p)+1 and d+
w(q) < q + f (q) < d+

w(q)+1,

0, otherwise,

where α(p) = e(p)− v(p) and β(q) = f (q)−w(q); similarly,

πp,q =






ρt(p),u(q), if r+
t(p) = p + g(p) and c+

u(q) = q + h(q),

πp−ψ(p), q−ω(q), if r+
t(p) < p + g(p) < r+

t(p)+1 and c+
u(q) < q + h(q) < c+

u(q)+1,

0, otherwise,

where ψ(p) = t(p)−g(p) and ω(q) = u(q)−h(q).

Proof. We apply (4.3) twice, first with respect to τ′ and then with respect to τ′′. Thus
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τ′p+e(p), q+ f (q) = πp,q and

τ′′p+e(p), q+ f (q) =






σv(p),w(q), if s+
v(p) = p + e(p) and d+

w(q) = q + f (q),

πp+e(p)−v(p), q+ f (q)−w(q), if s+
v(p) < p + e(p) < s+

v(p)+1

and d+
w(q) < q + f (q) < d+

w(q)+1,

0, otherwise,

thereby establishing the first equation. The second follows in similar style, by consid-
ering τp+g(p), q+h(q).

We call Lemma 6.1 the Replication Lemma because it quantifies the way in which
elements of π are propagated under the influence of Ω. If we select a difference block
P(a, b) in τ′, the first equation describes the way in which it is partitioned into subblocks
with respect to τ′′; on the other hand, if we construe the same P(a, b) as a difference
block in τ′′, the second equation describes the way in which it is partitioned into sub-
blocks with respect to τ′. We emphasize that these two partitions into subblocks always
coexist, and that Lemma 6.1 describes all the conditions imposed on π by Ω. For obvi-
ous reasons, we refer to α(p) and β(q) as the forward shift coordinates, and ψ(p) and
ω(q) as the backward shift coordinates of Ω. Each of them is constrained to lie between
−k and k, and is only defined when the appropriate strict inequalities hold.

The following properties will be useful, and are a direct consequence of the defini-
tions.

Lemma 6.2. (1) If πp,q lies in the difference block P(a, b), then both α(p) and ψ(p)
are defined and zero whenever γ(a) is zero, and are either not defined or nonzero
whenever γ(a) is nonzero; similarly, both β(q) and ω(q) are defined and zero when-
ever δ(b) is zero, and are either not defined or nonzero whenever δ(b) is nonzero.

(2) For all values of p and q, we have

α(p−ψ(p)) = ψ(p), ψ(p + α(p)) = α(p),

β(q−ω(q)) = ω(q), ω(q + β(q)) = β(q),

whenever the relevant quantities are defined.
(3) The values of t(p), v(p), u(q) and w(q) are nondecreasing, and each increase is by

precisely 1.

We continue to investigate Ω by partitioning (6.1) into V -, W -, X- and Y-matrices
according to the zeros of the difference (or the shift) coordinates, obtaining





V (0, 0) Y (0, 1) V (0, 2) Y (0, 3) · · · V (0, 2u)

X(1, 0) W (1, 1) X(1, 2) W (1, 3) · · · X(1, 2u)

V (2, 0) Y (2, 1) V (2, 2) Y (2, 3) · · · V (2, 2u)

X(3, 0) W (3, 1) X(3, 2) W (3, 3) · · · X(3, 2u)

...
...

...
...

...
...

V (2t, 0) V (2t, 1) V (2t, 2) V (2t, 3) · · · V (2t, 2u)





. (6.2)
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Each entry in (6.2) is partitioned as a maximal union of adjacent blocks P(a, b) satisfy-
ing γ(a) = 0 and δ(b) = 0 for each V -matrix. γ(a) �= 0 and δ(b) �= 0 for each W -matrix,
γ(a) �= 0 and δ(b) = 0 for each X-matrix, γ(a) = 0 and δ(b) �= 0 for each Y -matrix. We
refer to these as the superblocks of Ω, and identify them as being of class V , W , X , or
Y . We may apply the Replication Lemma 6.1 to characterize all superblocks of class X ,
Y and V .

Proposition 6.3. All superblocks of class X and Y are zero, whereas superblocks of
class V are unrestricted submatrices of π.

Proof. Choose a superblock P(a, b) of class X in π, and consider a constituent element
πp,q. By definition δ(b) = 0, so β(q) and ω(q) are both zero by Lemma 6.2(1), and
the Replication Lemma 6.1 implies that πp,q = πp+α(p), q or 0. But γ(a) is nonzero, so
either α(p) is defined and nonzero or else πp,q = 0, by Lemma 6.2(1) again. Since π
is a permutation matrix, we deduce that πp,q = 0 in all cases, and therefore the entire
superblock is zero. A similar argument reversing the roles of the coordinates applies to
superblocks of class Y .

So far as superblocks of class V are concerned the Replication Lemma 6.1 identifies
πp,q only with itself, and therefore imposes no restrictions.

We learn from Proposition 6.3 that the essential features of Ω are concentrated in
the superblocks of class W , to which we now turn.

Given any m-permutation matrix ν, it is helpful to rewrite the nonzero entry νν(q),q
as νq, for every 1 ≤ q ≤ m. Thus in Lemma 6.1, the nonzero elements πp+α(p), q+β(q)
and πp−ψ(p), q−ω(q) are abbreviated to πq+β(q) and πq−ω(q) respectively.

Theorem 6.4. The nonzero elements of any superblock W ( j, k) may be partitioned into
sequences (πq1 , . . . ,πq�

), to each of which are associated unique elements ρq′ in ρ and
σq′′ in σ; furthermore, ρq′ and σq′′ are each inserted at a site in W ( j, k) when forming
τ′ and τ′′, and the sequences

(ρq′ , πq1 , . . . ,πq�
) and (πq1 , . . . ,πq�

, σq′′)

become identified.

Proof. We begin by choosing any nonzero πqi in W ( j, k), and assuming that both

r+
t < π(qi)+ g < r+

t+1 and c+
u < qi + h < c+

u+1 (6.3)

and
s+

v < π(qi)+ e < s+
v+1 and d+

w < qi + f < d+
w+1 (6.4)

are true for some t, u, v, and w. We use the Replication Lemma 6.1 to define

πqi−1 = πqi−ω(qi) and πqi+1 = πqi+β(qi),

and then to iterate the procedure on πqi−1 and πqi+1 , noting from Lemma 6.2(2) that we
create only two new elements at each step. The sequence cannot extend indefinitely
in either direction since all our matrices are finite, and using Lemma 6.1 again we see
that the only method of termination is for equalities to appear in either or both of (6.3)
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and (6.4). When this occurs in (6.3), we decree that we have reached πq1 , which is
then identified in τ′ with some ρq′ ; and when it occurs in (6.4), we decree that we have
reached πq�

, which is similarly identified in τ′′ with some σq′′ .
We must now show that whenever πq lies in W ( j, k) (and is not at the end of a

sequence) then πq−ω(q) and πq+β(q) also lie in W ( j, k); we prove the latter, and begin
by assuming it to be false. Both α(p) and β(q) are nonzero, and we may take them to
be positive without loss of generality. Then either rm = sm = p∗ for some p < p∗ < p+
α(p) and e(p) < m ≤ k, or cn = dn = q∗ for some q < q∗ < q+β(q) and f (q) < n ≤ k,
or both. Again without loss of generality, we assume the latter; since dw ≤ q + β(q) by
definition of w(q), we deduce that n ≤ w(q). Thus β(q) = f (q)−w(q) is negative, a
contradiction. The proof that πq−ω(q) also lies in W ( j, k) is entirely similar.

It remains to consider the sites of insertion of ρq′ and σq′′ . We consider the latter,
assuming that σq′′ is inserted outside W ( j, k). Again we may restrict attention to the
column coordinate q�, noting from Lemma 6.1 that σq′′ is inserted at the site (sv, dw),
where dw = q� +β(q�)−1. By a similar argument to the above, we deduce that f (ql) <
w(ql), and again contradicts the fact that β(q�) is positive. The proof that ρq′ is also
inserted in W ( j, k) is entirely similar.

We refer to the sequence (πq1 , . . . ,πq�
) as a track of length � associated to Ω, and to

each pair (πqi , πqi+1) as a segment. The source and target of the track are the sites of
insertion of the source element ρq′ and target element σq′′ respectively.

It is obvious that any track length � must satisfy 1 ≤ �≤m, and that the total number
of tracks associated to Ω cannot exceed k. Any ρx which fails to be a source element
must coincide, as an entry in τ under the respective insertions, with some σy which fails
to be a target element. They are therefore canonically paired, and each pair may be
construed as defining a track of length zero. With this convention, the total number of
tracks is exactly k.

We deem a segment (πqi , πqi+1) to have type [y:x], where y = α(π(qi)) = ψ(π(qi+1))
and x = β(qi) = ω(qi+1). This notion is suggested by considering the matrix π as
an array of dots positioned at the centres of the cells (π(q), q), and interpreting each
segments as a vector of slope y/x connecting the two dots. For small values of k the
types [y : x] vary gently along any track; as the codimension increases, the possibility
grows of more erratic variation within the bounds

1 ≤ |α(π(qi))|, |β(qi)|, |ψ(π(qi+1))|, |ω(qi+1)| ≤ k. (6.5)

The type of a track is obtained by concatenating the types of its individual segments, and
quantifies aspects of its appearance within the matrix π. When consecutive segments
have the same type, as often happens in longer tracks, we may use exponential notation
as an abbreviation; thus, for example, [1 : 2][1 : 2][1 : 1][1 : 1][2 : 1] becomes [1 : 2]2[1 :
1]2[2 : 1], or even 142 : 2213. The latter highlights certain similarities with types such
as 124 : 241 = [1 : 2][2 : 2]3[2 : 1] or 1322 : 2312 = [1 : 2]3[2 : 1]2, but obscures differences
amongst individual segments.

We are now in a position to describe the global structure imposed on π by the exis-
tence of a synonymity Ω. This will help us to analyse the cases of small k in subsequent
sections.

Consider the partition (6.2) of π into superblocks, and write w(Ω) for the matrix
obtained by deleting all blocks of class V , X and Y . We call w(Ω) the track matrix
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of the synonymity, noting that it retains the original decomposition into constituent
difference blocks. Track matrices play a major role in the remainder of our work, and
we need to consider their basic properties. We retain the notation of Theorem 6.4.

Proposition 6.5. For any synonymity Ω :

(1) w(Ω) is a u-permutation matrix for some 1 ≤ u ≤ m, and its nonzero elements may
be partitioned into j tracks of positive length, where 1 ≤ j ≤ u;

(2) the track which intersects the first row of w(Ω) has its sink below its source;
(3) the permutation w(Ω) admits a synonymity whose track matrix is w(Ω) itself.

Proof. Since π is a permutation matrix, every row deleted in forming w(Ω) contains a
single nonzero entry, concentrated in the blocks of class V by virtue of Proposition 6.3;
the same remarks apply to the deleted columns, which are therefore equal in number.
Thus w(Ω) is u×u, for some 0 ≤ u ≤ m, and contains d nonzero entries; it is therefore
a permutation matrix. Since u = 0 only when the synonymity is equality, we may take
u ≥ 1. The partition of w(Ω) into tracks, of which there can be at most u, then follows
from Theorem 6.4, so proving (1).

Then (2) is an immediate consequence of our insistence that R ≺ S.
Theorem 6.4 also implies that the original π-synonymity Ω is realized on the grid

of w(Ω). It may be expressed as

Ins(ρ∗; R∗, C∗; w(Ω)) = Ins(σ∗; S∗, D∗; w(Ω)), (6.6)

where ρ∗ and σ∗ are the j-permutations obtained from ρ and σ by restriction to the
sources and targets of the tracks in w(Ω), and (R∗, C∗) and (S∗, D∗) are the (u + 1)-
multigrids obtained from (R, C) and (S, D) by deleting the appropriate sites. The result
is therefore a w(Ω)-synonymity with track matrix w(Ω), confirming (3).

When we consider w(Ω) as a permutation matrix in its own right, the shift coordi-
nates of the synonymity described by Proposition 6.5(3) are, of course, in agreement
with those of Ω for the corresponding rows and columns of π; we shall use this fact
without further comment below, since it is an important aid to simplifying notation.

Any u-permutation which is the track matrix of some synonymity (not necessarily
of dimension m or codimension k) we call a j-track matrix of dimension u, where j is
the number of tracks. When u is large compared with j such matrices are rare in Su, and
exhibit distinctive distributions of nonzero elements. We defer examples until the next
two sections, where the structure of 1- and 2-track matrices will be determined.

Observe that a matrix may occur simultaneously as both an i-track matrix and a
j-track matrix for distinct values of i and j; for example ι2 is both the 1-track matrix
of the ι2-synonymity (ι1; 0, 0)∼ (ι1; 2, 2), and the 2-track matrix of the ι2-synonymity
(η2; 0, 0, 2, 2) ∼ (η2; 2, 2, 0, 0).

We say that a j-track matrix ζ is composite if it admits a nontrivial standard parti-
tioning into blocks which are either zero, or else are themselves track matrices; we insist
that each of the j tracks of ζ appears in its entirety in one of the constituent blocks. If
ζ is not composite, we call it prime. Thus every composite ζ has a unique primary
decomposition into prime factors ζ(i), each of which is a ji-track matrix for some ji
satisfying ∑i ji = j.

For all symmetries d in D4, we note that w(Ω)d agrees with w(Ωd) and that ζd has
prime factors ζ(i)d for 1 ≤ i ≤ t.
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7. Codimension 1

We now reveal the structure of S in codimension 1. The arguments are simple and
explicit, but we use the methodology we have introduced above in order to prepare the
ground for subsequent sections. We continue to work with a generic m-permutation π.

We begin by considering a typical π-synonymity Ω, which in this case is between
triples of the form (ι1; r, c) and (ι1; s, d), with r < s; we may assume that it is non-
degenerate, since if r = s (for example), then c = d by Proposition 5.1 and Ω is the
identity. The pattern of Ω will therefore be one of

(+−, +−), (+−,−+), (7.1)

which differ by the action of cr in D4.
We shall find it helpful to express track matrices diagramatically, using lines of

appropriate slope to indicate tracks of nonzero elements, and arrows to indicate their
direction from source to target.

Proposition 7.1. The 1-track matrices corresponding to the patterns 7.1 are

(
���

)
and

(
���

)

respectively.

Proof. By Proposition 6.5, we have that w(Ω) is a u-permutation matrix (for some
1 ≤ u ≤ m) whose elements make up a single track. For the pattern (+−, +−), we
deduce that the forward shift coordinates α(p) and β(q) are both 1 for 1 ≤ p, q < u; so
the track has type [1:1]u. Similarly, for (+−,−+) we have that α(p) is 1 for 1 ≤ p < u
and β(q) is −1 for 1 < q ≤ u; so the track has type [1:−1]u. The matrices are therefore
as indicated.

Corollary 7.2. For any m-permutation π, all active 1-triples are canonical.

Proof. Suppose that (ι1; r, c) is noncanonical, so that a synonymity (ι1; r, c)∼ (ι1; s, d)
exists with r < s. Its track matrix is described by Proposition 7.1, ensuring that πr,c = 1
or πr,c−1 = 1 respectively. Therefore (ι1; r, c) is inactive, as required.

The proof of Corollary 7.2 illustrates how we may often use identical arguments to
deal with the synonymities Ω and Ωcr. It is analogous to the second half of the proof of
Proposition 3.1; but Corollary 7.2 is false in all higher codimensions.

Theorem 7.3. For any m-permutation π in S , we have

t1(π) = m2 + 1.

Proof. Corollary 7.2 combines with Proposition 5.2 to yield Act1(π) = Can1(π). The
formula follows from Proposition 5.3.
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We conclude this section with remarks about the downward structure of S in codi-
mension 1. If π is partitioned into blocks so that each block is either ιk, ηk or zero, we
call this a partition of π into entities. If a partition into entities is not a strict refinement
of some other partition into entities, we call it maximal. We invite the reader to verify
that every permutation matrix π admits a unique maximal partition E(π) into entities,
and that there is an obvious bijection between the nonzero blocks of E(π) and the ideal
U1(π). Clearly the number of such blocks is between 1 and m; we therefore assert that
1 ≤ u1(π) ≤ m. It is easy to see that these bounds are attained when m > 3.

8. Codimension 2

We begin our analysis of the codimension 2 case by following the lead of (7.1), and
classifying the patterns of codimension 2 π-synonymities Ω for an m-permutation π.

We assume initially that such a synonymity (ρ; R, C)∼
π

(σ; S, D) is nondegenerate,

in that no element of R, C, S, and D is repeated, and neither R and S nor C and D have
any element in common. Then ℘(Ω) is one of

(+−+−, +−+−) (A1), (+−+−, ++−−) (B1),

(+−−+, +−+−) (A2), (+−−+, ++−−) (B2),

(+−−+,−++−) (A3),

(+−−+, +−−+) (A4), (++−−, ++−−) (C),

(8.1)

or their translates by d in D4; as in codimension 1, the action of d must be followed by
an interchange of signs whenever Sd ≺ Rd . We note that each of the patterns (A) has a
caesura in the form of a zero shift coordinate between the middle symbols in both rows
and columns. The patterns (B) have a caesura in the row direction only, whilst (C) has
a caesura in neither direction.

As explained in Section 5, our goal is to reduce ϒ2,m to Can2(π) by discarding the
lefthand triples of nontrivial synonymities (which are therefore noncanonical). We use
the classification (8.1) to progress from simpler cases to the more complex, recording
such synonymities as we find them, and taking care to avoid those whose lefthand triples
have already been identified. The procedure may be made algorithmic, but we content
ourselves with enumerating the results.

We began this process in Proposition 5.2, by proving that an inactive triple is always
lefthand. The track matrix of the relevant synonymity is 1×1, and consists of a single 1.
In codimension 1, Corollary 7.2 confirms that no further lefthand triples are associated
with 1-tracks of greater length, and we extend this to codimension 2 and patterns (A)
in Corollary 8.2 below. It is precisely because these simplest synonymities account for
almost all noncanonical triples that we were led to introduce the subset Act2(π) ⊆ ϒ2,m

in Section 5. The situation for patterns (B) is more delicate, and we show in Corollary
8.4 that all but m − 1 of the associated lefthand triples have already been identified
by the restriction to Act2(π). Pattern (C) is the most complex case, in which every
synonymity involves a previously unrecorded lefthand triple. Although small, we shall
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see in Corollary 8.6 that the number of these varies between 0 and m−1, depending on
the permutation π. We deal with degenerate versions of all patterns (8.1) as they arise.

For each pattern we begin by studying the relevant 2-track matrices, which we
assume to be u × u. We determine the restrictions imposed by the patterns on the
types of their constituent tracks, and consider the choices available for the inserted
2-permutations; at most four are possible, as ρ and σ vary over ι2 and η2. After each
proposition we provide illustrative examples, and encourage readers to sketch the asso-
ciated matrices as an aid to maximizing understanding.

Proposition 8.1. The 2-track matrices corresponding to patterns (A) synonymities con-
sist of four difference blocks, and are composite; they have two prime factors, both of
which are entities.

Proof. Given any such synonymity Ω, the presence of the caesurae ensures that w(Ω)
consists of four blocks whose difference coordinates are ±1 in every case (or zero in
the case of a degeneracy). The forward shift coordinate α always takes the value 1 in
the upper two blocks, and ±1 in the lower two blocks, whereas β is ±1 in the left pair
and the right. The upper track therefore has type [1 :±1] j (where j may be zero or u
in the case of a degeneracy), and the lower track has type [±1 :±1]u− j. Thus w(Ω) is
composite, and has the stated structure; any of the four possible combinations for ρ and
σ may occur.

Corollary 8.2. There are no active synonymities of patterns (A) or their translates for
any m-permutation π.

Proof. This follows by applying the arguments of Corollary 7.2 to the upper track.

The proof of Proposition 8.1 notes how degeneracies such as {+−}+− simply
reduce the number of tracks to one (or zero!). The same is true for degeneracies such
as +{−+}−; but in the columns of (A1), the latter coincides with the degeneracy
+{+−}− in the columns of (B1). We have therefore already taken care of all such
degenerate examples of patterns (B), and so may insist that c2 < d1 in our discussion of
(B1) and (B2) below. The discussion is unaffected by remaining degeneracies such as
c1 = c2, as can be seen in Example 8.2 below.

Example 8.1. A (4123)-synonymity of pattern (A1) is given by

(η2; {1, 4}, {1, 2}) ∼ (η2; {4, 5}, {2, 5}),
since the insertions have common value (561234) (where the left- and righthand inser-
tions are over- and underlined respectively). The track matrix is (4123), and the upper
and lower tracks have types [1 : 1]2 and [1 : 1]0 respectively. The pattern (+{−+}−,
+{−+}−) is degenerate, and the synonymity is inactive. The righthand triple is canon-
ical.

To continue our analysis of patterns (B) and (C), we generalize the diagrammatic
portrayal of track matrices introduced in Section 7. We may assume by Proposition
6.5 that the uppermost track points downwards. We may further assume that it points
rightwards by applying cr whenever necessary; Proposition 7.1 exemplifies the ease
with which proofs may be adapted to allow for this symmetry.
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Proposition 8.3. The 2-track matrices corresponding to patterns (B) synonymities con-
sist of six difference blocks and are prime; those corresponding to (B1) have one of the
forms




������

���
���



 ,





���
���

������



 ,





���
������

���



 ,




������

���
���



 ,

and those corresponding to (B2) have one of the forms




������

�����	



 ,





���

��	
�����	





or their translates by rr.

Proof. Given any such synonymity Ω, the presence of the caesura ensures that w(Ω)
consists of six difference blocks P(a, b).

For pattern (B1) these have γ(a) = 1, and δ(b) = 1, 2, and 1 from left to right; the
condition c2 < d1 ensures that the block with δ(b) = 2 is nonempty, and therefore that
c2 < d1 −1. The forward shift coordinate α always has value 1, whereas β takes values
1, 2 and 1 from left to right, thereby creating segments of type [1 : 1] and [1 : 2]. All
four combinations for ρ and σ are possible within these constraints, and the first four
diagrams correspond to the pairs (ι2, ι2), (η2, η2), (η2, ι2), and (ι2, η2) respectively.
Each case is prime.

For pattern (B2), the difference blocks have γ(a) = 1 and −1, with δ(b) as before;
again c2 < d1 − 1. In this case α has value 1 in the upper three blocks and −1 in the
lower, with β as before, thereby creating segments of types [1:1] and [1:2] for the upper
chain and of types [−1 :1] and [−1 :2] for the lower chain. All four combinations for ρ
and σ are again possible, and the fifth and sixth diagrams correspond to the pairs (ι2, ι2)
and (η2, ι2); their translates under rr correspond to (η2, η2) and (ι2, η2) respectively.
Again, each case is prime.

Any translate of patterns (B1) and (B2) produces similar diagrams. We note in
particular that the parallel segments of the first four diagrams have type [1:−2] after cr,
[2 : 1] after tr and [−1, 2] after rr, and that the wedge of converging arrows in the final
two diagrams is reorientated by both cr and tr.

Care is required to interpret the diagrams of Proposition 8.3 correctly with respect
to the fringe effects at the boundaries of the difference blocks. Thus an arrow of type
[1 : 2] signifies a track which begins in a block with upper left corner either

(1 0 0 0
0 0 1 0

)

or
(0 1 0 0

0 0 0 1

)
. These two possibilities occur in pairs, one above the other, wherever the

tracks of type [1 : 2] are paired in the diagrams; the order in which they occur is deter-
mined by the choice of insertion. Similar remarks apply to the tracks of type [1 :−2]
and [±2:1].
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Example 8.2. A (415263)-synonymity of pattern (B1) is given by

(η2; {1, 4}, {1, 1}) ∼ (η2; {4, 7}, {7, 7}),

since the insertions have common value (51627384). The track matrix is (415263), and
the upper and lower tracks both have types [1:2]2. The pattern (+{−+}−, {++}{−−})
is degenerate, and the source of the lower track is active; even so, the source of the upper
is inactive, and so is the synonymity. The righthand triple is canonical.

Example 8.3. A (7651432)-synonymity of pattern (B2) is given by

(η2; {1, 8}, {1, 3}) ∼ (η2; {2, 4}, {6, 6}),

since the insertions have common value (987162543). The track matrix is (7651432),
and the upper and lower tracks have types [1 : 2]0 and [−1 : 1]2[−1 : 2][−1 : 1]2 respec-
tively. The synonymity is active, and the righthand triple is canonical.

We require the following corollary to Proposition 8.3.

Corollary 8.4. There are no active synonymities of pattern (B1) or its translates; syn-
onymities of pattern (B2) and its translates yield exactly m− 1 active lefthand triples
for each m-permutation π.

Proof. Since neither track of an active synonymity can begin with a segment of type
[1 : 1], the four diagrams of pattern (B1) in Proposition 8.3 are inactive unless c1 = c2.
Even with this degeneracy, one of the two tracks containing segments of type [1:2] must
begin with the submatrix

(1 0 0 0
0 0 1 0

)
, ensuring that the lefthand triple is always inactive. A

similar argument applies equally well after the application of cr. Applying rr reorients
both tracks upwards, and must be followed by an interchange of signs; the results are
the same as applying cr, up to reordering the diagrams. Applying tr creates vertically
oriented tracks, for which insertion at an inactive site is again unavoidable.

Turning to pattern (B2), the fifth diagram of Proposition 8.3 is inactive unless c1 =
c2 = q for some 1 ≤ q < m− 1 (where q �= m− 1 because c2 < d1 − 1). If π(q) <
π(q + 1), the upper track must pass through πq (and the lower track through πq+1),
thereby locating its source at πq, which is inactive. If π(q) > π(q+1), then the diagram
corresponds to the synonymity

(η2; π(q + 1), π(q)+ 1, q, q)∼
π

(η2; π(q + 1)+ 1, π(q), q + 2, q + 2), (8.2)

in which the source πq+1 of the upper track is clearly active. If the 1 in row π(q)+1 does
not lie in column q−1, then the source (π(q)+1, q) of the lower track is also active. If
the 1 does lie there, it must be the uppermost element of a maximal antiidentity ηi for
some 1 ≤ i ≤ q−1, and the associated synonymity

(η2; π(q + 1), π(q)+ i+ 1, q− i, q)∼
π

(η2; π(q + 1)+ 1, π(q), q + 2, q + 2) (8.3)

is active, and corresponds to the sixth diagram of pattern (B2). In either case, we have
located an active lefthand triple.



80 N. Ray and J. West

Applying rr to these arguments merely interchanges the role of the fifth and sixth
diagrams, and reveals no new synonymities. There are no active synonymities at all
under tr, for similar reasons to those for pattern (B1).

If we apply cr, however, we find synonymities in which the convergent tracks point
to the left, and η2 and ηi are replaced by ι2 and ιi respectively. These are active and
lefthand when π(q) < π(q + 1), and inactive when π(q) > π(q + 1). Each pair of ad-
jacent columns of π therefore corresponds to precisely one active lefthand triple, and
there are m−1 such pairs in all.

The righthand triple of (8.2) is only canonical when both tracks terminate in column
q + 1; otherwise it doubles as the active lefthand triple of the synonymity associated
with the adjacent columns q + 1 and q + 2 ! In the latter situation, the upper and lower
tracks have at least one segment of type [1:2] and [−1:2] respectively. Similar remarks
apply to (8.3). It is instructive to reexamine Examples 8.2 and 8.3 in the light of this
proof.

The existence of the active synonymities identified by Corollary 8.4 depends on the
horizontal wedge of converging arrows in the fifth and sixth diagrams. The analysis of
pattern (C) synonymities is quite different because both tracks are oriented downwards.

We consider π synonymities (ρ; R, C) ∼ (σ; S, D) where r1 ≤ r2 < s1 ≤ s2 and
c1 ≤ c2 < d1 ≤ d2, noting that the central inequalities are strict because a degeneracy
returns us to patterns (B). The absence of caesurae ensures that the track matrix is
a contiguous submatrix of π, consisting of nine difference blocks in which the shift
coordinates α and β take values 1, 2 and 1 as we pass down the three rows and along
the three columns respectively. For convenience, we label the heights of the blocks by
h1 = r2 −r1, h2 = s1 −r2 and h3 = s2 −s1, and the widths by w1 = c2−c1, w2 = d1−c2

and w3 = d2 −d1. Degeneracies in which one or more of h1, h3, w1 and w3 are zero do
not affect the arguments, as can be seen in Example 8.4 below.

Our description of the associated chain matrices breaks with earlier practice, and
considers only those corresponding to active synonymities. We encourage readers to
sketch the diagrams for themselves, armed with the philosophy that pattern (C) displays
codimension 2 phenomena in their purest form.

Proposition 8.5. The 2-track matrices of active synonymities of pattern (C) are prime;
the synonymities take one of the forms

(1) (η2; R, C)∼ (η2; S, D) with tracks of type 1h12h−1 :2w−11w3 and 2h−11h3 :1w12w−1,

(2) (η2; R, C) ∼ (ι2; S, D) with tracks of type 1h12h−1 :2w−1 and 2h−11h3 :1w12w1w3 ,

or the transpose of (2), where h2 = 2h and w2 = 2w in (1), h2 = 2h and w2 = 2w+1 in
(2), and h2 = 2h + 1 and w2 = 2w in its transpose.

Proof. It follows from the Replication Lemma 6.1 that πr1,c1 = ρ1,1, and we deduce that
ρ = η2 if the synonymity is active. This ensures that the sources of the upper and lower
tracks are (r1, c2) and (r2, c1) respectively. We consider the two possibilities for σ.

When σ = η2, the upper and lower tracks have targets (s1, d2) and (s2, d1) respec-
tively, because the tracks cannot cross. The restrictions on α and β then ensure that the
upper track has type 1h12h−1 : 2w−11w3 , and the lower has type 2h−11h3 : 1w12w−1. The
result is prime.
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When σ = ι2 we must consider two further cases, distinguished by the upper track
having target (s1, d1) or (s2, d2). In the former situation the central difference blocks
has height 2h and width 2w + 1, so that the upper track has type 1h12h−1 : 2w−1 and
the lower has type 2h−11h3 : 1w12w1w3 . The latter situation is similar, and is obtained
by transposition; the upper track has type 1h12h1h3 : 2w−11w3 and the lower has type
2h−1 :1w12w−1. Both are prime.

Translates of active pattern (C) synonymities by cr are also active (using identical
arguments), but translates by rr have both tracks oriented upwards, and are always
inactive.

In using our condensed notation for track types, we note that the sums of the ex-
ponents on either side of the : sign must agree. Proposition 8.5 therefore imposes con-
straints such as h1−w = w3−h in (1), w−h1 = h in (2), and h−w1 = w in its transpose.
The exact configuration of the individual segments of the two tracks depends on value
of these quantities. In (1), for instance, the upper track has type






[1:2]h1 [2:2]w−h1−1[2:1]w3 , if h1 −w < 0,

[1:2]h1−1[1:1][2:1]w3−1, if h1 −w = 0,

[1:2]w−1[1:1]h1−w+1[2:1]h−1, if h1 −w > 0.

We have no need to elaborate on these details, but hope that our next two examples will
imbue readers with sufficient confidence to follow the analysis to its conclusion.

We extend our diagrammatic conventions by marking segments of type [2 : 2] with
a double arrowhead, and creating extra symbols by writing k < j′ < k′ for any 1 ≤ j <
k ≤ 9.

Example 8.4. An active (61823457)-synonymity of pattern (C) is given by

(η2; {1, 5}, {1, 1}) ∼ (η2; {9, 9}, {5, 9}),
since the insertions have common value (61821′34579). The upper and lower tracks
have types [1:2][1:1]3[2:1] and [2:2] respectively. The pattern (++{−−}, {++}−−)
is degenerate, and the righthand triple is canonical.

Example 8.5. An active (3′2′1′864927153)-synonymity is given by

(ι2; {1, 2}, {12, 13}) ∼ (η2; {11, 12}, {2, 6}),
since the insertions have common value (5′4′3′1′862′4927153). The upper and lower
tracks have types [1 :−2][2 :−2][2 :−1]3[1 :−1] and [2 :−1][2 :−2]2 respectively. The
pattern (++−−,−−++) is the translate of (C) by cr, and the righthand triple is not
canonical.

The track matrices for these examples have diagrams





���
���




�

�
��

���



 and





���
�����









�

��




�

�
�

��

�
���
�

���





,
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illustrating the downward pointing, lens-shaped configurations which characterize ac-
tive synonymities of pattern (C). It is worth comparing these with the corresponding
permutation matrices





0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0




and





0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0





.

We require the following corollary to Proposition 8.5.

Corollary 8.6. Synonymities of pattern (C) and its translates yield j active lefthand
triples for each m-permutation π, where j depends on π and satisfies 0 ≤ j ≤ m−1.

Proof. The initial segment of the upper track of any such synonymity Ω has type [1:±2].
We begin with the case [1 : 2], and consider the requirements for a particular πq

to be the source element of an upper track. If it is, then r1 = π(q) and c2 = q− 1.
Following the track in the manner of the Replication Lemma 6.1, we must observe a
sequence of 1s forming segments of type [1 : 2] (possibly changing to [1 : 1]) until the
shift coordinate α increases from 1 to 2. This determines r2 and c1, since the row
skipped at the changeover is r2 + 1, and r2 + 1 = π(c1); we may therefore read off
the entire lefthand triple from πq, and determine Ω by inspection. We must also have
π(q−1) > π(q), since πq−1 will belong to the lower track.

The case [1 : 2] corresponds to the situation π(q− 1) < π(q), in which πq−1 is the
potential source element; we repeat the procedure above, under the action of the sym-
metry cr. In either case the requirements for a track may fail at any stage, so that
columns q−1 and q yield no such Ω. We therefore have at most m−1 active lefthand
triples in all.

Example 8.6. To illustrate this proof, we identify the active synonymities of pattern (C)
for the permutation π = (2413). We deal with each adjacent pair of columns in turn,
and find two synonymities in all.

We note first that π(1) < π(2), so the candidate for the initial segment of an upper
track has type [1 :−2], with source (2, 3). Attempting to follow the track to the left we
find no more 1s, forcing the target to be (4, 1). This involves skipping row 3, whose 1
in column 4 therefore lies in the lower track. The source of this track must be (2, 5),
and attempting to follow this track to the left violates the constraints of Proposition 8.5.

Secondly, we have that π(2) > π(3), so the candidate for the initial segment has type
[1 : 2], with source (1, 2). Again there is an immediate change from shift coordinate 1
to shift coordinate 2, so we look for a lower track with source (1, 1). This leads us to a
2-track matrix (π itself, in fact) which corresponds to the active synonymity

(η2; {1, 1}, {1, 2}) ∼ (η2; {5, 5}, {4, 5}).
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Thirdly, we have that π(3) < π(4), so the initial candidate is [1 :−2], with source
(1, 5). There are now two segments before a row is skipped, namely row 3; as in the first
case, the lower source must therefore be (2, 5). Once more π is revealed as a 2-track
matrix, and corresponds to the active synonymity

(ι2; {1, 2}, {5, 5}) ∼ (ι2; {4, 5}, {1, 1}).
In example 8.6, π functions as a 2-track matrix in two distinct ways; this is unusual,

and we believe the case to be unique up to degeneracies. Although 2-track matrices of
pattern (C) are highly constrained, however, they are not uncommon, as shown by the
example ι2, for which h = w = 1 and h1 = h3 = w1 = w3 = 0.

We may now prove our main result.

Theorem 8.7. For each m-permutation π, we have t2(π) is given by

1
2

(
m4 + 2m3 + m2 + 4m+ 4−2 j

)

for some 0 ≤ j ≤ m−1; moreover, if m ≥ 5 then every possible value of j is realized by
some choice of π.

Proof. In Corollaries 8.4 and 8.6 we have enumerated triples in Actk(π) which are not
canonical. The formula then follows by modification of Proposition 5.3.

To conclude, we must exhibit m-permutations realizing the promised values of j;
since our construction is inductive we begin with the case m = 5. We may readily check
that the permutations ι5, (14523), (14253), (41253), and (25314) have j values 4, 3, 2,
1, and 0 respectively, and we note in addition that the first three of these matrices have
1 in position (1, 1). By our remarks above, we may therefore construct 6-permutations
with j values 5, 4, and 3, and with 1 in the (1, 1) position. If we similarly enlarge
the last two 5-permutations, we obtain (152364) and (136425), whose j values may be
checked to remain unaltered at 1 and 0. Rotating the second of these through 3π/2 (via
the symmetry pr = tr · rr) yields (364251) with j value 0, which is unchanged by the
insertion of 1 at site (1, 1). A final check reveals that (152634) has j value 2.

We may therefore express our inductive assumption in two parts; firstly, that for
each m ≥ 7 and 1 ≤ i ≤ m− 1 there is an (m− 1)-permutation π(m− 1, i) whose j
value is i and which has 1 in the (1, 1) position, and secondly, that there is an (m−1)-
permutation π(m− 1, 0) whose j value is 0, which has 1 in the (1, 1) position, and
whose j value is unaltered by applying pr and inserting 1 at site (1, 1). We complete
the inductive step by defining

π(m, i+ 1) = Ins(1; 1, 1; π(m, i)) if 0 ≤ i ≤ m,

and π(m, 0)= Ins(1; 1, 1; π(m, 0)pr), needing only to confirm that the j value of π(m, 0)
remains 0 after applying pr and inserting 1 at (1, 1). This fact follows by inspection of
the original case (136425) (when m = 6), and by recording the spacing of the nonzero
elements which are inserted at each subsequent step.

We note that when m = 2 or 3, then j takes the single value 1 or 2 respectively, and
that when m = 4, then j takes one of the values 2 or 3 (as supported by Example 8.6).
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9. The General Case

We conclude with a few general remarks about the codimension k structure of S when
k > 2, establishing numerical bounds of the form hk(π) ≤ tk(π) ≤ ak(π) and applying
the Robinson-Schensted correspondence to give a more accurate prescription for tk(ιm).

In Proposition 5.3 we obtained an explicit formula for a2(π). We shall not attempt
to describe ak(π) in such detail for any larger k, but there are still two important points
to make. The first is motivated by the fact that both a1(π) and a2(π) depend only on m.

Lemma 9.1. For all m-permutations π, we have ak(π) = ak(ιm).

Proof. By definition, the matrix π is obtained from ιm by permuting the rows. This
permutation acts on the horizontal lines of the grid G(ιm) (line p is mapped to line π(p)
for p ≤ m, and line m+1 is fixed), carrying it to G(π) in such a way as to map inactive
sites to inactive sites. Each ιm-active triple (ρ; R, C) is therefore transformed into a
π-active triple by the action induced on R, setting up a bijection between Actk(ιm) and
Actk(π).

Our second point concerns ak(π) for k > 2.

Proposition 9.2. For any m-permutation π, the value of ak(π) is polynomial in m of the
form

1
k!

(
m2k + k(k−1)m2k−1)

modulo lower powers of m.

Proof. We follow the proof of Proposition 5.3 precisely, considering k-triples (ρ; R, C).
If we select any k-element subset of the m2 + 1 active sites, we obtain a unique active
triple whenever neither R nor C contains repeated elements; for we insist that the k
nonzero elements are inserted at the chosen sites. However, if exactly one row or exactly
one column is repeated, then inserting the corresponding adjacent rows or columns of
π in either order yields an active triple, and we must count the selection once more to
take account of this. We have then enumerated

(
m2 + 1

k

)
+(2m−1)

(
m−1

2

)(
m2 −1
k−2

)
(9.1)

active triples, and may incorporate the remainder by similar (but increasingly compli-
cated) considerations. At each stage a polynomial function of m is added, and none has
degree exceeding 2k−2. Our result then follows by evaluating the two terms of highest
degree in (9.1).

It is important to compare this formula with the cruder bound obtained in (5.1).
Here too the coefficients of the powers of m are functions of k, and we may only use
Proposition 9.2 to approximate ak(π) when similar restrictions are placed on the value
of k with respect to m.

We now turn to the problem of bounding Cank(π) from below, assuming from the
start that 2k2 ≤ m.
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For each 1 ≤ h ≤ m, we define the subset Eh(π) ⊂ G(π) to consist of those sites
(i, j) which satisfy

π(h)− k + 1≤ i ≤ π(h) and h− k + 1≤ j ≤ h + k; (9.2)

these are the 2k2 sites (or less, near the boundary) which are closest to, and above, the
nonzero element ππ(g),g. If the nonzero elements of π are widely scattered then the
sets Eh(π) will be disjoint, and their union E(π) will contain 2k2 sites in each row and
column of G(π) which is sufficiently far from the boundary. If, on the other hand, the
nonzero elements of π occur in clusters (as in the identity, for example), then the sets
Eh(π) will overlap, and E(π) will be of lesser cardinality. In either event, we refer to
the sites in E(π) as excluded.

We label a π-active triple (ρ; R, C) as π-hyperactive (or hyperactive, in the usual
situation where π is understood) whenever there is at most one value of g, with 1 ≤ g ≤
k, for which the site (rρ(g), cg) is excluded. We write Hypk(π) for the subset of Actk(π)
consisting of all hyperactive triples, and denote its cardinality by hk(π).

Proposition 9.3. For any choice of π, we have

Hypk(π) ⊆ Cank(π)

as subsets of ϒk,m.

Proof. Let (ρ; R, C) be a π-hyperactive triple. We assume that it takes part in some
synonymity Ω, whose tracks must have segments in which the absolute value of each
component is less than or equal to k by appeal to (6.5). At most one element of ρ
can be a source, namely ρ(g) where (rρ(g), cg) is the single permissible excluded site.
Therefore w(Ω) is either empty (so Ω is trivial), or else consists of a single track,
and is an entity by Proposition 6.5. In other words, the site (rρ(g), cg) must have the
form (π( j)+ ε, j + δ) for some 1 ≤ j ≤ m and 0 ≤ ε,δ ≤ 1; but (ρ; R, C) is active by
definition, so the only two possibilities are those with ε = 1. In both these cases Ω
decreases R lexicographically, and (ρ; R, C) must be canonical, as required.

By construction, Hyp1(π) and Act1(π) coincide for any m-permutation π; so when
k is 1, Proposition 9.3 may be considered to be a restatement of Corollary 7.2.

In order to obtain a significant estimate for hk(π), it is helpful to introduce two
distinct procedures for enlarging the set of excluded sites. They both depend on our
initial assumption that 2k2 ≤ m, and increase the cardinality of E(π) to 2k2m. For
the first procedure we adjoin excluded sites to each row of G(π) in turn, until every row
except the last contains precisely 2k2 elements; we leave the last row untouched, with no
excluded sites. For the second procedure we adjoin excluded sites to each nonextremal
column of G(π) in turn, until every such column contains exactly 2k2 elements; we
share the remaining 2k2 extremal sites between the first and last columns (equally, if we
enjoy symmetry). In either case we may make the adjunctions at random, or else more
systematically by using the lexicographic ordering of the sites.

Proposition 9.4. For any m-permutation π, the value of hk(π) is bounded below by a
polynomial of the form

1
k!

(
m2k + k(k−1)m2k−1)
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modulo lower powers of m.

Proof. We enumerate disjoint sets H� of hyperactive triples (ρ; R, C), for 1 ≤ � ≤ 4.
To construct H1 and H2, we first enlarge E(π) by either of the above procedures.

For each triple in H1 we then select a k-element subset of the m2 − 2(k2 − 1)m + 1
nonexcluded sites; if neither R nor C contains repetitions, we fix ρ by insisting that its
nonzero entries are inserted at the selected sites, otherwise we choose a permissible ρ
at random. For each triple in H2 we select single active but excluded site together with
a (k−1)-element subset of the nonexcluded sites, and choose ρ by the same process as
before. The total cardinality of H −1 and H2 is therefore

(
m2 −2(k2 −1)m+ 1

k

)
+ 2(k2 −1)m

(
m2 −2(k2 −1)m+ 1

k−1

)
. (9.3)

To construct H3, we enlarge E(π) by the first of the above procedures. For each triple
in H3 we then select a pair of nonexcluded sites from any one of the first m rows, and a
(k−2)-element subset from the nonexcluded sites in the unused m−1 rows. To fix ρ,
we consider whether the resulting R and C have already featured in H1; if so, we choose
the remaining possible ρ, and if not, we choose either of the two possible ρs at random.
The cardinality of H3 is therefore

m

(
m+ 1−2k2

2

)(
m2 −2k2m+ 2k2−1

k−2

)
. (9.4)

To construct H4, we enlarge E(π) by the second of the above procedures. For each
triple in H4 we then select a pair of nonexcluded sites from any one of the nonextremal
columns, and a (k−2)-element subset from the nonexcluded sites in the unused m−2
columns. Fixing ρ as in H3, we obtain the cardinality of H4 as

(m−1)
(

m+ 1−2k2

2

)(
m2 − (2k2 + 1)m+ 2(2k2−1)

k−2

)
. (9.5)

Combining (9.3), (9.4), and (9.5), we deduce that the cardinality of ∪4
�=1H� is polyno-

mial in m, and of the required form.

We may combine our estimates for tk(π) in the following fashion.

Corollary 9.5. For any m-permutation π, we have

tk(π) =
1
k!

(
m2k + k(k−1)m2k−1)+ O(m2k−2)

when k is sufficiently small by comparison with m.

Proof. Combine the bounds hk(π) ≤ tk(π) ≤ ak(π) with Propositions 9.2 and 9.4.

We note in passing that Proposition 9.4 provides the lower bound

1
2

(
m4 + 2m3 −195m2−400m+ 192

)
< h2(π)
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for m > 7. This should be compared with Proposition 5.3 and Theorem 8.7.
We conclude by explaining how the value of tk(ιm) may be computed from the

Robinson-Schensted correspondence [12], which establishes a bijection between per-
mutations π of dimension d and ordered pairs (P, Q) of standard Young tableaux hav-
ing order d and shape the same. Under this correspondence, the length of the longest
increasing subsequence of π is encoded as the number of columns in the tableaux. We
therefore obtain a bijection between Tk(ιm) and the set of pairs of tableaux having order
m+ k and m or more columns.

Proposition 9.6. The value of tk(ιm) is a polynomial of the form

1
k!

(
m2k + k(k−1)m2k−1)

modulo lower powers of m.

Proof. We first suppose that k < m, and let t ′k be the number of permutations in Tk(ιm) for
which ιm is the largest identity submatrix; by Robinson-Schensted, these permutations
correspond to pairs of standard Young tableaux of order m + k with m elements in
the first row. But according to the classic formula of Frame, Robinson, and Thrall
[4] there are (m + k)!/Lλ such tableaux, where λ is the partition of k provided by the
remaining rows, and Lλ denotes the product of all hook lengths in the initial diagram.
In consequence, we have

t ′k = ∑
λ

(m+ k)!2/L2
λ. (9.6)

Applying the same considerations to the entire permutation group Sk, we deduce that

∑
λ

1/H2
λ = 1/k!, (9.7)

where Hλ denotes the product of the hook lengths in the appropriate diagram of order
k. Thus

Lλ = (m+ d0)(m−1 + d1) · · · (m− r + dr)(m− r−1)!Hλ,

where the diagram for λ has columns of length d0 ≥ d1 ≥ ·· · ≥ dr, with ∑di = k. For
each λ we therefore have

(m+ k)!/Lλ =
( k

∏
j = −r

j �= di−i

(m+ j)
)
/Hλ

= (mk + k(k−1)mk−1/2 + · · ·)/Hλ (9.8)

where the remaining summands are smaller powers of m. Combining (9.6), (9.7), and
(9.8), we deduce that t ′k is a polynomial of the form (m2k + k(k−1)m2k−1)/k! modulo
lower powers of m. A parallel analysis of permutations with largest identity submatrix
ιm+s (for any 1 < s ≤ k) shows that they are enumerated by a polynomial in m of degree
2(k− s).

Whenever k ≥ m the extra terms introduced are also lesser powers of m, and the
result follows.
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A more detailed investigation along these lines is possible, and asymptotic formulae
for various related quantities have been obtained by Regev [10]. As usual, Proposition
9.6 only provides a useful approximation when k is suitably small by comparison with
m.

The importance of invoking the Robinson-Schensted correspondence is clear in
codimension 2, for which our analysis in Theorem 8.7 confirms that t2(π) attains its
minimum value when π is ιm (amongst other possibilities). However, it is extremely
interesting to observe from [15] (as amplified in [2]) that this is no longer the case for
tk(π) when k ≥ 3; for example t3(ι4) = 2,279, yet t3(1324) = 2,278. Caution is there-
fore required in placing Proposition 9.6 in an appropriate context, although it remains
our only method for precise calculation of any Tk(π) for k > 2.
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