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Abstract

The embedding theorem of Takens [23], and its extensions, have provided
the theoretical underpinning for a wide range of investigations of time series
derived from nonlinear dynamical systems. The theorem applies when the
dynamical system is sampled uniformly in time. There has, however, been in-
creasing interest in situations where observations on the system are not uniform
in time, and in particular where they consist of a series of inter-event (‘inter-
spike’) intervals. Sauer [17] has provided an embedding theorem for the case
where these intervals are generated by an integrate-and-fire mechanism. Here
we prove several embedding theorems pertaining to non-uniform sampling. We
consider two situations: in the first, the observations consist of the values of
some function on the state space of the system, with the times between suc-
cessive observations being given by another function—the sampling interval
function; in the second, the sampling times are generated in the same way,
but now the observations consist only of the intersample intervals. We prove
embedding theorems both when the sampling interval function is allowed to
be fairly general, and when it corresponds to integrate-and-fire sampling. We
point out that non-uniform sampling might lead to better reconstructions than
uniform sampling, for certain kinds of time series.

1 Introduction

Devising a dynamical system to model some time-evolving physical (or biological or
chemical) phenomenon involves specifying a suitable set to be the state space of the
system, and devising rules that govern the dynamics—that is, how the state changes
with time. If the physics of the process is well understood it may be possible to write
down the dynamical system more or less from first principles, without much need
for observational data (except perhaps to fix parameters). In other circumstances
we may be much less clear about the underlying physics: we might suspect that the
system is governed by (for example) a set of differential equations, but not know
what these are; we may even be uncertain what dynamical variables the equations
involve. On the other hand we may have available a quantity of experimental data
relating to how the system is observed to change through time; can we use this data to
build a model dynamical system? Approaches to doing this, particularly relevant to
situations where the behaviour is nonlinear, were described in the early 1980’s [10, 23],
and have since become widespread.



Many such constructions (often called ‘reconstructions’) of dynamical systems
from experimental data employ the method of delays, in which a time series of obser-
vations (often of just one quantity) is used to make a sequence of delay vectors, which
are then treated as substitutes for the states of the system under study. Takens [23]
showed that the approach is valid for a broad class of dynamical systems, and opened
the gate to a flood of applications, which have included dimension estimation, pre-
diction, noise reduction, and control [7, 9]. Extensions to Takens’s theorem have also
appeared [18, 20, 21].

In the basic situation considered by Takens, the system is finite dimensional and
its dynamics governed by a smooth flow (essentially, by a set of ordinary differential
equations). This clearly represents a wide class of systems (including some, such as
certain fluid flows, where the state space is infinite-dimensional, but the motion is
confined to a finite dimensional subset). The data are assumed to be generated by
observing the system at regular intervals: at each of the times 0, 7', 27", ... a measure-
ment is made on the current state; the measurement produces the value of some fixed
function on the state space—the function corresponding to the measurement proce-
dure. Takens allows this function to be arbitrary except that it must be smooth.
Many experimental protocols do indeed fit this picture, but not all: one fairly com-
mon case that does not is where the data consist, not of a series of values measured
at uniformly spaced times, but of a series of time intervals between events. One moti-
vating example is neurobiological: in neuronal interactions information is apparently
encoded in the frequencies of pulse trains, while the amplitude of the pulses seems
to contain little or none of the information. Thus if we observe the neuronal circuit,
the relevant measurements are a series of inter-pulse intervals. Can we use this kind
of information to build a dynamical system model, and if so, how is it related to the
original system?

These questions were addressed by Sauer [16, 17], who retained the finite dimen-
sional flow assumption for the underlying dynamical system, but replaced the regular
evaluation of a measurement function by a mechanism for generating a sequence of
inter-event intervals (specifically an integrate-and-fire mechanism, described in more
detail below). Sauer showed that delay vectors of the inter-event (or ‘interspike’)
intervals can be used, in a similar way to the uniform sampling case, to construct a
model of the system. Such interspike interval vectors have since been applied in a
number of areas [2, 1, 3, 14, 12, 22].

Racicot and Longtin [13] studied numerically the predictability of time series of
interspike intervals generated by a range of neuron models driven by deterministic
systems—integrate-and-fire is the simplest of these models. The ability to predict is
closely related to the existence of a reconstruction: Racicot and Longtin thus raise
the question of how generally it is possible to recover dynamical information from in-
terspike intervals, and more specifically, what sorts of interval generating mechanisms
allow reconstructions to be made.

In this paper we shall consider a broad class of interspike interval systems, and
show that they can be reconstructed using the method of delays. The basic assump-
tion is that the intervals (like the dynamics) are deterministic: the length of each
interval is determined by the state of the system when the interval begins. The
integrate-and-fire mechanism is an example of this class, but there are many others,
and in fact we shall not be explicit about the mechanism itself, concentrating instead
on the relationship (mapping) between states and intervals. Assuming this relation-



ship is sufficiently well behaved, we shall prove a theorem analogous to Takens’s, for
the interspike interval case.

Also described in this paper is an intermediate type of system: here we retain
the measurement function of the original picture, and evaluate it at various points
along the trajectory to provide the time series; but now the evaluation points are
not uniformly separated in time: instead they are separated by intervals generated in
the same way as the interspike intervals of the previous paragraph (for example, the
integrate-and-fire process could be used to generate them). We refer to this method
for producing a time series as state dependent sampling; we would expect to encounter
experimental data of this form whenever the system controls when measurements are
made (we might, for example, have a setup that automatically measures the weight
of a bird whenever it returns to its nesting box, or we might measure the elastic
properties of a geological formation when earthquakes send seismic waves through
it). We show that delay vectors of such non-uniformly sampled time series can be
used for reconstruction in the usual way. This case is simpler theoretically than the
interspike interval case of the last paragraph, and so we treat it first. But state
dependent sampling has a further interest because it suggests we might purposely
sample a continuous time signal in a non-uniform way to produce good reconstructions
of systems for which uniform sampling is not well adapted. If, for example, the signal
consists of periods of rapid activity interspersed with periods of slow variation then it
might be better to sample more quickly during the active phases and less during the
slow phases than to sample at a single rate all the time (and thus either undersample
or oversample parts of the signal).

2 Uniform Sampling and Takens’s Theorem

Let us briefly review the experimental scenario that leads to the hypotheses for Tak-
ens’s theorem. The object of study is assumed to be a continuous time dynamical
system, whose behaviour is governed by a set of autonomous ordinary differential
equations. Thus the state space is a differential manifold M, of finite dimension m,
which for convenience we take to be compact. The dynamics is described by a smooth
flow, that is, a differentiable function ¢: M xR, — M; (the initial state x € M evolves,
after time ¢, to state ¢(x,t)). Measurements are made every 7" time units. In the time
between measurements, state x moves to ¢(z,T); say ¢r is the function ¢(-, T), then,
since ¢ arises as the solution of a set of differential equations, ¢ is a diffeomorphism
of M (the ‘time T map’), and ¢(-,nT) = @7 for integer n. The sequence of states on
which measurements are made is (taking x as the initial state)

To =2, 11 = ¢p(x), T3 = ¢5(x), ... , Tp = H(2), ...

The measurements detect the value of some property of the system (such as the
temperature, the voltage at some point in an electrical system, the velocity at some
point in a fluid system, etc.). We suppose there is a function y: M — IR such that,
if the system is in state x, the result of the measurement is y(x). Thus the sequence
of measured values is {yo = y(xo), y1 = y(x1), ---, Yn = y(xy), ...}. This sequence
of values is the information produced by the experiment; generally neither x nor ¢,
will be known, so the data consist of this sequence (and of course the sample times
at which the measurements were made).



To process the time series {y;} we form a sequence of delay vectors by associating
with each time a vector in IR?, whose coordinates are the value of the measurement
at that time and the values at the d — 1 succeeding times:

Y, = (yi, Yit1s -+ yi+d—1)

The states are related to measurements by the function y; they are related to the
delay vectors by the function ®, 4,.: M — R4, defined by

Dy g, (2) = (y(2),y 0 61(2),. ..,y 0 $77'(2)) (1)

(the delay map). In particular, y; is equal to ®y 4, (x;).

The usefulness of the delay vectors stems from the fact that the relationship
between them and the states of the system is often one-to-one: more precisely, as we
shall see below, Takens showed that (if d is large enough) the map @, 4, is typically
an embedding of the state space into IR?, that is, a diffeomorphism onto its range.
This means that the delay vectors lie on a set @, 4, M C IR which is essentially the
same as the state space of the system apart from a nonlinear (but smooth) change of
coordinates. (®, 4, M is sometimes called the ‘reconstruction’ of M.) Furthermore,
as the system moves along a trajectory in its state space, the delay vectors evolve
through a corresponding trajectory in ®, 4, M: the dynamics of the system give rise,
through the coordinate change, to corresponding dynamics in the reconstruction.

Generally speaking, the delay map ®, 4, is not known, (and cannot be determined
if all we have available is the time series of measurements), however, the mere existence
of the embedding is enough to ensure that the system and its reconstruction share
many properties: the topology of the state space, for example; the numbers and types
of periodic orbits; the dimensions of invariant measures, and so on. The fact that
the reconstruction is a dynamical system in its own right means that we can use
it to make predictions about the evolution of the system, and for a range of other
applications [7, 9].

It was said above that the delay map is ‘typically’ an embedding. This is an
important qualification: not all pairs (y, ¢r) lead to an embedding (this is obvious if,
for example, y is a constant function and M contains more than one point). In this
paper the word typical is equivalent to ‘generic’ used in its precise topological sense:
given a class (in our case, of functions) a property that the elements may or may not
possess is generic if all the members in an open and dense subset of the class have the
property. (This is the sense used in [23]; one of the main extensions [18] to Takens’s
theorem involves using a somewhat different notion of typicality.)

To state Takens’s result, recall M is a compact manifold of dimension m, let
C?*(M,R) be the set of real-valued C? functions on M and X?(M) the set of C?
vector fields on M. Given a fixed T > 0, there is, for each pair in C?(M,R) x X?(M),
a delay map defined as in equation (1). Then (Theorem 2 of [23], slightly reworded):

Theorem 1 Ifd > 2m it is a generic property of C*(M,IR) x X%(M) that the delay
map 1s an embedding.

Below we shall prove analogous theorems for non-uniformly sampled systems.

The proof Takens gave for this result provides some more detail about which pairs
(y, X) will actually lead to embeddings. In particular, if a given vector field X has
certain properties (to be described shortly), then for that X there is an open and



dense subset of measurement functions that, together with X, produce embeddings.
X influences the delay map through the map ¢, and the properties we require of
X are chosen so that ¢ has corresponding desirable traits. So what properties of
¢r tend to produce embeddings? Takens proved (without stating explicitly) the
following:

Theorem 2 (Takens, unstated) Let M be a compact manifold of dimension m,
say d > 2m, and let ¢: M — M be a diffeomorphism such that:

1. the periodic points of ¢ with periods less than or equal to d are finite in number,

2. any such periodic point has distinct characteristic values.

Then the functions y € C*(M,R), for which the map ®, 4 M — R¢ defined by

Qy@ = (y,yoqﬁ,...,yogﬁd_l)
is an embedding, form an open and dense subset of C*(M,TR).

What properties of X will ensure that ¢ has the properties described in the above
theorem? Naturally these are to do with its periodic orbits: specifically, we could
insist there be no periodic orbits having period £7'/n with k£ an integer in the range
1 < k < d (nis any positive integer), and if X has any critical points (where X = 0)
these must be finite in number, and the characteristic values of such a point must all
be distinct. In that case ¢r actually has no periodic points with period less than or
equal to d at all except for fixed points, and these fixed points are finite in number
and have distinct characteristic values; so certainly the conditions of Theorem 2 are
satisfied. Proving Theorem 1 then amounts to showing the properties we required of
X are in fact generic in X?(M), which is a straightforward extension of the Kupka-
Smale theorem [8, 19, 11]. (In fact, the requirements placed on X are more stringent
than strictly necessary [9].)

3 State Dependent Sampling

As we have mentioned, there are occasions when the measurements are not taken at
uniform sample times. Can the observations in this case still be used to reconstruct
the system? It is a reasonable hope that, so long as the times at which the samples are
taken are determined completely by the states the system passes through, then the
measurements might be used to reconstruct the states. We shall therefore consider
the situation where there is a positive valued function 7: M — IR that tells us, for
each state at which we sample, what the next sampling interval will be; thus if a
sample is taken when the system is in state z the next sample will be taken 7(z)
time units later. For some systems, such as small networks of neurons, where we do
not control the sampling, we consider 7 to be an intrinsic property of the system. In
other cases, where we have access to a continuous time history and decide how to
sample it ourselves, 7 represents the stategy we use for choosing the sampling times.
(Of course, such a strategy must work in the absence of explicit knowledge of the
system state, but may nevertheless be consistent with the existence of a function 7;
for instance, in the uniform sampling case 7 is just a constant function; the integrate-
and-fire procedure (see below) provides another example.) Any sampling procedure
that can be described by a 7 function could be termed state dependent sampling.



The integrate-and-fire mechanism is one important procedure for generating non-
uniform sampling: here, a positive function, v: M — IR, is defined on the state space,
and as the system moves along a trajectory this function is integrated with respect to
time. When the integral reaches a preset threshold, O, a ‘spike’ is generated (that is,
a sample is taken) and the integration is restarted. A series of sampling times {7;}
is generated recursively (from an initial state xy) by

Tit1
/ vo ¢(xg,t)dt =0
We may also think of this process as defining a function 7 on M by saying 7(z) is the
positive number T such that [ v o ¢(z,t)dt = ©.

Another mechanism [6] for producing non-uniform sampling again starts with a
general picture of an ‘activity’ level rising until a threshold is reached (triggering
a sample), but now the rate at which the activity rises is constant, and it is the
threshold that varies with the state of the system (and so with time). So now there
is a positive threshold function ©: M — IR". Suppose a sample is taken at time %,
while the system has state zj: the threshold thereafter changes with time according
to O(¢(xo,t —1p)). The activity starts from zero and increases according to A(t —t),
where A is a positive constant: the next sample is taken when these become equal.
Thus the sampling interval 7(zy) is the solution T of

AT = ©(4(x0,T))

(or the smallest solution if there is more than one).

A further way in which intervals might be generated from the dynamical system
is threshold crossing: again a function v: M — IR (not now necessarily positive) is
considered, but now a spike is generated whenever the value of this function crosses
a fixed threshold v, that is, at times ¢ that satisfy v o ¢(zo,t) = v.. (One often
distinguishes between upward crossings, where the time derivative of v is positive at
the crossing, and downward crossings where it is negative; frequently only upward
crossings are considered to generate spikes.) This mechanism is somewhat different
in character to the previous two: sampling intervals are not automatically defined for
all states, since samples are only ever taken when the system state satisfies v(z) = v,
(typically, for smooth v, this set S will be a codimension 1 submanifold of M). The
obvious approach of defining 7(z) to be the time until the next (upward) crossing of
V¢, starting from x, produces a 7 which is discontinuous at points in S, and so is not
likely to be useful for embedding. It is more natural to consider this 7 to be a function
on S only, and consider embeddings of S rather than M—this is the approach taken,
for example, in [4]; we shall not consider this sort of situation further here: we assume
for the remainder of this paper that 7 is defined on the whole of M.

Once the sampling intervals have been specified, the states at which samples are
taken are also determined. If we sample at x the next sample will be taken at the
state that x evolves to after a time 7(z), namely ¢(x,7(z)). Let us define the sam-
pling state map g: M — M by g(xz) = ¢(z,7(x)); then sampling at x implies the
next sample will be taken at g(z), the sample after that at g(g(z)) = ¢*(x) and
so on. The sequence of sampled states is thus {z, g(z),...,¢"(x),...} and the sam-
pling intervals are {7(z),7(¢g(x)),...,7(¢"(z)),...}. The sequence of measurements
is {y(x),y(g9(x)),...,y(¢"(x)), ...} which has the form of a time series of observations
made on a dynamical system (g, M). If the observations are collected into delay vec-
tors as before then to each state x of the system there corresponds a delay vector



®, 4(x), given by
By 4(z) = (y(2),yog(x),...,y0 9" ' (2)) (2)

3.1 When is the sampling state map a diffeomorphism?

The similarity between delay maps (2) and (1) is clear, with g in (2) playing the role
of ¢r in (1). This suggests there should be an embedding theorem analogous to that
for the uniform sampling case, if ¢ is a diffeomorphism (the main requirement on ¢
in (1)). A major difference between state dependent and uniform sampling is that g
is not guaranteed to be a diffeomorphism just because it arises from a smooth flow.
We can see this in a simple example: take M to be the circle S*, with § € S* evolving
according to 0 = w, where w is a positive constant; then ¢(6,t) = 6 +wt mod 27. We
will say the sampling interval function 7 is given by 7(6) = a + bcosf, with a and b
non-negative constants, and a > b to ensure 7 is positive. In that case

g(0) =0+ wa + wbcosb mod 27

It is clear that ¢ is a diffeomorphism if b = 0, and hence also for all sufficiently small b
(for given a and w). On the other hand, if b = 7/(2w) then g(7/2) = aw+7/2 = g(n),
so that g is not injective. For this system it is simple enough to show that g is
a diffeomorphism if and only if b < 1/w; but generally we shall need to identify
conditions that ensure that g is a diffeomorphism.

Recalling that g(z) = ¢(z, 7(x)) we see that g is differentiable whenever 7 and ¢
(or equivalently X) are, so we shall insist that 7 and X (and so g) are C? from now
on.

A clear picture of how g can fail to be injective emerges once we note that each
trajectory of X is invariant under g, so we need only consider whether g is injective
on individual trajectories. Consider one such trajectory L, taken for the sake of
convenience to be non-periodic, so that the points of L have a well-defined time
ordering. It is apparent that the only way ¢ can fail to be injective on L is for it to
‘fold’ L onto itself, which means that the time order of (at least) two points is reversed
by g. (g cannot reverse the order of all the points because of the boundedness of 7
and X.) Say the points are x; and x9, with x5 in the forward orbit of z;, and say it
takes time T to flow from z; to z5. For g to reverse the order of these points 7(z1)
must be large enough for x; to flow past z, and g(z5); that is, 7(x1) > 7(x9) + T so
(T(x2) — 7(x1))/T < —1. The mean value theorem now indicates the presence of a
point on the trajectory at which the ¢ime derivative of 7 is less than —1; that is, there
is some & € M such that d(7 o ¢(x,t))/dt|,_, = 0. To express this condition in terms
of 7 and X, we choose a coordinate system h:U C M — R™ and say 7 and X are
the local representations of 7 and X: then the condition is D7(u)X (u) < —1, where
u = h(z). However, from now on we shall suppress explicit reference to coordinates,
and abbreviate this to D7(x)X (z) < —1.

This condition turns out to be the crucial one in deciding whether ¢ is a diffeo-
morphism; indeed, we have the following:

Lemma 1 Let X be a C" (r > 1) vector field on a compact connected manifold M,
and 7: M — R a C" function. The mapping g: M — M defined by g(x) = ¢(z, 7(x)),
(where ¢: M x R — M is the flow arising from X ), is a C" diffeomorphism if and
only if DT(x)X (z) > =1 for allz € M.



This is proved in section 7.1.

As a simple illustration we may take the circle example given above: there X (6) =
wand 7(f) = a+bcosf so D7(0) X (0) = —wbsinf. Thus the condition in the lemma
becomes wbsinf < 1, which is satisfied for all # if and only if wb < 1.

For a more important example, consider again the integrate-and-fire mechanism.
Here 7 is defined through

Aﬂ@UOMxJM#=® 3)

Differentiating this gives 0 = v(g(z))Dr(z) + f7 Dv(¢(z,t))Jy(z)dt (where J, is the
Jacobian of the time ¢ map). It follows that 0 = v(g(x))D7(x) X (z) + v(g(x)) — v(z),
and hence the condition D7(z)X (z) > —1 is automatically satisfied if v(z) > 0 for
all z. It is thus a feature of the integrate-and-fire procedure that the sampling state
maps that it gives rise to are always diffeomorphisms.

For an example where a diffeomorphism is not guaranteed we return to the variable
threshold mechanism. Recall that given a positive valued threshold function O(z),
7(z) satisfies AT(x) = ©(¢(x, 7(z))). Differentiating this with respect to z we find

_ DO(g(z))X(g(x))
Dr@)X (@) = S 560X (9(2)

which implies (recalling A > 0) that g will be a diffeomorphism if A > DO(z)X (z) for
all x € M. For smaller values of A\ a diffeomorphism is not obtained; as mentioned
in [13], this condition corresponds to there being one or more points on M at which
a sample can never be taken.

3.2 Embedding theorems for state dependent sampling

Now that we can decide whether ¢ is a diffeomorphism, we immediately have access
to an embedding theorem relevant to state dependent sampling: Theorem 2 applies,
and shows that the state dependent sampling delay map, ®, , will generically be an
embedding if g satisfies the relevant conditions. Of course, as in the uniform sampling
case, checking the conditions for individual diffeomorphisms may not be particularly
easy, so we would prefer a theorem that concerns a broad class of ¢g’s: that is, a
theorem corresponding to Theorem 1. Such a theorem can be proved, but to state it
precisely we need to specify the sets of functions that we are considering.

Embedding theorems of the kind we are looking for always assert that the property
of giving rise to an embedding is generic for a certain set of functions. Here our
primary focus will be on the sampling intervals (which will sometimes be the only
observations we make) and so we shall consider sets of 7 functions. (An alternative
might be to consider sets of g functions, but this does not suit our purposes so well:
see the last paragraph of this section.)

The condition D7(x)X (z) > —1 tells us whether g is a diffeomorphism and hence
whether we are within the purview of Theorem 2. To make a statement about a
broad class of state dependent sampled systems, rather than a single one, we need
to produce an analogue of Theorem 1, and this involves showing that the conditions
of Theorem 2 are generically satisfied by diffeomorphisms arising from some suitable
set, of vector fields and sampling interval functions. So we first discard the cases that
fail the condition for g to be a diffeomorphism: let 7 C C?(M,IR") x X2(M) be
the subset {(7,X) : Dr(z)X(z) > —1, Vo € M}; then it is clear that 7 is an open



subset of C2(M,IR") x X?(M). Only pairs within 7 can be expected to give rise to
embeddings.
We can now state the embedding theorem for state dependent sampled systems:

Theorem 3 If d > 2m then the triples (y,7,X), for which the map ®,, defined in
equation (2) is an embedding, form an open and dense subset of C*(M,IR) x T.

This result follows from the fact that for generic (7, X) in 7 the diffeomorphism
g satisfies the conditions on periodic orbits required by Theorem 2. Details of the
proof are given in section 7.2.

Theorem 3 refers to sets of 7 functions; to arrive at it we have imagined the
diffeomorphism in Theorem 2 to be derived from a sampling interval map 7. However
we might alternatively postulate a mechanism that specified—for each state z at
which a sample is taken—what the next sampled state will be, rather than the time
interval; that is, g is given rather than 7. At one level these are actually equivalent,
since the sampling is assumed not to affect the continous time dynamics, and g
must therefore respect the underlying vector field X in the sense that g(z) must
be a point on the (forward) X-trajectory of z. This further means that for every
x there must be a positive time 7(x) such that g(z) = ¢(z,7(x)). Note however
that if = lies on a periodic orbit, this time is not unique. Thus specifying g gives a
less complete description of the experimental situation than does specifying 7, since it
may be ambiguous about when the samples are taken (and hence about the interspike
intervals). This is why we chose to state Theorem 3 in terms of sets of 7 functions.

3.3 Sampling continuous time records

In some experimental situations, state dependent sampling is forced upon us because
the system under observation produces data at non-uniform time intervals which are
not under our control. There are other occasions when we may choose to adopt this
kind of sampling because it is advantageous to do so. Consider for example a time
series of the kind shown in figure 1.

This figure represents the variation of one of the components of a three-dimensional
system investigated by Rossler [15]; (the system is given in equation (1) in [15], with
parameters given in Fig. 3 of that reference; we use the z component). The time
series consists of sections showing relatively slow, low amplitude variation near a
baseline value, with occasional spikes in which the signal makes brief excursions to
large values. This could be viewed as a candidate for interspike interval sampling, but
it is clear that the spikes have different heights and that these heights could contain
useful information about the state of the system. It seems clear that if this time
series is to be sampled uniformly, the sampling interval will need to be quite short to
capture the spikes, especially if fairly accurate information about their heights and
shapes is wanted. On the other hand a short interval will tend to oversample the
stretches of baseline value, producing a lot of data without much useful information.
It would seem better therefore to vary the sampling interval: to choose small intervals
when sampling the spikes and larger ones between the spikes. But we also want to
preserve if we can the embedding relationship between the sampled series and the
original system; the preceding discussion suggests we may be able to do this if we
can arrange for the sampling intervals to be determined by the states of the system.
Since the states generate the time series (through the function y), using the time
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Figure 1: Time series from a three dimensional system specified in Ref. [15]. The

points marked with symbols indicate the samples generated by integrate-and-fire sam-
pling; see text for details.

series values to determine the sampling should mean that the intervals are indeed a
function of the state (though not necessarily a function we could easily write down).

There are various approaches that could be taken: the sampling interval could
be made to depend inversely on the amplitude of the signal, or on the magnitude of
the slope of the signal so that the sampling is rapid when the signal varies rapidly.
(Clearly, however, we cannot be too naive about this: the slope, for example, is low
between the spikes and high at most points within a spike, but if we happened to
sample close to the maximum of the peak we would find a small slope that could
cause us to make the next interval too large.) An approach that works quite well for
the time series in figure 1 is integrate-and-fire: during the sections between spikes the
input to the integrator is small and firing (sampling) is infrequent; increase in the
signal amplitude increases the frequency of firing so that the spikes are well sampled.
Figure 1 shows the samples generated by this process; in this example the function
to be integrated is chosen to be 0.01 + z(¢), and the threshold is 0.1.

We should highlight a subtlety related to the approach to sampling just described.
Although each sampling interval depends on the system state, we are not exactly in
the situation covered by Theorem 3 because in that theorem the sampling interval
function 7 and the measurement function y are regarded as independent: both are
needed to specify one of the triples with which the theorem is concerned. But in the
sampling strategy we used above 7 is clearly not independent of y, and so Theorem 3
does not give us any direct information about how likely we are to produce an embed-
ding. In the next section we shall consider whether or not we get embeddings when
we consider only 7 values, that is, making no use of y values at all; it will turn out
that, with some restrictions, embeddings are still generic.
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4 Interspike intervals

In the previous section we described how the sampling of a continuous time dynam-
ical system could be controlled by a sampling interval function 7. The observations
consisted of values of a measurement function y: M — IR. But since the sampling is
non-uniform, and the intervals depend on the states of the system, it is conceivable
that we may derive information about the states from the intervals themselves even in
the absence of the measurement function y; indeed we might try to use the intervals
to embed the system. Another way of looking at this is to consider 7 to be the mea-
surement function: when each sample is taken, the value of y at the corresponding
state is just the time taken to the next sample. As the system moves along a trajec-
tory it generates a sequence of samples (or spikes) and a corresponding sequence of
interspike intervals: as before, spikes occur at z, g(x), ¢*(z), ..., and the intervals
are 7(z), 7(g9(x)), 7(¢*(x)), .... If we collect these intervals into delay vectors then
to each state there corresponds a vector

Ory(2) = (7(2), 70 g(2),7 0 g*(2),..., 70 g (2)) (4)

Note this is identical to (2) if y is replaced by 7.

Is the delay map (4) (generically) an embedding? Note that Theorem 3 gives no
assurance that it is, since that theorem says nothing specifically about the case where y
is constrained to be the same as 7; a new theorem is needed to cover this. Furthermore
Theorem 2, on which the proof of Theorem 3 was based, is not applicable here, since
considering a range of different y functions would entail considering a corresponding
range of 7’s, and hence ¢’s. Nevertheless, the techniques used to prove Theorems 2
and 3 can be adapted to produce an embedding theorem of the kind we require.

Again we must be specific about the class of functions 7, and vector fields, that
we consider. We have already introduced the set 7 C C?*(M,R*) x X?(M) as the
subset of pairs (7, X) such that D7(z)X (z) > —1 for all z, and we continue to restrict
our attention to this, since we still require g to be a diffeomorphism. However, since
there is now less flexibility about the functions that go to make up the delay map we
shall need to consider subsets of 7 to find a set for which the embedding property is
generic. As usual, (see for example the conditions to Theorem 2), it is the periodic
points that cause the most serious barriers to embedding, and we shall need to discard
some (7, X) pairs where 7 takes particularly troublesome values at the periodic points.
Especially awkward are those periodic (though not equilibrium) points of X that give
rise to fixed points of g: if there is such a point, the periodicity of 7 on the periodic
orbit of X implies there must be a second such point, and that the two have the same
image under @, ,. Furthermore this situation is likely to be shared by all sufficiently
close (1, X) pairs, ruling out the possibility of generic embeddings; this is the situation
we need to exclude.

The embedding theorem thus produced is:

Theorem 4 Let T' C C?*(M,IR*) x X%2(M) be the set of pairs (1, X) with the fol-
lowing properties:

1. D7(z)X (x) > —1 for every x € M.

2. There are no points x such that: x lies on a periodic orbit of X, with period T,
and 7(x) = nT for some integer n.
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3. There are no points x such that: x is an equilibrium point of X, with eigenvalue
iw, and T(x) = 2mn/w for some integer n.

then T' is an open subset of C*(M,IR") x X2,

For d > 2m the pairs (1, X) for which ®, x is an embedding of M form an open
and dense subset of T".

(The third condition is needed to ensure that 7' is an open subset.) This is proved
in section 7.3.
Consider again the circle example where X (0) = w and 7(f) = a + bcosb, (a >
b > 0). We have seen that for g to be a diffeomorphism we must have wb < 1. For
this system every point is periodic with period T' = 27 /w, so the second condition in
the above theorem is not satisfied if there is some 6 such that a 4+ bcos# = nT’; that
is, if @ is in the range nT" — b < a < nT" + b for some positive integer n. Thus for a
given b there are ‘forbidden intervals’ for a, centred on the values n7" and of width
2b. (Since 2b < T'/7 these intervals do not overlap.) For a given a on the other hand,
the condition fails if b is larger than the distance of a from the nearest multiple of 7.
Returning to integrate-and-fire systems, recall that these automatically satisfy the
first condition above. Suppose an integrate-and-fire system fails to satisfy the second
condition, so that there is a point z on a periodic orbit C such that 7(z) = nT (T
is the period of C). Then the integral defining 7(z), © = f5™ v o ¢(x, t) dt, is taken
n times around C, and it follows that every x € C gives the same value of 7, and
every point is a fixed point of g. Hence none of these fixed points is hyperbolic. The
implication of this is that although it is possible for integrate-and-fire systems to fail
the second condition, generically they do not fail it, (and a similar remark applies to
the third condition). So for integrate-and-fire systems none of the conditions proves a
serious barrier to embedding. We shall investigate these systems in more detail later.
It is quite possible for the variable threshold mechanism described above (where
7 is defined through A7(z) = © o ¢(z, 7(x))) to have hyperbolic fixed points of g, and
so fail condition 2 in a robust way. (It is easy to check that if g(x) = = then z will be
hyperbolic so long as DO(z)X (x) # 0, that is, so long as © does not pass through a
stationary point at x as we pass along the periodic orbit of the flow. Fixed points of g
are studied in [6] for the case of uniform rotation in the circle, where O is sinusoidal.)
A given vector field X may well have a great number of periodic orbits, and each
gives rise to a set of values forbidden by condition 2. 7 must of course be bounded
above on M, and orbits with period greater than this bound will be of no concern:
it is the low period orbits that are most likely to cause problems with embedding.
Commonly there will be some minimum period orbit, and if 7(z) is everywhere less
than this minimum period then condition 2 will be satisfied; that is, it is sufficient
for condition 2 to hold that every periodic orbit is sampled at least once before a
complete circuit of it is made.

5 Integrate-and-Fire Systems

Given a continuous time dynamical system on M, we convert it to an interspike
interval system by supplying the sampling interval function 7. We have mentioned
several times that one convenient way of constructing 7 is by the integrate-and-fire
procedure, and we have seen a number of examples of this. However we have not yet
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provided embedding theorems specifically concerned with integrate-and-fire systems.
Note that Theorems 3 and 4 refer to general interspike interval systems, and we cannot
infer from them that integrate-and-fire systems will (generically) provide embeddings
because the latter do not form an open subset of the former. Thus we shall need
separate theorems for the integrate-and-fire class.

The special nature of the integrate-and-fire systems is seen most clearly from
their behaviour on periodic orbits of the vector field. The sampling state map g is
a diffeomorphism of this orbit (recall that integrate-and-fire systems automatically
satisfy the condition in Lemma 1). Suppose first that g has periodic points on the
orbit: we have already remarked that if there is a fixed point it is not hyperbolic, and
the same applies to periodic points; however, arbitrarily close to 7 we can find another
sampling interval function 7" whose periodic points are hyperbolic—and which cannot
therefore come from an integrate-and-fire system. (The construction of 7’ is described
in the proof of Lemma 4 in section 7.2.) If none of the orbits of g is periodic then
each has an accumulation point and it is clear that a periodic point can be created
by an arbitrarily small change to the integrated function v; then the remarks of the
previous two sentences apply. Thus, at least for vector fields with periodic orbits, the
collection of 7’s that are not derivable from integrate-and-fire mechanisms contains
an open and dense subset of the set C?(M,IR") of general 7’s.

In fact, there is a close connection between integrate-and-fire systems and uni-
formly sampled ones. For suppose we have a vector field X and produce an integrate-
and-fire system using the positive valued function v. Then the resulting diffeomor-
phism g is given by g(z) = fi X ($(z,t)) dt. For fixed z, £ = [lv(¢p(z,t'))dt is a
differentiable, strictly monotone increasing function of ¢. Changing the variable in
the integral for g(x) from t to ¢ we find

o@) = [ X (B, ) di = d(z,0)

where X (y) = le)X (y) for ally € M, and ¢ is the corresponding flow. Thus g results

from sampling the flow (;AS uniformly, with sampling interval ©.

We can prove a ‘state dependent sampling’ embedding theorem, analogous to
Theorem 3, for integrate-and-fire systems; as usual, we must first identify the class of
systems within which we hope the embedding property will be generic. It is natural
to characterize integrate-and-fire systems by the function v rather than 7, since the
latter is defined implicitly from the former; thus we specify an integrate-and-fire
system by a pair (v, X) € C*(M,IR") x X%(M). For the state dependent sampling
case, where we also have a measurement function, we consider triples (y,v, X) €

C*(M,R) x C*(M,IR*) x X?(M). Then

Theorem 5 Let © > 0 be fized. For each (y,v,X) € C*(M,R) x C?*(M,IR") x
X2(M) define T by equation (3), g by g(z) = ¢(z,7(x)), and the delay map by equa-
tion (2).

For d > 2m the triples (y,v, X) for which the delay map is an embedding form an
open and dense subset of C?(M,R) x C*(M,R") x X?(M).

This is proved in section 7.4. (In fact, this can be proved from Theorem 1 using
the connection between integrate-and-fire and uniform sampling mentioned above.
However the proof in section 7.4 parallels that of Theorem 3, mainly so that we
produce Lemma 5, which is also needed for the following theorem.)
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Finally we consider an analogue of Theorem 4 (in which 7 plays the roles both
of sampling interval function and measurement function) but specialized to the case
of integrate-and-fire systems. This is the situation treated by Sauer [16, 17], who
has already supplied an embedding theorem for this case. There are however some
differences between the theorem proved by Sauer and the theorems described here:
the main two being that the manifold M is replaced with a compact set (with a
corresponding adjustment of the notion of embedding), and a somewhat different
notion (‘prevalence’) is used in place of genericity. For uniformity we state a theorem
that is directly analogous to Theorem 4 in the same way that Theorem 5 is analogous
to Theorem 3:

Theorem 6 Let © > 0 be fized. For each (v, X) € C?*(M,IR") x X2(M) define T by
equation (3), g by g(x) = ¢(x,7(x)), and the delay map by equation (4).

For d > 2m the pairs (v, X) for which the delay map is an embedding form an
open and dense subset of C*(M,IR") x X?(M).

As with Theorem 4 there seems no very simple way to derive this theorem as a
straightforward consequence of the theorems we already have to hand, but a proof
can be constructed along similar lines to those used for Theorem 4; this is described
in section 7.5.

6 Concluding Remarks

We have attempted to give embedding theorems for non-uniformly sampled systems
that parallel as closely as possible Takens’s theorem for uniformly sampled systems—
hopefully this will illuminate the similarities and differences between the two, and
help to make clear the relationship these results have to the treatment of experimen-
tal observations. But given that our theorems are slightly more complex in their
statement than Takens’s theorem, this relationship might be worth commenting on.

Embedding theorems always take a well defined class of functions (for example,
C? vector fields together with C? measurement functions) and assert that, for a
‘large subset’ of this class, an embedding is obtained (by the method of delays or
some other specified procedure). Since the theorems do not cover the entirety of the
class, they give no assurance that any particular member of the class will produce an
embedding—this would have to be verified for the particular case. Thus the theorems
do not prove that applying the method of delays (say) to a particular experimental
data set will result in an embedding. What they do is provide some assurance that
the method of delays is a reasonable strategy to adopt and is likely (in a sense that
is not mathematically precise) to achieve some success in analysing or modelling the
data. However, to conclude even this we must be confident that the system does fall
within the original class of functions, otherwise assertions about large subsets of the
class are not of much value. The original class should therefore be chosen as far as
possible so that membership of it is either easy to check or, more usually, follows
from reasonable assumptions about the system under study. In the case of Takens’s
theorem the main assumptions we need are fairly straightforward: they are that the
system is finite dimensional and that the dynamics and measurement are smooth. But
in addition to the system lying within the original class, the theorem also requires
that the number of delays d be sufficiently large, and we may not be sure of this a
priori because we may not know the dimension m of the underlying system. Thus
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even here there may be some investigating to do to establish the applicability of the
theorem.

In any case we still have the problem of deciding whether or not we have an
embedding in any particular case, and for this we must apply suitable tests to the data.
This is an important part of analysing the data using the geometrical approach [7]:
we need it to check that d is large enough, and ultimately it is our reassurance that,
despite the existence of a small subset of problematic systems, our analysis of the
data is not running into trouble.

In addition to the assumptions made for Takens’s theorem, Theorem 3 for state
dependent sampling further requires that our system belongs to the class 7, that is,
that it satisfies D7(x)X (z) > —1 for all x € M. This condition is straightforward
to check if we have a continuous time record such as described in section 3.3, or if
we can monitor the value of 7 continuously, since the condition states that the time
derivative of 7 shall be greater than —1. However, if all we have available is the
sampled data then we must initially take the condition as a further assumption, and
then check for an embedding as in the previous paragraph. Similar remarks apply, of
course, to Theorem 4

Another aspect of the relationship between embedding theorems and experiments
concerns the regions of state space that the experiment actually investigates. The
embedding theorems set up a correspondence (the delay map ®) between every point
in the state space M and a corresponding point in (a subset of) delay space R¢.
Usually however experiments do not attempt to cover all of state space: often what
is of interest are the attractors of the system. To investigate such a set, an initial
condition z( is chosen within the basin of attraction of the set, and the trajectory
starting from z( is observed; we assume that the w-limit set of this trajectory is the
attractor of interest. Samples from the trajectory, uniform or non-uniform in time,
then constitute the experimental data. As we have seen, these samples are governed
by a discrete time map: in the uniform sampling case this is ¢, the time-7" map
(T is the sampling interval); for non-uniform sampling it is the map ¢ described in
section 3. Thus what we actually observe is a trajectory of the discrete time map,
and so it is the w-limit set of this map, rather than the underlying flow, about which
the experiment gives us information. (This was noted by Takens [23] for the uniform
sampling case, and in [22] and [5] for the non-uniform case.)

It is obvious that the w-limit set of zy under the discrete time map is a subset
of the continuous time w-limit set. It is quite possible for the former to be a rather
small subset of the latter: indeed, in the simple example of uniform rotation on the
circle, with 7(0) = a + bcos @, described in section 3.1, it is easy to find values of the
parameters for which ¢g has attracting periodic points, which form the w-limit sets
for most of the points on the circle—whereas plainly the continuous time limit set is
always the entire circle. Thus a single trajectory may be insufficient for investigating
an attractor of the continuous time system, however long the trajectory may be. A
more significant example of this has been observed by Suzuki et al. [22], who applied
leaky integrate-and-fire sampling to the standard Rossler system. This arrangement
was further investigated in [5].

(In principle this problem can even occur in the uniform sampling case: the w-
limit set of xo under ¢ may be a proper subset of that under the flow: uniform
rotation on the circle again provides an obvious example. However, Takens [23]
showed that for a residual set of sampling times 7T these w-limit sets will be the
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same. The relationship between integrate-and-fire sampling and uniform sampling
described in section 5 shows that a corresponding result holds for integrate-and-fire
systems.) Elucidation of the general circumstances under which the attractors of
g are proper subsets of those of the flow for the non-uniform sampling case awaits
further investigation.

Finally we return to more theoretical implications of Theorems 3 and 4. One way
of viewing these is as assertions that delay maps are likely to produce embeddings if
certain conditions are met; the conditions then give information about the significant
barriers to embedding. Aside from the smoothness conditions (which we often just
assume are met), much the most important condition is that D7(x)X (z) > —1 for
all z. We can use this to investigate whether we should expect embeddings (and
hence whether dynamical information is transferred) in various scenarios. For exam-
ple, Racicot and Longtin [13] describe four interval generating mechanisms (regarded
as neuron models) and investigate whether the interval sequences reflect the char-
acteristics of the underlying deterministic system. The four mechansisms are: the
integrate-and-fire and variable threshold mechanisms described previously; a ‘leaky’
version of integrate-and-fire (in which the integral is modified by progressively re-
ducing the contribution of earlier parts of the integrand); and a mechanism based on
integration of the FitzHugh-Nagumo equations. The last of these is more immediately
akin to the threshold crossing approach mentioned in section 3 than to the 7 function
approach, so we shall not consider it here. As we have seen, the D7(z)X (z) > —1
condition is always satisfied by integrate-and-fire, but for the variable threshold pro-
cedure it is only satisfied if the activity rise rate (and hence the sampling rate) is
sufficiently high—if it is lower we cannot expect an embedding. Thus these two
mechanisms are qualitatively different in a way which may not be particularly easy
to detect in a numerical investigation, unless we know what we are looking for. For
the leaky integrate-and-fire we find, briefly, that the condition is satisfied (and so
embeddings are generic) when the integrand v everywhere exceeds k£©, where £ is the
leakage rate constant. We shall however postpone a detailed analysis of this case to a
subsequent publication; the main point here is that the condition gives us a powerful
way of investigating when embeddings can (and cannot) be expected.
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7 Proofs

In this section we provide proofs for Lemma 1 and Theorems 3—6. Naturally we are
concerned with various functions on the manifold M, such as the sampling interval
function 7, the sampling state map ¢, and the delay maps. Most of the time we work
with coordinate representations of these functions, but we generally suppress explicit
mention of charts—thus in the following subsection we write D7(z)X(z), z € M,
rather than (say) D7 o A~ (u)X (u), where u = h(z) € U € M, (and X is the local
representation of X). We only mention chart maps explicitly if we need to choose
some particular form for them.

7.1 Proof of Lemma 1: the condition for g to be a diffeomor-
phism

Lemma 1 follows as a straightforward corollary to the following:

Lemma 2 Let X be a C' vector field on a compact manifold M, and 7: M — IR a C*

function. The mapping g: M — M defined by g(z) = ¢(z,7(x)), where ¢: M xIR — M

is the flow arising from X, fails to be a diffeomorphism if and only if there is a point
x € M at which Dr(z)X(z) = —1.

Proof: Let J;(x) be the derivative of the time-t map at z. By partial differentia-
tion and the chain rule we find

Dy(z) = Jr(@)(x) + X (9()) D7 (x) (5)
Using the fact that Ji(z)X (z) = X (¢(z,t)) we see
Dg(2)X(z) = Jr(@) ()X (2) + X (9(2)) D7 (2) X () = (1 + D7(2) X (2)) X (9(x))
Thus if Dr(z)X(z) = —1 then Dg(z)X(z) = 0 (clearly X(z) # 0) and g is not
immersive at x. This proves the ‘if’ part of the lemma.

Now assume that g is not a diffeomorphism. Since g is certainly C* (and M is
compact), g must either fail to be immersive or fail to be injective. Suppose first that
g is not immersive: then there is some x € M, and some non-zero vector v tangent
to M at x such that Dg(z)v = 0. From (5) we have

Dy(z)v = Jr@)(2)v + X (g9()) D7 (z)v

Ji(z) is an isomorphism for any ¢ (the time-¢ map being a diffeomorphism) so J.(5)(z)v #
0. Thus Dg(z)v = 0 implies X (g(x)) # 0 and Jy(g)(x)v is collinear with X (g(x)).
Moreover J,(g)(z)X (z) = X(g(r)) so X(x) # 0 and v is collinear with X (z); let us
say v = aX(z) (a # 0). Then

Dy(z)v = aJr(z)(z)X (z) + aX(9(2)) D7(2) X (2) = (1 4+ D7(2) X (2)) X (9(2))

Hence Dg(z)v = 0 implies D7(z)X (z) = —1 as required.

The remaining possibility is that ¢ fails to be injective. It follows immediately
from the definition of g that every trajectory of the vector field X is an invariant set
of g, so if ¢ is not injective then there must be two distinct points, z1, 2o € M such
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that g(z1) = g(x2), where 21 and x5 are on the same trajectory, so that there is some
t € IR such that 25 = ¢(x1,t). Clearly we can take ¢ > 0, and if the trajectory of X
is periodic with period T we can further take t < T.

Consider the function f:IR — IR defined by f(t') = t' + 7(¢(x1,1')); clearly this
is a C! function on IR, with f(0) = 7(z;). Note that

(xl, (1)) = ¢(x1, T+ 7(d(21,1))) = d(a1,t + 7(22)) = ¢(P(21,7), 7(22))
= B2, 7(12)) = 9(22) = g(21) = b(21, 7(21)) = d(21, f(0))

so ¢(x1, f(t)) = é(x1, f£(0)). If the trajectory containing x; and x, is not periodic,
this implies that f(t) = f(0). It immediately follows from Rolle’s Theorem that there
is some £ between 0 and ¢ at which f'(f) = 0.

If the trajectory containing z; and z, is periodic with period T, ¢(x1, f(t)) =
¢(x1, £(0)) implies that f(t) = f(0) + nT for some integer n. Recall that 0 <t < T,
and note from the definition of f that f(T') =T + 7(z1) = f(0) + 7. Now if n <0
the Intermediate Value Theorem (IVT) shows that 3, with ¢ < # < T, such that
f(#) = £(0); and Rolle’s Theorem now implies 3¢, 0 < £ < £, at which f'(f) = 0. If
n > 1 the IVT shows 3¢, 0 < £ < ¢, such that f(f) = f(0) + T = f(T); and Rolle’s
Theorem now implies 3¢, # < ¢ < T, at which f'(f) = 0.

Hence g(x1) = g(w2) implies there is a £ > 0 such that f/(£) = 0. From the
definition of f we get f'(t') = 1+ D7(¢(z1,t)) X (d(21,t)). Setting x = ¢(x1,%), the
condition f'(t) = 0 becomes 1 + D7(z)X (z) = 0, as required.

Corollary (Lemma 1) If the manifold M of Lemma 2 is connected, then g is a
diffeomorphism if and only if D7(x)X (z) > —1 for allz € M. If X and T are C",
r > 1, then g is a C" diffeomorphism.

Proof: If Dr(z)X(z) > —1 then g is a diffeomorphism by Lemma 2. To prove
the converse, note that if M is connected then it is path-connected; so if there were
x € M such that Dr(z)X(z) > —1, and 2’ € M such that Dr(z")X(z') < -1,
then by continuity of D7 and X (and the IVT) there would some z” on a path
joining x to &’ at which D7(z")X (2") = —1, and so by Lemma 2 g would fail to be a
diffeomorphism. Hence g is a diffeomorphism only if either D7(z) X (z) > —1Vz € M,
or Dr(z)X(z) < —1 Vo € M. However, if we choose a point z, let z(t) = ¢(zo, ?)
and define 7:IR — IR by 7(t) = 7(z(t)) we see that 7'(t) = D7(x(t))X (z(t)) so
#(t) = 7(0) + f3 D7(x(t)) X (z(t)) dt. If D7(z)X (x) < —1 Vz then 7(t) < 7(0) — ¢t for
all £ and so 7, and hence 7, is unbounded, contradicting the continuity of 7. The only
remaining possibility, if ¢ is a diffeomorphism, is D7 (z)X (z) > —1 Vz € M.

If X and 7 are C", r > 1, then g is plainly C", and is a C" diffeomorphism by the
Inverse Function Theorem.

7.2 Proof of Theorem 3: State Dependent Sampling Embed-
ding Theorem

Roughly speaking an embedding theorem for dynamical systems states that a delay
map, (or some other analogous map) constitutes an embedding of the state space of a
dynamical system, for most of the systems in some suitable class. (Different theorems
differ in the kind of delay map they consider, the class of systems they consider, or the
meaning of ‘most’.) A large part of proving such a theorem is concerned with showing
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that if, for a particular system, the corresponding delay map is not an embedding,
then arbitrarily small changes to the system (including its measurement function) can
be found that result in a system that ¢s embedded by its corresponding delay map.
For the kinds of system we are considering in this paper these changes can mostly be
found (or at least their existence demonstrated) by standard transversality arguments,
but these arguments are impeded by the presence of certain problematic points in the
state space. If we use ® to stand for whatever delay map we are considering, = is a
problematic point if some of the components of ®(x) are necessarily the same as other
components: for standard delay maps this happens when x is a periodic point with
period less than the number of components of ®(x). Also problematic are pairs z and
y for which some components of ®(z) are necessarily the same as some (not necessarily
the corresponding ones) of ®(y); this happens when z and y lie close together on the
same trajectory. Typically the proof of the embedding theorem consists of stages, in
which the problematic points are dealt with first, and all the remaining points are
dealt with subsequently using transversality arguments. Thus in the proofs below
we begin by ensuring that the most problematic points—those periodic points with
a period less than or equal to some suitable integer /,—are finite in number, and an
embedding is established on a neighbourhood of these points.

We shall need the following result:

Lemma 3 Let A be a complex nxn matrix having distinct eigenvalues \;, 1 =1,...,n
(so that the corresponding eigenvectors v; form a basis for C*). The matriz A+viw?,
where w is an arbitrary but fized vector, has the same eigenvalues as A, except that

1 is replaced by A\ + wl ;.

Proof: Let V be the matrix of eigenvectors of A, so that V"1AV = A where
A = diag{\i,..., \}. Then V"1 A+ vjw”)V = A+ eyw’V where e] = (1,0,...,0).
The first row of eyw”V is (w vy, w vy, ..., w"v,), and all the other elements of this
matrix are zero. Hence A + e;w”V is an upper triangular matrix whose diagonal
elements are \; +w vy, Ag, ..., Ap.

To prove the state dependent sampling theorem we need to show that, for an open
and dense set of pairs (7, X) € T, the periodic points of the g that arise from (7, X)
have the conditions required by Takens’s theorem.

Lemma 4 Let I, be a given positive integer. Let S C T be the set of pairs (1,X)
satisfying the following conditions:

1. The periodic points of g, x having period l, or less are finite in number, and
these points are hyperbolic.

2. For each of these periodic points the characteristic values are all distinct.

Then S is open and dense in T .

(We refer to the periodic points of g whose period is [, or less as the low period
points of g. The value of [, that we must use is dictated by the embedding theorem
we want to prove—this is discussed further below.)

Proof: The ‘openness’ part of the lemma is straightforward. The Kupka-Smale
theorem shows that the diffeomorphisms satisfying the first condition form an open
subset of D?(M), (the set of C? diffeomorphisms on M). Furthermore, if f € D?(M)
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has a hyperbolic periodic point with distinct characteristic values, then every diffeo-
morphism f’ in a sufficiently small neighbourhood of f has a corresponding periodic
point, also hyperbolic, whose characteristic values are also distinct, since these depend
continuously on f’ within the neighbourhood. Thus the diffeomorphisms satisfying
both conditions form an open set of D?(M). Since g depends continuously on (7, X),
the pairs producing diffeomorphisms which satisfy the conditions also form an open
set.

To prove that S is dense in 7 requires rather more work. We need to show that
for any (7, X) € T, every neighbourhood N of (7, X) contains a pair (7', X’) such
that g,- x/ satisfies the conditions. (We may assume of course that A is of the form
N1 x Ny where N7 € C?(M,IR) is an open neighbourhood of 7 and N, C X?(M) is
an open neighbourhood of X.) Note that if = is a periodic point of g, x then x must
lie on a periodic trajectory of X. It is well-known ([11]) that given a positive constant
K and a vector field X € X?(M), every neighbourhood of X contains a vector field
whose periodic trajectories of period less than K (including equilibrium points) are
finite in number and are hyperbolic. Let B = I&%{\T(x)\ and choose A > B. We

select X’ € N, to have finitely many hyperbolic periodic trajectories with period less
than [,A, and to satisfy certain other conditions on the characteristic values of these
orbits: namely, that the characteristic values of each of the orbits are distinct, and
further, that if A and p are (possibly complex) distinct characteristic values of an
orbit whose period is 7', then no equation of the form \* = u" is satisfied for an
integer n in the range 0 < n < [,A/T. X' is considered fixed from now on. We
may assume (by using a smaller neighbourhood if necessary) that |7/'(z)| < A for all
"€ Ny and z € M.
Given 7' € N; (and using our fixed X') define, for integer r > 0:

or(z) = 7'(2) +7'(¢'(2)) + T'(9"(2)) + ... + 7' (¢" " (2)) (6)

(where ¢’ = g, x7). Then ¢"(z) = ¢'(z,0,(z)) (¢ is the flow corresponding to X'.)
If z is a period-r point of ¢, then z lies on a periodic trajectory of X', and if the
period of this trajectory is 7" we must have o,(z) = nT for some positive integer n.
Since |o,(z)| < rA it follows that T < rA/n < rA. Thus every periodic point of ¢’
whose period is [, or less lies on a periodic trajectory of X' whose period is less than
l,A ; we have seen that there are only finitely many such trajectories. (We refer to
these trajectories as the low period trajectories of X'.)

For convenience relabel 7 as 7, and ¢’ as g. The fact that the low period points
of ¢ are confined to a finite collection of periodic trajectories of X’ does not mean
that these points are themselves finite in number—indeed it is quite possible for all
the points on such a trajectory to be periodic points of g. To deal with this situation
we make a series of perturbations to 7 to produce a new function that satisfies the
conditions of the lemma. We need to show that such perturbations can be found and
that they can be taken to be arbitrarily small, so that the resulting function lies in
N;. If all the low period points of ¢ on a given low period trajectory of X’ have the
properties described in the lemma, these properties will persist under all sufficiently
small perturbations. We may thus deal with the low period trajectories one at a time.

Consider first the equilibrium points of X': each of these gives rise to a fixed
point of g (irrespective of 7). From equation (5) we find Dg(z) = Jy(u)(z) so it
follows directly from the properties of X’ that these points are hyperbolic and have
distinct eigenvalues.
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Now consider a low period trajectory, C, of X’. Restricting X' to C gives a one-
dimensional system which is C%-conjugate to rotation on the circle S' at uniform
speed w = 27 /T, where T is the period of C, the conjugacy being F:S' — C,
F(0) = ¢(xy,0T/(27)) (x¢ is any arbitrarily chosen point of C). Note that if 7 is a
sampling interval function on C there is a corresponding function 7 = 7 o F on S,
and the corresponding diffeomorphisms g(z) = ¢(z, 7(x)) and §(6) = 6 + w7(#) (mod
27), are conjugate under F; g = F o go F~!. Suppose that given 7: S — R we
can always find, arbitrarily close to 7, a 7 such that the diffeomorphism g: S — S,
g(0) = 0 + wT(f) (mod 27), has finitely many low period points all of which are
hyperbolic; then given any 7 on C' we can find, arbitrarily close to 7, a 7 such that
g(x) = ¢(z,7(x)) has finitely many low period points (which are hyperbolic). (We
choose 7 to be 7 o F~1, where 7 is sufficiently close to 7 o F.) So we only need to
confirm that we can find a suitable 7 on S*.

Given 7 on S! we can define f:IR — IR by setting f(z) = 7(27z) for z € [0, 1], and
letting f be a periodic function with unit period. Then the function G (z) = r+3= f(z)
is a lift of §(#) = 0+ w7(A) (mod 27). There is a diffeomorphism g arbitrarily close to
g such that g has only finitely many periodic points (and they are hyperbolic), (g is a
Morse-Smale diffeomorphism [11]). Say G is the lift of g closest to G; clearly we can
arrange for G to be as close as we please to G by choosing g sufficiently close to §.
Define f(z) by (27/w)(G(z) —z) and 7(6) by f(8/(27)); then () = 0 + w7 () (mod
2m), and we can arrange for 7 to be arbitrarily close to 7. This is what we needed for
the argument of the previous paragraph.

We have thus seen that for any 7 on C' there is an arbitrarily small function p on
C such that g,4, x» on C has only finitely many periodic points. We now only need
to extend p to M to produce a new 7 with the properties we require—this can be
done using a partition of unity on C.

We now need to consider the characteristic values of the low period points on C'.
Let = be a period-r point of g: then o,(z) = nT for some positive integer n, implying
nT <rA <I[,A, so that n < [,A/T. From ¢"(z) = ¢(z,0,(x)) we get

Dyg"(z) = Jo, () () + X'(¢"(z)) Do, (z) = Jur(z) + X'(z) Do, (z)

Since J,r(z)X'(x) = X'(z) Lemma 3 shows that the eigenvalues of Dg" are just
those of J,r except that the unit eigenvalue of J,r is replaced by 1 + Do, (z)X'(z).
The eigenvalues of J,; are of course just those of J; raised to the power n, and
our original choice of the vector field X’ means that they are all distinct. Thus the
eigenvalues of Dg"(x) are all distinct so long as 1 + Do, (x)X'(xz) does not equal
any of the non-unit eigenvalues of J,r. The periodic points are isolated so we can
construct a perturbation function p to 7 whose support contains no periodic point
except ¢"~!(z); from equation (6) we see that o, (x) is perturbed to o, (z)+p(g" ! (x)).
We can arrange for p(¢g"~'(x)) = 0 (so that x remains periodic) while Dp(¢"~'(x))
can be chosen arbitrarily; hence we can make arbitrary adjustments to Do, (z), and
so to 1 + Do, (z)X'(z). Clearly even arbitrarily small adjustments make this value
different to the other eigenvalues of J,r.

We have thus shown that arbitrarily close to any pair (7, X) € T is a pair (7', X’)
for which the low period points of g,/ x/ are finite in number, are hyperbolic, and have
distinct characteristic values. This completes the proof of Lemma 4.

We are now in a position to prove the state dependent sampling theorem. For
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y € C*(M,R) and (7, X) € T we define &, , x: M — IR* by

Oy x (2) = (y(2), Y(gr,x (@), - - -, y(97x (2))) (7)

Then we have

Theorem 3 For d > 2m the triples (y,7,X) € C*(M,R) x T for which ®,, x is an
embedding of M form an open and dense subset of C*(M,R) x T

Proof: Let (7,X) € S, where S is as in Lemma 4 with [, set to d, d > 2m; then
by Theorem 2 there is a dense subset of C?(M,IR) such that, for all y in this subset,
®, , x is an embedding of M. Since S is dense in 7 by Lemma 4, the set of triples
(y,7,X) € C*(M,R) x T for which ®,, x is an embedding, is dense.

Clearly @, , x depends continuously on (y, g x), so it depends continuously on
(y,7, X); that is, the mapping C?>(M,R) x T — C?(M,R%) given by (y,7, X)
®, , x is continuous. C? embeddings of M form an open subset of C?(M,R?), so the
triples (y, 7, X) giving rise to embeddings form an open subset of C2(M,R) x T.

7.3 Proof of Theorem 4: Interspike Intervals Embedding
Theorem

To prove the interspike intervals theorem we must of course again restrict the class of
pairs (7, X) that we consider to those satisfying the conditions of Lemma 1—i.e. to
the set 7. But this is not enough: 7 may still contain an open set of pairs for which
interspike intervals do not provide an embedding, so we need to restrict attention
further; this is attended to in the following paragraph.

We first introduce a new notation for the delay map: for each pair (7, X) we say
®, x: M — R* is defined by

O x(7) = (7(2), T(grx (@), . .-, T(97x (2))) (8)

(@, x is exactly the same as @, , of equation (4), but it is convenient to have a slightly
more explicit notation for it at this stage.)

Let 7 C T be the set of pairs (7, X) such that there is a periodic orbit C of X and a
point z € C for which 7(z) is an integer multiple of the period of C. Clearly g(z) = z,
and all the components of ®, x(x) are equal to 7(x). If 7|C has neither a maximum
nor a minimum at z then there must be another point z' at which 7(z') = 7(z)
(by the IVT), and we see that g(z') = 2/, and &, x(2') = ®, x(x). If 7|C has a
maximum or a minimum at = then D7(z)X(z) = 0 and D®, x(z)X(z) = 0. Thus
@, x fails to be an embedding for every (7, X) € 7. Furthermore if D7(z)X (z) # 0
then z is a hyperbolic fixed point of ¢g|C, and all sufficiently close (7', X') will have
a corresponding fixed point, and so will belong to 7. Hence the pairs (1, X) giving
rise to embeddings cannot be dense in 7. To prove an embedding theorem in this
situation we must eliminate 7 from consideration. However, simply considering T\’f’
runs into the problem that 7 may not be a closed subset of T, so that T\'i' is
not open: this is unsatisfactory since small perturbations of a pair in 7’\7A' are not
guaranteed to be in 7'\7', preventing us from showing that embeddings are dense.
Thus we need to discard the closure of 7 rather than 7. Let S be the set of pairs
(1,X) € T such that X has a non-hyperbolic equilibrium point z with an eigenvalue
iw where w = 2mn/7(x) for some positive integer n. It is not difficult to see that any
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limit point of 7 not in 7 must be in $ (and that S is closed in 7). So we consider
the (open) set 77 = T\(T U S).

We want to know if ®, x is likely to be an embedding. The theorem we shall prove
is the following:

Theorem 4 For d > 2m the pairs (1,X) € T' for which ®, x is an embedding of M
form an open and dense subset of T".

The main difference between this and the state dependent sampling case of Theo-
rem 3 is that since 7 now plays the role of the measurement function, the measurement
function and the diffeomorphism ¢ are inextricably linked—they cannot be perturbed
independently, and this means there is no straightforward way of deriving Theorem 4
by an application of Takens’s Theorem. Thus we must prove Theorem 4 from scratch;
we do this by a strategy that closely parallels the proof of Takens’s Theorem itself [23].

As usual, the difficult part of the theorem is the denseness part. Given any pair
(1,X) € T' we must show that arbitrarily small perturbations to 7 and X can be
found that produce an embedding. A series of perturbations is constructed, each of
which endows the map @,/ x» with some desired property, culminating in ®,+ x» being
an embedding. The first perturbations produce a new pair in the set S described in
Lemma 4; (note that since S is open and dense in 7 (by Lemma 4), and 7" is open
in 7, SNT"is open and dense in 7", so the required perturbations have already been
described in the proof to the lemma). The vector field is fixed from now on—all the
subsequent perturbations are made to 7 (and have, of course, a corresponding effect
on g).

Perturbations are made so that ® is injective on the set of low period points, and
further perturbations ensure ® is immersive at these points, so is an embedding of a
neighbourhood of them. The remainder of M is covered with coordinate patches, and
perturbations are made on each patch to ensure ® is immersive there; once this has
been done for each patch, ® is an immersion of the whole manifold. Finally, another
system of patches is chosen and a perturbation constructed based on it that makes ®
injective on M, and so an embedding.

Of course, the hard work comes in showing that the perturbations described above
can actually be found: those dealing with the low period points can largely be written
down directly, while for the remainder each perturbation is expressed as a linear
combination of suitably chosen localized functions, and transversality arguments used
to show that the coefficients in these combinations can be chosen so that ® acquires
the right properties.

Making @, x injective on the low period points

Let us begin with the low period points. We may assume that our pair (7, X) lies in
S, so the low period points of g are finite in number, hyperbolic, and have distinct
eigenvalues (and these properties are shared by all sufficiently close pairs), (see Lemma
4). The first task is to ensure that 7 takes on distinct values at all the low period
points. Since we are working in 7', any fixed point x of ¢ must be an equilibrium
point of X, and so will remain a fixed point regardless of how we change 7. We find
an open neighbourhood U of z containing none of the other low period points, and a
C? function ¥: M — R such that ¢(y) = 0 Vy ¢ U and ¢(x) # 0. Then it is clear
that for all except a finite number of values of a the function 7" = 7 4 av takes a
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different value at = to those at the other low period points. If necessary we make
such a perturbation at each fixed point.

Periodic points other than fixed points are rather different: changing the value of
T at one of these will generally change the positions of others. Let x be a low period
point of g, of period at least 2, so that z; = g(x) # x. Perturbing 7 will generally
shift x;, and may well result in z no longer being a periodic point. To overcome this
we shall introduce perturbations both at x and at z; such that the latter counteracts
the former and z remains a periodic point. The Hausdorff property means we can find
an open neighbourhood U of z such that U and gU are disjoint, and such that UUgU
contains none of the low period points except z and x;. Letting B, C IR™ be the
open ball of radius 7 centred at the origin of IR™, we may further assume that there
is a chart map h of M such that AU = B; (and h(z) = (0,...,0)). Let A:IR™ — [0, 1]
be a C? function such that A(u) = 0 Vu ¢ Bsss and A(u) = 1 Vu € Byp; also let
: M — IR be defined by ¥(y) = Ao h(y) Vy € U and ¢(y) = 0 otherwise: then
¢ is C?. Let 7, = 7 + a1, and g, be the corresponding diffeomorphism (recall that
X is a fixed vector field); note that g,(y) = g(y) Vy ¢ h 'Bs). For sufficiently
small a we must have g,h 'Bs/y C gU and hence g,U C gU. For such a we define
Xa:M — R™ by xa = ¥ 0 g,"; Xa has support in gU. Now let 7,5, = 7, + bxa
(with g,p the corresponding diffeomorphism—note that g,,(y) = ga(y) for y € U,
and g.5(y) = 9.(y) = g(y) Yy ¢ U U gU). We choose b so that, at the periodic point
z, g2,5(x) = g*(x), that is, so that 7,4(x) + 745(gas(x)) = 7(x) + 7(g(z)); it is easy
to see that the b we require for this is b = 7(g(z)) — 7(ga(x)) — a. Since g, equals
g at all other points (if any) on the orbit of x it is clear that z is a periodic point
of g, (with the same period as under g). By taking a sufficiently small, 7,; can be
made arbitrarily close to 7. With the above choice for b we have 7,,(z) = 7(z) + a
and 7,4(gap(x)) = 7(g9(z)) — @, so it is clear that for all but finitely many values of a,
Tap(x) differs from the value of 7, at all the other low period points.

Having established the desired property at one low period point, z, it may turn
out that a subsequent perturbation changes the position and 7 value of x; however,
sufficiently small perturbations will not make the new 7 value the same as at any of
the other low period points. Hence this kind of perturbation can be applied to each
of the points in turn until they all have different values.

Making ®, x immersive at the low period points

We now move on to ensuring ®, x is an immersion at the low period points. Suppose
that {xo, x1,...,2,_1} is a (low) period p orbit of g. For each i =0,...,p—1 we may
find an open neighbourhood U; of x;, such that the neighbourhoods are disjoint, and
there are chart maps h;, with h;,U; = B; (and h;(z;) = (0,...,0)). We let u;;: U; = IR
be the j-th component of h;, and ¥;: M — R be ¢;(y) = Ao h;i(y) Yy € U; and
¥i(y) = 0 otherwise (X is the same bump function as above). We now consider the

perturbation
m p—1

7', =T+ Z Z ajz-uj,-.zbi (9)

j=1i=0
for arbitrary coefficients aj;. Note that for all y € U; we have 7'(y) = 7(y) +
> ajivgi(y)Yi(y), and in particular 7'(z;) = 7(z;) for all 4. This means that
{zg,1,...,2,-1} is still a periodic orbit of the new diffeomorphism ¢'. We also have
D7'(xz;) = D1(x;) + a;, where we have let a; = (a1;, @i, - - -, mg; ), S0 this construction
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allows us to perturb D7 (z;) to any vector we please.
We wish to ensure that D®. x () is full rank (obviously similar arguments will
work for the other points on the orbit). D®. x(x¢) has the form:

Dz, 1)Dg'(2ys) . .. Dy (o)
D1'(z9)Dg'(xp—1) - .. Dg' (o)
D1'(z1)Dg'(z0)Dg'(xp—1) - .. Dg' (o)

which we write in a more convenient form by letting D7'(z;) = w] and Dg'(z;) = A;:

T
Wy

’w{AO
nglAO
(10)
’U)Z)llAp,Q c. AO
ngp—l “en A()

’U){A()Ap_l ce AO

From (5) we find that Dg'(z;) = Jy(,)(%:) + X(¢'(%:))D7'(2;), or (writing J; for
Jri(zs)(x;) and X; for X (¢'(z;))), Ai = J;+ X;wl. Both w} and A; are affected by the
perturbation to 7, but J; is unaffected, since the value 7(z;) is unchanged. We can
clarify the effect of the perturbation on D®, x(z,) by noting that the matrix (10) has
the same rank as

T
Wy
’UJ’{J()

ngljo

T

wpfljp_g « .. JO
T

wy Jp—1---Jo

U}’{J()Jp_l e JO

This can be established by showing that each row of (10) is the sum of the corre-
sponding row of (11) and a linear combination of earlier rows of (11) (this shows
that (10) is obtained from (11) by multiplication by a lower triangular matrix whose
diagonal elements are all 1); for this it is enough to show that each row of (10) is the
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sum of the corresponding row of (11) and a linear combination of earlier rows of (10).
Assume then that this is true for the first £ rows of (10). The k + 1-th row has the
form wZTAi—lAi—Z Ce A()Ap_l Cen A() Cen A(), and

wiTAi,lAi,g “en A()Ap,1 Ce AO Ce AO =
= ’LU;I‘(J,;1 + Xi,lwgll)Ai,g ce AOApfl ce AO ce AO

= w;I‘Ji_lAi_z cen A()Ap_l Ce A() “en A() + (wiTXi_l)wgllAi_z Ce A()Ap_l “en A() cen A()

The second of these terms is a scalar (namely w] X; ;) times the k-th row of (10); we
can treat the first term in the same way:

wiTJiflAi,Q P A()Ap,1 “en AO Cen AO =
= w! Ji_1(Ji—a + Xiow?l 5) ... AgAp_1 ... Ag... Ag
= wiTJi—IJi—Q e 'AOAp—l o AO .- -AO + (wZ-TJi_1XZ’_1)wZT_2 cee A()Ap_l .. -A() .. -AO

in which the second term is a scalar (wlJ;_1X; 5) times the k — 1-th row of (10).
Proceeding in this way produces the required result for the k& + 1-th row of (10).

Writing v] = wl'Ji_1...Jo,1=0,...p—1,and M = J,_; ... Jy, the matrix (11)
becomes

(12)

We have already seen that we can arrange for w} to be any vector in IR™ by a suitable
choice of the vector of coefficients a;, and since the matrices J;, 7 = 0,...p — 1, are
all full rank the same is true of v}. A standard result from linear systems theory (in
which (12) is referred to as an ‘observability matrix’) tells us that if the eigenvalues of
M are all distinct then the set of p-tuples (vg,v{,...,v,_;) such that (12) is full rank
is open and dense in IR”™. The coefficients (ag, a1, ..., ap—1) which make (12) full
rank are correspondingly open and dense. Thus to show that D®, x(z() can be made
full rank by an arbitrarily small perturbation of the form (9) we need only confirm
that M has distinct eigenvalues. If T is the period of the orbit of the vector field X
on which zg lies, then 7(z9) + 7(z1) + ... + 7(zp—1) = rT for some positive integer
r, and M is just the matrix D¢,r(zo) (recall ¢,7 is the time-rT map of the flow).
We arranged for this to have distinct eigenvalues by performing perturbations to the
vector field in the proof of Lemma 4.

Let P be the set of low period points of ¢’. (Note we have not yet set a value for
l,—the above discussion applies whatever value we choose.) Though we shall make
further perturbations to ¢’ these will not alter the set of low period points, so P is a
fixed set from now on. It was established above that the images of all the low period
points are distinct under ®,s x, and so we can find a neighbourhood of each point
such that the images under ®,s x of no two of the neighbourhoods overlap. Further,
since ®,/ x is immersive at each low period point, each z; € P has a neighbourhood
U; such that @,/ x|U; is an embedding, and by the previous sentence we may take
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the U;’s to have disjoint images, so that ®,» x is in fact an embedding of the union
of the neighbourhoods. Since M is locally compact, we may further take the U;’s to
be compact neighbourhoods; their union is then also compact since there are only
finitely many of them. Let V' be the union of the neighbourhoods; it is clear that for
all sufficiently small perturbations to 7', the resulting delay map will be an injective
immersion on V.

Making ®, x immersive on the whole of M

Attention now turns to producing an immersion on the (closed) set M’ = M\int(V).
For this we use a construction that we shall need again several times below, so to
avoid some repetition we set it out in general terms here. For convenience we relabel
the current measurement function 7, and the corresponding diffeomorphism g (i.e.
we drop the primes). Let [, be d — 1 (or larger). Let C be any closed subset of
M such that C NP = ), and let + € C; since z is not a low period point the
points z, g(x), ... g% () are all distinct, and we can find an open neighbourhood U,
of z, with compact closure Uy, such that h,U, = B, for some chart map h, (and
hez = (0,...,0)), the sets Uy, gUs, ..., g% *U, are all disjoint, and U, contains no
points in P. Letting W, = h,'By,4 we see that {W,|z € C} is a collection of compact
sets whose interiors cover C: we select a finite subset, which we relabel W1, ..., Wi
(with corresponding points z1, ..., zk, open neighbourhoods Uy, ..., Uk, and chart
maps hy, ..., hg), so that the interiors of these sets cover C'. We call such a collection
a ‘good cover’ for C'. It would be more complete to refer to a ‘good cover with respect
to g’ since one of the properties of the good cover (the fact that U;, gU;, ..., ¢4 'U;
are all disjoint) depends on g. The crucial point to note is that, although the sets
gU; etc. depend on g, the collection W1, ..., Wk (with the corresponding Uy, ..., Uk)
still form a good cover of C for all ¢’ sufficiently close to g. We can always find a
good cover so long as C' contains no low period points; sometimes we may need the
cover to have other properties as well, in which case we will need to show how these
can be arranged.

We now return to the particular case where C' is the set M'; we find a good cover
for M'. Each W; is dealt with in turn: a perturbation is made (with support in
U; UgU; U ...U g4 1U;) which establishes an immersion at every point in W;; since
this set is compact, subsequent perturbations will preserve the immersivity property.

Consider then the set U;; similar arguments will apply to all the other U;’s and
so for convenience we will drop the ‘1’ subscript from U;, h; and W;. To deal with
this set we define v;;: M — IR by

Wiily) = uj(g~*y) X Ao h(g~'y) fory € g'U
ity 0 for y ¢ g'U

where u; is the j-th component of A and A is the bump function used above. Now
define a perturbed measurement function 7’ by

d—1 m

=T+ > ai

i=0 j=1

with corresponding mapping ¢'. Of course, we are only interested in cases where the
coefficients are small enough that ¢’ is actually a diffeomorphism. Let a € RY™ be
the vector (a1, Go2, - - -, @da—1,m), then there is some 6 > 0 such that if @ € B; then ¢
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is a diffeomorphism. (Bjs is the open ball of radius ¢ in IR%™.) Indeed, for sufficiently
small @ we must have ¢"U C ¢'U for i =1,...,d — 1, so we will take § small enough
to ensure this. This means that for y € U the points y, ¢'(y), ..., ¢¢ 1(y) lie in the
sets U, gU, ..., g* U respectively, so 1;;(¢"(y)) = 0 unless i = k and hence g’ (y)
does not depend on the coefficient a;; if ¢ > k.

Define the function F:IR™ x B; x S™ ! — IR? by

F(a,z,v) = D(®. x o A~ ") (z)v

where S™ ! = {v € R™ : ||v|| = 1} is the m—1 dimensional sphere. (Then D®,: x(y)
is full rank precisely when F(a, hy, - ): S™ ' — IR? does not contain 0 in its image.)
To investigate the rank of the Jacobian matrix DF'(a,z,v) we concentrate on that
part of it that corresponds to partial differentiation with respect to the coefficients
a;j. Say Fy is the k-th component of F', then

Fr(a,z,v) = Z[D(CI)T'XOh ] ZDz(T'OQ o h™Y)(z)v,
i=1
m m m d—1
= ZDi(T og* o h ™) (z)v; + Z agpDi(Ypq © Yo hTh)(2)v;
=1 1=1p=1 qg=0

We saw in the previous paragraph that 1,,0¢*"'oh™!(z) = 0forz € B, if ¢ # k—1,
and so D;(1pq 0 ¢ 1o h71)(z) = 0 in this case. Hence

m

Fi(a,z,v) =) Ds(ro ¢* o b7 (z)v; + Z Z ap—1,pDi(Ppr-1 0 g* o h™H) (x)v;

=1 i=1p=1

Now consider Fy/da,, where r > k — 1. Since ¢’*~! (and hence 7 0 ¢* ! o h~! and

D;(pg 0 g1 o h™1)) have no dependence on a,s; we see that 0F;/da,s = 0. For the
case r = k — 1, ¢! still has no dependence on a,,, and so

F m
0 k — zDz‘(ws,k—l o g/kfl o hil)(aj)vi

8ak71’5 =1

Taking a = 0, so that ¢’ becomes g, and taking = € By, we have
Di(d]s,k—l 9 gkil o hil)(ﬂ')) = DZ'US (o] hil(l') = 6i3

hence 0Fy/0ay_1,(0,z,v) = vs. The first dm columns of the matrix DF(0,z, v) take
the form

o0 0 ... 0
o0 ... 0
x ol ... 0
B T

where v7 and 0 are (row) m-vectors, and x stands for elements about which we have
no information. Since v cannot be 0, DF(0, z,v) has at least d linearly independent
columns and so is full rank.

F is C', so the fact that DF is full rank everywhere on the compact set {0} x
Byj5 x S™ ! implies it is full rank on a neighbourhood of this set; in particular there
is some € > 0 such that DF is full rank on all points of the manifold B, X B/, X Sm-1,
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The argument now follows the standard pattern. The function F'|B. X By /o x S™ !
is transversal to 0 € IR? and so the inverse image of {0} is a co-dimension d (hence
dimension (d + 1)(m — 1) + m) submanifold. The projection of this set into R*™ is
precisely the set of coefficient vectors a for which @, x o h™! fails to be immersive on
By 3. Projection is differentiable, so the projected set has dense complement in R4
if F~1{0} has dimension smaller than dm, that is, if d > 2m. In that case we can
clearly find 7' arbitrarily close to the unperturbed 7 such that ®,/ x is immersive at
all points of A™' By, and in particular, all points of W.

This deals with W;. The argument for W5 etc. is the same; the only extra point
is that the perturbations for W, will have support in U, U ¢'Us U . .. ¢’* U, where ¢
is the new diffeomorphism constructed when we dealt with W;, and we need to check
that these sets are disjoint. Recall that U, was selected so that Us, gUs, ..., ¢ U,
were disjoint, and since these sets are compact the disjointness will be preserved by
all sufficiently small changes to g.

Making @, x injective: pairs (z,y) where y is a low-period point

We have now constructed a function 7 (again dropping the primes for convenience)
such that ®, x is an immersion of M, and injective when restricted to V. The task
now is to extend injectivity to the whole of M. This is done in several stages. The
initial stages deal as usual with those points that present particular difficulties: pairs
z,y € M for which some of the components of ®, x(z) and ®, x(y) are necessarily
the same, either because z or y is periodic, or because y = ¢’(z) for some j. Once
these points have been disposed of the rest of M can be dealt with fairly easily.
To facilitate the discussion we introduce the function ¥: M x M — IR?, defined by
U(z,y) = O, x(x) — P x(y); P x is then injective if ¥ has the property: ¥(z,y) =0
implies x = y. W already has this property when restricted to certain subsets of
M x M. In particular, since @, x is locally an embedding, there is a neighbourhood
N of A = {(x,x)|x € M}, the diagonal of M x M, such that ¥|N (z,y) =0 = z =y.

The first stage in creating an injection is to arrange for the low period points not to
share an image under @, y with any other point in M; that is, [V|M x P](z,y) =0 =
x = y. Since ®, x is an embedding of V', we already know that [¥|V x P](z,y) =0 =
z =y. Let M' = M\int(V); since M' N P = () we need to ensure that (M’ x P) % 0.
Find a good cover for M’. For each of the sets Wy, Wy, ..., Wg in this cover we
arrange for U(W,; x P) # 0. We show how to do this for W, (the other sets are similar
of course), and for convenience we drop the ‘1’ subscript (from Wi, U; and hy). Let
j: M — IR be given, for each 0 < j <d —1, by

| Xoh(g7y) forye ¢'U
%(y) = { 0 for y ¢ ng (13)
and for each ¢ € R% let 7, = 7 + Z;-l;é a;v;. As usual we can consider a sufficiently
small that the corresponding g, is a diffeomorphism, and ¢g:U = ¢'U fori = 0,...,d—
1. Consider F:R* x By x P, defined by F(a,z,p) = ®,, x(h~'z) —®,, x(p). The k-th

component is Fy(a,z,p) = 7,(g¥'y) — 7.(¢*"'p) where y = h™'z. Since 7,(p') = 7(p')
for all p' € P we see that 7,(¢g* 'p) = 7(¢* 'p). Further, since y, g,y, ..., g¢ 'y lie
in U, gU, ..., g 'U respectively, 7,(¢'y) depends on a,, only for m < [, and so gly

depends on a,, only for m < — 1; thus ¢!y does not depend on a,, if m > I.
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Now

d—1
Fila,z,p) = 7(gk ')+ > ajv;(98"y) — 7(¢* 'p)

§=0
= 7(g¥ ") + ar—19¥k—1(¢¥'y) — 7(¢*'p)

Form > k—1, 0F;/0ay(a, z,p) = Omp—1¥k—1(95"y), soif x € By s then 0Fy/0anm (0, z,p) =
Omk—1. Thus the first d columns of the matrix DF(0,z,p) form a lower triangular
matrix whose diagonal elements are all 1, and so DF(0,z,p) is full rank. The ar-
gument, now follows the same course as before: the fact that DF is full rank on the
compact set {0} X By, x P means there is some ¢ > 0 such that DF is full rank on
B¢ x By x P. The inverse image of 0 € IR? under the restriction of F to this latter set
is a codim d, hence dim m, submanifold; its projection into IR has dense complement
if d > m. But this projection is the set of @ € R” such that W(h 1By, x P) 5 0,
and so for any a in the complement W(W x P) # 0. Repeating this for all the sets
in the good cover we find (W, UW, U...UWg x P) D U (M' x P) # 0. Hence if
x €M,y € Pand ¥(z,y) =0 then z € V and z = y, so ¥ has the desired property
on M x P.

In fact, without making more adjustments to 7 we can say that there is a neigh-
bourhood L of P, which we may as well take to be compact, such that [U|M x

Li(z,y)=0 = z=y.

k—1

Making @, x injective: pairs (z,y) where y = ¢/z

Obviously, for 0 < j < d—1 the j+ 1-th component of ®, x(z) is identical to the first
component of ®, x(g’z); so pairs of the form (z, ¢’z) need special treatment. This is
the situation we deal with next: we want to ensure that if @, x(z) = @, x(¢’z) then
r =g

To arrange this we shall need P to contain points of period 2d — 2 or less (that is,
we take [, = 2d — 2). Certainly there is a compact neighbourhood N of P such that
NUgNU...Ug%¥IN C V. &, x is injective on V| so for every z € N, x and ¢’(z)
(where 1 < j < d — 1) have the same image under @, x only if ¢/(z) = z, (which
means that x € P). We now extend this property to the (closed) set M" = M\int(N).

For every point & € M" the points =, g(z), ..., g°*%(z) are distinct. We perform
the standard good cover construction on M" with the small modification that we
make sure that the sets U, gUs, ..., ¢ 2U, are all disjoint, rather than just the
first d of these. The resulting sets Wi, ..., Wg are dealt with in turn, and for each
of these sets the values of j, 1 < j < d — 1 are dealt with in turn: for each j a
perturbation is made (with support in U; U gU; U ... U ¢?¢72U;) which establishes
. x(z) # ®;x(¢?(x)) for every point z in W;; since this set is compact, subsequent
perturbations will preserve this property.

Consider then the set U;; similar arguments will apply to all the other U;’s and
so we will drop the ‘1’ subscript. Take j to be some fixed number in the range
1<j<d-—1.Define¢: M - R (0<i<d—1) by

oy Aoh(g7Utz) for z € gItU
vile) = { 0 for x ¢ ¢/ T'U

where ) is the usual bump function. Now define a perturbed measurement function
7' by
d—1
T "= T+ Z aﬂﬁ,-

1=0
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with corresponding mapping ¢’. As always, we are only interested in cases where
the coefficients are small enough that ¢’ is a diffeomorphism: letting a be the vector
(ag, - -.,aq_1), there is some § > 0 such that if a € Bs C IR then ¢ is a diffeomor-
phism. Indeed, for sufficiently small a we must have ¢"U C ¢'U fori=1,...,2d — 2.
Then for x € U the points z, ¢'(), ..., ¢?*"?(x) lie in the sets U, gU, ..., ¢g**72U
respectively, so 1;(¢"*(x)) = 0 unless j + i = k and hence ¢g'*(z) does not depend on
the coefficient a; if j + ¢ > k.

Define F:IR* x B; — R by F(a,z) = &, x(y) — v x(g"y) where y = h~'x.
Then in particular the k-th component of F' is given by

Alas) = 70 =gy
d—1

= 7(g'* Vy) +Zaz¢z Dy) — 7(g" 1 y) — 37 aghi(g"*HH)y)

=0

y) — 7(¢"F 1 H)y) — ap_hp_1 (¢ HDy) ik < j+1

=) (g Vy) + ap_1_j—1-;(g" " Vy) ) .
itk>j5+1

—T(gl(k_1+j)y) - ak—ld’k—l(g'(k_Hj)Q)

\

If r > k—1 then obviously » > k — 1 — j so neither ¢’®*~'*y nor ¢"*~Vy depends

on a,, and from the above expressions we see that ‘Zl:f (a,z) = —5,.,,6_11/;,9_1( (k=1+1)y):
and in particular if z € By, then g—f}(o,x) = —0,x—1. Hence the first d columns of

DF(0,z) (where z € Bys) form a lower triangular d x d matrix whose diagonal
elements are all —1. DF is thus full rank on the compact set {0} x B;/3, and hence
on some neighbourhood of this set: in particular there must be some € > 0 such that
DF is full rank on B, x By/;. Now we use the standard argument: F|B, x By, is
transversal to 0, so F1(0) is a codim d, (i.e. dimension d +m — d = m) submanifold
of B, x By, and the projection of this set onto its first d components has dense
complement in IR? so long as d > m. But this projected set is precisely the set of
a vectors such that there is z € By, for which @,/ x(y) = @+, x(¢”y). Thus we can
find 7' arbitrarily close to the unperturbed 7 such that ®. x(y) # ® x(¢”y) at all
points of h_lBl/g, and in particular, all points of W.

We have now established that ¥(z,¢’z) = 0 implies z = ¢’z for all z € M,
and j in the range 1 < 7 < d — 1. It is clear that we can immediately extend the
range of j to include —(d — 1) < j < —1, (we need only let y = g’z and rewrite the
implication in terms of y). Letting 7; C M X M be the set {(z, ¢’z)|xz € M}, and
T = U;-l;l_(d_l)Tj we have that if (z,y) € T and ¥(z,y) = 0 then = y. Furthermore
there is a neighbourhood S of 7" (which we may as well take to be compact) such
that U|S (z,y) =0 = z=y.

Making @, x injective on the whole of M

Having established the property we want on M x L and on S we have dealt with all
the problematic points; it is now straightforward to adjust 7 so that ®, x becomes
an injection on M. Recall that we wish to arrange for ¥(z,y) =0 = z =y for all
(x,y) € M x M. Since we already know that the implication holds for all pairs in
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L x M we need only arrange it for pairs in (M\L) x M. So consider the (compact)
set M' = M\int(L); we construct a good cover by the usual construction, with the
following modifications: in choosing U, we arrange for ¢'U,, —(d —1) < j <d—1
to be disjoint (this is possible since x ¢ P and so the points g~@Vx, ... g% 'z are
all distinct); further we arrange for the sets U, x ¢'U,, —(d—1) < j < d—1, all to
be subsets of S, (this is possible since all the pairs (z,¢’z) lie in T.) As usual, the
interiors of the compact sets Wy,..., Wk cover M'. Each W; is considered in turn,
and we arrange for ¥ to have the desired property on Wy x M, Wy x M etc.; once we
have done this for all K sets the property holds on all of M x M. So consider first W;
(and the corresponding open set U; ), and drop the subscripts since the same argument
applies to each of the other sets. We shall perturb 7 so that the desired property holds
on W x M. We already know that it holds on W x (¢~ @ DU U ... U ¢* 'U) since
this is a subset of U x (¢~¢ DU U...U g4 'U) and hence of S; thus it is sufficient to
arrange for it to hold on W x M\ (¢~ VU U...U ¢ 'U).
The argument is now very similar to that used for M x P above. Let ¥;: M — IR
be given, for each 0 < j < d — 1, by equation (13), and for each a € R let 7, =
;j;é a;1;. As usual we consider a sufficiently small that the corresponding g,
is a diffcomorphism, and ¢g':U = ¢'U for i = 0,...,d — 1. Consider F:IR* x B; x
M\(g~“4DUU...Ug? V), defined by F(a,r,2) = &, x(h 'z)—®,, x(2). The k-th
component is Fy(a,,z) = 7,(g5 1y) — 7 (g%~ 1z) where y = h™'z. Since z lies outside
g DU U...Ug¥ U we see that 7,(g¥"'2) = 7(g*'2) for k = 1,...,d, and so
the second term of Fi(a,z,2) is independent of a. By the same argument as follows
equation (13) we see that DF is full rank on {0} x By, x M\(g~“DUU...Ug* '),
and hence, for some € > 0, on B, X By x M\ (g7 @YU U...Ug?U). And following
the argument further we see that the a vectors for which ¥ has the desired property
on h 1By x M\(¢7 YU U...U¢?'U) are dense in B, so long as d > 2m. Since
we already know the property holds on h !By x (¢ @ DU U...Ug? 'T), it holds on
hilBl/Q x M, hence, of course, on the compact set W x M. Dealing with the other
W sets in the same way, we finally create a 7 such that ®, x is injective on M. This
completes the proof.

7.4 Proof of Theorem 5: State Dependent Sampling Embed-
ding Theorem for Integrate-and-Fire Systems

Recall that we specify an integrate-and-fire system by a pair (v, X) € C?(M,IR") x
X%(M), where C*(M,IR") = {v € C*(M,IR)|v(z) > 0 Vz € M}. Each pair gives rise
to a sampling interval function 7 through the implicit relation equation (3), where
¢ is the flow arising from X. (We could have included the threshold © along with
v and X in a triple that specified the integrate and fire system; the reason we have
not done so is that in proving our embedding theorems we shall have no occasion to
perturb ©. Thus we consider © chosen in advance, and the integrate and fire systems
referred to in the theorems below use this © for the threshold; the value chosen for ©
is arbitrary.) We have already seen that the interspike interval system is a member
of T.

For the state dependent sampling embedding theorem we shall also of course
introduce a measurement function y € C?(M,IR) to produce a triple (y,v, X). The
corresponding delay map @, » x: M — IR? is defined as in equation (7). The theorem
we want is then
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Theorem 5 For d > 2m the triples (y,v, X) for which ®,, x is an embedding of M
form an open and dense subset of C*(M,R) x C?*(M,R*) x X?(M).

The openness part of this theorem is proved in much the same way as in Theorem 3:
it follows from the observation that ®,, x depends continuously on (y,v, X). The
denseness part, again as for Theorem 3, is essentially an application of Theorem 2,
and requires an analogue for integrate-and-fire systems of Lemma 4: the lemma we
use is:

Lemma 5 Let I, be a given positive integer. Let S C C*(M,R*) x X?(M) be the
set of pairs (v, X) satisfying the following conditions:

1. The only periodic points of g, x having period l, or less are fized points; these
are finite in number, and hyperbolic.

2. For each of these fized points the characteristic values are all distinct.

Then S is open and dense in C*(M,IR"T) x X2,

Proof: The openness part of this lemma is proved in the same way as in Lemma 4:
it follows from the observation that g, x depends continuously on (v, X).

The denseness part is rather different to that in Lemma 4. Given a pair (v, X),
let 1 be the minimum value v takes on M, and note from (3) that 7(z) < ©/u. We
can find, arbitrarily close to X, another vector field X' whose periodic trajectories
having period less than or equal to [,0/u are finite in number, are hyperbolic and
have distinct eigenvalues. Any periodic point of g, x» with period [, or less must lie
on one of these periodic trajectories. That is, if g7 (x) = z for some z then there is
a low period trajectory C' of X' such that x € C'; furthermore if T is the period of
C then o, (z) = nT for some positive integer n, (recall o, is defined in equation (6)),
and

ro = /OnTv(qS(x,t))dt _ n/OTv(gb(x,t))dt

Note this means every point on C'is a period r point of g, x». Make a new integrand o'
by multiplying v by a real-valued function taking the values 1 outside a neighbourhood
of C' and a # 1 on C; the above equality will not be satisfied if v’ replaces v. For
o sufficiently close to 1, no condition of the form ¢© = n' [T v'(¢(x,t))dt (where n’
is a positive integer and ¢ is an integer in the range 1 < ¢ < [,) will be satisfied.
Hence there are now no low period points on C. We can treat the other low period
trajectories of the vector field in the same way, with the exception of equilibrium
points, and so generate a new vector field, say X, for which 9. x has no low period

points, except for fixed points arising from equilibrium points of X. By our original
choice of X' these fixed points are hyperbolic and have distinct eigenvalues. This
completes the denseness part of the lemma.

We can now complete the proof of Theorem 5. Given any pair (v, X) € S (where
S is as in Lemma 5 with [, = d—1 and d > 2m) by Theorem 2 there is a dense subset
of C?(M,R) such that, for all y in this subset, ®,, x is an embedding of M. Since
S is dense in C?(M,IR*) x X2(M) by Lemma 5, the set of triples (y, v, X) for which
®, , x is an embedding, is dense in C*(M,R) x C*(M,R*) x X*(M).
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7.5 Proof of Theorem 6: Interspike Interval Embedding The-
orem for Integrate-and-Fire Systems

To find a theorem for integrate and fire systems analogous to Theorem 4 we consider
delay maps where the sampling interval function 7 also supplies the measurement
function—but where 7 is derived from v through relation (3). The delay map @, x is
defined as in equation (8); the theorem we want is then:

Theorem 6 For d > 2m the pairs (v, X) € C?*(M,R*) x X2, for which ®, x is an
embedding of M, form an open and dense subset of C*(M,IR") x X?(M).

As with Theorem 4 we will have to prove this from scratch; we use exactly the
same strategy that we used for Theorem 4, so rather than go through this proof
again here, we will just set out the modifications that must be made to the proof of
Theorem 4; mainly these modifications arise from the fact that now we are perturbing
v rather than 7 (directly).

The openness part is as usual straightforward, and follows from the observation
that @, x depends continuously on (v, X). The proof of the denseness part begins by
using Lemma 5 to show that arbitrarily close to any (v, X) is a pair (v, X) for which
the corresponding g has no periodic points of period [, or less, except for fixed points
arising from the equilibrium points of X (and these fixed points are hyperbolic and
have distinct eigenvalues). The vector field is fixed from now on (and renamed X).

Following the pattern of the proof of Theorem 4, we now ensure that ®, x is
injective on the low period points—for which it is sufficient to ensure 7 takes on
distinct values at these points. Since such a point (say ) is in fact an equilibrium
point of X relation (3) gives 7(x¢) = ©/v(xg), so it is enough that v take distinct
values at these points; and since the points are finite in number this is easy to arrange
by perturbations local to each point.

The next step is to make ®, x immersive at the low period points. Here again
matters are simplified by the fact that we are only concerned with equilibrium points.
The same argument as used for Theorem 4 shows here that sufficient conditions for
D®, x(x¢) to be full rank are that J(4,) (7o) should have distinct eigenvalues (which
has already been arranged by our choice of X), and that D7(x¢) should belong to an
open dense set depending on J;(5,)(2o). Thus we need only confirm that we can make
arbitrary perturbations to D7 by making suitable changes to v. A straightforward
calculation beginning with (3) shows that

Dr(zg) = —2020) (exp [

(o)

v(mo)DX(xO)] I)

and since z( is a hyperbolic equilibrium point of X the matrix in parentheses on the
right hand side of this expression is full rank. Thus we can make arbitrary changes
to D7(xg) if we can make arbitrary changes to Dv(zg) without altering v(xg): we can
do this by making perturbations of the form (9), (with v replacing 7; p = 1 in this
case). As in Theorem 4 we can conclude that there is a compact neighbourhood V/
of the set of low period points such that ®, x|V is an injective immersion, and delay
maps derived from all v' sufficiently close to v are also injective immersions of V.

The remainder of the proof relies on the construction of ‘good covers’—and per-
turbation functions to put on them—for certain subsets of M. We use perturbation

34



functions to establish the properties we want for our integrate and fire systems some-
what in the way we did for interspike interval systems; there are, however, some
significant differences. For interspike interval systems we typically chose an open set
U and considered its images ¢'U, 1 = 0, ..., d—1, installing a perturbation function 1;
on each of these and then forming new sampling interval functions 7, = T+Efl:_01 a; ;.
For integrate and fire systems the approach is similar, but now we are perturbing v,
so we have v, = v + 2?2—01 a;v;. The effect this has on g is more complicated than
perturbing 7: in particular, for a point z € ¢g‘U the effect on g(z) of perturbing 7
is determined solely by ;(z), but the effect of perturbing v can depend upon all
the values of the perturbations along the (continuous time) trajectory between x and
g(z)—and this trajectory may pass through any or all the ¢‘U sets. To deal with this
we shall use more sophisticated perturbation functions; one of the things we shall
arrange is that the integral (w.r.t. time) of each 1); along a trajectory from the point
at which it enters ¢'U, to the point at which it leaves, is zero. This will ensure that
the only relevant perturbations are those at the beginning and end of the trajectory
between z and g(z).

To simplify things further it is convenient to consider a slightly modified delay
map. We define

% (z) = (1(2), 02(2), . . ., 04(2)) (14)
where o, is as in (6); note that for integrate and fire systems o, is related to v by
or(z)
r@ = / v(d(z, 1)) dt (15)
0
Since ®Y = A®, x where A is the constant matrix
10 ... 0
11 0
11 ...1

@Y will be an embedding (or immersion) precisely when ®, x is. Note that the r-th
component of ®% (z) is determined by the integral (15) along the trajectory between z
and ¢" (z); by using the kinds of perturbation functions described in the last paragraph
we ensure that this component is affected only by perturbations in the regions of z
and ¢"(z). In fact we can make things even simpler by not installing a perturbation
function on the set U containing xz: then only the perturbation in the region of ¢"(z)
will be relevant. Thus we typically place perturbation functions on the sets ¢'U,
i = 1,...,d (whereas for the interspike interval case we had i = 0,...,d — 1; this
means we need to choose [, correspondingly larger than before).

We describe now how to construct the ‘good covers’ (the corresponding pertur-
bation functions are described later.) We take I, = d or larger (one greater than
we used in Theorem 4), let P be the set of low period points, and consider a closed
subset C' C M such that CNP = (. Let z € C, then z, gz,..., ¢z are all dis-
tinct, and we can find an open neighbourhood U, of z such that U, gU,, ...q%U,
are all disjoint, U, contains no points in P, and such that U, is a flow box ([11]):
that is, there is a chart map h,: O D U, — IR™ such that h,U, = [, 7)™ (with
he(xz) = (0,...,0)), and Dh,(y)X(y) = (1,0,...,0)T for all y € U, (so that the
induced vector field in [—v,,7,]™ is a constant). Letting W, = h;'[—7,/4,7./4]™
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we see that {W,|z € C} is a collection of compact sets whose interiors cover C: we
select a finite subset, Wi,..., Wy (with corresponding neighbourhoods Uy, ..., Uk,
and chart maps hy,...,hk), so that the interiors of these sets cover C; this is our
‘good cover’ for C.

We are now ready to move on to the next stage in the proof of Theorem 6, which
is to establish an immersion on the whole of M. We construct a good cover on the
closed set M' = M\int(V'), and make an immersion on each W; in turn; we show how
to do this for W (the others are similar) and drop the subscript for convenience.

To define suitable perturbation functions, let p: (—1,1) — IR be a C* function
such that 0 < u(y) < 1 for all y, pu(y) = 1 for y € (—1/2,1/2) and p(y) = 0 for
y ¢ (—3/4,3/4). Let X\:(—1,1) — IR be a C* function such that: A(y) = 0 for
y € (—1/2,1/2) and for y ¢ (—3/4,3/4); [, My)dy = 0; and J; A(y)dy # 0 (which
implies that [, A\(y)dy # 0 for every t € (—1/2,1/2)). Alsolet A;: (—1,1) — IR be C*°,
with A\(y) =1 for y € (=1/2,1/2), \i(y) = 0 for y ¢ (=3/4,3/4), [*, \i(y)dy = 0,
and [!' \;(y)dy # 0 for every t € (=1/2,1/2). Let z = (x1,..., %) € [—7,7]™ and
define fi(z) = p(za/v) x pw(xs/vy) X ... X (/7). Also define the following m + 1
functions on [—, y|™:

x1(z) Ar(z1/7y) X ()
xj(x) = zjMxi/v) x ji(z) forj=2,...m
Xmi1(x) = Az1/7) % (=)

The perturbation functions we require are ¢;;: M — IR

v [ xjoh(g7y) x [1+ Doi(g7y) X (97%)] " fory € g'U
%z(y) = { J 0 for y ¢ giU (16)

(where 0 < 7 < d, 1 < j < m+1). These functions are arranged so that if
the trajectory of y enters ¢g*U at time #; and subsequently leaves it at ¢, then
[ i(d(y, t))dt = 0 for j = 1,...,m+ 1. Thus if y € U (so that ¢’y € ¢'U)
then [ 4,4 (4(y, t))dt is nonzero only if k = 0 or i. Further, [*® ¢;0(¢(y, t))dt =
s 00(d(y,t))dt where ¢, is the time at which the trajectory from y first leaves U,

and [V :(b(y, 1))dt = [7°Y ;:(6(y, t))dt where t; is the last time before ;(y)
that the trajectory enters ¢'U. Also, if h(y) = x = (21,...,%m) then

o X(s)ds forj=1

t1 $1/’7
Yio(d(y, 1))dt = vfu(z) 3 5 [y, Als)ds for j=2,...,m (17)
0 1 .
Joy A(8)ds for j=m+1

and f5* 1jo(o(y, t))dt+ft§"(y) ¥5i(¢(y, t))dt = 0 (which further means that f(;”@ Yio(d(y, t))dt+
Joiw V;i(¢(y,t))dt = 0). Now define a new function

d m+1
U, =v+ Z Z aijd)ji (18)
i=1 j=1
with corresponding functions 7/, o} and ¢’ (and let @ = (a11,a12,. .., A4m+1)); DOte

that ¢ = 0 is not included in the sum. As in the proof of Theorem 4, for sufficiently
small a;;’s, ¢' is a diffecomorphism and ¢"'U C ¢'U fori = 1,...,d. Define F: R4 x
(=y,7)™ x ™! = R by F(a,z,u) = D(®% o h~")(z)u. The k-th component of F
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is Fy(a,z,u) = D(o} o h™*)(z)u. An expression for 0F/0a,s can be found from (15)
and (18): letting 9 = v' 0 g® o h~1 and Gyi(z) = o+ “ vyi(p(h~1(x), t))dt we find
by differentiating (15) w.r.t. a,;

do}, o ht

0= f)k(.’I)) da

(z) + G4 () (19)

Differentiating this w.r.t. z, and using (19) to replace do}, o h'(x)/da,s gives

Oy () P = G () Doy (z)u — v () DG ()1

From the remarks following (16) we see that (at @ = 0) for all z € (—v,v)™,
Gsr(z) = 0 unless r = k; differentiating this gives DGy,.(z) = 0. The relation
I buo@(y, )t + [T Yok (@(y, 1))dt = 0 implies that (at a = 0), Gio(x) =
—G (), and differentiating this gives DGyo(z) = —DGgk(z). Thus the first (m+1)d

columns of the matrix DF (0, z, u) take the form

[ —wl 0 0 0

0 —wl 0 0

0 0 —wf 0 (20)
0 0 0 ~w) |

This matrix will have full rank so long as none of the vectors w} is zero. The s-th
component, [w}],, is given by

o (2)?[w]]s = Geo(2) Dog(x)u — 0 (2) DG o (2)u

(evaluated at a = 0). Consider first s = m + 1. From (17) we see that Gy, 410(z) =

v () fwll/v A(t)dt, so if x € (—v/2,7/2)™ then G,,4+10(z) # 0. On the other hand,

(again if x € (—7v/2,v/2)™, so that ji(z) = 1), DGpi10(x) = (=A(21/7),0,...,0)7T,

which is 0 since z, /v € (—1/2,1/2). Hence, if Doy (z)u # 0, then [w]m,1 # 0.
Suppose then that Doy (z)u = 0; then O (z)[w! ], = —DGyo(z)u. From (17) we

see that, if z € (—v/2,7/2)™, D1G1(x) = —fu(x) A1 (z1/7) = —1, and D;G14(z) =0

for s = 2,...,m. Hence —DG,o(z)u = u;. For s = 2,...,m we have DGy (z) =
(2, X(#1/7) = 0; DyGuol) = 7i(z) 1, At)dt = c, say, where ¢ # 0; and
D;Gy(z) = 0 otherwise. Hence —DGyo(x)u = —cus. Since u is not the zero vector,

not all of the quantities —DGy(z)u can be zero, and hence [wl], # 0 for some s.
Hence wi # 0 and DF(0,z, u) is full rank. The same argument as in Theorem 4 then
shows that arbitrarily close to v there is a v’ such that @”X' is immersive at all points
of h™1(—=v/2,7/2). We conclude that we can make Y immersive on the whole of M
using arbitrarily small perturbations.

To complete the embedding we must make <i>g( injective. Consider the function
U: M x M — R? defined by ¥(z,y) = &% (z) — D% (y); ®Y% is injective if U(z,y) =
0 = z =y. As before we establish this in stages, beginning with [V|M x P|(z,y) =
0 = =z = y. Itis already true that [¥|V x P](z,y) = 0 = 1z = y, so we
need U(M' x P) # 0, where M' = M\int(V). We find a good cover of M’ and
arrange for W(W; x P) # 0 for each of the sets in it; we deal with W, (and drop the
subscripts). The perturbation functions we require are among those we used to make
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an immersion: in particular, we set v; = 1,11, where 11, is as in equation (16).
For each a € R% let v' = v + Y%, a;9; (but we are only interested in a sufficiently
small that ¢’ is a diffeomorphism, and ¢"“U = ¢°U for i = 1,...,d). Consider F:IR% x
(=7,7)™ x P — R? defined by F(a,x,p) = % (h~z) — &% (p); the k-th component
is Fy(a,x,p) = o,(h~'z) — o} (p). However, U N P = () so neither p nor g*p lies in one
of the sets ¢'U; if the trajectory from p enters one of these sets before reaching g*p
it must also leave it before reaching ¢*p, and so from the discussion following (16),

0y (p) = ox(p). Hence (using (19))

OFy _ Oy (') 1

(0.2.0) = - M e e @)
aai 1T P 8a,~ ’ﬁk(.I) 0 ! ’

Evaluating this at a = 0, using the discussion after (16), gives: 0Fy/0a;(0,x,p) =
0 unless i = k; 0Fy/0ax(0,2,p) = v(i(z)/0k(x)) lel/'r A(s)ds = ci(x), say, where
ce(z) #0if z € (—v/2,v/2)™. Thus the first d columns of DF (0, z, p) have the form
(20) except that each —w] is replaced by the single number ¢ (). Exactly the same
argument as in Theorem 4 now shows that arbitrarily small perturbations lead to
U(M'x P) % 0. Indeed, there is a neighbourhood L of P such that [¥|M x L|(z,y) =
0=z=y.

The next stage of the injectivity construction is to deal with pairs of the form
(y,¢’y) where 1 < j < d. We take [, = 2d, and find a compact neighbourhood N of
P such that NUgN U...Ug’N C V; @}’( already has the required property on N
so we extend it to M"” = M\int(N). We form a good cover on M”, now making sure
that the sets U, gUs,, ..., ¢%%U, are all disjoint. The resulting sets W1, ..., Wx are
dealt with in turn, and for each of these sets the values of j, 1 < j < d are dealt with
in turn. Consider U; (and drop subscripts as usual); take j to be some fixed number
in the range 1 < j < d. Set 9; = ¥y41,i+; Where 1,114 is as in equation (16). For
each a € R let v = v+ X% | a;00; (a is sufficiently small that ¢’ is a diffeomorphism
and ¢"U = ¢'U for i = 1,...,d). Now say F:IR* x (—y,7)™ — IR? is given by
Fla,z) = ®%(h 'z) — ®%(g"(h 'z)) so that Fy(a,z) = o4(h 'z) — o4(¢"(h 'z)).
Note that o}, ;(h~'z) = o} (h"z) + 0, (¢9" (h ")) s0

Fy(a,z) = oj(h'z) + op(h'z) — of (R )
og-(h_lx) does not depend on a, since there is no perturbation on ¢’U. From (21)

1

dof(h 'z)|
a=0 ﬁk (‘T)

Gai

ak(h_lz) .
/o Y1, (O(h ™z, t)) dt

and this is zero, unless ¢ = k — j; otherwise it is ¢ () (this quantity is described just
after (21)) and is non-zero for x € (—v/2,v/2)™. Similarly do}, ;(h™'x)/0a;|a=0 is
zero unless ¢ = k, when it is ¢;;(z). Hence the first d columns of DF (0, z) form a
matrix whose only non-zero entries are on the diagonal, or are j places to the left of a
diagonal element; this matrix is lower triangular, and full rank for x € (—v/2,~/2)™.
The same argument as in Theorem 4 now shows we can find arbitrarily small o
such that ®%(h~'z) # ®% (¢ (h'x)) for all z € W, which we extend to z € M"
by treating each W; in turn. Following the argument of Theorem 4 we conclude
that there is a neighbourhood S of the set T = U%_ ,{(z,¢'z)|x € M} such that
US(z,y) =0 = z=uy.

The final stage of the construction closely parallels the corresponding stage in
Theorem 4. As there, we need to establish the desired property of ¥ on the set
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(M\L) x M, so we consider the set M' = M\int(L), and for each x in this set find
U, such that ¢’U,, —d < j < d are all disjoint and so that U, x ¢’U,, —d < j <d
are all subsets of S; we extract a good cover in the usual way. We need to perturb v
so the desired property holds on W x M; it already holds on W x (¢=¢U U. ..U ¢0)
so we arrange it for W x M\(¢g~?U U ... U g?U).

Set ; = Ypmy1; wWhere ¥h,,1; is as in equation (16), and let v’ = v + X%, a;0;
(a sufficiently small that ¢’ is a diffeomorphism, and ¢"U = ¢'U for i = 1,...,d).
Consider F:IR? x (—v,7)™ x M\(¢~*U U ...U g%U) — IR? defined by F(a,z,z) =
Y (h'z) — d%(2), so that Fy(a,z,z) = of(h~'x) — o} (2). Since z and ¢*z lie outside
¢’U for j = 1,...,d, o,(z) does not depend on a, and dFy/da; = doj(h 'z)/0a;.
From (21) and the discussion following it we get 0F}/0a;(0,z,z) = 0 unless i =
k, and 0Fy/0ax(0,z,2) = cx(x), where cx(z) # 0 if x € (—7v/2,7/2)™. Thus the
first d columns of DF(0,x,z) form a diagonal matrix, which is full rank if x €
(—=v/2,v/2)™. The argument used for Theorem 4 now applies, and completes the
proof for Theorem 6.
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