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Chapter 1

The Reconstruction

Problem

William Lionheart, Nicholas Polydorides and Andrea Borsic

1.1 Why is EIT so hard?

In conventional medical imaging modalities, such as X-Ray computerized tomog-
raphy, a collimated beam of radiation passes through the object in a straight
line, and the attenuation of this beam is affected only by the matter which lies
along its path. In this sense X-Ray CT is local, and it means that the pixels
or voxels of our image affect only some (in fact a very small proportion) of the
measurements. If the radiation were at lower frequency (softer X-rays) the ef-
fect of scattering would have to be taken into account and the effect of a change
of material in a voxel would no longer be local. As the frequency decreases
this nonlocal effect becomes more pronounced until we reach the case of direct
current, in which a change in conductivity would have some effect on any mea-
surement of surface voltage when any current pattern is applied. This non-local

property of conductivity imaging, which still applies at the moderate frequen-
cies used in EIT, is one of the principal reasons that EIT is difficult. It means
that to find the conductivity image one must solve a system of simultaneous
equations relating every voxel to every measurement.

Non-locality in itself is not such a big problem provided we attempt to
recover a modest number of unknown conductivity parameters from a modest
number of measurements. Worse than that is the ill-posed nature of the problem.
According to Hadamard a mathematical model of a physical problem is well
posed if

1) For all admissible data, a solution exists.

2) For all admissible data, the solution is unique.

3) The solution depends continuously on the data.

The problem of recovering an unknown conductivity from boundary data is
severely ill-posed, and it is the third criterion which gives us the most trouble.
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In practice that means for any given measurement precision, there are arbi-
trarily large changes in the conductivity distribution which are undetectable by
boundary voltage measurements at that precision. This is clearly bad news for
practical low frequency electrical imaging. Before we give up EIT altogether and
take up market gardening, there is a partial answer to this problem — we need
some additional information about the conductivity distribution. If we know
enough a priori (that is in advance) information, it constrains the solution so
that the wild variations causing the instability are ruled out.

The other two criteria can be phrased in a more practical way for our prob-
lem. Existence of a solution is not really in question. We believe the body has a
conductivity. The issue is more that the data is sufficiently accurate to be consis-
tent with a conductivity distribution. Small errors in measurement can violate
consistency conditions, such as reciprocity. One way around this is to project
our infeasible data on to the closest feasible set. The mathematician’s problem
of uniqueness of solution is better understood in experimental terms as suffi-
ciency of data. In the mathematical literature the conductivity inverse boundary
value problem (or Calderón problem) is to show that a complete knowledge of
the relationship between voltage and current at the boundary determines the
conductivity uniquely. This has been proved under a variety of assumptions
about the smoothness of the conductivity [80]. This is only a partial answer to
the practical problem as we have only finitely many measurements from a fixed
system of electrodes, the electrodes typically cover only a portion of the surface
of the body and in many cases voltage are not measured on electrodes driving
currents. In the practical case the number of degrees of freedom of a param-
eterized conductivity we can recover is limited by the number of independent
measurements made and the accuracy of those measurements.

This introductory section has deliberately avoided mathematical treatment,
but a further understanding of why the reconstruction problem of EIT is diffi-
cult, and how it might be done requires some mathematical prerequisites. The
minimum required for the following is reasonably thorough understanding of
matrices [145], and little multi-variable calculus, such as are generally taught to
engineering undergraduates. For those desirous of a deeper knowledge of EIT
reconstruction, for example those wishing to implement reconstruction software,
an undergraduate course in the finite element method [138] and another in in-
verses problems [20, 22, 72] would be advantageous.

1.2 Mathematical Setting

Our starting point for consideration of EIT should be Maxwell’s equations.
But for simplicity let us assume direct current or sufficiently low a frequency
current that the magnetic field can be neglected. We have a given body Ω a
closed and bounded subset of three-dimensional space with a smooth (or smooth
enough) boundary ∂Ω. The body has a conductivity σ which is a function of the
spatial variable x (although we will not always make this dependence explicit
for simplicity of notation). The scalar potential is φ and the electric field is
E = −∇φ. The current density is J = −σ∇φ, which is a continuum version of
Ohm’s law. In the absence of interior current sources, we have the continuum
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Kirchoff’s law1

∇ · σ∇φ = 0 (1.1)

The current density on the boundary is

j = −J · n = σ∇φ · n

where n is the outward unit normal to ∂Ω. Given σ, specification of the potential
φ|∂Ω on the boundary (Dirichlet boundary condition) is sufficient to uniquely
determine a solution φ to (1.1). Similarly specification of boundary current
density j (Neumann boundary conditions) determines φ up to an additive con-
stant, which is equivalent to choosing an earth point. From Gauss’ theorem, or
conservation of current, the boundary current density must satisfy the consis-
tency condition

∫
∂Ω

j = 0. The ideal complete data in the EIT reconstruction

problem is to know all possible pairs of Dirichlet and Neumann data φ|∂Ω, j.
As any Dirichlet data determines unique Neumann data we have an operator
Λσ : φ|∂Ω 7→ j. In electrical terms this operator is the transconductance at the
boundary, and can be regarded as the response of the system we are electrically
interrogating at the boundary.

Practical EIT systems use sinusoidal currents at fixed angular frequency ω
The electric field, current density and potential are all represented by complex
phasers multiplied by eiω. Ignoring magnetic effects (See Box 1.2) we replace
the conductivity σ in 1.1 by the complex admittivity γ = σ + iωε where ε is the
permittivity. In biological tissue one can expect ε to be frequency dependent
which becomes important in a multi-frequency system (X-REF).

1There is a recurring error in the EIT literature of calling this Poisson’s equation, it however
a natural generalisation of Laplace’s equation
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Box 1.1: Maxwell’s Equations

In the main text we have treated essentially the direct current case.The
basic field quantities in Maxwell’s equations are the electric field E and the
magnetic field H which will be modelled as vector valued functions of space
and time. We will assume that there is no relative motion in our system.
The fields, when applied to a material or indeed a vacuum, produce fluxes
– electric displacement D and magnetic flux B. The spacial and temporal
variations of the fields and fluxes are linked by Faraday’s Law of induction

∇×E = −∂B

∂t

and Coulomb’s law

∇×H =
∂D

∂t
+ J

where J is the electric current density. We define the charge density by
∇·E = ρ, and as there are no magnetic monopoles ∇·B = 0. The material
properties appear as relations between fields and fluxes. The simplest case is
of non-dispersive, local, linear, isotropic media. The magnetic permeability
is then a scalar function µ > 0 of space and the material response is B = µH,
and similarly the permittivity ε > 0 with D = εE. In a conductive medium
we have the continuum counterpart to Ohm’s law where the conduction
current density Jc = σE. The total current is then J = Jc + Js the sum of
the conduction and source currents.
We will write E(x, t) = Re(E(x)eiωt) where E(x) is a complex vector valued
function of space. We now have the time harmonic Maxwell’s equations

∇×E = −iωµH

∇×H = iωεE + J (†)
We can combine conductivity and permittivity as a complex admittivity
σ + iωε and write (†) as

∇×H = (σ + iωε)E + Js

In EIT typically the source term Js is zero at frequency ω. The quasi-static
approximation usually employed in EIT is to assume ωµH is negligible so
that ∇× E = 0 and hence on a simply connected domain E = −∇φ for a
scalar φ.
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Box 1.2: Sobolev Spaces

In the mathematical literature you will often see the assumption that φ lies
in the Sobolev Space H1(Ω), which can look intimidating to the uninitiated.
Actually these spaces are easily understood on an intuitive level and have
a natural physical meaning. For mathematical details see Folland [53]. A
(generalized) function f is in Hk(Ω) for integer k if the square kth derivative
has a finite integral over Ω. For non-integer and negative powers Sobolev
spaces are defined by taking the Fourier transform, multiplying by a power
of frequency and demanding that the result is square integrable. For the po-
tential we are simply demanding that

∫
Ω
|∇φ|2 dV < ∞ which is equivalent,

provided the conductivity is bounded, to demanding that the ohmic power
dissipated is finite. An obviously necessary physical constraint. Sobolev
spaces are useful as a measure of the smoothness of a function, and are also
convenient as they have an inner product (they are Hilbert spaces). To be
consistent with this finite power condition the Dirichlet boundary data φ|∂Ω

must be in H1/2(∂Ω) and the Neumann data j ∈ H−1/2(∂Ω). Note that
the current density is one derivative less smooth than the potential on the
boundary as one might expect.

The inverse problem, as formulated by Calderón [31], is to recover σ from Λσ.
The uniqueness of solution, or if you like the sufficiency of the data, has been
shown under a variety of assumptions, notably in the work of Kohn and Vogelius
[84] and Sylvester and Uhlmann [147]. For a summary of results see Isakov [80].
More recently Astala and Paivarinta [1] have shown uniqueness for the 2D case
without smoothness assumptions. There is very little theoretical work on what
can be determined from incomplete data, but knowing the Dirichlet to Neumann
mapping on an open subset of the boundary is enough [151]. It is also known that
one set of Dirichlet and Neumann data, provided it contains enough frequency
components, is enough to determine the boundary between two homogeneous
materials with differing conductivities [2]. These results show that the second
of Hadamard’s conditions is not the problem, at least in the limiting, ‘infinitely
many electrodes’ case. As for the first of Hadamard’s condition, the difficulty is
characterising ‘admissible data’ and there is very little work characterising what
operators are valid Dirichlet-to-Neumann operators. The real problem however
is in the third of Hadamard’s conditions. In the absence of a priori information
about the conductivity, the inverse problem Λσ 7→ σ is extremely unstable in
the presence of noise. To understand this problem further it is best to use a
simple example. Let us consider a unit disk in two dimensions with a concentric
circular anomaly in the conductivity

σ(x) =

{
σ1 ρ < |x| < 1
σ2 |x| ≤ ρ

.

Although this is a two dimensional example, it is equivalent to a three dimen-
sional cylinder with a central cylindrical anomaly provided we consider only
data where the current density is zero on the circular faces of the cylinder and
translationally invariant on the curved face (think of electrodes running the full
height of a cylindrical tank).
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The forward problem can be solved by separation of variables giving

Λσ[cos kθ] = k
1 + µρ2k

1 − µρ2k
cos kθ (1.2)

and similarly for sin, where µ = (σ1 − σ2)/(σ1 + σ2). We can now express any

arbitrary Dirichlet boundary data as a Fourier series φ(1, θ) =
∞∑
k

ak cos kθ +

bk sin kθ and notice that the Fourier coefficients of the current density be k(1 +
µρ2k)/(1−µρ2k)ak and similarly bk. The lowest frequency component is clearly
most sensitive to the variation in the conductivity of the anomaly. This of
itself is a useful observation indicating that patterns of voltage (or current)
with large low frequency components are best able to detect an object near
the centre of the domain. This might be achieved for example by covering a
large proportion of the surface with driven electrodes and exciting a voltage
or current pattern with low spacial frequency. We will explore this further in
Section 1.9.3. We can understand a crucial feature of the non-linearity of EIT
from this simple example - saturation. Fixing the radius of the anomaly and
varying the conductivity we see that for high contrasts from the effect on the
voltage of further varying the conductivity is reduced. A detailed analysis of
the circular anomaly was performed by Seagar[133] using conformal mappings,
including offset anomalies. It is found of course that a central anomaly produces
the least change in boundary data. This illustrates the positional dependence
of the ability of EIT to detect an object. By analogy to conventional imaging
problems one could say that the ‘point spread function’ is position dependent.

Our central circular anomaly also demonstrates the ill-posed nature of the
problem. For a given level of measurement precision, we can construct a circular
anomaly undetectable at that precision. We can make the change in conductivity
arbitrarily large and yet by reducing the radius we are still not be able to
detect the anomaly. This shows (at least using the rather severe L∞ norm) that
Hadamard’s 3rd condition is violated.

While still on the topic of a single anomaly, it is worth pointing out that
finding the location of a single localised object is comparatively easy, and with
practise one can do it crudely by eye from the voltage data. Box 1.7.2 describes
the disturbance to the voltage caused by a small object and explains why, to
first order, this is the potential for a dipole source. This idea can be made rig-
orous and Ammari [3] and Seo[135] show how this could be applied locating the
position and depth of a breast tumour using data from a T-scan measurement
system.

1.3 Measurements and electrodes

A typical electrical imaging system uses a system of conducting electrodes at-
tached to the surface of the body under investigation. One can apply current or
voltage to these electrodes and measure voltage or current respectively. Let us
suppose that the subset of the boundary in contact with the l-th electrode is El,
and 1 ≤ l ≤ L. For one particular measurement the voltages (with respect to
some arbitrary reference) are Vl and the currents Il, which we arrange in vectors

8



2 as V and I ∈ CL . The discrete equivalent of the Dirichlet-to-Neumann Λ map
is the transfer admittance, or mutual admittance, matrix Y which is defined by
I = YV.

Assuming that the electrodes are perfect conductors for each l we have that
φ|El

= Vl, a constant. Away from the electrodes where no current flows ∂φ/∂n =
0. This mixed boundary value problem is well-posed, and the resulting currents
are Il =

∫
El

σ∂φ/∂n. It is easy to see that the vector 1 = (1, 1, . . . , 1)T is in the
null space of Y, and that the range of Y is orthogonal to the same vector. Let
S be the subspace of CL perpendicular to 1 then it can be shown that Y|S is
invertible from S to S. The generalized inverse (see Sec 1.4) Z = Y† is called
the transfer impedance. This follows from uniqueness of solution of the so called
shunt model boundary value problem, which is (1.1) together with the boundary
conditions

∫

El

σ∂φ/∂n = Il for 0 ≤ l ≤ L (1.3)

∂φ/∂n = 0, on Γ′ (1.4)

∇φ × n = 0 on Γ (1.5)

where Γ =
⋃

l El and Γ′ = ∂Ω − Γ. The last condition (1.5) is equivalent to
demanding that φ is constant on electrodes.

The transfer admittance, or equivalently transfer impedance, represents a
complete set of data which can be collected from the L electrodes at a single
frequency for a stationary linear medium. From reciprocity we have that Y and
Z are symmetric (but for ω 6= 0 not Hermittian). The dimension of the space of
possible transfer admittance matrices is clearly no bigger than L(L− 1)/2, and
so it is unrealistic to expect to recover more unknown parameters than this. In
the case of planar resistor networks the possible transfer admittance matrices
can be characterized completely [42], a characterization which is known at least
partly to hold in the planar continuum case [77]. A typical electrical imaging
system applies current or voltage patterns which form a basis of the space S, and
measures some subset of the resulting voltages which as they are only defined
up to an additive constant can be taken to be in S.

The shunt model with its idealization of perfectly conducting electrodes pre-
dicts that the current density on the electrode has a singularity of the form
O(r−1/2) where r is the distance from the edge of the electrode. The potential
φ while still continuous near the electrode has the asymptotics O(r1/2). Al-
though some electrodes may have total current Il = 0 as they are not actively
driven the shunting effect means that their current density is not only non-zero
but infinite at the edges.

In medical application with electrodes applied to skin, and in phantom tanks
with ionic solutions in contact with metal electrodes a contact impedance layer
exists between the solution or skin and the electrode. This modifies the shunting
effect so that the voltage under the electrode is no longer constant. The voltage
on the electrode is still a constant Vl so now on El there is a voltage drop across
the contact impedance layer

φ + zlσ
∂φ

∂n
= Vl (1.6)

2Here Cn is the set of complex column vectors with n rows, whereas Cm×n is the set of
complex m × n matrices
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where the contact impedance zl could vary over El but is generally assumed
constant. This new boundary condition together with (1.3) and (1.4) form the
Complete Electrode Model or CEM. For experimental validation of this model
see [37], theory [143] and numerical calculations [117, 155]. A nonzero contact
impedance removes the singularity in the current density, although high current
densities still occur at the edges of electrodes (fig 1.1). For asymptotics of φ
with the CEM see [45].

The singular values (see 1.4.3) of Z sometimes called characteristic impedances

are sensitive to the electrode model used and this was used by [37] to validate
the CEM. With no modelling of electrodes and a rotationally symmetric con-
ductivity in a cylindrical tank, the characteristic impedances tend toward a 1/k
decay, as expected from (1.2) with sinusoidal singular vectors of frequency k, as
the number of electrodes increases.

1.4 Regularizing Linear Ill-posed problems

In this section we consider the general problem of solving a linear ill-posed
problem, before applying this specifically to EIT in the next section. Detailed
theory and examples of linear ill-posed problems can be found in [149, 22, 160,
72, 50]. We assume a background in basic linear algebra [145]. For complex
vectors x ∈ Cn and b ∈ Cm and a complex matrix A ∈ Cm×n we wish to find
x given Ax = b. Of course in our case A is the Jacobian while x will be a
conductivity change and b a voltage error. In practical measurement problems
it is usual to have more data than unknowns, and if the surfeit of data were are
only problem the natural solution would be to use the Moore-Penrose generalized
inverse

xMP = A†b = (A∗A)−1A∗b (1.7)

which is the least squares solution in that

xMP = arg minx||Ax − b|| (1.8)

(here arg minx means the argument x which minimizes what follows). In MAT-
LAB3 the backslash (left division) operator can be used to calculate the least
squares solution, for example x = A\b.

1.4.1 Ill-conditioning

It is the third of Hadamard’s conditions, instability, which causes us problems.
To understand this first we define the operator norm of a matrix

‖A‖ = maxx6=0

‖Ax‖
‖x‖ .

This can be calculated as the square root of the largest eigenvalue of A∗A. There
is another norm on matrices in Cm×n the Frobenious norm which is simply

‖A‖2
F =

m∑

i=1

n∑

j=1

|aij |2 = traceA∗A

3MATLAB r©is a matrix oriented interpreted programming language for numerical calcu-
lation (The MathWorks Inc, Natick, MA, USA). While we write MATLAB for brevity we
include its free relatives Scilab and Octave
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(a) Current density on the boundary for passive and
active electrodes

(b) The effect of contact impedance on the potential
beneath an electrode

(c) Interior current flux near an active electrode (d) Interior current flux near a passive electrode

Figure 1.1: The current density on the boundary with the CEM is greatest at
the edge of the electrodes, even for passive electrodes. This effect is reduced as
the contact impedance increases.
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which treats the matrix as simply a vector rater than an operator. We also
define the condition number

κ(A) = ‖A‖ · ‖A−1‖.

for A invertible. Assuming that A is known accurately, κ(A) measures the
amplification of relative error in the solution.

Specifically if

Ax = b and A(x + δx) = b + δb

then the relative error in solution and data are related by

‖δx‖
‖x‖ ≤ κ(A)

‖δb‖
‖b‖

as can be easily shown from the definition of operator norm. Note that this is
a ‘worst case’ error bound, often the error is less. With infinite precision, any
finite κ(A) shows that A−1 is continuous, but in practice error in data could be
amplified so much the solution is useless. Even if the data b were reasonably
accurate, numerical errors mean that, effectively A has error, and

‖δx‖
‖x‖ ≤ κ(A)

‖δA‖
‖A‖ .

(Actually this is not quite honest, it should be a ‘perturbation bound’ see [75].)
So in practice we can regard linear problems with large κ(A) as ‘ill-posed’ al-
though the term ill-conditioned is better for the discrete case.

1.4.2 Tikhonov Regularization

The method commonly known as Tikhonov Regularization was introduced to
solve integral equations by Phillips [120] and Tikhonov [150] and for finite di-
mensional problems by Hoerl [76]. In the statistical literature, following Hoerl,
the technique is known as ridge regression. We will explain it here for the finite
dimensional case. The least squares approach fails for a badly conditioned A
but one strategy is to replace the least squares solution by

xα = arg minx ‖Ax− b‖2 + α2‖x‖2. (1.9)

Here we trade off actually getting a solution to Ax = b and not letting ‖x‖
get too big. The number α controls this trade-off and is called a regularization

parameter. Notice that as α → 0, xα tends to a generalized solution A†b. It is
easy to find an explicit formula for the minimum

xα = (A∗A + α2I)−1A∗b.

The condition number κ((A∗A + α2I)−1) is λ1+α2

λn+α2 where λi are the eigen-

values of A∗A, which for λn small is close to λ1

α2 + 1, so for big α it is well
conditioned. Notice also that even if A does not have full rank (λn = 0),
A∗A + α2I does.
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1.4.3 The Singular Value Decomposition

The singular value decomposition (SVD) is the generalization to non-square
matrices of orthogonal diagonalization of Hermittian matrices. We describe the
SVD in some detail here due to its importance in EIT. Although the topic
is often neglected in elementary linear algebra courses and texts ([145] is an
exception), it is described well in texts on Inverse Problems, eg [22].

For A ∈ Cm×n, we recall that A∗A is a non-negative definite Hermittian
so has a complete set of orthogonal eigenvectors vi with real eigenvalues λ1 ≥
λ2 ≥ · · · ≥ 0. These are normalized so that V = [v1 | v2 | · · · | vn] is a unitary
matrix V∗ = V−1. We define σi =

√
λi and for σi 6= 0, ui = σi

−1Avi ∈ C
m.

Now notice that A∗Avi = λivi = σi
2vi. And A∗ui = σi

−1A∗Aui = σiui.
Also AA∗ui = σi

2ui, where σi are called singular values4 vi and ui right and
left singular vectors respectively.

We see that the ui are the eigenvectors of the Hermittian matrix AA∗, so
they too are orthogonal. For a non-square matrix A, there are more eigenvec-
tors of either A∗A or AA∗, depending on which is bigger, but only min(m, n)
singular values. If rankA < min(m, n) some of the σi will be zero. It is conven-
tional to organize the singular values to be in decreasing order σ1 ≥ σ2 ≥ · · · ≥
σmin(m,n) ≥ 0.

If rank(A) = k < n then the singular vectors vk+1, . . . ,vn form an orthonor-
mal basis for null (A), whereas u1, . . . ,uk form a basis for range(A). On the
other hand, if k = rank(A) < m, then v1, . . . ,vk form a basis for range(A∗),
and uk+1, . . . ,um form an orthonormal basis for null (A∗). In summary

Avi = σiui i ≤ min(m, n)

A∗ui = σivi i ≤ min(m, n)

Avi = 0 rank(A) < i ≤ n

A∗ui = 0 rank(A) < i ≤ m

u∗
i uj = δij , v∗

i vj = δij

σ1 ≥ σ2 ≥ · · · ≥ 0.

It is clear from the definition that for any matrix A ‖A‖ = σ1 while the Frobe-
nius norm is ‖A‖F =

√∑
i σ2

i . If A is invertible ‖A−1‖ = 1/σn.
The singular value decomposition, SVD, allows us to diagonalize A using

orthogonal transformations. Let U = [u1 | · · · | um] then AV = UΣ, where Σ
is a the diagonal matrix of singular values padded with zeros to make an m×n
matrix. The nearest thing to diagonalization for non-square A is

U∗AV = Σ, and A = UΣV∗.

Although the SVD is a very important tool for understanding the ill-conditioning
of matrices, it is rather expensive to calculate numerically and the cost is pro-
hibitive for large matrices.

In MATLAB the command s=svd(A) returns the singular values, [U,S,V]=svd(A)
gives you the whole singular value decomposition. There are special forms if A
is sparse, or if you only want some of the singular values and vectors.

4The use of σ for singular values is conventional in linear algebra, and should cause no
confusion with the use of this symbol for conductivity, which is the accepted symbol for
conductivity.
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Once the SVD is known, it can be used to rapidly calculate the Moore-
Penrose generalized inverse from

A† = VΣ†U∗

where Σ† is simply ΣT with the non-zero σi replaced by 1/σi. This formula
is valid whatever the rank of A and gives the minimum norm least squares
solution. Similarly the Tikhonov solution is

xα = VTαU∗b

where T is ΣT with the non-zero σi replaced by σi/(σ2
i +α2). As only Tα varies

with α one can rapidly recalculate xα for a range of α once the SVD is known.

1.4.4 Studying ill-conditioning with the SVD

The singular value decomposition is a valuable tool in studying the ill-conditioning
of a problem. Typically we calculate numerically the SVD of a matrix which
is a discrete approximation to a continuum problem, and the decay of the sin-
gular values gives us an insight into the extent of the instability of the inverse
problem. In a simple example [72], calculating k-th derivatives numerically is
an ill-posed problem, in that taking differences of nearby values of a function is
sensitive to error in the function values. Our operator A is a discrete version of
integrating trigonometric polynomials k-times. The singular vectors of A are a
discrete Fourier basis and the singular value for the i-th frequency proportional
to i−k. Problems such as this where σi = O(i−k) for some k > 0 are called
mildly ill-posed. If we assume sufficient a priori smoothness on the function the
problem becomes well-posed. By contrast problems such as the inverse Laplace
transform, the backward heat equation [72], and linearized EIT the singular
values decay faster than any power i−k, and we term them severely ill-posed.
This degree of ill-posedness technically applies to the continuum problem, but a
discrete approximation to the operator will have singular values that approach
this behaviour as the accuracy of the approximation increases.

In linearized EIT we can interpret the singular vectors vi as telling us that
the components v∗

i x of a conductivity image x are increasingly hard to deter-
mine as i increases, as they produce voltage changes σiu

∗
i x. With a relative

error of ε in the data b we can only expect to reliably recover the components
v∗

i x of the image when σi/σ1 > ε. A graph of the singular values (for EIT
we typically plot σi/σ0 on a logarithmic scale), gives a guide to the number of
degrees of freedom in the image we can expect to recover with measurement at
a given accuracy. See Figure 1.2.

Another use of the graph of the singular values is determination of rank.
Suppose we collect a redundant set of measurements, for example some of the
voltages we measure could be determined by reciprocity. As the linear relations
between the measurements will transfer to dependencies in the rows of the Ja-
cobian, if n is greater than the number of independent measurements k, the
matrix A will be rank deficient. In numerical linear algebra linear relations are
typically not exact due to rounding error, and rather than having zero singular
values we will find that after σk the singular values will fall abruptly by several
decades. For an example of this in EIT see [25].
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Figure 1.2: Singular values plotted on a logarithmic scale for the linearized 3D
EIT problem with 32 electrodes, and some cross sections of two singular vectors.

The singular values themselves do not tell the whole story. For example two
EIT drive configurations may have similar singular values, but if the singular
vectors vi differ then they will be able to reliably reconstruct different conduc-
tivities. To test how easy it is to detect a certain (small as we have linearized)
conductivity change x, we look at the singular spectrum V∗x. If most of the
large components are near the top of this vector the change is easy to detect,
where as if they are all bellow the l-th row they are invisible with relative error
worse than σl/σ0. The singular spectrum U∗b of a set of measurements b, gives
a guide to how useful that set of measurements will be at a given error level.

1.4.5 More General Regularization

In practical situations the standard Tikhonov regularization is rarely useful
unless the variables x represents coefficients with respect to some well chosen
basis for the underlying function. In imaging problems it is natural to take our
vector of unknowns as pixel or voxel values, and in EIT one often takes the values
of conductivity on each cell (eg triangle or tetrahedron) of some decomposition
of the domain, and assumes the conductivity to be constant on that cell. The
penalty term ‖x‖ in standard Tikhonov prevents extreme values of conductivity
but does not enforce smoothness, nor constrain nearby cells to have similar
conductivites. As an alternative we choose a positive definite (and without loss
of generality Hermittian) matrix P ∈ Cn×n and the norm ‖x‖2

P = x∗Px. A
common choice is to use an approximation to a differential operator L and set
P = L∗L.

There are two further refinements which can be included, the first is that
we penalise differences from some background value x0, which can include some
known non-smooth behaviour and penalise ‖x − x0‖P. The second is to allow
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for the possibility that we may not wish to fit all measurements to the same
accuracy, in particular as some may have larger errors than others. This leads
to consideration of the term ‖Ax−b‖Q for some diagonal weighting matrix Q.
If the errors in b are correlated, one can consider a non-diagonal Q so that the
errors in Q1/2b are not correlated. The probabilistic interpretation of Tikhonov
regularization in Box 1.4.5 makes this more explicit. Our Generalized Tikhonov
procedure is now

xGT = arg minx‖Ax − b‖2
Q + ‖x− x0‖2

P.

which reduces to the standard Tikhonov procedure for P = I, Q = α2I, x0 = 0.
We can find the solution by noting that for x̃ = P1/2(x−x0), Ã = Q1/2AP−1/2,
and b̃ = Q1/2(b −Ax0)

xGT = x0 + P−1/2arg minx̃

(
‖Ãx̃− b̃‖2 + ‖x̃‖2

)

which can be written explicitly as

xGT = x0 + P−1/2
(
Ã∗Ã + I

)−1

Ã∗b̃

= x0 + (A∗QA + P)−1 A∗Q(b −Ax0)

or in the alternative forms

xGT = (A∗QA + P)
−1

(A∗Qb + Px0)

= x0 + PA∗
(
AP−1A + Q−1

)−1
(b −Ax0).

As in the standard Tikhonov case, generalized Tikhonov can be explained in
terms of the SVD of Ã which can be regarded as the SVD of the operator
A with respect to the P and Q norms. Sometimes it is useful to consider a
non-invertible P, for example if L is a first order difference operator L∗L has
a non-trivial null space. Provided the null space can be expressed as a basis
of singular vectors of A with large σi the regularization procedure will still be
successful. This situation can be studied using the Generalized Singular Value
Decomposition, GSVD [72].
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Box 1.3: Probabilistic interpretation of regularization

The statistical approach to regularization [160, Ch 4] gives an alternative
justification of generalized Tikhonov regularization. For a detailed treat-
ment of the application of this approach to EIT see [81]. Bayes’ theorem
relates conditional probabilities of random variables.

P (x|b) =
P (b|x)P (x)

P (b)
.

The probability of x given b is the probability of b given x times P (x)/P (b).
We now want the most likely x, so we maximize the posterior P (x|b), ob-
taining the so called Maximum A-Posteriori (MAP) estimate.
This is easy to do if we assume x is multivariate Gaussian with mean x0

and covariance Cov[x] = P−1, and e has mean zero and Cov[e] = Q−1

P (x|b) =
1

P (b)
exp

(
−1

2
‖Ax− b‖2

Q

)
· exp

(
−1

2
‖x − x0‖2

P

)

where we have used that x and e are independent so Pb(b|x) = Pe(b−Ax).
We notice that P (x|b) is maximized by minimizing

‖Ax − b‖2
Q + ‖x− x0‖2

P.

1.5 Regularizing EIT

We define a forward operator F by F (s) = V which takes the vector of degrees
of freedom in the conductivity s to the measured voltages at the boundary
V. Clearly F is nonlinear. We will leave aside the adaptive current approach
(Section 1.9.3) where the measurements taken depend on the conductivity. As
the goal is to fit the actual measured voltages Vm, the simplest approach, as in
the case of a linear problem, is to minimize the sum of squares error

||Vm − F (s)||2F

the so called output least squares approach. We have emphasized the Frobenius
norm here as Vm is a matrix, however in this section we will use the notational
convenience of using the same symbol when the matrix of measurements is
arranged as a column vector. In practice it is not usual to use the raw least
squares approach, but at least a weighted sum of squares which reflects the
reliability of each voltage. More generally (Box 1.4.5) we use a norm weighted
by the inverse of the error covariance. Such approaches are common both in
optimization and the statistical approach to inverse problems. To simplify the
presentation we will use the standard norm on voltages, or equivalently that
they have already been suitably scaled. The more general case is easily deduced
from the last section.

Minimization of the voltage error (for simple parameterizations of γ) is
doomed to failure as the problem is ill-posed. In practise the minimum lies
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in a long narrow valley of the objective function[26]. For a unique solution one
must include additional information about the conductivity. An example is to
include a penalty G(s) for highly oscillatory conductivites in our minimization,
just as in the case of a linear ill-posed problem. We seek to minimize

f(s) = ||Vm − F (s)||2 + G(s).

In EIT a typical simple choice [155] is

G(s) = α2||L(s − sref)||2 (1.10)

where L is a matrix approximation to some partial differential operator and
sref a reference conductivity (for example including known anatomical features).
The minimization of f represents a trade-off between fitting the data exactly
and not making the derivatives of σ too large, the trade off being controlled by
the regularisation parameter α.

A common choice [157, 122] is to use a discrete approximation to the Lapla-
cian on piecewise constant functions on the mesh. For each element a sum of the
neighboring element values is taken, weighted by the area (or length in 2D) of
the shared faces and the total area (perimeter length) of the element multiplied
by the element value subtracted. This is analogous to the common five point
difference approximation to the Laplacian on a square mesh. Where elements
have faces on the boundary, there are no neighbours and the scheme is equiv-
alent to assuming an extension outside the body with the same value. This
enforces a homogeneous Neumann boundary condition so that the null space of
L is just constants. As constant conductivity values are easily obtained in EIT
the null space does not diminish the regularizing properties of this choice of G.
Similarly one could choose a first order differential operator for L [152]. Other
smooth choices of G include the inverse of a Gaussian smoothing filter [16], ef-
fectively an infinite order differential operator. In these cases where G is smooth
and for α large enough the Hessian of f will be positive definite, we can then
deduce that f is a convex function [160, Ch 2], so that a critical point will be a
strict local minimum, guaranteeing the success of smooth optimization methods.
Such regularization however will prevent us from reconstructing conductivities
with a sharp transition, such as an organ boundary. However the advantage of
using a smooth objective function f is that it can be minimized using smooth
optimization techniques.

Another option is to include in G the Total Variation, that is the integral of
|∇γ|. This still rules out wild fluctuations in conductivity while allowing step
changes. We study this in more detail in Sec 1.6

1.5.1 Linearized Problem

Consider the simplified case is where F (s) is replaced by a linear approximation

F (s0) + J(s − s0)

where J is the Jacobian matrix of F calculated at some initial conductivity
estimate s0 (not necessarily the same as sref). Defining δs = s − s0 and δV =
Vm − F (s0) the solution to the linearized regularization problem for the choice
of regularization in (1.10) (now a quadratic minimization problem) is given by

δs = (J∗J + α2L∗L)−1(J∗δV + α2L∗L(sref − s0)) (1.11)
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or any of the equivalent forms [149]. While there are many other forms of regu-
larization possible for a linear ill-conditioned problem this generalised Tikhonov
regularization has the benefit that (see Box 1.4.5) the a priori information it
incorporates is made explicit and that under Gaussian assumptions it is the sta-
tistically defensible MAP estimate. If only a linearised solution to be used with
a fixed initial estimate s0 the Jacobian J and a factorization of (J∗J + α2L∗L)
can be precalculated off-line. The efficiency of this calculation is then imma-
terial and the regularized solution can be calculated using the factorization
with complexity O(N2) for N degrees of freedom in the conductivity (which
should be smaller than the number of independent measurements). Although
LU factorization would be one alternative, perhaps a better choice is to use
the Generalized Singular Value Decomposition GSVD [72], which allows the
regularized solution to be calculated efficiently for any value of α. The GSVD
is now a standard tool for understanding the effect of the choice of the regu-
larization matrix L in a linear ill-conditioned problem, and has been applied
to linearized EIT[152, 16]. The use of a single linearized Tikhonov regularized
solution is widespread in medical industrial and geophysical EIT, the NOSER
algorithm [35] being a well known example.

1.5.2 Backprojection

It is an interesting historical observation that in the medical and industrial ap-
plications of EIT numerous authors have calculated J and then proceeded to
use ad hoc regularized inversion methods to calculate an approximate solution.
Often these are variations on standard iterative methods which, if continued
would for a well posed problem converge to the Moore-Penrose generalised solu-
tion. It is a standard method in inverse problems to use an iterative method but
stop short of convergence (Morozov’s discrepancy principle tells us to stop when
the output error first falls below the measurement noise). Many linear iterative
schemes can be represented as a filter on the singular values. However they
have the weakness that the a priori information included is not as explicit as in
Tikhonov regularisation. One extreme example of the use of an ad hoc method
is the method described by Kotre [89] in which the normalized transpose of
the Jacobian is applied to the voltage difference data. In the Radon transform
used in X-Ray CT [113], the formal adjoint of the Radon transform is called the
back projection operator. It produces at a point in the domain the sum of all
the values measured along rays through that point. Although not an inverse to
the Radon transform itself, a smooth image can be obtained by backprojecting
smoothed data, or equivalently by back-projecting then smoothing the resulting
image.

The Tikhonov regularization formula (1.11) can be interpreted in a loose
way as the back-projection operator J∗ followed by application of the spatial
filter (J∗J + +α2L∗L)−1. Although this approach is quite different from the
filtered back projection along equipotential lines of Barber and Brown [9, 130]
it is sometimes confused with this in the literature. Kotre’s back projection
was until recently widely used in the process tomography community for both
resistivity (ERT) and permittivity (ECT) imaging [163]. Often supported by
the fallacious arguments, in particular that it is fast (it is no faster than the
application of any precomputed regularized inverse) and that it is commonly
used (only by those who know no better). In an interesting development the
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application of a normalised adjoint to the residual voltage error for the linearised
problem was suggested for ECT, and later recognised as yet another reinvention
of the well known Landweber iterative method [162]. Although there is no good
reason to use pure linear iteration schemes directly on problems with such small
a number of parameters as they can be applied much faster using the SVD, an
interesting variation is to use such a slowly converging linear solution together
with projection on to a constraint set; a method which has been shown to work
well in ECT [30].

1.5.3 Iterative Nonlinear Solution

The use of linear approximation is only valid for small deviations from the ref-
erence conductivity. In medical problems conductivity contrasts can be large,
but there is a good case for using the linearized method to calculate a change
in admittivity between two states, measured either at different times or with
different frequencies. Although this has been called “dynamic imaging” in EIT
the term difference imaging is now preferred (dynamic imaging is a better used
to describe statistical time series methods such as [154] ). In industrial ECT
modest variations of permittivity are commonplace. In industrial problems and
in phantom tanks it is possible to measure a reference data set using a homo-
geneous tank. This can be used to calibrate the forward model, in particular
the contact impedance can be estimated [74]. In an in vivo measurement there
is no such possibility and it may be that the mismatch between the measured
data and the predictions from the forward model is dominated by the errors in
electrode position, boundary shape and contact impedance rather than interior
conductivity. Until these problems are overcome it is unlikely, in the author’s
opinion, to be worth using iterative non-linear methods in vivo using individ-
ual surface electrodes. Note however that such methods are in routine use in
geophysical problems [95, 96].

The essence of non-linear solution methods is to repeat the process of calcu-
lating the Jacobian and solving a regularised linear approximation. However a
common way to explain this is to start with the problem of minimizing f , which
for a well chosen G will have a critical point which is the minimum. At this min-
imum ∇f(s) = 0 which is a system of N equations in N unknowns which can
be solved by multi-variable Newton-Raphson method. The Gauss-Newton ap-
proximation to this, which neglects terms involving second derivatives of F , is a
familiar Tikhonov formula updating the n th approximation to the conductivity
parameters sn

sn+1 = sn + (J∗
nJn + α2L∗L)−1(J∗

n(Vm − F (sn)) + α2L∗L(sref − sn)

where Jn is the Jacobian evaluated at sn, and care has to be taken with signs .
Notice that in this formula the Tikhonov parameter is held constant through-
out the iteration, by contrast the Levenberg-Marquardt[110] method applied
to ∇f = 0 would add a diagonal matrix λD in addition to the regularization
term α2L∗L but would reduce λ to zero as a solution was approached. For an
interpretation of λ as a Lagrangian multiplier for an optimization constrained
by a trust region see [160, Ch 3]. Another variation on this family of methods
is, given an update direction from the Tikhonov formula, to do an approximate
line search to minimize f in that direction. Both methods are described in [160,
Ch 3].
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The parameterization of the conductivity can be much more specific than
voxel values or coefficients of smooth basis functions. One example is to assume
that the conductivity is piecewise constant on smooth domains and reconstruct
the shapes parameterized by Fourier series [73, 83, 86, 87] or by level sets [129,
49, 34, 39]. For this and other model based approaches the same family of
smooth optimization techniques can be used as for simpler parameterizations,
although the Jacobian calculation may be more involved. For inclusions of
known conductivities there are a range of direct techniques we will briefly survey
in Sec 1.12.2.

1.6 Total Variation Regularization

The Total Variation functional is assuming an important role in the regularisa-
tion of inverse problems belonging to many disciplines, after its first introduction
by Rudin, Osher and Fatemi (1992) [127] in the image restoration context. The
use of such a functional as a regularisation penalty term allows the reconstruc-
tion of discontinuous profiles. As this is a desirable property, the method is
gaining popularity.

Total variation measures the total amplitude of the oscillations of a function.
For a differentiable function on a domain Ω the total variation is [48]

TV (f) =

∫

Ω

|∇f | (1.12)

The definition can be extended to non–differentiable functions [62] as:

TV (f) = sup
v∈V

∫

Ω

f div v (1.13)

where V is the space of continuously differentiable vector-valued functions that
vanish on ∂Ω and ‖v‖Ω ≤ 1.

As the TV functional measures the variations of a function over its domain,
it can be understood to be effective at reducing oscillations in the inverted
profile, if used as a penalty term. The same properties apply however to `2

regularisation functionals. The important difference is that the class of functions
with bounded total variation also includes discontinuous functions, which makes
the TV particularly attractive for the regularisation of non–smooth profiles.
The following one-dimensional example illustrates the advantage of using the
TV against a quadratic functional in non-smooth contexts

Let F = {f : [0, 1] → R, | f(0) = a, f(1) = b}, we have

• min
f∈F

∫ 1

0 |f ′(x)|dx is achieved by any monotonic function, including discon-

tinuous ones.

• min
f∈F

∫ 1

0
(f ′(x))2dx is achieved only by the straight line connecting the

points (0, a) (1, b).

Figure 1.3 shows three possible functions f1, f2, f3 in F . All of them have
the same total variation, including f3 which is discontinuous. Only f2 however
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( 0 , a )

( 1 , b )

f 1 ( x )

f 2 ( x )
f 3 ( x )

Figure 1.3: Three possible functions: f1, f2, f3 ∈ F . All of them have the same
TV, but only f2 minimises the H1 semi-norm.

minimises the H1 semi–norm

|f |H1
=

(∫ 1

0

(
∂f

∂x

)2

dx

)1/2

. (1.14)

The quadratic functional, if used as penalty, would therefore bias the inversion
toward the linear solution and the function f3 would not be admitted in the
solution set as its H1 semi-norm is infinite.

Two different approaches proposed for application of TV to EIT, the first by
Dobson et. al. [65] and the second by Somersalo et. al. and Kolehmainen et.

al. [141] [88]. The approach proposed by Dobson and Santosa is suitable for the
linearised problem and suffers from poor numerical efficiency. Somersalo and
Kolehmainen successfully applied MCMC methods to solve the TV regularised
inverse problem. The advantage in applying MCMC methods over determin-
istic methods is that they do not suffer from the numerical problems involved
with non-differentiability of the TV functional. They do not require ad hoc

techniques. Probabilistic methods, such as MCMC, offer central estimates and
errors bars by sampling the posterior probability density of the sought param-
eters. The sampling process involves a substantial computational effort, often
the inverse problem is linearised in order to speed up the sampling. What is
required is an efficient method for deterministic Tikhonov style regularisation,
to offer a non–linear TV regularised inversion in a short time. We will briefly
describe the Primal Dual Interior Point Method (PD-IPM) to TV applied to
EIT [15, 14] which is just such a method. In Sec 1.10 we present some numerical
results using this method for the first time for 3D EIT.

A second aspect, which adds importance to the study of efficient MAP
(Tikhonov) methods, is that the linearisation in MCMC methods is usually
performed after an initial MAP guess. Kolehmainen [88] reports calculating
several iterations of a Newton method before starting the burn-in phase of his
algorithm. A good initial deterministic TV inversion could therefore bring ben-
efit to these approaches.

Examining the relevant literature, a variety of deterministic numerical meth-
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ods have been used for the regularisation of image denoising and restoration
problems with the TV functional (a good review is offered by Vogel in [160]).
The numerical efficiency and stability are the main issues to be addressed. Use
of ad–hoc techniques is common, given the poor performance of traditional al-
gorithms. Most of the deterministic methods draw from ongoing research in
optimisation, as TV minimisation belongs to the important classes of problems
known as “Minimisation of sum of norms” [41] [4] [5] and “Linear `1 problems”
[11] [165].

1.6.1 Duality for Tikhonov Regularised Inverse Problems

In inverse problems, with linear forward operators, the discretised TV regu-
larised inverse problem, can be formulated as

(P ) min
x

1

2
‖Ax− b‖2 + α‖Lx‖ (1.15)

where L is a discretization of the gradient operator. We will label it as the primal
problem. A Dual problem to (P), which can be shown to be equivalent [14] is

(D) max
y:‖y‖≤1

min
x

1

2
‖Ax− b‖2 + αyT Lx (1.16)

The optimisation problem

min
x

1

2
‖Ax − b‖2 + αyT Lx (1.17)

has an optimal point defined by the first order conditions

AT (Ax − b) + αLT x = 0 (1.18)

the dual problem can be written therefore as

(D) max
y : ‖y‖ ≤ 1

AT (Ax − b) + α LT y = 0

1

2
‖Ax − b‖2 + αyT Lx (1.19)

The complementarity condition for (1.15) and (1.19) is set by nulling the primal
dual gap

1

2
‖Ax − b‖2 + α ‖Lx‖ − 1

2
‖Ax − b‖2 − αyT Lx = 0 (1.20)

which with the dual feasibility ‖y‖ ≤ 1 is equivalent to requiring that

Lx − ‖Lx‖y = 0 (1.21)

The PD-IPM framework for the TV regularised inverse problem can thus be
written as

‖y‖ ≤ 1 (1.22a)

AT (Ax − b) + α LT y = 0 (1.22b)

Lx − ‖Lx‖y = 0 (1.22c)

It is not possible to apply the Newton Method directly to (1.22) as (1.22c) is
not differentiable for Lx = 0. A centering condition has to be applied, obtain-
ing a smooth pair of optimisation problems (Pβ) and (Dβ) and a central path

parameterised by β. This is done by replacing ‖Lx‖ by (‖Lx‖2 +β)
1

2 in (1.22c).
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1.6.2 Application to EIT

The PD-IPM algorithm in its original form [33] was developed for inverse prob-
lems with linear forward operators. The following section (based on [14]) de-
scribes the numerical implementation for EIT reconstruction. The implementa-
tion is based on the results of the duality theory for inverse problems with linear
forward operators. Nevertheless it was possible to apply the original algorithm
to the EIT inverse problem with minor modifications, and to obtain successful
reconstructions. The formulation for the EIT inverse problem is

srec = arg minsf(s)
f(s) = 1

2‖F (s) −Vm‖2 + α TV (s)
(1.23)

With a similar notation as used in Section 1.6.1, the system of non–linear equa-
tions that defines the PD–IPM method for (1.23) can be written as

‖y‖ ≤ 1
JT (F (s) −Vm) + α LT y = 0

Ls− Ey = 0
(1.24)

with E =
√
‖Ls‖2 + β, and J the Jacobian of the forward operator F (s).

Newton’s method can be applied to solve (1.24) obtaining the following system
for the updates δs and δy of the primal and dual variables

[
JT J α LT

EL −E

] [
δs
δy

]
= −

[
JT (F (s) − b) + α LT y

Ls− Ey

]
(1.25)

with

h = 1 − yL s

E
(1.26)

which in turn can be solved as follows

[JT J + α LT E−1hL] δs = −[JT (F (s) − b) + α LT E−1L s] (1.27a)

δy = −y + E−1Ls + E−1hL δs (1.27b)

Equations (1.27) can therefore be applied iteratively to solve the non–linear
inversion (1.23). Some care must be taken on the dual variable update, to
maintain dual feasibility. A traditional line search procedure with feasibility
checks is not suitable as the dual update direction is not guaranteed to be an
ascent direction for the penalised dual objective function (Dβ). The simplest
way to compute the update is called the scaling rule [5] which is defined to work
as follows

yk+1 = λ(yk + δyk) (1.28)

where
λ = max{λ : λ‖yk + δyk‖ ≤ 1} (1.29)

An alternative way is to calculate the exact step length to the boundary, apply-
ing what is called the steplength rule [5]

yk+1 = yk + min(1, λ) δyk (1.30)

where
λ = max{λ : ‖yk + λ δyk‖ ≤ 1} (1.31)
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In the context of EIT, and in tomography in general, the computation involved
in calculating the exact step length to the boundary of the dual feasibility re-
gion is negligible compared to the whole algorithm iteration. It is convenient
therefore to adopt the exact update, which in our experiments resulted in a
better convergence. The scaling rule has the further disadvantage of always
placing y on the boundary of the feasible region, which prevents the algorithm
from following the central path. Concerning the updates on the primal variable,
the update direction δs is a descent direction for (Pβ) therefore a line search
procedure could be opportune. In our numerical experiments we have found
that for relatively small contrasts (e.g. 3:1) the primal line search procedure is
not needed, as the steps are unitary. For larger contrasts a line search on the
primal variable guarantees the stability of the algorithm.

1.7 Jacobian calculations

In optimization based methods it is often necessary to calculate the derivative
of the voltage measurements with respect to a conductivity parameter. The
complete matrix of partial derivatives of voltages with respect to conductivity
parameters is the Jacobian matrix, sometimes in the medical and industrial
EIT literature called the sensitivity matrix, or the rows are called sensitivity

maps. We will describe here the basic method for calculating this efficiently
with a minimal number of forward solutions. Let it be said first that there are
methods where the derivative is calculated only once and although the forward
solution is calculated repeatedly as the conductivity is updated. This is the
difference between Newton-Kantorovich method and Newton’s method. There
are also Quasi-Newton methods in which the Jacobian is update approximately
from the forward solutions that have been made. Indeed this has been used
in geophysics [96]. It also worth pointing out that were the conductivity is
parameterized in a non-linear way for example using shapes of an anatomical
model, that the Jacobian with respect to those new parameters can be calculated
using the chain rule.

1.7.1 Perturbation in power

Using the weak form of ∇ · γ∇φ = 0 (or Green’s identity), for any w
∫

Ω

γ∇φ · ∇w dV =

∫

∂Ω

wγ
∂φ

∂n
dS (1.32)

We use the complete electrode model. For the special case w = φ̄ we have the
power conservation formula,

∫

Ω

γ|∇φ|2 dV =

∫

∂Ω

φ γ
∂φ

∂n
dS =

∑

l

∫

El

(
Vl − zlγ

∂φ

∂n

)
γ

∂φ

∂n
dS (1.33)

hence ∫

Ω

γ|∇φ|2 dV +
∑

l

∫

El

zl

∣∣∣∣γ
∂φ

∂n

∣∣∣∣
2

=
∑

l

VlIl (1.34)

This simply states that the power input is dissipated either in the domain Ω or
by the contact impedance layer under the electrodes.
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In the case of full time harmonic Maxwell’s equations (Box 1.2) the power
flux is given by the Poynting vector E × H the complex power crossing the
boundary is then equal to the complex power dissipated and stored in the interior
(the imaginary part representing the power stored as electric and magnetic
energy) ∫

∂Ω

E×H · n =

∫

Ω

γE · E + iωH · H (1.35)

which generalizes (1.34).

1.7.2 Standard formula for Jacobian

We now take perturbations γ → γ + δγ, φ → φ + δφ and Vl → Vl + δVl, with
the current in each electrode Il held constant. We calculate the first order
perturbation, and argue as in [31, 28] that the terms we have neglected are
higher order in the L∞ norm on δγ. The details of the calculation are given for
the complete electrode model case in [122], the result is

∑

l

IlδVl = −
∫

Ω

δγ|∇φ|2 dV (1.36)

This gives only the total change in power, to get the change in voltage on a
particular electrode Em when a current pattern is driven in some or all of the
other electrodes we simply solve for the special ‘measurement current pattern’
Ĩm
l = δlm. To emphasize the dependence of the potential on a vector of electrode

currents I = (I1, . . . , IL) we write φ(I). The hypothetical measurement potential
is u(Im), by contrast the potential for the d-th drive pattern φ(Id). Applying
the power perturbation formula (1.36) to φ(Id) + φ(Im) and φ(Id) − φ(Im) and
then subtracting gives the familiar formula

δVdm = −
∫

Ω

δγ∇φ(Id) · ∇φ(Im) dV (1.37)

While this formula gives the Fréchet derivative for δγ ∈ L∞(Ω), considerable
care is needed to show that the voltage data is Fréchet differentiable in other
norms, such as those needed to show that the total variation regularization
scheme works [161]. For a finite dimensional subspace of L∞(Ω) a proof of
differentiability is given in [81].

For full time harmonic Maxwell’s equations the power conservation for-
mula (1.35) yields a sensitivity to a perturbation of admittivity exactly as
in (1.37) but the electric field E is no longer a gradient and sensitivity to a
change in the magnetic permeability is given by H · H [140]

In the special case of the Sheffield adjacent pair drive, adjacent pair mea-
surement protocol we have potentials φi for the i-th drive pair and voltage
measurement Vij for a constant current I

δVij = − 1

I2

∫

Ω

δγ∇φi · ∇φj dV (1.38)

To calculate the Jacobian matrix one must choose a discretizarion of the con-
ductivity. The simplest case is to take the conductivity to be piecewise constant
on polyhedral domains such as voxels or tetrahedral elements. Taking δγ to
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be the characteristic function of the k-th voxel Ωk we have for a fixed current
pattern

Jdm k =
∂Vdm

∂γk
= −

∫

Ωk

∇u(Id) · ∇φ(Im) dV (1.39)

Some EIT and capacitance tomography systems use a constant voltage source
and in this case the change in power of an increase in admittivity will have the
opposite sign to the constant current case.

A common variation in the case of real conductivity is to use the resistivity
ρ = 1/σ as the primary variable or more commonly to use log σ [10, 26, 155],
which has the advantage that it does not need to be constrained to be positive.
With a simple parameterization of conductivity as constant on voxels g(γ) is
constant on voxels as well. In this case from the chain rule we simply use the
chain rule, dividing the k-th column of Jacobian we have calculated by g′(γk).
The regularization will also be affected by the change of variables.
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Box 1.4: Sensitivity to a localised change in conductivity

Studying the change in voltage from a small localised change in conductivity
is a useful illustration of EIT. Suppose we fix a current pattern, and a
background conductivity of γ, which results in a potential φ. Now consider
a perturbed conductivity γ + δγ which results in a potential, with the same
current drive, φ + δφ. From ∇ · (γ + δγ)∇φ = 0 we see that

∇ · δγ∇φ + ∇ · γ∇δφ + ∇ · δγ∇δφ = 0

The same procedure used to calculate the Jacobian can be used to show
that the last term is O(δγ2) so that to first order

∇ · γ∇δφ = −∇ · δγ∇φ

now for simplicity take γ = 1 and we have the Poisson equation for δφ

∇2δφ = ∇δγ · ∇φ

If we now take δγ to be a small change, constant on a small ball near
some point p, then the source term in this Poisson equation approximates
a dipole at p whose strength and direction is given by ∇φ. Observing δφ
at the boundary we see it as a dipole field from which a line through p can
be estimated by eye. This goes some way to explain the ease with which
one small object can be located, even with only a small number of current
patterns. It also illustrates the depth dependence of the sensitivity as the
dipole field decays with distance even if the electric field is relatively uniform.
Typically the electric field strength is also less away from the boundary.
This continuum argument is paralleled in Yorkey’s ‘compensation’ method
in resistor networks [164]. A resistor in a network is changed and Yorkey
observes that to first order the change in voltage at each point in the network
is equivalent to the voltage which would result if a current source were
applied in parallel with that resistor.

The potential due to a dipole source at the centre of a homogeneous disk

Some iterative nonlinear reconstruction algorithms, such as nonlinear Landwe-
ber, or non-linear conjugate gradient (see Sec 1.8.3 and [160]) require the eval-
uation of transpose (or adjoint) of the Jacobian multiplied by a vector J∗z. For
problems where the Jacobian is very large it may be undesirable to store the
Jacobian and then apply its transpose to z. Instead the block of zi correspond-
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ing to the ith current drive is written as distributed source on the measurement
electrodes. A forward solution is performed with this as the boundary current
pattern so that when this measurement field is combined with the field for the
drive pattern as 1.39, and this block accumulated to give J∗z. For details of
this applied to diffuse optical tomography see [6], and for a general theory of
adjoint sources see [160]

For fast calculation of the Jacobian using (1.39) one can precompute the
integrals of products of finite element basis functions over elements. If non
constant basis functions are used on elements, or higher order elements used
one could calculate the product of gradients of FE basis functions at quadrature
points in each element. As this depends only on the geometry of the mesh and
not the conductivity this can be precomputed unless one is using an adaptive
meshing strategy. The same data is used in assembling the FE system matrix
efficiently when the conductivity has changed but not the geometry. It is these
factors particularly which make current commercial FEM software unsuitable
for use in an efficient EIT solver.

1.8 Solving the forward problem: the Finite El-

ement Method

To solve the inverse problem one needs to solve the forward problem for some
assumed conductivity so that the predicted voltages can be compared with the
measured data. In addition the interior electric fields are usually needed for
the calculation of Jacobian. Only in cases of very simple geometry, and homge-
neous or at least very simple conductivity, can the forward problem be solved
analytically. These can sometimes be useful for linear reconstruction algorithms
on highly symmetric domains. Numerical methods for general geometry and
arbitrary conductivity require the discretization of both the domain and the
conductivity. In the Finite Element Method (FEM), the three dimensional do-
main is decomposed in to (possibly irregular) polyhedra (for example tetrahedra,
prisms or hexahedra) called elements, and on each element the unknown poten-
tial is represented by a polynomial of fixed order. Where the elements intersect
they are are required to intesect only in whole faces or edges or at vertices,
and the potential is assumed continuous (or derivatives up to a certain order
continuous), across faces. The finite element method converges to the solution
(or at least the weak solution) of the partial differential equation it represents,
as the elements become more numerous (provided their interior angles remain
bounded) or as the order of the polynomial is increased [146].

The Finite Difference Method and Finite Volume Method, are close rela-
tives of the FEM, which use regular grids. These have the advantage that more
efficient solvers can be used at the expense of the difficulty in accurately rep-
resenting curved boundaries or smooth interior structures. In the Boundary
Element Method (BEM) only surfaces of regions are discretized, and an an-
alytical expression for the Green function used within enclosed volumes that
are assumed to be homogeneous. BEM is useful for EIT forward modelling
provided one assumes piecewise constant conductivity on regions with smooth
boundaries (organs for example). BEM results in a desnse rather than a sparse
linear system to solve and its computational advantage over FEM diminishes as
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the number of regions in the model increases. BEM has the advantage of being
able to repressent unbounded domains. A hybrid method where some regions
assumed homogeneous are repressented by BEM, and inhomogeneous regions
by FEM may be computationally efficient for some applications of EIT [134].

In addition to the close integration of the Jacobian calculation and the FEM
forward solver, another factor which leads those working on EIT reconstruction
to write their own FEM program that the Complete Electrode Model is a non-
standard type of boundary condition not included in commercial FEM software.
It is not hard to implement and there are freely available codes [157, 122], but it
is worth covering the basic theory here for completeness. A good introduction
to FEM in electromagnetics is [138], and details of implementation of the CEM
can be found especially in the theses [155, 123].

1.8.1 Basic FEM formulation

Our starting point is to approximate the domain Ω as union of a finite number
of elements, which for simplicity we will take to be simplices. In two dimensions
a simplex is a triangle and in three dimensions a tetrahedron. A collection of
such simplices is called a finite element mesh, and we will suppose that there are
K simplices with N vertices. We will approximate the potential using this mesh
by functions which are linear on each simplex, and continuous across the faces.
These functions have the appealing feature that they are completely determined
by their values at the vertices. A natural basis is the set of functions wi that are
one on vertex i and zero at the other vertices and we can represent the potential
by the approximation

φFEM(x) =
N∑

i=1

φiwi(x). (1.40)

so that Φ = (φ1, . . . , φn)T ∈ CN is vector which represents our discrete approx-
imation to the potential.

As our basis functions wi are not differentiable we cannot directly sat-
isfy (1.1). Instead we derive the weak form of the equation. Multiplying (1.1)
by some function v and integrating over Ω,

∫

Ω

v∇ · (γ∇φ) dV = 0 in Ω (1.41)

and we demand that this vanishes for all functions v in a certain class. Clearly
this is weaker than assuming directly that ∇ · (γ∇φ) = 0.

Using Green’s second identity and the vector identity

∇ · (v γ∇φ) = γ∇φ · ∇v + v∇ · (γ∇φ) (1.42)

the equation (1.41) is changed to

∫

Ω

∇ · (v γ∇φ) dV −
∫

Ω

γ∇φ · ∇v dV = 0 (1.43)

Invoking the divergence theorem

∫

Ω

∇ · (v γ∇φ) dV =

∫

∂Ω

v γ∇φ · ndS (1.44)
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gives

∫

Ω

γ ∇φ · ∇v dV =

∫

∂Ω

γ∇φ · n v dS

=

∫

Γ

γ∇φ · n v dS

(1.45)

where Γ =
⋃

l El is the union of the electrodes, and we have used the fact that
the current density is zero off the electrodes. For a given set of test functions
v (1.45) is the weak formulation of the boundary value problem for 1.1 with
current density specified on the electrodes.

Rearranging the boundary condition (1.6) as

γ∇φ · n =
1

zl
(Vl − φ) (1.46)

on El for zl 6= 0 and incorporating it into (1.45) gives

∫

Ω

γ∇φ · ∇v dV =

L∑

l=1

∫

El

1

zl
(Vl − φ) v dS (1.47)

In the finite element method we use test functions from the same family as
used to approximate potentials v =

∑N
i=0 viwi, substitution of this and φFEM

for φ gives for each i

N∑

j=1

{∫

Ω

γ∇wi · ∇wj dV

}
φj +

L∑

l=1

∫

El

1

zl
wiwj dS

}
φj −

L∑

l=1

{∫

El

1

zl
wi dS

}
Vl = 0

(1.48)
Together with the known total current

Il =

∫

El

1

zl
(Vl − φ) dS

=

∫

El

1

zl
Vl −

N∑

i

{∫

El

1

zl
wi dS

}
φi

(1.49)

and if we assume zl is constant on El this reduces to

Il =
1

zl
|El|Vl −

1

zl

N∑

i

{∫

El

wi dS

}
φi (1.50)

where |El| is the area (or in 2D length) of the l-th electrode.
We now need to choose how to approximate γ, and a simple method is to

choose γ to be constant on each simplex (piece-wise constant). The character-
istic function χj is one on the j-th simplex and zero elsewhere so we have an
approximation to γ

γPWC =

k∑

j=1

γjχ
j (1.51)
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which has the advantage that the γj can be taken outside of an integral over
each simplex. If a more elaborate choice of basis is used it would be wise to use
a higher order quadrature rule.

Our FE system equations now take the form

[
AM + AZ AW

AT
W AD

] [
Φ
V

]
=

[
0
I

]
(1.52)

were AM is an N × N symmetric matrix

AM ij =

∫

Ω

γ∇wi·

=

K∑

k=1

γk

∫

Ωk

∇wi∇wj dV

(1.53)

which is the usual system matrix for (1.1) without boundary conditions, while

AZ ij =
L∑

l=1

∫

El

1

zl
wiwj dS, (1.54)

AW li = − 1

zl

∫

El

wi dS, (1.55)

and

AD = diag

( |El|
zl

)
(1.56)

implement the CEM boundary conditions. One additional constraint is required
as potentials are only defined up to an added constant. One elegant choice is
to change the basis used for the vectors V and I to a basis for the subspace S
orthogonal to constants, for example the vectors

[
1

L−1 , . . . , 1
L−1 , 1, 1

L−1 , . . . , 1
L−1

]T
. (1.57)

while another choice is to ‘ground’ an arbitrary vertex i by setting φi = 0. The
resulting solution Φ can then have any constant added to produce a different
grounded point.

As the contact impedance decreases the system (1.52) becomes ill-conditioned.
In this case (1.6) in the CEM can be replaced by the shunt model which simply
means the potential φ is constrained to be constant on each electrode. This
constraint can be enforced directly replacing all nodal voltages on electrode El

by one unknown Vl.
It is important for EIT to notice that the conductivity only enters in the

system matrix as linear multipliers of

sijk =

∫

Ωk

∇wi · ∇wj dV = |Ωk|∇wi · ∇wj

which depend only on the FE mesh and not on γ. These coeficients can be pre-
calculated during the mesh generation saving considerable time in the system
assembly. An alternative is to define a discrete gradient operator D : CN → C3K

which takes the representation as a vector of vertex values of a piecewise linear

32



function φ to the vector of ∇φ on each simplex (on which of course the gradient
is constant). On each simplex define Σk = (γk/|Ωk|)I3 where I3 is the 3 × 3
identity matrix, or for the anisotropic case simply the conductivity matrix on
that simplex divided by its volume, and Σ = diag(Σk)⊗IK . We can now use

AM = DT ΣD (1.58)

to assemble the main block of the system matrix.

Box 1.5: FEM as a resistor network

It may help to think of the finite element method in terms of resistor net-
works. For the case we have chosen with piecewise linear potentials on
simplicial cells and conductivity constant on cells there is an exact equiva-
lence [138]. To construct a resistor network equivalent to such a FEM model
replace each edge by a resistor. To determine the conductance of that resis-
tor consider first a triangle (in the two dimensional case), and number the
angles θj opposite the j-th side. The resistor on side j has a conductance
σcotθi. When the triangles are assembled in to a mesh the conductances
add in parallel summing the contribution from triangles both sides of an
edge. In the three dimensional case θj is the angle between the two faces
meeting at the edge opposite edge j, and of course several tetrahedra can
meet at one edge.

The corresponding resistor network for a 2D FEM mesh

With a resistor mesh assembled in this way, voltages φi at vertex i are gov-
erned by Ohms law and Kirchoff’s law, and the resulting system of equations
is identical to that derived from the FEM. The situation is not reversible
as not all resistor networks are the graphs of edges of two or three dimen-
sional a FE mesh. Also some allocation of resistances do not correspond to
a piecewise constant isotropic conductivity. For example there may be no
consistent allocation of angles θj so that around any given vertex (or edge
in 3D) they sum to 2π.
The question of uniqueness of solution, as well as the structure of the
transconductance matrix for real planar resistor networks well is under-
stood [42, 43].

1.8.2 Solving the linear system

We now consider the solution of the system (1.52). The system has the following
special features. The matrix is sparse: the number of non-zeros in each row of
the main block depends on the number of neighbouring verticies connected to
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any given vertex by an edge. It is symmetric (for complex conductivity and
contact impedance that means real and imaginary parts are symmetric), and
the real part is positive definite. In addition, we have multiple righthand sides
for the same conductivity, and we wish to solve the system repeatedly for similar
conductivities.

A simple approach to solving Ax = b is LU-factorization [66], where an
upper triangular matrix U and lower triangular matrix L are found such that
A = LU. As solving a system with a diagonal matrix is trivial, one can solve
Lu = b (forward substitution) and then Ux = u (backward substitution). The
factorization process is essentially Gaussian elimination and has a computational
cost O(n3) while the backward and forward substitute have a cost O(n2k) for
k righthand sides.. An advantage of a factorization method such as this is that
one can apply the factorization to multiple right hand sides, in our case for each
current pattern. Although the system matrix is sparse, the factors are in general
less so. Each time a row is used to eliminate the non-zero elements below the
diagonal it can create more non-zeros above the diagonal. As a general rule it
is better to reorder the variables so that rows with more non-zeros are further
down the matrix. This reduces the fill in of non-zeros in the factors. For a
real symmetric or Hermittian matrix the Symmetric Multiple Minimum Degree
Algorithm [55] reduces fill in, whereas the Column Multiple Minimum Degree
algorithm is designed for the general case. For an example see Figure 1.4. The
renumbering should be calculated when the mesh is generated so that it is done
only once.

For large 3D systems direct methods can be expensive and iterative methods
may prove more efficient. A typical iterative scheme has a cost of O(n2k) per
iteration and requires fewer than n iterations to converge. In fact the number of
iterations required needs to be less than Cn/k for some C depending on the algo-
rithm to win over direct methods. Often the number of current patterns driven
is limited by hardware to be small while the number of verticies in a 3D mesh
needs to be very large to accurately model the electric fields, and consequently
iterative methods are often preferred in practical 3D systems. The potential
for each current pattern can be used as a starting value for each iteration. As
the adjustments in the conductivity become smaller this reduces the number of
iterations required for forward solution. Finally it is not necessary to predict
the voltages to full floating point accuracy when the measurements system itself
is far less accurate than this, again reducing the number of iterations required.

The convergence of iterative algorithms, such as conjugate gradient method
(see Sec 1.8.3, can be improved by replacing the original system by PAx = Pb
for some matrix P which is an approximation to the inverse of A. A favourite
choice is to use an approximate LU- factorization to derive P. In EIT one can
use the same preconditioner over a range of conductivity values.

1.8.3 Conjugate Gradient and Krylov subspace methods

The conjugate gradient (CG) method [18, 66] is a fast and efficient method for
solving Ax = b for real symmetric matrices A or Hermitian complex matrices.
It can also be modified for complex symmetric matrices [29]. The method
generates a sequence xi (iterates) of successive approximations to the solution
and residuals ri = b − Axi and search directions pi and qi = Api used to
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Figure 1.4: Top left the sparsity pattern of a system matrix which is badly
ordered for fill-in. Bottom left sparsity pattern for the U factor. On the right
the same after reordering with colmmd.
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update the iterates and residuals. The update to the iterate is

xi = xi−1 + αipi (1.59)

where the scalar αi is chosen to minimize

r(α)∗A−1r(α) (1.60)

where r(α) = ri−1 − αri−1 explicitly

αi =
‖ri−1‖2

p∗
i Api

. (1.61)

The search directions are updated by

pi = ri + βi−1pi−1 (1.62)

where using

βi =
‖ri‖2

‖ri−1‖2
(1.63)

ensures that pi are orthogonal to all Apj and rI are orthogonal to all rj , for
j < i. The iteration can be terminated when the norm of the residual falls
below a predetermined level.

Conjugate Gradient Least Squares (CGLS) method solves the least squares
problem (1.7) AT Ax = AT b without forming the product AT A (also called
CGNR or CGNE Conjugate Gradient Normal Equations [32, 18]) and is a par-
ticular case of the non-linear conjugate gradient (NCG) algorithm of Fletcher
and Reeves [52](see also [160, Ch 3]). The NCG method seeks a minimum of a
cost functions f(x) = 1

2‖b − F (x)‖2, which in the case of CGLS is simply the
quadratic 1

2‖b−Ax‖2. The direction for the update in (1.59) is now

pi = −∇f(xi) = J∗
i (b− F (xi)) (1.64)

where Ji = F ′(xi) is the Jacobian. How far along this direction to go is deter-
mined by

αi = arg minα>0f(xi−1 + αpi) (1.65)

which for non-quadratic f requires a line search.
CG can be used for solving the EIT forward problem for real conductiv-

ity, and has the advantage that it is easily implemented on parallel processors.
Faster convergence can be used using a preconditioner, such as an incomplete
Cholesky factorization, chosen to work well with some predefined range of con-
ductivities. For the non Hermitian complex EIT forward problem, and the
linear step in the inverse problem, other methods are needed. The property of
orthogonal residuals for some inner product (Krylov subspace property) of CG
is shared by a range of iterative methods. Relatives of CG for non-symmetric
matrices include Generalised Minimal Residual (GMRES) [128], Bi-Conjugate
Gradient BiCG, Quasi Minimal Residual (QMR) and Bi-Conjugate Gradient
Stabilized (Bi-CGSTAB). All have their own merits [18] and as implementa-
tions are readily available have been tried to some extent in EIT forward or
inverse solutions, not much [97, 68] is published but applications of CG itself
to EIT include [121, 124, 108, 116] and to optical tomography [6, 7]. The ap-
plication of Krylov subspace methods to solving elliptic PDEs as well as linear
inverse problems [70, 32] are active areas of research and we invite the reader
to seek out and use the latest developments.
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1.8.4 Mesh generation

Mesh generation is a major research area in itself, and posses particular chal-
lenges in medical EIT. The mesh must be fine enough to represent the potential
with sufficient accuracy to predict the measured voltages as a function of con-
ductivity. In medical EIT this means we must adequately represent the surface
shape of the region to be images, and the geometry of the electrodes. The mesh
needs to be finer in areas of high field strength and this means in particular near
the edges of electrodes. Typically there will be no gain in accuracy from using
a mesh in the interior which is as fine. As we are usually not interested so much
in conductivity changes near the electrodes, and in any case we cannot hope to
resolve conductivity on a scale smaller than the electrodes, our parameteriza-
tion of the conductivity will inevitably be coarser than the potential. One easy
option is to choose groups of tetrahedra as voxels for conductivity, another is to
use basis functions interpolated down to the FE mesh. If there are regions of
known conductivity, or regions where the conductivity is known to be constant,
the mesh should respect these regions. Clearly the electric field strengths will
vary with the current pattern used, and it is common practice to use a mesh
which is suitable for all current patters, which can mean that it would be un-
necessarily fine away from excited electrodes. The trade-off is that the same
system matrix is used for each current pattern.

Any mesh generator needs to have a data structure to represent the geome-
try of the region to be meshed. This includes the external boundary shape, the
area where the electrodes are in contact with the surface and any internal struc-
tures. Surfaces are can represented either as a triangularization, or more by
more general polygons, or by spline patches. The relationship between named
volumes, surfaces curves and points must also be maintained usually as a tree or
incidence matrix. Simple geometric objects can be constructed from basic prim-
itive shapes, either with a graphical user interface or from a series of commands
in a scripting language. Set theoretic operations such as union, intersection can
be performed together with geometric operations such as extrusion (for example
of a circle into a cylinder).

As each object is added consistency checks are performed and incidence data
structures maintained. For general objects these operations require difficult and
time consuming computational geometry.

For examples of representations of geometry and scripting languages see the
documentation for QMG [158], Netgen [132] and FEMLAB [36].

Commercial Finite Element software can often import geometric models from
Computer Aided Design programs, which makes life easier for industrial applica-
tions. Unfortunately human bodies are not supplied with blueprints from their
designer. The problem of creating good FE meshes of the human body remains
a significant barrier to progress in EIT, and of course such progress would also
benefit other areas of biomedical electromagnetic research. One approach [13]
is to segment Nuclear Magnetic Resonance, or X-Ray CT images and use these
to develop a FE mesh specific to an individual subject. Another is to warp a
general anatomical mesh to fit the external shape of the subject [59], measured
by some simpler optical or mechanical device.

Once the geometry is defined, one needs to create a mesh. Mesh genera-
tion software generally use a combination of techniques such as advancing front,
octtree [159], bubble-meshing [137]. In a convex region given a collection of
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Figure 1.5: A mesh generated by NETGEN for a cylindrical tank with circular
electrodes

verticies, a tetrhedral mesh of their convex hull can be found with the Delaunay
property that no tetrahedron contains any vertex in the interior of its circum-
sphere, using the QuickHull algorithm [8].

The standard convergence results for the FEM, [146] require that as the size
of the tetrahedra tend to zero the ratio of the circumscribing sphere to inscribing
sphere is bounded away from zero. In practice this means that for an isotropic
medium without a priori knowledge of the field strengths tetrahedra which
are close to equilateral are good and those with a high aspect ratio are bad.
Mesh generator typically include methods to smooth the mesh. This simplest is
jiggling in which each interior vertex in turn is moved to the center of mass of the
polyhedron defined by the verticies with which it shares an edge (its neighbours).
This can be repeated for some fixed number of iterations or until the shape of
the elements ceases to improve. Jiggling can be combined with removal of edges
and swapping faces which divide polyhedra into two tetrahedra. In EIT where
the edges of electrodes and internal surfaces need to be preserved this process
is more involved.

1.9 Measurement Strategy

In EIT we seek to measure some discrete version of Λγ or Λ−1
γ . We can choose

the geometry of the system of electrodes, the excitation pattern and the mea-
surements that are made. We have to strike a balance between the competing
requirements of accuracy, speed and simplicity of hardware.

Once a system of electrodes of L has been specified the complete relation-
ship between current and voltage at the given frequency is summarized by the
transfer impedance matrix Z ∈ CL×L. The null space of Z is spanned by the
constant vector 1, and for simplicity we set the sum of voltages also to be zero
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1Z = 0 so that Z is symmetric Z = ZT (note transpose not conjugate).

1.9.1 Linear Regression

We will illustrate the ideas mainly using the assumption that currents are pre-
scribed and the voltages measured, although there are systems which do the
opposite. In this approach we regard the matrix of voltage measurements to be
contaminated by noise, while the currents are known accurately. This should be
compared with the familiar problem of linear regression where we aim to fit a
straight to experimental observations. Assuming a relation of the form y = ax.
For will assume an intercept of zero and mean x of zero. The abscissae xi are
assumed accurate and the yi contaminated with noise. Assembling the xi and
yi into row vectors x and y we estimate the slope a by

â = arg mina‖y − ax‖2. (1.66)

Of course the solution is a = yx†, another way of expressing the usual regres-
sion formulae. The least squares approach can be justified statistically [112]
Assuming the errors in y have zero correlation â is an unbiased estimator for
a. Under the stronger assumption that the yi are independently normally dis-
tributed with identical variance â is the maximum likelihood estimate of a, and
is normally distributed with mean a. Under these assumptions we can derive
confidence intervals and hypothesis testing for a [112, p14].

Although less well known, linear regression for several independent variables
follows a similar pattern. Now X and Y are matrices and we seek a linear
relation of the form Y = AX . The estimate Â = Y X† has the same desirable
statistical properties as the single variable case [112, Ch 2].

Given a system of K current patterns assembled in a matrix I ∈ CL×K

(with column sums zero) we measure the corresponding voltages are V = ZI .
Assuming the currents are accurate but the voltages contain error we then ob-
tain our estimate Ẑ = VI†. If we have two few linearly independent currents
rank I < L−1 then this will be an estimate of a projection of Z on to a subspace,
if we have more than L − 1 current patterns then the generalized inverse aver-
ages over the redundancy, reducing the variance of Ẑ. Similarly we can make
redundant measurements. let M ∈ R

M×L be a matrix containing the measure-
ment patterns used (for simplicity the same for each current pattern), so that
we measure VM = MV . For simplicity we will assume that separate electrodes
are used for drive and measurement, so there is no reciprocity in the data. Our
estimate for Z is now M†VM I†. For a through treatment of the more compli-
cated problem of estimating Z for data with reciprocity see [46]. In both cases
redundant measurements will reduce variance. Of course it is common prac-
tice to take multiple measurements of each voltage (X-REF TO HARDWARE
CHAPTER), and the averaging of these may be performed within the data ac-
quisition system before it reaches the reconstruction program. In this case the
effect is identical to using the generalized inverse. The benefit in using the gen-
eralized inverse is that it automatically averages over redundancy where there
are multiple linearly dependent measurements. If quantization in the Analogue
to Digital Converter (ADC) is the dominant source of error, averaging over dif-
ferent measurements reduces the error, in a similar fashion to dithering (adding
a random signal and averaging) to improve the accuracy of an ADC. Some EIT
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systems use variable gain amplifiers before voltage measurements are passed to
the ADC. In this case the absolute precision varies between measurements and
a weighting must be introduced in the norms used to define the least squares
problem.

For the case where the voltage is accurately controlled and the current mea-
sured an exactly similar argument holds for estimating the transfer admittance
matrix. However where there are errors in both current and voltage, for ex-
ample caused by imperfect current sources, a different estimation procedure is
required. What we need is multiple correlation analysis [112, p82] rather than
multiple regression.

One widely used class of EIT systems which use voltage drive and current
measurement are ECT systems used in industrial process monitoring [30]. Here
each electrode is excited in turn with a positive voltage while the others are
at ground potential. The current flowing to ground through the non-driven
electrode is measured. Once the voltages are adjusted to have zero mean this is
equivalent to using the basis (1.57) for Y|S .

We know that feasible transfer impedance matrices are symmetric and so
employ the orthogonal projection on to the feasible set and replace Ẑ by sym Ẑ
where symA = 1

2 (A+AT ). This is called averaging over reciprocity error. The
skew-symmetric component of the estimated Z gives an indication of errors in
the EIT instrumentation. (X-REF )

1.9.2 Sheffield Measurement Protocol

The space of contact impedances is a subset of the vector space of symmetric
L×L matrices with column and row sums zero, which has dimension L(L−1)/2.
In addition the real part of Z|S is positive definite, otherwise there would be
direct current patterns which dissipate no power. There are other conditions
on Z, given in the plane case by [42], associated with Ω being connected, and
its is shown in the planar case that the the set of feasible Z is an open subset
of the vector space descried above. This confirms that we can measure up to
L(L−1)/2 independent parameters. Some systems however measure fewer than
this, primarily to avoid measuring voltage on actively driven electrodes.

The Sheffield Mark I and II systems [12] use a protocol with L = 16 elec-
trodes which are typically arranged in a circular pattern on the subject. Adja-
cent pairs El, El+1 are excited with equal and opposite currents, for L ranging
from 1 to L − 1. These can be assembled in to a matrix IP ∈ RL×(L−1) with
δlk − δl k+1 in the l k position. Clearly the columns of IP span S. Measure-
ments are made similarly between adjacent pairs and IT

P gives the measurement
patterns so that the matrix of all possible voltages measured is ZP = IT

P ZIP,
a symmetric (L − 1) × (L − 1) matrix of full rank. However when the l-th
electrode pair is excited, the measurement pairs l − 1, l and l + 1 are omitted
(indices are assumed to wrap around when out of range). The subset of ZP

which is actually measured by the Sheffield system is shown in Figure 1.6 and a
simple counting argument shows that the number of independent measurements
is (L − 2)(L − 1)/2− 1 = L(L − 3)/2, or 104 for L = 16.

In practice a Sheffield mark I or II system aiming at speed rather than
accuracy measures a non redundant set of exactly 104 measurement. For the
first two drive patterns all 15 pairs are measured, and for subsequent drives one
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Figure 1.6: Each column corresponds to a drive pair and each row to a mea-
surement pair. A • indicates a measurement that s taken and a ◦ one which is
not omitted.

less is measured each time. If reciprocity error is very small this is an acceptable
strategy.

A pair drive system has the advantage that only one current source is needed,
which can then be switched to each electrode pair. With a more complex switch-
ing network other pairs can be driven at the expense of higher system cost and
possibly a loss of accuracy. A study of the dependence of the SVD of the Jaco-
bian for different separations between driven electrodes can be found in [25]

One feature of the Sheffield protocol is that on a two dimensional domain
the adjacent voltage measurements are all positive. This follows as the potential
itself is monotonically decreasing from source to sink. The measurements also
have a ‘U’ shaped graph for each drive. This provides an additional feasibility
check on the measurements. Indeed if another protocol is used Sheffield data
ZP can be synthesized to employ this check.

1.9.3 Optimal Drive Patterns

The problem of optimizing the drive patterns in EIT was first considered by
Seagar [133] who calculated the optimal placing of a pair of point drive electrodes
on a disk to maximize the voltage differences between the measurement of a
homogeneous background and an offset circular anomaly. Isaacson [78], and
Gisser, Isaacson and Newell [60] argued that one should choose a single current
pattern to maximize the L2 norm of the voltage difference between the measured
Vm and calculated Vc voltages constraining the L2 norm of the current patterns
in a multiple drive system. This is a simple quadratic optimization problem

Iopt = arg minI∈S

‖(Vm −Vc)I‖
‖I‖ (1.67)
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to which the answer is that Iopt is the eigenvector of |Zm−Zc| corresponding to
the largest eigenvalue (here |A| = (A∗A)1/2). One can understand this eigen-
vector to be a current pattern which focuses the dissipated power in the regions
where actual and predicted conductivity differs most. If one is to apply only
one current pattern then in a particular sense this is best. The eigenvectors
for smaller eigenvalues are increasingly less useful for telling these two conduc-
tivities apart and one could argue that eigenvectors for eigenvalues which are
smaller than the error in measurement contain no useful information. In [60] it
is argued that the eigenvector for this eigenvalue can be found experimentally
using the power method a classical fixed point algorithm for numerically finding
an eigenvector.

Later [61] used a constraint on the maximum dissipated power in the test
object which results in the quadratic optimization problem

Iopt = arg minI∈S

‖(Vm −Vc)I‖
‖V∗

mI‖ (1.68)

which is a generalized eigenvalue problem. The argument here is that the dis-
sipated (and stored) power should be limited in a medical application, rather
than the rather artificial constraint of sum of squares of current.

Optimal current patterns can be incorporated in iterative reconstruction
algorithms, at each iteration the optimal currant pattern to distinguish between
the actual and conductivity and the latest approximation can be applied, and
the voltage data from this pattern used in the next iterative update. As the
current pattern used will change at each iteration eventually all the information
in Zm will be used. Alternatively more than one of the eigenvectors of |Zm−Zc|
can be used, provided the resulting voltages differences are above the noise level.
In practice this method is an improvement over pair drives even for simulated
data [27].

Driving current patterns in eigenvectors requires multiple programmable cur-
rent sources with consequent increase in cost and complexity. There is also
the possibility that a pair drive system could be made with sufficiently bet-
ter accuracy that it counteracts the advantage of a multiple drive system with
optimal patterns. Even neglecting the errors in measurement, there is numer-
ical evidence [26] that using optimal currents produces better reconstructions
on synthetic data. In this respect one can also use synthetic optimal voltage
patterns [118].

The framework used to define optimal current patterns is the ability to
distinguish between two transfer impedance matrices. In the context of recon-
struction algorithms, we can use an inability to distinguish between Zc and Zm

to measurement accuracy as a stopping criterion for an iterative algorithm. In
another context we can consider hypothesis testing, in the classical statistical
sense. As an example suppose we have reconstructed an EIT image of a breast
that shows a small anomaly in a homogeneous background – perhaps a tumour.
We can test the hypothesis that Vm − Vc and I are not linearly related, that
is the null hypothesis H0 : Zm −Zc = 0 . Which can be tested using a suitable
statistic with an F -distribution [112, p133]. If only one current normalized pat-
tern is used the optimal current will give a test with the greatest power. In the
statistical terminology power is the conditional probability that we reject the
hypothesis H0 given that it is false.
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Figure 1.7: Mesh used for potentials in reconstruction A courser mesh of which
this is a subdivision, was used to represent the conductivity

Kaipio et al [82] suggest choosing current patterns that minimize the total
variance of the posterior. In this Bayesian framework the choice of optimal cur-
rent patterns depends on the prior and a good choise will result in a ‘tighter’
posterior. Demidenoko et al [47] consider optimal current patterns in the frame-
work conventional optimal design of experiments, and define an optimal set of
current patterns as one that minimizes the total variance of Z.

Eyöboǧlu and Pilkington [51] argued that medical safety legislation de-
manded that one restrict the maximum total current entering the body, and
if this constraint was used the distinguishability is maximized by pair drives.
Cheney and Isaacson [38] study a concentric anomaly in a disk, using the ‘gap’
model for electrodes. They compare trigonometric, Walsh, and opposite and
adjacent pair drives for this case giving the dissipated power as well as the L2

and power distinguishabilies. Köksal and Eyöboǧlu [85] investigate the concen-
tric and offset anomaly in a disk using continuum currents. Further study of
optimization of current patterns with respect to constraints can be found in [93]

1.10 Numerical Examples

In this section we exhibit some numerical examples to illustrate points made
elsewhere in the text. The forward simulations are done on modest meshes, so
that readers may repeat the experiments themselves without excessive compu-
tational requirements. It is not our intention to present these results as the
state of the art, although we do intend to indicate that the use of a 3D forward
model, and CEM boundary conditions should be a minimal starting point for
testing EIT reconstruction algorithms, so that they have a chance of fitting ex-
perimental data. In addition to the smoothly regularized Gauss-Newton method
of Sec 1.5.3 we also exhibit PD-IPM for solution of the TV regularized problem
of Sec 1.6. To our knowledge the first such results for 3D EIT.

The simulated data, using a finer mesh than that used for reconstruction,
models a cylinder with 28 rectangular electrodes on the curved side (Figure

43



1.7). First we reconstruct a smooth conductivity of the form σ(x, y, z) = 3 +
x+ y + z +10z (Figure 1.8). Of course using a smoothing prior this is relatively
easy to recover. The reconstruction, using a courser mesh, is the standard
regularized Gauss-Newton using an approximation to the Laplacian for L, very
similar to the examples in the EIDORS 3D code [122]. The results of the
reconstruction are shown in Figure 1.8. The reconstruction was also performed
with TV regularization using the PD-IPM code of Borsic [14]. The results
(Figure 1.8(c)) exhibit the characteristic “blocky” image which reflects the prior
distribution inherent in TV regularization.

By contrast, a test object consisting of two homogeneous spheres of higher
conductivity (Figure 1.9) was reconstructed with both smooth and TV regular-
ization, Figure 1.10. The TV regularization is clearly superior at recovering
the jump change in conductivity.

The reconstructions in this section were performed with synthetic data with
Gaussian pseudo-random noise. The reconstructions degraded significantly when
the standard deviation of the noise went above 1 % or the 2-norm of the vector
of voltage measurements..

1.11 Common Pitfalls and Best Practice

The ill-posed nature of inverse problems means that any reconstruction algo-
rithm will have limitations on what images it can accurately reconstruct and
that the images degrade with noise in the data. When developing a reconstruc-
tion algorithm it is usual to test it initially on simulated data. Moreover the
reconstruction algorithms typically incorporates a forward solver. A natural
first test is to use the same forward solver to generate simulated data with no
simulated noise and to then find to one’s delight that the simulated conductiv-
ity can be recovered fairly well, the only difficulties being if it violates the a

priori assumptions built into the reconstruction and the limitations of floating
point arithmetic. Failure of this basic test is used as a diagnostic procedure
for the program. On the other hand, claiming victory for ones reconstruction
algorithm using this data is what is slightly jokingly called an ‘inverse crime”
[44, p133] (by analogy with the “variational crimes” in FEM perhaps). We list
a few guidelines to avoid being accused of an inverse crime and to lay out what
we believe to be best practice. For slightly more details see [94].

1. Use a different mesh. If you do not have access to a data collection
system and phantom tank, or if your reconstruction code is at an early
stage of development, you will want to test with simulated data. To
simulate the data use a finer mesh than is used in the forward solution
part of the reconstruction algorithm. But not a strict refinement. You
shape of any conductivity anomalies in the simulated data should not
exactly conform with the reconstruction mesh, unless you can assume the
shape is known a priori.

2. Simulating noise. If you are simulating data you must also simulate
the errors in experimental measurement. At the very least there is quan-
tisation error in the analogue to digital converter. Other sources of er-
ror include stray capacitance, gain errors, inaccurate electrode position,
inaccurately known boundary shape, and contact impedance errors. To
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(a) Original smooth conductivity distribution projected on to the
courser mesh (Mayavi surface map)

(b) Smoothly regularized Gauss-Newton reconstruction of this
smooth conductivity

(c) TV regularized PD-IPM reconstruction of the same smooth
conductivity

Figure 1.8: Reconstruction of a smooth conductivity using a smooth regulariza-
tion penalty function using Smooth and TV regularization .
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(a) The test object consisted of two spheres of conductivity 1 in a background of 3. An unrelated
finer mesh was used to generate the simulated data

Figure 1.9: Electrodes, mesh and two spheres test object

simulate errors sensibly it is necessary to understand the basics of the data
collection system, especially when the gain on each measurement channel
before the ADC is variable. When the distribution of the voltage mea-
surement errors is decided this is usually simulated with a pseudo random
number generator.

3. Pseudo random numbers. A random number generator models a draw
from a population with a given probability density function. To test the
robustness of your reconstruction algorithm with respect to the magnitude
of the errors it is necessary to make repeated draws, or calls to the random
number generator, and to study the distribution of reconstruction errors.
As our inverse problem is non-linear even a Gaussian distribution of error
will not produce a (multivariate) Gaussian distribution of reconstruction
errors. Even if the errors are small and the linear approximation good, at
least the mean and variance should be considered.

4. Not tweaking. Reconstruction programs have a number of adjustable
parameters such as Tikhonov factors and stopping criteria for iteration,
as well as levels of smoothing, basis constraints and small variations of
an algorithms. While there are rational ways of choosing reconstruction
parameters based on the data (such as generalized cross validation and
L-curve), and on an estimate of the data error (Morotzov’s stopping crite-
rion). In practice on often finds acceptable values empirically which work
for a collection of conductivities one expects to encounter.There will al-
ways be other cases for which those parameter choices do not work well.
What one should avoid is tweaking the reconstruction parameters for each
set of data until one obtains an image which one knows is close to the real
one. By contrast an honest policy is to show examples of where a certain
algorithm and parameters performs poorly as well as the best examples.
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(a) Regularized Gauss-Newton reconstruction, shown using cut-planes

(b) Total Variation reconstruction from PD-IPM

Figure 1.10: Reconstruction of a two spheres test object from Figure 1.9 using
Regularized Gauss-Newton and TV PD-IPM.
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1.12 Further Developments in Reconstruction Al-

gorithms

In this review there is not space to describe in any detail many of the exciting
current development in reconstruction algorithms. Before highlighting some of
these developments it is worth emphasizing that for ill-posed problem a priori

information is essential for a stable reconstruction algorithms, and it is bet-
ter that this information is incorporated in the algorithm in a systematic and
transparent way. Another general principle of inverse problems is to think care-
fully what information is required by the end user. Rather than attempting
to produce an accurate image what is often required in medical (and indeed
most other) applications is an estimate of a much smaller number of parameters
which can be used for diagnosis. For example we may know that a patient has
two lungs as well as other anatomical features but we might want to estimate
their water content to diagnose pulminary oedema. A sensible strategy would
be devise an anatomical model of the thorax and fit a few parameters of shape
and conductivity rather than pixel conductivity values. The disadvantage of
this approach is that each application of EIT gives rise to its own specialised
reconstruction method, which must be carefully designed for the purpose. In
the author’s opinion the future development of EIT systems, including electrode
arrays and data acquisition systems as well as reconstruction software, should
focus increasingly on specific applications, although of course such systems will
share many common components.

1.12.1 Beyond Tikhonov regularization

We have also discussed the use of more general regularization functionals includ-
ing total variation. For smooth G traditional smooth optimization techniques
can be used, whereas for Total Variation the PD-IPM is promising. Other func-
tionals can be used to penalize deviation from the a priori information, one
such choice is the addition of the Mumford-Shah functional which penalizes
the Hausdorf measure of the set of discontinuities [126]. In general there is
a trade-off between incorporating accurate a priori information and speed of
reconstruction. Where the regularization matrix L is discretized partial differ-
ential operator, the solution of the linearized problem is a compact perturbation
of a partial differential equation. This suggests that multigrid methods may be
used in the solution of the inverse problem as well. For a single linearized step
this has been done for the EIT problem by McCormick and Wade [107], and for
the non-linear problem by Borcea [19]. In the same vein adaptive meshing can
be used for the inverse problem as well as the forward problem [108, 109, 98]. In
both cases there is the interesting possibility to explore the interaction between
the meshes used for forward and inverse solution.

At the extreme end of this spectrum we would like to describe the prior
probability distribution and for a known distribution of measurement noise and
calculate the entire posterior distribution. Rather than giving one image, such
as the MAP estimate gives a complete description of the probability of any im-
age. If the probability is bimodal for example, one could present the two local
maximum probability images. If one needed a diagnosis, say of a tumour, the
posterior probability distribution could be used to calculate the probability that
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a tumour like feature was there. The computational complexity of calculating
the posterior distribution for all but the simplest distributions is enormous, how-
ever the posterior distribution can be explored using the Markov Chain Monte
Carlo Method (MCMC) which has been applied to two dimensional EIT [81].
This was applied to simulated EIT data [54], and more recently to tank data,
for example [111] For this to be a viable technique for the 3D problem highly
efficient forward solution will be required.

1.12.2 Direct non-linear methods

Iterative methods which use optimization methods to solve a regularized prob-
lem are necessarily time consuming. The forward problem must be solved re-
peatedly and the calculation of an updated conductivity is also expensive. The
first direct method to be proposed was the Layer Stripping algorithm [139]
however this is yet to be shown to work well on noisy data. An exciting re-
cent development is the implementation of a Scattering Transform (∂ or d-bar)
algorithm proposed by Nachman. Siltanen et al [136] showed that this can be
implemented stably and applied to in vitro data [105]. The main limitation of
this technique is that is inherently two dimensional and no one has found a way
to extend it to three dimensions, also in contrast to the more explicit forms of
regularization it is not clear what a priori information is incorporated in this
method as the smoothing is applied by filtering the data. A strength of the
method is its ability to accurately predict absolute conductivity levels. In some
cases where long electrodes can be used and the conductivity varies slowly in the
direction in which the electrodes are oriented a two dimensional reconstruction
may be a useful approximation. This is perhaps more so in industrial problems
such as monitoring flow in pipes with ECT or ERT. In some situations a direct
solution for a two dimensional approximation could be used as a starting point
for an iterative three dimensional algorithm.

Two further direct methods show considerable promise for specific applica-
tions. The monotonicity method of Tamburrino and Rubinacci [148] relies on
the monotonicity of the map ρ 7→ Rρ where ρ is the real resistivity and Rρ the
transfer resistance matrix. This method, which is extremely fast, relies on the
resistivity of the body to be known to be one of two values. It works equally
well in two and three dimensions and is robust in the presence of noise. The
time complexity scales linearly with the number of voxels (which can be any
shape) and scales cubically in the number of electrodes. It works for purely real
or imaginary admittivity, (ERT or ECT), and for Magnetic Induction Tomog-
raphy for real conductivity. It is not known if it can be applied to the complex
case and it requires the voltage on current carrying electrodes.

Linear sampling methods [24, 131, 71] have a similar time complexity and
advantages as the monotonicity method. While still applied to piecewise con-
stant conductivities, linear sampling methods can handle any number of discrete
conductivity values provided the anomalies separated from each other by the
background. The method does not give an indication of the conductivity level
but rather locates the jump discontinuities in conductivity. Both monotonicity
and linear sampling methods are likely to find application in situations where a
small anomaly is to be detected and located, for example breast tumours.

Finally a challenge remains to recover anisotropic conductivity which arises
in applications from fibrous or stratified media (such as muscle), flow of non-
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spherical particles (such as red blood cells), or from compression (for example
in soil). The inverse conductivity problem at low frequency is known to suffer
from insufficiency of data, but with sufficient a priori knowledge (for example
[92]) the uniqueness of solution can be restored. One has to take care that the
imposition of a finite element mesh does not predetermine which of the family
of consistent solutions is found [119]. Numerical reconstructions of anisotropic
conductivity in a geophysical context include [116], although there the problem
of non-uniqueness of solution (diffeomorphism invariance) has been ignored.
Another approach is to assume piece-wise constant conductivity with the dis-
continuities know, for example from an MRI image, and seek to recover the
constant anisotropic conductivity in each region [56],[57].

1.13 Practical Applications

We have presented an overview of EIT reconstruction algorithms, but a ques-
tion remains as which techniques will be usefully applied to clinical problems in
EIT. The major algorithms presented here have all been tested on tank data.
Yorkey [164] compared Tikhonov regularizied Gauss-Newton with ad hoc algo-
rithms on two dimensional tanks, Goble [63, 64] and Metherall [102, 101] applied
one step regularized Gauss-Newton to 3D tanks. P Vauhkonen [153, 156] applied
a fully iterative regularized Gauss-Newton method to 3D tank data using the
complete electrode model. More recently the linear sampling method [131] and
the scattering transform method [105] have been applied to tank data. However
there is a paucity of application of non-linear reconstruction algorithms to in

vivo human data.
Most of the clinical studies in EIT assume circular or other simplified ge-

ometry and regular placement of electrodes. Without the correct modelling
of the boundary shape and electrode positions [91] the forward model can not
be made to fit the data by adjusting an isotropic conductivity. A non-linear
iterative reconstruction method would therefore not converge, for this reason
most clinical studies have used a linearization of the forward problem and re-
construct a difference image from voltage differences. This linearization has
been regularized in various ways both ad hoc methods such as those used by
the Sheffield group [9, 10] and systematic such as the NOSER method [35] of
RPI. Studies of EIT on the chest such as [106, 144, 79] assume a 2D circu-
lar geometry, although some attempts have been made to use a realistic chest
shape [90], see also X-REF NEWELL FIG 9. Similar simplifications have been
made for EIT studies of the head and breast. Three dimensional linear recon-
struction algorithms have been applied to the human thorax [101, 21, 114], see
also X-REF NEWELL Fig 10. However three dimensional measurement has not
become common place in vivo due to the difficulty of applying and accurately
positioning large numbers of individual electrodes. One possible solution for
imaging objects close to the surface is to employ a rigid rectangular array of
electrodes. This is exactly the approach taken by the TransScan device [100]
which is designed for the detection of breast tumour, although reconstructions
are essentially what geophysicists would call ‘surface resistivity mapping’, rather
than tomographic reconstruction. Reconstruction of three dimensional EIT im-
ages from a rectangular array using NOSER-like method has been demonstrated
in vitro by Mueller et al [103], and in vivo on the human chest using individual
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electrodes [104]. If the array is sufficiently small compared to the body, this
problem become identical to the geophysical EIT problem [98] using surface
(rather than bore-hole) electrodes.

The EIT problem is inherently non-linear. There are of course two aspects
of linearity of a mapping. In engineering terminology: that the output scales
linearly with the input, and that the principle of superposition applies. The
lack of scaling invariance manifests itself in EIT as the phenomena of satura-
tion, which means the linearity must be taken in to account to get accurate
conductivity images. For small contrasts in conductivity, linear reconstruction
algorithms will typically find a few isolated small objects, but underestimate
their contrast. For more complex objects, even with small contrasts the lack
of the superposition property means that linear algorithms cannot resolve some
features. A simple test can be done in a tank experiment. With two test objects
with conductivity σ1 and σ2 one can test if Z(σ1) + Z(σ2) = Z(σ1 + σ2) within
the accuracy of the measurement system. If not then it is certainly worth using
a non-linear reconstruction algorithm. However to use a non-linear algorithm
the forward model used must be able to fit the data accurately when the cor-
rect conductivity is found. This means that the shape, electrode position and
electrode model must all be correct. Until an accurate model is used, including
a method of constructing accurate body shaped meshes and locating electrodes
is perfected, it will not be possible to do justice to the EIT hardware by giving
the reconstruction algorithms the best chance of succeeding. Fortunately work
is proceeding in this direction [13, 59] and we are optimistic that non-linear
methods will soon be commonplace for in vivo EIT.
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