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CLASSIFYING SERRE SUBCATEGORIES OF FINITELY
PRESENTED MODULES

GRIGORY GARKUSHA AND MIKE PREST

Abstract. Given a commutative coherent ring R, a bijective correspondence

between the thick subcategories of perfect complexes Dper(R) and the Serre

subcategories of finitely presented modules is established. To construct this
correspondence, properties of the Ziegler and Zariski topologies on the set

of isomorphism classes of indecomposable injective modules are used in an

essential way.

Introduction

Throughout this paper we fix a commutative ring R with unit. Recall that a
complex of R-modules is perfect if it is isomorphic in the derived category D(R) of
R to a bounded complex of finitely generated projective modules. The (skeletally
small) full subcategory of perfect complexes is denoted by Dper(R). If R is noether-
ian the classification theorem of Hopkins [4] and Neeman [8] establishes a bijective
correspondence between the thick subcategories of perfect complexes Dper(R) and
arbitrary unions of closed sets of SpecR. Later Thomason [12] generalized the result
to arbitrary commutative rings (and to quasi-compact, quasi-separated schemes).

For a regular coherent ring R, Hovey [6] shows that there is a 1-1 correspondence
between the thick subcategories of perfect complexes Dper(R) and the Serre sub-
categories of finitely presented modules (=wide subcategories in this case; see [6,
3.7]). The main result of the paper establishes the same correspondence for arbi-
trary coherent rings. One should remark that our approach is completely different
from that of Hovey and based on properties of the Ziegler and Zariski topologies
on the set of isomorphism classes of indecomposable injective modules.

By ModR we denote the category of all R-modules. The full subcategory of
finitely presented modules is denoted by modR. The Gabriel spectrum of R is,
by definition, the set InjR of isomorphism classes of indecomposable injective R-
modules. The collection of subsets

[M ] = {E ∈ InjR | HomR(M,E) = 0}

with M ∈ modR forms a basis of open subsets for the Zariski topology on InjR.
This topological space will be denoted by InjzarR.
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There is another topology on InjR. Whenever R is coherent the collection of
subsets

(M) = InjzarR \ [M ] = {E ∈ InjR | HomR(M,E) 6= 0}
with M ∈ modR forms a basis of quasi-compact open subsets for the Ziegler topol-
ogy on InjR. This topological space will be denoted by InjzgR. It arises from
Ziegler’s work on the model theory of modules [13]. The points of the Ziegler spec-
trum of R are the isomorphism classes of indecomposable pure-injective R-modules
and the closed subsets correspond to complete theories of modules. If R is coherent
then the indecomposable injective R-modules form a closed subset in the Ziegler
spectrum and the sets (M) above form a basis of open sets for the restriction of
the Ziegler topology to this set.

The Zariski and Ziegler topologies on InjR play a crucial role in our analysis. In
the general commutative case there is an embedding

α : SpecR→ InjR, P 7→ E(R/P ).

Here E(R/P ) stands for the injective hull of R/P . It need not be surjective in
general. We shall identify SpecR with its image in InjR.

We first demonstrate the following

Theorem A. Let a ring R be commutative coherent. The space SpecR is dense
and a retract in InjzarR. A left inverse to the embedding SpecR ↪→ InjzarR takes
an indecomposable injective module E to the prime ideal P (E) which is the sum of
annihilator ideals of non-zero elements of E. Moreover, InjzarR is quasi-compact,
the basic open subsets [M ],M ∈ modR, are quasi-compact, the intersection of
two quasi-compact open subsets is quasi-compact, and every non-empty irreducible
closed subset has a generic point.

Notice that neither InjzarR nor InjzgR is a spectral space in general, for these
are not necessarily T0.

If M ∈ modR we write

supp(M) = {P ∈ SpecR |MP 6= 0}.
The next theorem was proved by Gabriel [2] for noetherian rings and by Hovey [6,
3.6] for regular coherent rings and, [6, Sec. 4], for quotients of such rings by finitely
generated ideals.

Theorem B. Let a ring R be commutative coherent. The assignments

modR ⊇ S 7→
⋃
M∈S

supp(M) and SpecR ⊇ Y 7→ {M ∈ modR | supp(M) ⊆ Y }

induce bijections between
� the set of all Serre subcategories of modR,
� the set of all subsets Y ⊆ SpecR of the form Y =

⋃
i∈Ω Yi with quasi-

compact open complement SpecR \ Yi for all i ∈ Ω.

Given a coherent ring R and a family X of objects in modR, by
√

X denote the
least Serre subcategory in modR containing X.

Theorem C. Let a ring R be commutative coherent. There are bijections between
� the set of all subsets Y ⊆ InjzarR of the form Y =

⋃
i∈Ω Yi with each Yi

having quasi-compact open complement InjzarR \ Yi, that is, the set of all
open subsets of Injzg,
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� the set of all Serre subcategories of modR,
� the set of all thick subcategories of Dper(R).

These bijections are defined as follows:

Y 7→
{

S = {M | (M) ⊆ Y }
T = {X ∈ Dper(R) | (Hn(X)) ⊆ Y for all n ∈ Z}

S 7→
{
Y =

⋃
M∈S(M)

T = {X ∈ Dper(R) | Hn(X) ∈ S for all n ∈ Z}

T 7→
{
Y =

⋃
X∈T,n∈Z(Hn(X))

S =
√
{Hn(X) | X ∈ T, n ∈ Z}

1. Proof of Theorem A

Recall that a ring R is coherent if and only if the (small) category of finitely
presented modules modR is abelian (see [10, Sec. 2]). For a coherent ring R we
are going to show that the Zariski topology on InjR can be described in terms of
finitely generated ideals.

Given any commutative ring R and any ideal I of R, let us set Dm(I) = {E ∈
InjR | (R/I,E) = 0} (“m” for “morphism”). SinceDm(I)∩Dm(J) = Dm(I∩J) (for
the non-immediate inclusion, note that any morphism from R/(I∩J) to E extends,
by injectivity of E, to one from R/I⊕R/J) these form a basis for topology on InjR.
Note, however, that if I =

∑
λ Iλ then clearly Dm(I) ⊇

⋃
λD

m(Iλ) but, as it is
shown in [9, after 9.3], the inclusion may be proper.

For a coherent ring R the sets Dm(I) with I running over finitely generated
ideals form a basis for a topology on InjR which we call the fg-ideals topology (use
the fact that the intersection of two finitely generated ideals is finitely generated in
a coherent ring [11, I.13.3]). By definition, Dm(I) = [R/I] for I a finitely generated
ideal. Let M be a finitely presented R-module. It is finitely generated by b1, ..., bn
say. Set Mk =

∑
j6k bjR, M0 = 0. Each factor Cj = Mj/Mj−1 is cyclic and, we

claim, [M ] = [C1] ∩ ... ∩ [Cn]. For, if there is a non-zero morphism from Cj to E
then, by injectivity of E, this extends to a morphism from M/Mj−1 to E and hence
there is induced a non-zero morphism from M to E. Conversely, if f : M → E is
non-zero let j be minimal such that the restriction of f to Mj is non-zero. Then
f induces a non-zero morphism from Cj to E. Since each Cj is cyclic and finitely
presented there are finitely generated ideals Ij , 1 6 j 6 n, such that Cj ∼= R/Ij .
It follows that each [Cj ] coincides with Dm(Ij), and hence [M ] = Dm(I) with
I =

⋂
16j6n Ij finitely generated. Thus we have shown the following

Proposition 1.1. Given a coherent ring R, the Zariski topology on InjR coincides
with the fg-ideals topology.

If A is an abelian category then a Serre subcategory is a full subcategory S such
that if 0 → A→ B → C → 0 is a short exact sequence in A then B ∈ S if and only
if A,C ∈ S. Given a subcategory X in modR with R coherent, we may consider
the smallest Serre subcategory of modR containing X. This Serre subcategory we
denote, following Herzog [3], by

√
X =

⋂
{S ⊆ modR | S ⊇ X is Serre}.

There is an explicit description of
√

X.
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Proposition 1.2. [3, 3.1] Let R be commutative coherent and let X be a subcategory
of modR. A finitely presented module M is in

√
X if and only if there is a finite

filtration of M by finitely presented submodules

M = M0 > M1 > · · · > Mn = 0

and, for each i < n, there is Ni ∈ X and there are finitely presented submodules

Ni > Ni1 > Ni2

such that Mi/Mi+1
∼= Ni1/Ni2 .

Given a subcategory X of modR denote by

[X] = {E ∈ InjR | HomR(M,E) = 0 for all M ∈ X}.
We shall also write (X) to denote InjR \ [X].

Corollary 1.3. [3, 3.3] Given a coherent ring R and X ⊆ modR, we have [X] =
[
√

X] and (X) = (
√

X).

Proof. This immediately follows from Proposition 1.2 and the fact that the functor
HomR(−, E) with E injective preserves exact sequences. �

Let E be any indecomposable injective R-module. Set P = P (E) to be the sum
of annihilator ideals of non-zero elements, equivalently non-zero submodules, of E.
Since E is uniform the set of annihilator ideals of non-zero elements of E is closed
under finite sum. It is easy to check ([9, 9.2]) that P (E) is a prime ideal.

Recall that for any ideal I of a ring, R, and r ∈ R we have an isomorphism
R/(I : r) ∼= (rR + I)/I, where (I : r) = {s ∈ R | rs ∈ I}, induced by sending
1 + (I : r) to r + I.

The next result, from [9], is crucial in our analysis. We give a proof here for the
convenience of the reader. We use the notation EP to denote E(R/P ).

Theorem 1.4. (Prest [9, 9.6]) Let R be commutative coherent, let E be an inde-
composable injective module and let P (E) be the prime ideal defined before. Then E
and EP (E) are topologically indistinguishable in InjzgR and hence also in InjzarR.

Proof. Let I be such that E = E(R/I). For each r ∈ R \ I we have, by the remark
just above, that the annihilator of r+I ∈ E is (I : r) and so, by definition of P (E),
we have (I : r) 6 P (E). The natural projection (rR+I)/I ∼= R/(I : r) −→ R/P (E)
extends to a morphism from E to EP (E) which is non-zero on r + I. Forming the
product of these morphisms as r varies over R\ I, we obtain a morphism from E to
a product of copies of EP (E) which is monic on R/I and hence is monic. Therefore
E is a direct summand of a product of copies of EP (E) and so E ∈ (M) implies
EP (E) ∈ (M), where M ∈ modR.

For the converse, take a basic Ziegler-open neighbourhood of EP (E): by (the
proof of) Proposition 1.1 this has the form (R/I) for a finitely generated ideal I of R.
Now, EP (E) ∈ (R/I) means that there is a non-zero morphism f : R/I −→ EP (E).
Since R/P (E) is essential in EP (E) the image of f has non-zero intersection with
R/P (E) so there is an ideal J , without loss of generality finitely generated, with
I < J 6 R and such that the restriction, f ′, of f to J/I is non-zero (and the image
is contained in R/P (E)). Since R/P (E) = lim−→R/Iλ, where Iλ ranges over the
annihilators of non-zero elements of E, and J/I is finitely presented, f ′ factorises
through one of the maps R/Iλ −→ R/P (E). In particular, there is a non-zero
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morphism J/I −→ E and hence, by injectivity of E, an extension to a morphism
R/I −→ E, showing that E ∈ (R/I), as required. �

Remark. In fact, Prest [9] proves a slightly stronger result: the injective modules
E and EP (E) are elementary equivalent in the first order language of modules.

Recall the definition of the Zariski spectrum, SpecR, of a commutative ring R.
The points are the prime ideals of R and a basis of open sets for the topology is
given by the sets D(r) = {P ∈ SpecR | r /∈ P} for r ∈ R. The open sets are,
therefore, those of the form D(I) = {P ∈ SpecR | I * P} for I an ideal of R

We also consider the sets Dm(r) = {E ∈ InjR | HomR(R/rR,E) = 0} = [R/rR]
for r ∈ R. By [9, 9.4] if I is a finitely generated ideal of R and I =

∑n
1 Ii then

Dm(I) =
⋃n

1 D
m(Ii). It follows that Dm(I) =

⋃n
1 D

m(ri) with r1, . . . , rn generators
of I. Therefore, by Proposition 1.1, the sets Dm(r), r ∈ R, form a basis for the
space InjzarR.

We are going to examine the relation between the spaces SpecR and InjzarR. We
identify SpecR with a subset of InjzarR via the map α defined in the introduction.
The following example, pointed out by T. Kucera, shows that the injective map
SpecR→ InjR, P 7→ EP , need not be surjective.

Example. Let R = k[Xn(n ∈ ω)] be a polynomial ring over a field k in infinitely
many commuting indeterminates. Then R is obviously coherent. Let I = (Xn+1

n :
n ∈ ω). Then I is not prime (since X1 /∈ I but X2

1 ∈ I) but E = E(R/I) is an
indecomposable injective [9]. On the other hand, E does not have the form E(R/P )
for any prime P [9, 9.1].

Lemma 1.5. [9, 9.2] Let the ring R be commutative. A module E ∈ InjR has
the form EP for some prime ideal P if and only if the set of annihilator ideals
of non-zero elements of E has a maximal member, namely P (E), in which case
E = EP (E).

We are now in a position to prove Theorem A.

Proof of Theorem A. For any ideal I of R we have

(1.1) Dm(I) ∩ SpecR = D(I)

(see [9, 9.5]). From this relation, Proposition 1.1, and Theorem 1.4 it follows that
SpecR is dense in InjzarR and that α : SpecR→ InjzarR is a continuous map.

It follows from Lemma 1.5 that

β : InjzarR→ SpecR, E 7→ P (E),

is left inverse to α. The relation (1.1) implies that β is continuous as well. Thus
SpecR is a retract of InjzarR.

Let us show that each basic open set [M ], M ∈ modR, is quasi-compact (in
particular InjzarR = [0] is quasi-compact). By Proposition 1.1 [M ] = Dm(I) for
some finitely generated ideal I of R.

Let Dm(I) =
⋃
i∈ΩD

m(Ii) with each Ii finitely generated. It follows from (1.1)
that D(I) =

⋃
i∈ΩD(Ii). Since I is finitely generated, D(I) is quasi-compact in

SpecR. We see that D(I) =
⋃
i∈Ω0

D(Ii) for some finite subset Ω0 ⊂ Ω.
Assume E ∈ Dm(I) \

⋃
i∈Ω0

Dm(Ii). It follows from Theorem 1.4 that EP (E) ∈
Dm(I) \

⋃
i∈Ω0

Dm(Ii). But EP (E) ∈ Dm(I) ∩ SpecR = D(I) =
⋃
i∈Ω0

D(Ii), and
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hence it is in D(Ii0) = Dm(Ii0)∩ SpecR for some i0 ∈ Ω0 — contradiction. So [M ]
is quasi-compact.

It follows from the above that every quasi-compact open subset in InjzarR is of
the form [M ] with M finitely presented. Therefore the intersection [M ] ∩ [N ] =
[M

⊕
N ] of two quasi-compact open subsets is quasi-compact.

Finally, by [9, 9.14] a subset V of InjzarR is Zariski-closed and irreducible if and
only if there is a prime ideal Q of R such that V = {E | P (E) > Q}. Theorem 1.4,
Lemma 1.5, and (1.1) obviously imply that the point EQ ∈ V is generic. Theorem A
is proved. �

Given a spectral topological space, X, Hochster [5] endows the underlying set
with a new, “dual”, topology by taking as open sets those of the form Y =

⋃
i∈Ω Yi

where Yi has quasi-compact open complement X \ Yi for all i ∈ Ω. The spaces,
X, which we consider here are not in general spectral; nevertheless we make the
same definition and denote the space so obtained by X∗. We also write Spec∗R for
(SpecR)∗.

Corollary 1.6. Let a ring R be commutative coherent. The following relations
hold:

InjzarR = (Injzg R)∗ and Injzg R = (InjzarR)∗.

Proof. This follows from Theorem A and the fact that a Ziegler-open subset O is
quasi-compact if and only if it is one of the basic open subsets (M),M ∈ modR
(see [13, 4.9], [3, 3.9] or [7, 4.5]). �

2. Proof of Theorem B

Lemma 2.1. Let a ring R be commutative coherent. The maps

Spec∗R ⊇ O
ϕ7→ QO = {E ∈ InjzgR | P (E) ∈ O}

and

Injzg R ⊇ Q
ψ7→ OQ = {P (E) ∈ Spec∗R | E ∈ Q} = Q ∩ Spec∗R

induce a 1-1 correspondence between the lattices of open sets of Spec∗R and those
of InjzgR.

Proof. First note that EP ∈ QO for any P ∈ O (see Lemma 1.5). Let us check that
QO is an open set in InjzgR. Given an ideal I of R, denote by V (I) := SpecR\D(I)
and V m(I) := InjzgR \Dm(I). By definition, each V (I) with I a finitely generated
ideal of R is a basic open set in Spec∗R. It follows from (1.1) that

(2.1) V (I) = V m(I) ∩ Spec∗R.

Every closed subset of SpecR with quasi-compact complement has the form V (I)
for some finitely generated ideal, I, of R (see [1, Chpt. 1, Exc. 17(vii)]), so there
are finitely generated ideals Iλ ⊆ R such that O =

⋃
λ V (Iλ). Since the points

E and EP (E) are, by Theorem 1.4, indistinguishable in InjzgR we see that QO =⋃
λ V

m(Iλ), hence this set is open in InjzgR = (InjzarR)∗.
The same arguments imply that OQ is open in Spec∗R. It is now easy to see

that OQO
= O and QOQ

= Q. �
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If P is a prime ideal of a commutative ring R its complement as a subset of
R is a multiplicatively closed set S. For a module M one denotes the module of
fractions M [S−1] by MP . There is a corresponding Gabriel topology

FP = {I | P /∈ V (I)}.
The FP -torsion modules are characterized by the property that MP = 0 (see [11,
p. 151]). Given an injective R-module E, denote by FE the Gabriel topology
cogenerated by E. By definition, this corresponds to the localizing subcategory
SE = {M ∈ ModR | HomR(M,E) = 0} (for localization in locally coherent cate-
gories see, for example, [3, Sec. 2]; there the term hereditary torsion subcategory,
rather than localizing subcategory, is used). It is easy to see that

FE = {I | HomR(R/I,E) = 0}.

Lemma 2.2. Let R be commutative and P ∈ SpecR. Then FP = FEP
.

Proof. Let I ∈ FEP
be such that I /∈ FP . It follows that I ⊆ P , and hence

there is a non-zero map R/I → EP = E(R/P ) — contradiction. Now suppose
I ∈ FP . If there existed a non-zero map f : R/I → EP it would follow that I is
contained in the annihilator ideal of 0 6= f(1) ∈ EP . Lemma 1.5 would imply that
I ⊆ P = P (EP ) — contradiction. �

Corollary 2.3. Let R be commutative coherent, M ∈ modR, and E ∈ InjR. Then
E ∈ (M) if and only if MP (E) 6= 0 (or equivalently P (E) ∈ supp(M)).

Proof. By Theorem 1.4, E ∈ (M) if and only if EP (E) ∈ (M). The assertion now
follows from the preceding lemma. �

It follows from the preceding corollary that

(2.2) supp(M) = (M) ∩ Spec∗R.

Hence supp(M) is an open set of Spec∗R by Lemma 2.1. More generally we have
for any X ⊆ modR:

supp(X) :=
⋃
M∈X

supp(M) = (X) ∩ Spec∗R.

Since (X) = (
√

X) by Corollary 1.3 it follows that

(2.3) supp(X) = supp(
√

X).

We are now in a position to prove Theorem B.

Proof of Theorem B. The map

τ : modR ⊇ S 7→
⋃
M∈S

supp(M)

factors as
modR ⊇ S

δ7→ Q =
⋃
M∈S

(M)
ψ7→

⋃
M∈S

supp(M),

where ψ is the map of Lemma 2.1 (we have used here relation (2.2)). By [3, 3.8]
and [7, 4.2] the map δ induces a 1-1 correspondence between the Serre subcategories
of modR and the open sets Q of InjzgR. By Lemma 2.1 the map ψ induces a 1-
1 correspondence between lattices of open sets of InjzgR and those of Spec∗R.
Therefore the map τ induces the desired 1-1 correspondence between the Serre
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subcategories of modR and the open sets of Spec∗R. The inverse map to this
correspondence is induced by the composite

Spec∗R ⊇ O
ϕ7→ QO

ζ7→ S(QO) := {M ∈ modR | (M) ⊆ QO}

where ζ yields the inverse to the correspondence induced by τ (see [3, 3.8] and [7,
4.2]) and ψ yields the inverse to the correspondence induced by ϕ (see Lemma 2.1).
Theorem B is proved. �

Recall that a Serre subcategory L of ModR is localizing if it is closed under
direct limits. It is of finite type if the canonical functor from the quotient category
ModR/L → ModR respects direct limits. If the ring R is noetherian then every
localizing subcategory in ModR is of finite type, but this is not true for general
rings.

To conclude the section, we give a classification of the localizing subcategories of
finite type in ModR with R commutative coherent in terms of open sets of Spec∗R
(cf. [11, p. 151]). For commutative noetherian rings the next result is due to Hovey
[6, 5.2].

Corollary 2.4. Let the ring R be commutative coherent. The assignments

modR ⊇ L 7→
⋃
M∈L

supp(M)

and
Spec∗R ⊇ O 7→ {lim−→

λ

Mλ |Mλ ∈ modR, supp(Mλ) ⊆ O}

induce bijections between

� the set of all localizing subcategories of finite type in ModR,
� the set of all open subsets O ⊆ Spec∗R.

Proof. By [3, 2.8] and [7, 2.10] there is a 1-1 correspondence between the Serre
subcategories of modR and the localizing subcategories of finite type in ModR.
This correspondence is given by

S 7→ ~S := {lim−→
λ

Mλ |Mλ ∈ S} and L 7→ L ∩modR.

Since the functor of P -localization with P ∈ SpecR commutes with direct limits,
we see that ⋃

M∈L

supp(M) =
⋃

M∈L∩modR

supp(M)

Now our assertion follows from Theorem B. �

3. Proof of Theorem C

We shall write L(Spec∗R), L(InjzgR), Lthick(Dper(R)), LSerre(modR) to denote:

� the lattice of all open subsets of Spec∗R,
� the lattice of all open subsets of Injzg R with R coherent,
� the lattice of all thick subcategories of Dper(R),
� the lattice of all Serre subcategories of modR with R coherent.

8



(A thick subcategory is a triangulated subcategory closed under direct summands).
Given a perfect complex X ∈ Dper(R) denote by supp(X) = {P ∈ SpecR |

X ⊗LR RP 6= 0}. It is easy to see that

supp(X) =
⋃
n∈Z

supp(Hn(X)),

where Hn(X) is the nth homology group of X.

Theorem 3.1 (Thomason [12]). Let R be a commutative ring. The assignments

T ∈ Lthick(Dper(R))
µ7→

⋃
X∈T

supp(X)

and

O ∈ L(Spec∗R) ν7→ {X ∈ Dper(R) | supp(X) ⊆ O}

are mutually inverse lattice isomorphisms.

We are now in a position to prove Theorem C.

Proof of Theorem C. Since InjzarR = (InjzgR)∗ and InjzgR = (InjzarR)∗ by Lemma 1.6,
it is enough to establish bijective correspondences between L(InjzgR), Lthick(Dper(R)),
and LSerre(modR). Consider the following diagram:

L(Spec∗R)
ν //

ϕ

��

Lthick(Dper(R))
µ

oo

ρ

��
L(InjzgR)

ζ //

ψ

OO

LSerre(modR),
δ

oo

σ

OO

where ϕ,ψ are as in Lemma 2.1, ζ, δ are defined in the proof of Theorem B, and
µ, ν are as in Theorem 3.1. The map σ takes a Serre subcategory S of modR
to the thick subcategory σ(S) of perfect complexes whose homology groups are in
S. The map ρ takes a thick subcategory T of Dper(R) to the Serre subcategory
ρ(T) :=

√
{Hn(X) | X ∈ T, n ∈ Z}. Moreover, ν = µ−1 by Theorem 3.1, ϕ = ψ−1

by Lemma 2.1, and ζ = δ−1 by [3, 3.8], [7, 4.2].
By construction,

σζϕ(O) = {X |
⋃
n∈Z

supp(Hn(X)) ⊆ O} = {X | supp(X) ⊆ O}

for all O ∈ L(Spec∗R). Thus σζϕ = ν. Since ζ, ϕ, ν are bijections, then so is σ.
On the other hand,

ψδρ(T) =
⋃

X∈T,n∈Z

supp(Hn(X)) =
⋃
X∈T

supp(X)

for any T ∈ Lthick(Dper(R)). We have used here the relation (2.3). One sees
that ψδρ = µ. Since δ, ψ, µ are bijections, then so is ρ. Obviously, σ = ρ−1

and the diagram above yields the desired bijective correspondences. Theorem C is
proved. �
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