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A GSVD formulation of a domain decomposition method for

planar eigenvalue problems

Timo Betcke

Institut Computational Mathematics, TU Braunschweig,

D-38023 Braunschweig, Germany.

In this article we present a modification of the domain decomposition method of Descloux
and Tolley for planar eigenvalue problems. Instead of formulating a generalized eigenvalue
problem our method is based on the generalized singular value decomposition. This approach
is robust and at the same time highly accurate. Furthermore, we give an improved conver-
gence analysis based on results from complex approximation theory. Several examples show
the effectiveness of our method.
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1. Introduction

In 1983 Descloux and Tolley proposed a domain decomposition method for the planar eigenvalue
problem

−∆u = λu in Ω (1.1a)

u = 0 on ∂Ω, (1.1b)

where Ω ⊂ R2 is a polygonal domain (see Descloux & Tolley (1983)). In each subdomain they
used Fourier-Bessel functions that satisfy (1.1a) to approximate solutions of (1.1) and then set
up a generalized eigenvalue problem, which modeled the compatibility conditions between the
different subdomains. Based on power series estimates they proved exponential convergence of
their method.

The use of particular solutions that satisfy (1.1a) but not necessarily (1.1b) was popularized
in the paper by Fox et al. (1967). But their Method of Particular Solutions (MPS) is based on
global basis functions that are supported on the whole domain rather than local approximations
as used by Descloux and Tolley. Indeed, stability problems with the MPS on more complicated
domains were one motivation for the work of Descloux and Tolley. The original MPS was
recently revisited and improved by Betcke & Trefethen (2005).

Closely related ideas also appeared in the context of acoustic scattering, where instead of
the eigenvalue problem (1.1) the solutions for a Helmholtz problem are sought (see for example
Monk & Wang (1999)).

Unfortunately, the accuracy of the method of Descloux and Tolley is limited to O(
√

ǫmach),
where ǫmach is the machine accuracy. This was pointed out by Driscoll (1997). Using deriv-
atives of eigenvalues he solved the accuracy problem and computed the first eigenvalues and
eigenfunctions of the famous GWW isospectral drums (see Gordon et al. (1992)) to 12 digits
of accuracy.
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Fig. 1. A decomposition of the GWW-1 isospectral drum (see also Driscoll (1997), Figure 1.1). The black dots
mark the corners zj . Note the artificially introduced corner at 1 + 1i.

In this article we present another solution to the limited accuracy problem of the method of
Descloux and Tolley. It uses the generalized singular value decomposition (GSVD) instead of
the generalized eigenvalue decomposition (GEVD). This approach is not only robust and highly
accurate. In contrast to the methods of Descloux, Tolley and Driscoll it also avoids the explicit
evaluation of boundary and domain integrals, which makes it easy to implement. Based on
techniques from complex approximation theory we provide a new convergence analysis, which
leads to sharper estimates than power series expansions.

2. The Method of Descloux and Tolley and Driscoll’s modification

Let Ω ⊂ R
2 be a bounded polygonal domain, i.e. the boundary ∂Ω consists of piecewise straight

arcs. For simplicity we assume that Ω is simply connected. But at the end of Section 6 we show
how to apply the results of this paper to certain multiply connected domains. Let Ω1, . . . , Ωp be
simply connected subdomains of Ω with piecewise analytic boundary which form a partition of
Ω, i.e. Ωj ∩Ωl = ∅ for j 6= l and the closure of the union of the subdomains is Ω. Furthermore,
for each subdomain Ωj we assume that ∂Ω ∩ ∂Ωj is a segment containing no corner of Ω or
∂Ω ∩ ∂Ωj contains two segments of ∂Ω that intersect at a corner of ∂Ω.

If ∂Ωj contains no corner of ∂Ω we define a corner of angle π at a point on the segment
∂Ω∩∂Ωj . Hence, we can assume that each subdomain Ωj contains one corner of Ω with interior
angle π/αj at the position zj. Such a decomposition of the GWW-1 isospectral drum is shown
in Figure 1 (see also Driscoll (1997) Figure 1.1).

The boundary between two subdomains is denoted by Γkl := ∂Ωk∩∂Ωl. If Γkl consists only
of a finite number of points we set Γkl := ∅.
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In each subdomain Ωj , 1 6 j 6 p we define a local approximation space Aj(λ) of the form

Aj(λ) :=







Nj
∑

k=1

a
(j)
k Jkαj

(
√

λr) sin kαjθ; a
(j)
k ∈ R







,

where Jkαj
is the Bessel function of the first kind of order kαj . The origin of the polar coordi-

nates is zj and the angular coordinate is chosen in such a way that every function in Aj(λ) is
zero on the boundary arcs adjacent to the corner at zj .

By A(λ) ⊂ C2(
⋃p

j=1 Ωj) we denote the space of all functions u, which are in each subdomain

Ωj linear combinations of the Fourier-Bessel basis functions of Aj(λ). Hence, u|Ωj
=: u(j) ∈

Aj(λ). Although the function u is not defined on the interfaces between the subdomains we
can analytically continue each function u(j) across the internal interfaces to the neighboring
subdomains.

A nonzero function u ∈ A(λ) can be continued to an eigenfunction of (1.1) on Ω if and only
if for all Γkl 6= ∅ we have

u(k) = u(l) and ∇u(k) = ∇u(l)

on Γkl. If we define the quadratic functionals

T (λ, u) :=
∑

k<l

∫

Γkl

|u(k) − u(l)|2 + |∇u(k) −∇u(l)|2ds,

M(λ, u) :=

p
∑

k=1

∫

Ωj

u(x, y)2dxdy,

where | · | denotes the Euclidian norm, the continuity conditions are approximated by finding
the local minima of

m(λ) = min
u∈A(λ)

T (λ, u)

M(λ, u)
. (2.1)

The positions of the local minima are then approximations to eigenvalues of (1.1). This method
is justified by the following result of Lemma 4.10 in Descloux & Tolley (1983).

Lemma 2.1 There exists an eigenvalue λk of (1.1) such that

|λ − λk|
λk

6 C
√

m(λ),

where C is a constant that depends only on the domain decomposition Ω1, . . . , Ωp.

Similarly to Finite Element Methods we can rewrite (2.1) as a generalized eigenvalue problem
of the form

T (λ)x(λ) = µ(λ)M(λ)x(λ), (2.2)

where T (λ) is symmetric positive semi-definite, M(λ) is symmetric positive definite and the
vector x(λ) contains all coefficients of the Fourier-Bessel expansions in the subdomains. The
solution m(λ) of (2.1) is now given as the smallest eigenvalue µ1(λ) of (2.2).

The formulation of Descloux and Tolley has one drawback, which was analyzed by Driscoll
(1997). Close to an eigenvalue λk of (1.1) the function m(λ) behaves quadratically, which
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leads to the effect that the minimum of m(λ) and therefore also an eigenvalue λk can only be
determined up to an accuracy of O(

√
ǫmach). Driscoll solved this problem by computing the

zeros of the derivative of µ(λ) instead of minimizing µ(λ). One obtains

µ′(λ) =
x(λ)(T ′(λ) − µ(λ)M ′(λ))x(λ)

x(λ)T M(λ)x(λ)
.

Since the derivatives of Bessel functions are themselves simple linear combinations of Bessel
functions the elements of T ′(λ) and M ′(λ) can be evaluated to high accuracy.

In this article we provide a different solution to the problem of the limited accuracy. The
idea is to directly minimize m

1

2 (λ) without forming m(λ). This is achieved by going over from
generalized eigenvalue to generalized singular value computations.

3. A quasi-matrix formulation

In order to formulate the domain decomposition as a generalized singular value problem we will
make use of quasi-matrices.1 These are matrices whose columns are not vectors but functions.
An elegant description of such matrices was given in Stewart (1998). Battles & Trefethen (2005)
(see also Battles (2006)) developed the chebfun-system, an extension of Matlab to continuous
functions and operators, which can work with certain quasi-matrices.

Let f1, . . . , fn be functions defined in a domain Ω. Then we define the quasi-matrix A as

A :=
[

f1, . . . , fn

]

.

If x ∈ Rn the usual matrix-vector multiplication is defined for A as

Ax :=

n
∑

k=1

xkfk.

The result of this operation is a function. Similarly, the multiplication AX , where X ∈ Rn×m

is defined as for ordinary matrices. The result is a quasi-matrix. But the product of two
quasi-matrices is not defined.

Let A and B be two quasi-matrices with column functions f1, . . . , fn and g1, . . . , gn defined
on the domains ΩA and ΩB. If ΩA ∩ ΩB = ∅ we define

[

A
B

]

:=
[

h1, . . . , hn

]

, hj(z) =

{

fj(z) z ∈ ΩA

gj(z) z ∈ ΩB
, 1 6 j 6 n.

Hence, stacking up two quasi-matrices corresponds to extending the domain of definition of the
column functions.

Although the multiplication of two quasi-matrices A and B is not defined the matrix of
inner products of the column functions can be defined as

AT B := (〈fi, gj〉)ij , 1 6 i 6 n, 1 6 j 6 m,

where 〈·, ·〉 denotes the inner product in the associated function space. Depending on the
context we will use different definitions of 〈·, ·〉.
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Fig. 2. The decomposition of a simple triangular domain.

Let us now formulate the domain-decomposition method of Descloux and Tolley with the
help of quasi-matrices. We will do this for the simple triangle shown in Figure 2. Each sub-
domain Ωj , 1 6 j 6 3 is associated with a quasi-matrix Aj(λ) whose columns are the basis
functions of Aj(λ). Take the internal boundary segment Γ12. As norm on Γ12 we use the
Sobolev-norm

‖u‖2
H1(Γ12) =

∫

Γ12

u2(s) + |∇u(s)|2ds.

The error on Γ12 between the two local approximations u(1) and u(2) is then given as

‖u(1) − u(2)‖H1(Γ12) =

∥

∥

∥

∥

[

A1(λ) −A2(λ)
]

[

x(1)

x(2)

]∥

∥

∥

∥

H1(Γ12)

,

where x(1) and x(2) are the coefficient vectors of u(1) and u(2) in the Fourier-Bessel bases for
A1(λ) and A2(λ).

By including the other two internal boundary segments this leads to the problem of mini-
mizing

∥

∥

∥

∥

∥

∥





A1(λ) −A2(λ) 0
A1(λ) 0 −A3(λ)

0 A2(λ) −A3(λ)









x(1)

x(2)

x(3)





∥

∥

∥

∥

∥

∥

H1(Γ )

=: ‖AΓ (λ)x‖H1(Γ ),

where ‖ · ‖H1(Γ ) is the H1-norm on Γ := Γ12 ∪ Γ13 ∪ Γ23. The stacking up of quasi-matrices is
well-defined in this case since the domain of the column functions in the first row block is Γ12,
in the second row block Γ13 and in the third row block Γ23.

2

From the choice of the norm and the definition of the quasi-matrix AΓ (λ) it follows that

T (λ, u) = xT AΓ (λ)T AΓ (λ)x = ‖AΓ (λ)x‖2
H1(Γ ) (3.1)

if u ∈ A(λ) is the function associated with the coefficient vector x. The matrix AΓ (λ)T AΓ (λ)
is the matrix of H1-inner products between the column functions of AΓ (λ). It is an ordinary
matrix and therefore the product xT AΓ (λ)T AΓ (λ)x is well defined.

1These matrices are also known as “column maps” (see De Boor (1991)) or “matrices with continuous columns”
(see Trefethen & Bau (1997)).

2In a strict sense Γ12 ∩ Γ13 ∩ Γ23 6= ∅ since they share one common point. Therefore, the stacking up of the
matrices is not permitted. However, since function values at a single point do not influence the H1 norm we
can safely ignore this (for example by deleting the intersection point from the sets Γ12, Γ13 and Γ23).
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Let us now give a quasi-matrix characterization of M(λ, u). By ‖u‖L2(Ω) we denote the
standard L2-norm on Ω for a function u ∈ A(λ). Then

‖u‖L2(Ω) =

∥

∥

∥

∥

∥

∥





A1(λ) 0 0
0 A2(λ) 0
0 0 A3(λ)









x(1)

x(2)

x(3)





∥

∥

∥

∥

∥

∥

L2(Ω)

=: ‖AΩ(λ)x‖L2(Ω).

As in (3.1) it follows that

M(λ, u) = xT AΩ(λ)T AΩ(λ)x = ‖AΩ(λ)x‖2
L2(Ω).

We can now formulate the method of Descloux and Tolley as the minimization problem

min
λ

min
x∈RN\{0}

‖AΓ (λ)x‖2
H1(Γ )

‖AΩ(λ)x‖2
L2(Ω)

= min
λ

min
x∈RN\{0}

xT AΓ (λ)T AΓ (λ)x

xT AΩ(λ)T AΩ(λ)x
. (3.2)

With
T (λ) = AΓ (λ)T AΓ (λ) and M(λ) = AΩ(λ)T AΩ(λ)

the formulation (3.2) leads to the generalized eigenvalue problem (2.2). But this involves the
squaring of ‖AΓ (λ)x‖H1(Γ ) and ‖AΩ(λ)‖L2(Ω), which we want to avoid as this usually reduces
the accuracy to which the minima of t(λ) can be detected (see Driscoll (1997) or also Betcke
(2006) for the explanation of this phenomenon in a closely related problem). It would be
preferable to evaluate

t(λ) := min
x∈RN\{0}

‖AΓ (λ)x‖H1(Γ )

‖AΩ(λ)x‖L2(Ω)
(3.3)

directly. The solution to this problem is given by the generalized singular value decomposition
(GSVD).

4. A GSVD based method

The generalized singular value decomposition (GSVD) is a tool to find the stationary values of
‖Ax‖2

‖Bx‖2
, where A ∈ R

n×p, B ∈ R
m×p and ‖ · ‖2 is the usual Euclidian norm.

The concept of the GSVD was introduced by Van Loan (1976) and later generalized by
Paige & Saunders (1981). We use a simplified version of the formulation in Paige & Saunders
(1981) for the special case needed in this paper.

Theorem 4.1 (Generalized Singular Value Decomposition) Let A ∈ Rn×p and B ∈
Rm×p be given with n > p. Define Y =

[

A
B

]

and assume that rank(Y ) = p. There exist

orthogonal matrices U ∈ Rn×n and W ∈ Rm×m and a nonsingular matrix X ∈ Rp×p such that

A = UCX−1, B = WSX−1,

where C ∈ Rn×p and S ∈ Rm×p are diagonal matrices defined as C = diag(c1, . . . , cp) and
S = diag(s1, . . . , smin{m,p}) with 0 6 c1 6 · · · 6 cp 6 1 and 1 > s1 > · · · > smin{m,p} > 0.
Furthermore, it holds that s2

j + c2
j = 1 for j = 1, . . . , min{m, p} and cj = 1 for j = m+1, . . . , p.
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If m < p we define sm+1 = · · · = sp = 0. Then s2
j + c2

j = 1 for all j = 1, . . . , p. The
values σj = cj/sj are called the generalized singular values of the pencil {A, B}. If sj = 0 then
σj = ∞. The jth column xj of X is the right generalized singular vector associated with σj .

The generalized singular value pairs (cj , sj) satisfy s2
jA

TAxj = c2
jB

TBxj and therefore

ATAxj = σ2
j BTBxj if σj is a finite generalized singular value of the pencil {A, B}. This shows

that if B is the identity matrix I, the generalized singular values of {A, I} are just the singular
values of A.

The finite generalized singular values can also be described by a minmax characterization
that can be derived from similar minmax characterizations of singular values;

σj = min
H⊂R

p

dim(H)=j

max
x∈H
Bx 6=0

‖Ax‖2

‖Bx‖2
. (4.1)

A short proof is for example contained in Betcke (2005). How can we use the GSVD for
the domain decomposition method from the previous section? The idea is to approximate the
pencil {AΓ (λ), AΩ(λ)} by a pencil of ordinary matrices. Hence, we want to discretize AΓ (λ)
and AΩ(λ) using ordinary matrices ÃH1(Γ )(λ) and ÃL2(Ω)(λ) such that

t(λ) = min
x∈RN\{0}

‖AΓ (λ)x‖H1(Γ )

‖AΩ(λ)x‖L2(Ω)
≈ min

x∈RN\{0}

‖ÃH1(Γ )(λ)x‖2

‖ÃL2(Ω)(λ)x‖2

. (4.2)

Let us first discretize AΩ(λ). In each subdomain Ωk we choose mk interior discretization

points w
(k)
j , 1 6 j 6 mk. The quasi-matrix Ak(λ) is now discretized by evaluating the columns

of Ak(λ) at the points w
(k)
j . We therefore have

Ak(λ) =
[

Φ1(z), . . . , ΦNk
(z)

]

→









Φ
(k)
1 (w

(k)
1 ) . . . Φ

(k)
Nk

(w
(k)
1 )

...
...

...

Φ
(k)
1 (w

(k)
mk

) . . . Φ
(k)
Nk

(w
(k)
mk

)









=: Ãk(λ),

where the functions Φ
(k)
1 , . . . , Φ

(k)
Nk

are the basis functions of Ak(λ). Hence, AΩ(λ) is discretized
as

AΩ(λ) →





Ã1(λ) 0 0

0 Ã2(λ) 0

0 0 Ã3(λ)



 =: ÃL2(Ω)(λ).

When discretizing AΓ (λ) we must be slightly more careful because of the H1-inner product,
which is used on the internal boundary segments. Let AΓ,x(λ) and AΓ,y(λ) be the quasi-matrices
containing as columns the partial derivatives of the column functions of AΓ (λ) in the x- and y-
direction. Then

‖AΓ (λ)x‖2
H1(Γ ) = ‖AΓ (λ)x‖2

L2(Γ ) + ‖AΓ,x(λ)x‖2
L2(Γ ) + ‖AΓ,y(λ)x‖2

L2(Γ ). (4.3)

By choosing discretization points on the internal boundary lines and evaluating the basis func-
tions on these points we can proceed as in the case of AΩ(λ) and obtain the discretized matrices
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ÃH1(Γ )(λ), ÃL2(Γ ),x(λ) and ÃL2(Γ ),y(λ). It follows that

AΓ (λ) →





ÃL2(Γ )(λ)

ÃL2(Γ ),x(λ)

ÃL2(Γ ),y(λ)



 =: ÃH1(Γ )(λ).

Our modified GSVD based domain decomposition method now has the form

min
λ

min
x∈RN\{0}

‖ÃH1(Γ )(λ)x‖2

‖ÃL2(Ω)(λ)x‖2

= min
λ

σ1(λ), (4.4)

where σ1(λ) is the smallest generalized singular value of {ÃH1(Γ )(λ), ÃL2(Ω)(λ)}. In Matlab
the GSVD of two matrices A and B can be easily computed with the command gsvd(A,B).

The discretization of the column functions can also be interpreted in terms of quadrature
rules. If all discretization points have the equal weight w in the quadrature rule the matrix
wÃT

H1(Γ )ÃH1(Γ ) is an approximation to the matrix of H1-inner products AT
Γ AΓ . But in our

experiments it turned out that it is not necessary to choose the points such that the error of
certain quadrature rules becomes small. A healthy number of equally distributed points on the
interfaces and some randomly chosen interior points always worked well enough to determine
the eigenvalues.

Let us try this on the GWW-1 isospectral drum from Figure 1. On each internal boundary
segment we use 40 equally distributed discretization points. The interior of each subdomain
is discretized using 10 randomly chosen points. In each subdomain Ωk we use 4n/αk basis
functions for some n ∈ N (see also Driscoll (1997)).

How to choose the number of basis functions is discussed in Section 5. Figure 3 shows the
convergence for the first eigenvalue on this domain. The eigenvalue approximation is obtained
in each step by minimizing σ1(λ) with the Matlab function fminsearch. More efficient mini-
mization methods that utilize the V-shaped form of the curve of σ1(λ) close to an eigenvalue
are possible. But we will not go into this here. To compute the relative error we used the
eigenvalue approximation λ1 ≈ 2.5379439997986 obtained for N = 18. The dashed curve shows
the value σ1(λ) for each N evaluated at the corresponding eigenvalue approximation. The rate
of convergence seems very similar to the rate observed by Driscoll (compare with Figure 3.2 in
Driscoll (1997)). The advantage of our method is that we avoid a squared formulation, making
the problem better conditioned. Furthermore, we need neither the explicit evaluation of inte-
grals nor do we have to compute derivatives of eigenvalues, which makes the GSVD approach
easier to implement than the methods of Descloux, Tolley and Driscoll.

To conclude this section let us slightly generalize the current method. In the formulations
of Descloux, Tolley and Driscoll it was always assumed that all local basis functions are zero
on ∂Ω making it unnecessary to match the zero boundary conditions (1.1b). But we can easily
extend the method to also work for basis functions which are not automatically zero on the
boundary. Let the quasi-matrix A∂Ω be defined as

A∂Ω(λ) :=







A1(λ)
. . .

Ap(λ)






,
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Fig. 3. Convergence of the first eigenvalue (solid line) and the corresponding values σ1(λ) (dashed line) for a
growing number of basis functions on the GWW-1 isospectral drum (compare also with Driscoll (1997) Figure
3.2).

where the columns of the quasi-matrix Aj(λ) are the basis functions in Aj(λ), 1 6 j 6 p. The
error on ∂Ω is measured using the L2-norm

‖u‖2
L2(∂Ω) :=

∫

∂Ω

u2(s)ds.

In quasi-matrix notation this is

‖u‖L2(∂Ω) = ‖A∂Ω(λ)x‖L2(∂Ω).

The value t(λ) from (4.2) becomes

t̃(λ) = min
x∈RN\{0}

(

‖AΓ (λ)x‖2
H1(Γ ) + ‖A∂Ω(λ)x‖2

L2(∂Ω)

)1/2

‖AΩ(λ)x‖L2(Ω)
,

which corresponds to using the modified functional

T̃ (λ, u) := T (λ, u) +

p
∑

k=1

∫

∂Ω∩∂Ωk

u2(s)ds,

instead of T (λ, u).
By choosing a set of boundary collocation points we can discretize A∂Ω in the usual way by

evaluating the column functions of the matrices Aj(λ) at the collocation points belonging to

∂Ω ∩ ∂Ωj. We obtain the matrix ÃL2(∂Ω)(λ) and instead of ÃH1(Γ )(λ) we use the matrix

ÃL2(∂Ω),H1(Γ )(λ) :=
[

ÃL2(∂Ω)(λ)T ÃH1(Γ )(λ)T
]T

.
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If we have only one subdomain Ω1 with Ω1 = Ω there are no internal boundary lines and
the quasi-matrix AΓ (λ) is empty. Then we only need to minimize the error
‖A∂Ω(λ)x‖L2(∂Ω)/‖AΩ(λ)x‖L2(Ω), which after discretization is the GSVD formulation of the
Method of Particular Solutions (see Betcke (2006)).

Similarly to Lemma 2.1 the eigenvalue error can be bounded by t̃ as

|λ − λk|
λk

6 Ct̃(λ). (4.5)

The proof is just a slight modification of the Lemmas 4.6, 4.9 and 4.10 in Descloux & Tolley
(1983).3 This result can also be interpreted as a generalization of classical error bounds for the
MPS (see Moler & Payne (1968), Kuttler & Sigillito (1978), Still (1988)). Since in an interval
[a, b] containing an eigenvalue λk of (1.1) we have

min
λ∈[a,b]

t̃(λ) 6 t̃(λk)

it follows from (4.5) that the rate of convergence of eigenvalue approximations can be estimated
by the rate with which t̃(λk) → 0 for a growing number of basis functions. This is investigated
in the following Section.

5. Convergence analysis

Consider the example domain in Figure 4. The four corners of the domain are z1 = 0, z2 =
0.3 + 1/ tan(3π

8 ), z3 = 0.3 + 1/ tan(3π
8 ) + 1i, z4 = 1/ tan(3π

8 ) + 1i. The corresponding interior
angles π/αk are defined by α1 = 8

3 , α2 = 2, α3 = 2, α4 = 8
5 . By reflection one can show that

eigenfunctions on this domain can have singularities only at z1 and z4.
The dashed line in Figure 5 shows the convergence of the generalized singular value σ1(λ) for

a growing number N of basis functions in each subdomain, where the subdomains are defined
as in Figure 4. After N = 40 we achieve an accuracy of about 10−5 with an overall number
of 160 basis functions. Let us now try the same with a domain decomposition into the two
subdomains G1 = Ω1 ∪ Ω2 and G2 = Ω3 ∪ Ω4. The corresponding convergence curve is shown
as a solid line in Figure 5. With N = 40 basis functions in each subdomain the value σ1(λ) is
close to machine precision, a drastic improvement to the other decomposition although we are
only using half the number of basis functions.

This example shows that a finer decomposition does not automatically lead to an improved
accuracy with this method. The opposite can be the case. In this section we will analyze the
convergence and provide theorems that will allow us to compute asymptotic convergence rates
that give a very good match with the observed rates.

We denote the sup-norm of a function f in a set S by

‖f‖∞,S := sup
z∈S

|f(z)|.

3By using the inequality
R
Ω

h2(x)dx 6 C
R
∂Ω

h2(s)ds (see Kuttler (1972)) for a function h that is harmonic
in Ω, where C is a domain dependent constant, Lemma 4.6 can be proved with the modified functional. Lemma
4.9 and from that the eigenvalue bound in Lemma 4.10 for t̃(λ) follow directly.
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Let (λk, uk) be an eigenpair of (1.1) on Ω. T̃ (λ, u) can be estimated as

T̃ (λk, u) =
∑

j<l

∫

Γjl

|u(j)(s) − u(l)(s)|2 + |∇u(j)(s) −∇u(l)(s)|2ds

+

p
∑

j=1

∫

∂Ω∩∂Ωj

|u(j)(s)|2ds

6 C1

∑

j<l

‖∇u(j) −∇uk‖2
∞,Γjl

+ ‖∇u(l) −∇uk‖2
∞,Γjl

+ C2

p
∑

j=1

‖uk − u(j)‖2
∞,Ωj

, (5.1)

where C1, C2 are constants which depend on the subdomains Ωj .
Hence, we need to estimate the error of approximating the eigenfunction uk and its deriv-

ative by Fourier-Bessel functions and their derivatives. Descloux and Tolley assumed that the
maximum distance of the points in the closure of each subdomain Ωj to the expansion point zj

is smaller than the distance of zj to the next nearest singularity of uk in order to show that on
each subdomain any eigenfunction uk can be expanded into an absolutely convergent series of
the form

uk(r, θ) =

∞
∑

k=1

akJαjk(
√

λkr) sin αjkθ. (5.2)

The rate of convergence of the first N terms of (5.2) to uk for growing N can be estimated in
the same way as a power series. Using this Descloux and Tolley were able to give bounds on
the exponential rate of convergence.

However, power series estimates only give optimal convergence rates on circles. On other
domains the optimum rate of convergence that can be achieved with polynomial approximation
is usually much better than that of power series expansions. In the following sections we show
how the error in the domain decomposition method can be bounded by these optimal rates of
polynomial approximation of certain functions in the complex plane.

This new analysis also allows to relax the restriction of Descloux and Tolley on the domain
decomposition. For our analysis we have the weaker assumption that the continuation towards
∞ of the two arcs adjacent to the corner zj do not intersect with the subdomain Ωj . A domain
decomposition that violates this restriction is shown in Figure 6. The continuation of the arcs
adjacent to z2 intersect Ω2 in the left half of the domain. Since every linear combination of
Fourier-Bessel sine functions around z2 is zero on these arcs it is not possible to accurately
approximate an eigenfunction on Ω2 that is not zero on the intersection of these arcs with Ω2.
This restriction will become important in Lemma 5.4.

5.1 Some results from Vekua’s theory

Our results are based on Vekua’s theory of elliptic partial differential equations with analytic
coefficient functions (see Vekua (1948), Schryer (1972), Eisenstat (1974), Still (1989), Still
(1992), Melenk (1999)). The presentation here follows closely the one given in Eisenstat (1974).

Before we proceed let us introduce some further notation. For x, y ∈ R let z = x + iy ∈ C.
The complex conjugate of z is denoted by z = x − iy. For a set Ω ⊂ C the closure of Ω is
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Fig. 6. This domain decomposition is not valid for our convergence analysis since the continuation of the arcs
adjacent to Ω2 towards ∞ intersect Ω2.

denoted by Ω. The reflection of Ω at the real axis is defined as Ω∗ := {z ∈ C| z ∈ Ω}. Let
φ be an analytic function in Ω. Then we denote by φ̄ the function defined as φ̄(z) := φ(z) for
z ∈ Ω∗. For two sets Ω1, Ω2 ⊂ C we also define

Ω1 × Ω2 := {(z1, z2) ∈ C
2| z1 ∈ Ω1, z2 ∈ Ω2}.

Let u(x, y) be a solution of (1.1a) in a simply connected domain Ω and define

U(z, z∗) := u(
z + z∗

2
,
z − z∗

2i
). (5.3)

It follows that U(z, z) = u(x, y). Since u is real analytic in Ω there exist small neighborhoods
U1 ⊂ Ω of z and U2 ⊂ Ω∗ of z such that U can be analytically continued into U1 × U2 ⊂ C2

as a holomorphic function of the two complex variables z and z∗. Vekua showed that this
continuation does not only exist in the small but that Ω ⊂ U1 and Ω∗ ⊂ U2 for solutions of
elliptic PDEs with analytic coefficients. Furthermore, he showed that there exists a 1 − 1 map
between the solutions of elliptic PDEs with analytic coefficients and holomorphic functions.

Fix z0 ∈ Ω and let

I[φ; z0](z, z∗) :=
1

2

{

G(z, z0, z, z∗)φ(z) +

∫ z

z0

φ(t)H(t, z0, z, z∗)dt+

G(z0, z
∗, z, z∗)φ̄(z∗) +

∫ z∗

z0

φ̄(t∗)H∗(z0, t
∗, z, z∗)dt∗

}

, (5.4)

where φ is holomorphic in Ω. In the special case of the elliptic PDE ∆u+λu = 0 the functions
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G, H and H∗ are defined as4

G(t, t∗, z, z∗) := J0(
√

λ
√

(z − t)(z∗ − t∗))

H(t, t∗, z, z∗) := − ∂

∂t
G(t, t∗, z, z∗)

H∗(t, t∗, z, z∗) := − ∂

∂t∗
G(t, t∗, z, z∗).

For z∗ = z this simplifies to

I[φ; z0](z, z) = Re

{

G(z, z0, z, z)φ(z) +

∫ z

z0

φ(t)H(t, z0, z, z̄)dt

}

:= Re{V [φ; z0]}(z). (5.5)

Vekua showed the following theorem.

Theorem 5.1 (Vekua (1948)) Let Ω be simply connected and fix z0 ∈ Ω. Then there exists
a unique function φ holomorphic in Ω with φ(z0) real such that

u(x, y) = Re{V [φ; z0]}(z), z = x + iy ∈ Ω

U(z, z∗) = I[φ; z0](z, z∗), (z, z∗) ∈ Ω × Ω∗.

Moreover,
φ(z) = 2U(z, z0) − U(z0, z0)G(z0, z0, z, z0). (5.6)

If Ω is bounded the Vekua operator Re{V [φ; z0]} is bounded by

‖Re{V [φ; z0]}‖∞,Ω 6 ‖G‖∞‖φ‖∞,Ω +

∫ z

z0

‖H‖∞‖φ‖∞,Ωd|t| 6 KV ‖φ‖∞,Ω

(see Eisenstat (1974)). Similarly, we can bound the function U(z, z∗) = I[φ, z0] in Ω × Ω∗ as

‖U‖∞,Ω×Ω∗ 6
1

2

{

‖G‖∞‖φ‖∞,Ω +

∫ z

z0

‖H‖∞‖φ‖∞,Ωd|t|

+ ‖G‖∞‖φ̄‖∞,Ω∗ +

∫ z∗

z0

‖H∗‖∞‖φ̄‖∞,Ω∗d|t∗|
}

6 KI‖φ‖∞,Ω (5.7)

since ‖φ‖∞,Ω = ‖φ̄‖∞,Ω∗ . The constants KV and KI only depend on the domain Ω and
the value λ. ‖G‖∞, ‖H‖∞ and ‖H∗‖∞ are the suprema of these functions over the domain
Ω × Ω∗ × Ω × Ω∗ ⊂ C

4.
We can therefore bound the error of approximating an eigenfunction uk by the error of

approximating an associated holomorphic function φk and use complex approximation theory
to establish the rate of convergence. This idea was used in Eisenstat (1974) to give algebraic
convergence estimates for the approximation of solutions of elliptic PDEs by particular solutions.

4G is the complex Riemann function of the elliptic PDE ∆u + λu = 0 (see Henrici (1957) for a beautiful
survey of complex Riemann functions and Vekua’s theory).
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0

0

π
α

Fig. 7. A wedge with interior angle π/α. Any Fourier-Bessel function of the form Jαk(
√

λr) sinαkθ with λ > 0
and k = 1, 2, . . . satisfies the eigenvalue equation and the zero boundary conditions on this domain.

A similar technique was also used in Monk & Wang (1999) to obtain algebraic estimates for
the use of particular solutions in the context of acoustic scattering.

An important role in Vekua’s theory is played by the solutions of −∆u = λu associated
with the functions zk and izk given by the following Lemma (see also Example 3.14 in Melenk
(1999) or Lemma 1 in Still (1992)), which follows immediately by straightforward calculation.

Lemma 5.1 Let Ω be a wedge with interior angle π/α (see Figure 7). Then

−2αkΓ (αk + 1)
√

λ
αk

Jαk(
√

λr) sin αkθ = Re{V [izαk, 0]}(z),

2αkΓ (αk + 1)
√

λ
αk

Jαk(
√

λr) cos αkθ = Re{V [zαk, 0]}(z).

Melenk calls these special solutions generalized harmonic polynomials since in the case of the
Laplace equation −∆u = 0 the functions V [zk, 0] and V [izk, 0] are just the standard harmonic
polynomials rk cos kθ and −rk sin kθ. From Lemma 5.1 it follows that approximating in a
subdomain Ωj with a Fourier-Bessel series corresponds to polynomial approximation in the
complex plane.

5.2 Bounding the rate of convergence

Let Ωj be a subdomain of Ω and zj the corner at which we expand with Fourier-Bessel functions.
We assume that for each subdomain Ωj 1 6 j 6 p an eigenfunction uk of (1.1) has at most one
singularity in Ωj , which lies at the corner zj . This is always satisfied for the original domain
decomposition of Descloux and Tolley. In our modified domain decomposition, where we allow
each subdomain Ωj to contain more than one corner of Ω this has to be explicitly ensured in
order for the exponential convergence results developed in this section to hold.

Without restriction we choose zj = 0 and the orientation of the wedge at the corner such
that the right arc is part of the x-axis (see for example the corner at z1 in Figure 4). From
Lemma 5.1 we obtain

∥

∥

∥

∥

∥

uk −
N

∑

l=1

alJαj l(
√

λkr) sin αj lθ

∥

∥

∥

∥

∥

∞,Ωj

6 KV

∥

∥

∥

∥

∥

φ
(j)
k −

N
∑

l=1

ãliz
αjl

∥

∥

∥

∥

∥

∞,Ωj

, (5.8)
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where φ
(j)
k is the holomorphic function associated with uk|Ωj

around zj , i.e. uk = Re{V [φk, zj ]}
in Ωj , and ãl = −

√
λk

αjl

2αjlΓ (αj l+1)
al. The following Lemma is identical to the results of §6, Example

3 in Still (1989). For completeness we give the proof here.

Lemma 5.2 There exists R > 0 such that for z ∈ Ωj and |z| < R the function φ
(j)
k has the

absolutely convergent expansion

φ
(j)
k (z) =

∞
∑

l=1

b̃liz
αjl, b̃l ∈ R. (5.9)

Proof. By expanding uk(r, θ) into a Fourier series for a fixed r > 0 it is possible to show that
there exists R > 0 such that uk(r, θ) has the absolutely convergent expansion

uk(r, θ) =

∞
∑

l=1

blJαj l(
√

λkr) sin αj lθ (5.10)

for all r < R and that,
∞
∑

l=1

|bl||Jαj l(
√

λkr)| < ∞ (5.11)

(see Descloux & Tolley (1983) or Still (1989)). Bessel functions can be estimated as

|z|ν
2νΓ (ν + 1)

(1 − ǫ) 6 |Jν(z)| 6
|z|ν

2νΓ (ν + 1)
, |z| 6 R

for every ǫ > 0 and ν > ν0(R, ǫ) sufficiently large. This follows directly from a power series

expansion (see Still (1989)). Let b̃l := −
√

λk
αjl

2αjlΓ (αj l+1)
bl. Then for l large enough the terms in

(5.9) can be bounded by

|b̃l| · |z|αj l
6

1

1 − ǫ
|Jαj l(

√

λkr)| · |bl|.

Together with (5.11) the absolute convergence of (5.9) follows. �

We need the absolute convergence close to a corner for the proof of the following Lemma.

Lemma 5.3 Let w = zαj . Define φ̃
(j)
k (w) := φ

(j)
k (w

1

αj ) and Ω
αj

j := {zαj |z ∈ Ωj}. Choose

for zαj and w
1

αj a common branch cut outside Ωj and Ω
αj

j . Then φ̃
(j)
k can be analytically

continued across Ω
αj

j .

Proof. Due to the domain decomposition the function uk|Ωj
can be analytically continued

across Ωj except possibly close to zero. It follows that the function φ
(j)
k and therefore φ̃

(j)
k can

also be analytically continued there. From Lemma 5.2 it follows that φ̃
(j)
k has the absolutely

convergent series representation

φ̃
(j)
k (w) =

∞
∑

l=1

b̃liw
l (5.12)
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close to zero. Hence, φ̃
(j)
k can also be analytically continued in a neighborhood of zero. �

Lemma 5.3 states that the singularity of φ
(j)
k at zj = 0 can be canceled out by the trans-

formation w = zαj . Furthermore, from (5.8) it follows that approximating uk in Ωj with
Fourier-Bessel sine functions corresponds to polynomial approximation in the domain Ω

αj

j with
polynomials that have purely imaginary coefficients. By one further transformation this can be
turned into a standard polynomial approximation problem.

Lemma 5.4 Let the set D be defined as the closure of the union of Ω
αj

j with its reflection at

the real axis. Define the continuation f of φ̃
(j)
k into the whole of D as

f(w) :=

{

φ̃
(j)
k (w); w ∈ Ω

αj

j

−φ̃
(j)
k (w); w ∈ Ω

αj

j

Then f is analytic in D and the best approximating polynomial pN of maximal degree N for
f in D in the sup-norm has purely imaginary coefficients. Furthermore, it is identical to the

best approximating polynomial for φ̃
(j)
k on Ω

αj

j in the sup-norm from the set of polynomials of
maximal degree N with purely imaginary coefficients.

Proof. From (5.12) it follows that close to zero Re{φ̃j
k(w)} = 0 for real w. Furthermore, φ̃j

k can

be analytically continued across the whole of Ω
αj

j . Hence, by analytic continuation along the

real line we have Re{φ̃j
k(w)} = 0 on R∩Ω

αj

j . It follows that f defines an analytic continuation

of φ̃
(j)
k into the whole of D.
Since pN is the best approximating polynomial for f in D it follows that p̄N is the best

approximating polynomial for f̄ . But since f̄(w) = −f(w) for w ∈ D we have p̄N = −pN . Let

pN (w) =

N
∑

j=0

cjw
j .

It follows that

0 = p̄N(w) + pN (w) =

N
∑

j=0

(cj + cj)w
k =

N
∑

j=0

2Re{cj}wj

and therefore Re{cj} = 0 for j = 1, . . . , N . Hence, pN has purely imaginary coefficients. Since

pN and f are symmetric around the real axis and f = φ̃
(j)
k in Ω

αj

j it follows that pN is also the

best approximating polynomial for φ̃
(j)
k from the space of polynomials of maximum degree N

with purely imaginary coefficients. �

In Lemma 5.4 the restriction on the domain decomposition that the continuation of the arcs
adjacent to zj does not intersect Ωj becomes important since the analytic continuation f to
the whole of D is only well defined if the subdomain Ω

αj

j is restricted to the upper half plane.
We are now able to give the first convergence result.

Theorem 5.2 Let (λk, uk) be an eigenpair of (1.1). In each subdomain Ωj there exists a
Fourier-Bessel expansion of the form

u(j)(r, θ) =

Nj
∑

l=1

alJαj l(
√

λkr) sin αj lθ
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and a number ρj > 1 such that

‖uk − u(j)‖∞,Ωj
= O(R−Nj )

for every 1 < R < ρj as Nj → ∞.

Proof. Let the function f be defined as in Lemma 5.4. From Lemma 5.3 we know that φ̃
(j)
k is

analytic on Ω
αj

j . Hence, f is analytic on the closed set D. Let pNj
be the best approximating

polynomial of f on D from the set of polynomials of maximal degree Nj. From the maximum
convergence theorem of complex approximation theory it follows that there exists ρj > 1 such
that

‖f − pNj
‖∞,D = O(R−Nj )

for every 1 < R < ρj but for no R > ρj (Walsh, 1960, p. 79). Since pNj
has purely imaginary

coefficients there exist coefficients ãl ∈ R such that

∥

∥

∥

∥

∥

∥

uk −
Nj
∑

l=1

alJαj l(
√

λkr) sin αj lθ

∥

∥

∥

∥

∥

∥

∞,Ωj

6 KV

∥

∥

∥

∥

∥

∥

φ
(j)
k −

Nj
∑

l=1

ãliz
αjl

∥

∥

∥

∥

∥

∥

∞,Ωj

= KV

∥

∥

∥

∥

∥

∥

φ̃
(j)
k −

Nj
∑

l=1

ãliw
l

∥

∥

∥

∥

∥

∥

∞,Ω
αj

j

= KV

∥

∥

∥

∥

∥

∥

f −
Nj
∑

l=1

ãliw
l

∥

∥

∥

∥

∥

∥

∞,D

= O(R−Nj )

for 1 < R < ρj and al := − 2αjlΓ (αj l+1)√
λ

αjl ãl. �

A similar result was also shown in Lemma 4.1 of Descloux & Tolley (1983) using different
techniques. But the approach presented here allows to establish tighter bounds ρj on the
exponential convergence. This is discussed in Section 6.

It is now left to bound ‖∇uk−∇u(j)‖∞,Γjl
on the interface Γjl between Ωj and a neighboring

subdomain Ωl.

Lemma 5.5 Let Γjl be a nonempty interface between Ωj and a neighboring subdomain Ωl. Let

φ
(j)
k be the holomorphic function associated with uk|Ωj

around zj and φ(j) be the holomorphic

function associated with u(j) around zj . From

‖φ(j)
k − φ(j)‖∞,Ωj

= O(R−Nj )

for every 1 < R < ρj it follows that

‖∇uk −∇u(j)‖∞,Γjl
= O(R−Nj )

for every 1 < R < ρj .



A GSVD formulation of a domain decomposition method for planar eigenvalue problems 19 of 29

Proof. Fix 1 < R̃ < ρj . Assume that

‖φ(j)
k − φ(j)‖∞,Ωj

= O(R̃−Nj ).

Therefore, also ‖φ(j)
k −φ(j)‖∞,Γjl

= O(R̃−Nj ). From the overconvergence of polynomial approx-
imation in the complex plane (Walsh, 1960, §4.6-4.7) it follows that for arbitrary δ > 0 there
exists a neighborhood W of Γjl such that

‖φ(j)
k − φ(j)‖∞,W = O((R̃ − δ)−Nj ).

Together with the boundedness of the Vekua operator we obtain

‖Uk − U (j)‖∞,W×W∗ 6 KI‖φk − φ(j)‖∞,W = O((R̃ − δ)−Nj ),

where Uk(z, z∗) and U (j)(z, z∗) are the holomorphic extensions of uk(x, y) and u(j)(x, y) into
W × W ∗ ⊂ C2 as defined in (5.3). To simplify the notation we define Û := Uk − U (j).

Choose ǫ > 0 such that Kǫ(z) := {ξ ∈ C : |ξ − z| = ǫ} ⊂ W for all z ∈ Γjl. Using Cauchy’s
integral theorem we obtain

∂

∂z
Û(z, z∗) =

1

2πi

∫

Kǫ(z)

Û(ξ, z∗)

(ξ − z)2
dξ

for z ∈ Γjl. It follows that

‖ ∂

∂z
Û‖∞,Γjl×Γ∗

jl
6

1

ǫ
‖Û‖W×W∗ = O((R̃ − δ)−Nj ). (5.13)

Similarly, we conclude that

‖ ∂

∂z∗
Û‖Γjl×Γ∗

jl
6

1

ǫ
‖Û‖W×W∗ = O((R̃ − δ)−Nj ). (5.14)

Since

∂

∂x
u(x, y) =

∂

∂z
U(z, z) +

∂

∂z∗
U(z, z),

∂

∂y
u(x, y) = i

[

∂

∂z
U(z, z) − ∂

∂z∗
U(z, z)

]

the proof follows from (5.13),(5.14) and the fact that for all 1 < R < ρj there exists a value

1 < R̃ < ρj and δ > 0 such that R := R̃ − δ. �

As immediate consequence of Theorem 5.2 and Lemma 5.5 the exponential convergence of
the method of Descloux and Tolley follows.

Theorem 5.3 Let (λk, uk) be an eigenpair of (1.1) with ‖uk‖Ω = 1. Then there exist numbers
ρj > 1 such that

min
u∈A(λk)

T̃ (λk, u)

M(λk, u)
=

p
∑

j=1

O(R
−2Nj

j )

for all 1 < Rj < ρj , 1 6 j 6 p.
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Proof. From (5.1), Theorem 5.2 and Lemma 5.5 it follows immediately that there exist local
Fourier-Bessel expansions u(j) and numbers ρj > 1 such that

T̃ (λk, u) =

p
∑

j=1

O(R
−2Nj

j ) (5.15)

for all 1 < Rj < ρj , 1 6 j 6 p and u defined by u|Ωj
= u(j).

We can estimate M(λk, u) as

M(λk, u) =

p
∑

j=1

‖u(j)‖2
L2(Ωj)

>

p
∑

j=1

[

‖uk‖L2(Ωj) − ‖u(j) − uk‖L2(Ωj)

]2

>

p
∑

j=1

[

‖uk‖L2(Ωj) − Cj‖u(j) − uk‖∞,Ωj

]2

=

p
∑

j=1

[

‖uk‖L2(Ωj) − O(R
−Nj

j )
]2

→
p

∑

j=1

‖uk‖2
L2(Ωj)

= 1 (5.16)

for Nj → ∞, 1 6 j 6 p. The constants Cj only depend on Ωj . Let 0 < ǫ < 1 it follows that
there exists N0 such that M(λ, u) > 1 − ǫ for Nj > N0, 1 6 j 6 p. Together with (5.15) we
find

min
v∈A(λk)

T̃ (λk, v)

M(λk, v)
6

1

1 − ǫ
T̃ (λk, u) =

p
∑

j=1

O(R
−2Nj

j )

for Nj → ∞. �

Since for the quasi-matrix formulation we have

t̃(λk) = min
x∈RN\{0}

(

‖AΓ (λ)x‖2
H1(Γ ) + ‖A∂Ω(λ)x‖2

L2(∂Ω)

)1/2

‖AΩ(λ)‖L2(Ω̃)

= min
u∈A(λk)

√

T̃ (λk, u)

M(λk, u)

we immediately obtain

Corollary 5.1 Let Nj := kjN for a number kj ∈ N and define ρ := min16j6p ρ
kj

j , where the
ρj are defined as in Theorem 5.3. Then

t̃(λk) = O(R−N )

for every 1 < R < ρ.

The numbers ρj are the optimal convergence rates on the subdomains Ωj . Consider the
example that ρ1 ≈ ρ2

2 and assume that we use the same number N of Fourier-Bessel terms on
both subdomains. Then the error on Ω1 asymptotically behaves like O(ρ−2N

2 ), while the error
on Ω2 behaves like O(ρ−N

2 ). Since the overall convergence is determined by the subdomain
with the slowest rate of convergence we are wasting expansion terms on Ω1. A better strategy
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Fig. 8. The four steps to compute the convergence rate of approximating an eigenfunction uk on the subdomain
G1 = Ω1 ∪ Ω2 from Figure 4.

is to use N expansion terms on Ω1 and 2N expansion terms on Ω2. A similar strategy was
proposed by Descloux and Tolley to equalize the convergence rates on the different subdomains.
They also proposed the rule of thumb to choose the number of Fourier-Bessel terms in each
subdomain Ωj proportional to the interior angle π/αj of the corner at the expansion point
zj . If the numbers ρj are known then from our analysis it follows that an optimal number of
expansion terms in each subdomain is kjN , where kj ∈ N is determined such that

ρk1

1 ≈ ρk2

2 ≈ · · · ≈ ρkN

N .

6. Computing the optimal rate of convergence

In this section we demonstrate how to compute the optimal convergence rates ρj . Let us return
to the domain from Figure 4 with the decomposition G1 := Ω1∪Ω2 and G2 := Ω3∪Ω4. We first
compute the value ρ1 on G1. The only singularity of uk in G1 is at the point z1 = 0. This is also

a singularity of the holomorphic function φ
(1)
k associated with uk such that uk = Re{V [φ

(1)
k ; z1]}

in G1. Hence, from Lemma 5.3 it follows that after the transformation w = z
8

3 the function

φ̃
(1)
k (w) := φ

(1)
k (w

3

8 ) is analytic on the whole of G
8/3
1 . Denote by D the closed set consisting of

the union of G
8

3

1 with its reflection at the real line. From Lemma 5.4 it follows that the rate of
convergence is determined by polynomial approximation on D.
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The maximum convergence rate ρj of polynomial approximation on D can be determined
by a conformal map Φ of the exterior of D to the exterior of the unit disc. For a point w ∈ C\D
denote by |Φ(w)| the conformal distance of w to D. Then ρj = |Φ(ws)|, where ws is the

singularity of the analytic continuation of φ̃
(1)
k with the smallest conformal distance to D.5

Hence, we need to determine the singularity ws and the conformal map Φ(w).
The situation is shown in Figure 8. The upper left plot shows the original domain Ω from

Figure 4 and the subdomain G1. The eigenfunction uk has singularities at z1 and z4. It follows

that the unique analytic continuation of φ
(1)
k to the whole of Ω has singularities at these two

points. Furthermore, by reflecting uk at the right boundary line these singularities are also
reflected. The image z′1 of z1 is z′1 = 2/ tan(3π

8 )+0.6 By further reflection one can obtain other
singularities, but these are too far away from G1 to have a chance of influencing the value ρ1

on G1. In the upper right picture of Figure 8 the domain G1 and the singularities are shown
after the map w = z8/3. The singular corner at 0 has been straightened out by this map. In

the lower left picture the domain G
8/3
1 is reflected at the real axis. The picture also shows some

level curves of the conformal map Φ(w) of the exterior of this domain to the exterior of the
unit disk, which were computed by Driscoll’s “Schwarz-Christoffel toolbox”.6 The lower right
picture shows the positions of the two singularities after the map to the exterior of the unit

disk. The map of z
8

3

4 has a closer distance to the unit disk than the map of z
′ 8
3

1 . It follows

that ρ1 = |Φ(z
8

3

4 )| ≈ 2.82. Similarly, on G2 we obtain the value ρ2 ≈ 1.86. Since the slowest
convergence rate dominates the overall convergence of the domain decomposition method it
follows that

t̃(λ) = min
u∈A(λk)

√

T̃ (λk, u)

M(λk, u)
= O(1.86−N).

In Figure 9 we compare the observed convergence rates on this domain with the estimate
1.86−N . At first the observed convergence seems to be faster than the estimated value. But
then the slope of the observed rate slowly approaches the estimated value leading to a good
match between them. One always has to keep in mind that the estimated rates are asymptotics
for N → ∞. The transient convergence behavior might differ from this.

Let us compare the estimated rate of 1.86−N with the rates obtained by power series esti-
mates. The radius r1 of G1 is

r1 = sup
z∈G1

|z − z1| ≈ 0.87,

while the closest singularity is z4 with |z4−z1| ≈ 1.08. A power series estimate leads to the rate

of convergence
(

|z4−z1|
r1

)8/3

≈ 1.78. This is much slower than predicted by our value ρ1 ≈ 2.82.

On G2 the difference is even more striking. Here, we would obtain with a power series estimate
an exponential rate of 1.05. Our computed value is ρ2 ≈ 1.86. Hence, by power series estimates

5Proofs of these results can be found in the books by Gaier (1987) and Walsh (1960). A beautiful short
introduction is also given in Embree & Trefethen (1999).

6Available at http://www.math.udel.edu/~driscoll/software/SC/index.html. Trefethen found a way to
compute the map Φ(w) of the exterior of D to the exterior of the unit disc with the Schwarz-Christoofel toolbox

without having to transform the domain G1 to G
8

3

1
and reflecting it at the real line first. We will not go into

the details here.
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Fig. 9. Comparison of estimated and measured convergence for the decomposition of the domain from Figure 4
into two subdomains.

we obtain an overall convergence rate of O(1.05−N) for the domain decomposition method,
while our analysis leads to a rate of O(1.86−N ), which is the asymptotically exact rate of
approximating φk on G2.

We can also answer the question now of why the convergence in Figure 5 is much slower if
we use a domain decomposition into four subdomains as shown in Figure 4. The responsible
subdomain is Ω3. The closest singularity to Ω3 is z4 leading to a convergence rate of ρ3 ≈ 1.28
on Ω3, which is much slower than the rate of 1.86 for the approximation on G2 if we we use only
two subdomains. Hence, in contrast to standard Finite Element Methods a finer decomposition
does not necessarily guarantee a better approximation quality. More important is the distance
of the singularities to the subdomains. It is interesting to note that with the decomposition
into four subdomains power series estimates are not possible. Since the distance between z4

and z3 is smaller than the radius of Ω3 there exists no series of the form (5.2), which converges
in the whole of Ω3 to uk.

The convergence analysis is not restricted to simply connected domains. With a suitable
domain decomposition we can also apply the results to certain multiply connected domains if
all subdomains are simply connected and do not violate the restriction on the domain decom-
position.

Consider the domain shown in Figure 10. The inner boundary is a square with side lengths 1
and lower left corner at 0 while the outer boundary is a square with side length 3 and lower left
corner at −.5 − .5i. The dashed lines show the interfaces between the four subdomains. Since
every subdomain is simply connected we can easily compute the maximum convergence rate ρj

on each subdomain Ωj . It turns out that the rate of convergence is dominated by Ω3, where we
have ρ3 ≈ 1.16. The smallest singular value σ1(λ1) for a growing number N of basis functions in
each subdomain is plotted in Figure 11. Eventually the slope of the observed curve (solid line)
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Fig. 10. A multiply connected domain, on which eigenfunctions can have singularities at the interior corners.
The dashed lines are the interfaces between the subdomains.
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Fig. 11. The convergence of σ1(λ) for a growing number of N basis functions in each subdomain of the multiply
connected domain. The solid curve shows the computed values and the dashed curve shows the estimated rate
of convergence.



A GSVD formulation of a domain decomposition method for planar eigenvalue problems 25 of 29

80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 12. The smallest three generalized singular values σ1(λ), . . . , σ3(λ) around the eigenvalue λ50 of the square
shaped hole. The minima of σ1(λ) point to the eigenvalues on this domain.

decreases and slowly approaches the slope of the estimated rate (dashed line). In Figure 13 we
show plots of some eigenfunctions on this domain computed with the domain decomposition
GSVD method. Note that only for higher eigenvalues do the corresponding eigenfunctions fully
penetrate the lower left part of the domain.

The numbers of the eigenvalues can be determined by counting the minima of the smallest
generalized singular value σ1(λ) in dependence on λ. If σ1(λ) is evaluated on a sufficient number
of points and enough basis functions are chosen this works reliably. Eigenvalue clusters can be
spotted by looking at the higher generalized singular values. If for example the smallest two
generalized singular values become small we expect a cluster of two eigenvalues nearby. This is
shown in Figure 12, where the smallest three generalized singular values are plotted around the
eigenvalue λ50 ≈ 94.38700 for the multiply connected domain. Manual counting of eigenvalues
becomes infeasible for high wavenumbers. In that case estimates for the numbers of eigenvalues
can be obtained by Weyl’s law (see for example Kuttler & Sigillito (1984)).

7. Conclusions

In the first part of this paper we presented a domain decomposition method for planar eigenvalue
problems that uses the GSVD instead of the generalized eigenvalue decomposition. Since there
is no squaring involved in the GSVD formulation it is more accurate and better conditioned than
the equivalent GEVD approach. The first part can also be seen as an extension of the GSVD
based Method of Particular Solutions discussed in Betcke (2006) to domain decomposition
methods.

In the second part of this paper we presented based on Vekua’s theory an improved conver-
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Fig. 13. Some eigenfunctions on the square with a square-shaped hole. Only for eigenfunctions belonging to
higher eigenvalues is the local wavelength small enough to fully penetrate the lower left part of the region.
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gence analysis of such methods that estimates the convergence of approximate eigenfunctions
by the rate of a related problem from polynomial approximation in the complex domain. The
convergence rates that we obtain are asymptotically optimal for this related complex approxi-
mation problem and show a good match with the observed rates for the approximation of the
eigenfunctions.

When should one use domain decomposition and when is it more efficient to use particular
solutions that live in the whole of Ω? In Betcke & Trefethen (2005) we present eigenvalue
computations on the isospectral drum without domain decomposition by using global particular
solutions. There we needed an overall number of 560 Fourier-Bessel basis functions to obtain
the first eigenvalue to 13 digits of accuracy. Here we need an overall number of 504 Fourier-
Bessel functions for the same accuracy. But for the domain decomposition method we also have
to evaluate the derivatives of the Fourier-Bessel functions, which is not necessary in a global
approximation method. However, while we can prove exponential convergence for the domain
decomposition method if the subdomains are suitably chosen this seems not to be the case for
global approximations. In Betcke (2005) we conjecture that the MPS leads to superalgebraic
but not exponential convergence on domains with more than one singular corner if the basis
functions are chosen to reflect the corner singularities. Hence, for N → ∞ we can expect
the domain decomposition method to outperform global approximations. But in numerical
computations we are only interested in results up to the accuracy of machine precision and
there it is possible that global approximations need fewer basis functions to achieve this than
the exponentially converging domain decomposition method.

The situation is different for certain multiply connected domains. Consider the domain from
Figure 10. Fourier-Bessel functions, which are adapted to the singularities at the interior corners
always have branch-lines that cross the domain, leading to discontinuities in the approximate
eigenfunctions. Certainly, in this case we could use the symmetry of the domain and split it
along its symmetry axis to obtain a simply connected domain. But this technique does not
work any more if we perturb the symmetry. By a domain decomposition we can overcome
this problem and still use basis functions that model the corner singularities to obtain accurate
eigenvalue and eigenfunction approximations on this domain.
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