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Abstract

In this thesis, we consider polynomial eigenvalue problems. We extend results on

eigenvalue and eigenvector condition numbers of matrix polynomials to condition

numbers with perturbations measured with a weighted Frobenius norm. We de-

rive an explicit expression for the backward error of an approximate eigenpair of a

matrix polynomial written in homogeneous form. We consider structured eigen-

value condition numbers for which perturbations have a certain structure such

as symmetry, Hermitian or sparsity. We also obtain explicit and/or computable

expressions for the structured backward error of an eigenpair.

We present a robust implementation of the HZ (or HR) algorithm for symmet-

ric generalized eigenvalue problems. This algorithm has the advantage of preserv-

ing pseudosymmetric tridiagonal forms. It has been criticized for its numerical

instability. We propose an implementation of the HZ algorithm that allows sta-

bility in most cases and comparable results with other classical algorithms for ill

conditioned problems. The HZ algorithm is based on the HR factorization, an

extension of the QR factorization in which the H factor is hyperbolic. This yields

us to the sensitivity analysis of hyperbolic factorizations.
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Chapter 1

Introduction

We consider the matrix polynomial (or λ-matrix) of degree m

P (A, λ) = λmAm + λm−1Am−1 + · · ·+ A0, (1.1)

where Ak ∈ Cn×n, k = 0: m. The polynomial eigenvalue problem (PEP) is to find

an eigenvalue λ and corresponding nonzero eigenvector x satisfying

P (A, λ)x = 0.

The case m = 1 corresponds to the generalized eigenvalue problem (GEP)

Ax = λBx

and if A0 = I we have the standard eigenvalue problem (SEP)

Ax = λx. (1.2)

Another important case is the quadratic eigenvalue problem (QEP) with m = 2.

The importance of PEPs lies in the diverse roles they play in the solution of

problems in science and engineering. We briefly outline some examples.
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1.1 Applications of PEPs

QEPs and more generally PEPs appear in a variety of problems in a wide range

of applications. There are numerous examples where PEPs arise naturally.

Some physical phenomena are modeled by a second order ordinary differential

equation (ODE) with matrix coefficients

Mz̈ + Dż + Kz = f(t), (1.3)

z(0) = a, (1.4)

ż(0) = b. (1.5)

The solutions of the homogeneous equation are of the form eλtu, with u a constant

vector. This leads to the QEP

(λ2M + λD + K)u = 0. (1.6)

PSfrag replacements

k1

d1

k2

d2

k3

d3

d4

k4

d5

k5

d6

k6

d7

k7

m1 m2

Figure 1.1: A 2 degree of freedom mass-spring damped system.

A well known example is the damped mass-spring system. In Figure 1.1, we

consider the 2 degree of freedom mass-spring damped system. The dynamics of

this system, under some assumptions, are governed by an ODE of the form (1.3)-

(1.5). In this case z = (x1, y1, x2, y2) denotes the coordinates of the masses m1 and

17



m2, M = diag(m1, m1, m2, m2) is the mass matrix, D = diag(d1 +d2, d4 +d6, d2 +

d3, d5 + d7) is the damping matrix and K = diag(k1 + k2, k4 + k6, k2 + k3, k5 + k7)

is the stiffness matrix with di > 0, ki > 0 for 1 ≤ i ≤ 7.

QEPs arise in structural mechanics, control theory, fluid mechanics and we

refer to Tisseur and Meerbergen’s survey [73] for more specific applications. In-

teresting practical examples of higher order PEPs are given in [52].

1.2 Notations

1.2.1 General Notations

K denotes the field R or C.

• The colon notation: “i = 1: n” means the same as “i = 1, 2, . . . , n”.

• ᾱ denotes the conjugate of the complex number α.

• K
m×n denotes the set of m × n matrices with coefficients in K.

• Mn(K)m denotes the set of m-tuples of n × n matrices with coefficients in

K.

• For x ∈ Kn, x = (xk)1≤k≤n = (xk), xk denotes the kth component of x.

• ek denotes the vector with the kth component equal to 1 and all the other

entries are zero.

• For A ∈ Km×n, A = (αij)1≤i≤m, 1≤j≤n = (αij), αij denotes the (i, j) element

of A.

• We often use the tilde notation to denote a perturbed quantity and the hat

notation to denote a computed quantity.
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1.2.2 Matrix Notation and Special Matrices

Let A ∈ Km×n, A = (αij).

• A is a square matrix if m = n.

• AT ∈ Kn×m is the transpose of A and it is defined by AT = (αji).

• A is symmetric if AT = A.

• A is J-symmetric if JA is symmetric for some J ∈ Rn×m.

• A is skewsymmetric if AT = −A.

• A∗ ∈ Kn×m is the conjugate transpose of A and it is defined by A∗ = (ᾱji).

• A is Hermitian if A∗ = A.

• A is skew-Hermitian if A∗ = −A.

• A is diagonal if αij = 0 for i 6= j.

• The identity matrix of order n, In or simply I , is the diagonal matrix that

has all its diagonal entries equal to 1.

• A permutation matrix is a matrix obtained from the identity matrix by row

or column permutation.

• A ∈ Km×n with m 6= n is upper trapezoidal if αij = 0 for i > j.

• A square matrix A is upper triangular if αij = 0 for i > j and lower

triangular if i < j. If all the diagonal elements of A are equal to 1 then A

is called a unit upper or lower triangular.

• A is an upper Hessenberg matrix if αij = 0 for i > j + 1.

19



• A is a tridiagonal matrix if A and AT are upper Hessenberg matrices.

• For a square matrix A, A−1 denotes its inverse. It is the unique matrix such

that A−1A = A−1 = I. A is also said to be nonsingular when A−1 exits.

Otherwise A is singular.

• For B = (bij) ∈ Km×n the Schur product is defined by A ◦ B = (aijbij).

• For B = (bij) ∈ K
p×q the Kronecker product is defined by A ⊗ B = (aijB).

1.3 Mathematical Background

We recall in this Section some mathematical properties of norms, linear spaces

and differentiable functions. A particular attention is given to the linear vector

spaces Kn and Km×n. In the rest of this chapter, E denotes a linear vector space

over K, Kn or Km×n.

1.3.1 Linear Algebra

Let V = {v1, . . . , vn} where vk ∈ E for 1 ≤ k ≤ n. The linear subspace generated

by V is defined by

spanV =

{
n∑

k=1

αkvk, αk ∈ K

}
.

A linear combination is a vector of the type

n∑

k=1

αkvk,

where (α1, . . . , α2) ∈ Kn. The vectors in V are said to be linearly independent if

n∑

k=1

αkvk = 0 ⇒ αk = 0 for k = 1: n.
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The number of linearly independent vectors is the dimension of spanV in K and

it is denoted by

dim(V ) = dimK(V ).

Let V1 and V2 be two linear subspaces of E . If V1 ∩ V2 = {0} and E = V1 + V2

then E is said to be the direct sum of V1 and V2 and the direct sum decomposition

is denoted by

E = V1 ⊕ V2.

Let A : E1 → E2 be a linear map or a matrix.

• The range of A is the linear subspace defined by

range(A) = {y ∈ E2 : y = Ax, x ∈ E1} = A(E1).

• The null space of A is the linear subspace defined by

null(A) = {x ∈ E1 : Ax = 0}.

• The rank of A is the dimension of range(A),

rank(A) = dim(range(A)).

• With these notations, it follows that

dim(E1) = rank(A) + dim(null(A)).

• A ∈ Km×n is of full rank if rank(A) = min(m, n). If rank(A) < min(m, n)

then A is rank deficient.

1.3.2 Normed Linear Vector Spaces

Definition 1.1 Let E be a linear vector space. A norm is a map ‖ · ‖ : E −→ R

satisfying the following properties:
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1. ‖x‖ ≥ 0 with equality if and only if x = 0,

2. ∀(λ, x) ∈ K × E , ‖λx‖ = |λ|‖x‖,

3. ∀(x, y) ∈ E2, ‖x + y‖ ≤ ‖x‖ + ‖y‖.

For x ∈ E , Vx denotes an open neighborhood of x. The open ball of radius ε ≥ 0

centered at x is defined by

B(x, ε) = {y ∈ E , ‖y − x‖ ≤ ε}.

In this thesis, only E = Kn and E = Km×n are the spaces considered. Thus, all

the norms are equivalent meaning that for any norms ‖ · ‖α and ‖ · ‖β on E , there

exists µ1 > 0, µ2 > 0 such that

µ1‖ · ‖α ≤ ‖ · ‖β ≤ µ2‖ · ‖β.

1.3.3 Scalar Product and Scalar Product Spaces

In this thesis, 〈·, ·〉 denotes a bilinear form (respectively a sesquilinear form) over

E × E if K = R (respectively K = C). Let M ∈ Kn×n be nonsingular. The

form 〈·, ·〉M is defined by 〈x, y〉M = 〈x, My〉 = y∗M∗x for all x, y ∈ Kn. In what

follows, we assume that the form 〈·, ·〉M is symmetric if K = R, that is

〈x, y〉M = 〈y, x〉M

or Hermitian if K = C

〈y, x〉M = 〈x, y〉M .

Definition 1.2 In this thesis, we say that the symmetric or Hermitian form

〈·, ·〉M is a scalar product if 〈·, ·〉M is positive definite, that is,

∀x ∈ E \ {0}, 〈x, x〉M > 0. (1.7)

Otherwise, we refer to 〈·, ·〉M as an indefinite scalar product.
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In the rest of this paragraph, we only consider definite positive scalar products.

The Cauchy-Schwartz inequality

∀(x, y) ∈ E2, | 〈x, y〉 | ≤
√
〈x, x〉

√
〈y, y〉, (1.8)

applies to any definite positive scalar product. Then, following Definition 1.1

and using (1.8), x 7→
√
〈x, x〉 defines a norm over E . This norm is known a the

2-norm and it is usually denoted by ‖ · ‖2.

Definition 1.3 For a given scalar product, matrices that preserve the scalar

product are called orthogonal if K = R or unitary if K = C. On (respectively

Un) denotes the set of n × n orthogonal matrices (respectively the set of m × m

unitary matrices). It follows immediately that

QT Q = In, Q ∈ On,

Q∗Q = In, Q ∈ Un.

For F ⊂ E , F⊥ denotes the orthogonal complement of F and it is defined by

F⊥ = {x ∈ E : 〈x, y〉 = 0, ∀y ∈ F}.

If F is a linear subspace of E then we have the direct sum decomposition

E = F ⊕ F⊥.

1.3.4 Matrices, Vectors and their Norms

(x, y) 7→ 〈x, y〉 = y∗x is the usual scalar product over Kn. The induced vector

2-norm is denoted by ‖ · ‖2 and it is defined by

‖x‖2 =

(
n∑

k=1

|xk|2
) 1

2

=
√

x∗x.
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Other useful norms over Kn are given by

‖x‖1 =
n∑

k=1

|xk|,

‖x‖∞ = max
1≤k≤n

|xk|.

Let A = (aij) ∈ Km×n. The subordinated matrix norm of A is defined by

‖A‖α,β = sup
x6=0

‖Ax‖α

‖x‖β
,

where ‖ · ‖α is a norm over K
m and ‖ · ‖β is a norm over K

n. It follows that

‖A‖1 = max
1≤j≤n

m∑

i=1

|aij|,

‖A‖2 =
√

ρ(A∗A),

‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij|,

where for X ∈ Kn×n, the spectral radius ρ(X) is

ρ(X) = max{|λ|, det(X − λI) = 0}.

The matrix subordinated 2-norm is invariant under orthogonal or unitary trans-

formations,

‖Q1XQ2‖2 = ‖X‖2,

for all X ∈ Km×n and orthogonal or unitary Q1, Q2.

The trace of a square matrix is the sum of its diagonal elements and for

X ∈ Kn×n, X = (xij) it is denoted by

trace(X) =
n∑

k=1

xkk.

(X, Y ) 7→ trace(Y ∗X) is the usual scalar product over Km×n. The induced matrix

norm is known as the Frobenius norm and it is defined by

‖A‖F =

(
m∑

i=1

n∑

j=1

|aij|2
) 1

2

.
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The Frobenius norm is invariant under orthogonal or unitary transformations,

‖UXV ‖F = ‖X‖F ,

for all X ∈ Km×n, U ∈ Um and V ∈ Un.

Definition 1.4 Let µ = ( 1
µk

)0≤k≤m, with µk > 0. The µ-weighted Frobenius

norm is induced by the inner-product over Mn(C)m+1,

〈A, B〉 = trace

(
m∑

k=0

1

µk
B∗

kAk

)

and it is denoted by ‖A‖F,µ =
√

〈A, A〉.
The µ-weighted 2-norm is defined by,

‖A‖2,µ =

(
m∑

k=0

∥∥∥∥
Ak

µk

∥∥∥∥
2

2

) 1
2

.

1.3.5 Differential Calculus

Let f : E −→ F , where E , F are two normed vector spaces. f is differentiable

or Fréchet differentiable at x ∈ Vx ⊂ E , where Vx is an open neighborhood of x

if there exists a linear map df(x) : E −→ F , such that

lim
‖h‖→0

1

‖h‖(f(x + h) − f(x) − df(x)h) = 0.

In this thesis, we only consider the case where E has a finite dimension. Thus, if

f is linear, then f is differentiable and df = f . All the vector spaces are vector

spaces on R and thus all the functions are considered as functions of real variables

and the differentiation is real. The following theorem is the well-known implicit

function theorem [4], [63] that we are going to use several times in this thesis.

Theorem 1.1 Let

f : E × F → G

(x, y) 7→ f(x, y)
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be differentiable, where E, F and G are normed vector spaces. Assume that

f(x, y) = 0 and that ∂f
∂y

(x, y) is nonsingular for some (x, y) ∈ E × F . Then,

there exist a neighborhood of x, Vx, a neighborhood of y, Vy and a differentiable

function ϕ : Vx → Vy such that y = ϕ(x) and for all x̃ ∈ Vx, f(x̃, ϕ(x̃)) = 0.

Moreover,

dϕ(x) =

(
∂f

∂y
(x, y)

)−1
∂f

∂x
(x, y).

Definition 1.5 Let f : Rn −→ Rp. Assume that rank(df(x)) = p whenever

f(x) = 0. Then, f−1({0}) is a (n − p)-dimensional manifold in Rn.

We now give a fundamental result from optimization, the Lagrange multipliers

theorem [4].

Theorem 1.2 Let g : E → R be differentiable, where E is a normed vector

spaces of finite dimension n. Let S ⊂ E be a differentiable manifold of dimension

d defined by

S = {y ∈ E, fk(y) = 0, k = 1: n − d} .

Assume that x ∈ S is an extremum of g on S. Then, there exist n− d scalars ck,

k = 1: n − d, such that

dg(x) =

n−d∑

k=1

ckdfk(x).

We refer to [4] and [63] for a more detailed presentation of differential calculus

and manifolds.

1.4 Special Matrix Subsets

4(K) denotes the set of upper triangular matrices in Kn×n with a real diagonal.

Sym(K) and Skew(K) are the linear subspaces of symmetric matrices and skew-

symmetric matrices, respectively, with coefficients in K. Herm and SkewH
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are the linear subspaces of Hermitian matrices and skew-Hermitian matrices,

respectively. dim denotes the dimension of a linear space in R. We recall that

dim4(R) = dim Sym(R) =
n2 + n

2
, (1.9)

dim4(C) = dim Herm = dimSkewH = n2, (1.10)

dim Skew(R) =
n2 − n

2
, (1.11)

dimSym(C) = n2 + n, dimSkew(C) = n2 − n. (1.12)

Note that SkewH = iHerm. For x ∈ Kn, diag(x) denotes the n × n diagonal

matrix with diagonal x. For X ∈ Kn×n, we denote Πd(X) the diagonal part,

Πu(X) the strictly upper triangular part and Πl(X), the strictly lower triangular

part of X.

1.5 (J, J̃)-Orthogonal and (J, J̃)-Unitary Matri-

ces

We denote by diagk
n(±1) the set of all n × n diagonal matrices with k diagonal

elements equal to 1 and n − k equal to −1. A matrix J ∈ diagk
n(±1) for some k

is called a signature matrix. A matrix H ∈ Rn×n is said to be (J, J̃)-orthogonal

if HT JH = J̃ , where J , J̃ ∈ diagn
k(±1). We denote by On(J, J̃) the set of

n×n (J, J̃)-orthogonal matrices. If J = J̃ then we say that H is J-orthogonal or

pseudo-orthogonal and the set of J-orthogonal matrices is denoted by On(J). We

say that a matrix is hyperbolic if it is (J, J̃)-orthogonal or pseudo-orthogonal with

J 6= ±I. We recall that if J = ±I, then On(±I) = On is the set of orthogonal

matrices.

We extend the definition of (J, J̃)-orthogonal matrices to rectangular matrices

in Rm×n, with m ≥ n. H ∈ Rm×n is (J, J̃)-orthogonal if HT JH = J̃ with
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J ∈ diagk
m(±1) and J ∈ diagq

n(±1). We denote by Omn(J, J̃) the set of (J, J̃)-

orthogonal in Rm×n.

The definition of signature matrices can be extended and generalized to com-

plex signature matrices. Let U = {z ∈ C : |z| = 1} denote the unit circle in C.

We define the set of complex signature matrices as diagonal matrices such that

each diagonal entry is in U and we denote the set of n × n complex signature

matrices by diagn(U).

(J, J̃)-unitary matrices are the complex counterpart of (J, J̃)-orthogonal ma-

trices and we say that a matrix H ∈ Kn×n is (J, J̃)-unitary matrix if H∗JH = J̃

where J and J̃ are complex signature matrices. We denote by Un(J, J̃) the set of

n×n (J, J̃)-unitary matrices. A similar set is the set of complex (J, J̃)-orthogonal

matrices that we denote by On(J, J̃, C). We say that a matrix H ∈ Kn×n is com-

plex (J, J̃)-orthogonal if HTJH = J̃ , where J, J̃ ∈ diagn(U). Similarly, we

denote by Umn(J, J̃) we denote the set of m × n (J, J̃)-unitary matrices and by

Omn(J, J̃, C) the set of m × n complex (J, J̃)-orthogonal matrices.

We show that Omn(J, J̃), Umn(J, J̃) and Omn(J, J̃, C) can respectively be iden-

tified to Rd, Rn2
and R2d, with d = n2−n

2
. We show that each of these sets are

manifolds and we compute their dimension. Then, the introduction of local co-

ordinate systems enable us to make the identification mentioned above.

Lemma 1.3 On(J, J̃), Un(J, J̃) and On(J, J̃ , C) are manifolds with respective

dimension d, n2 and 2d with d = n2−n
2

.

Proof. Let q1 : R
n×n → R

n×n and q2, q3 : C
n×n → C

n×n be defined by

q1(X) = XT JX − J̃ , q2(X) = X∗JX − J̃ and q3(X) = XT JX − J̃ . We recall

that On(J, J̃) = q−1
1 ({0}), Un(J, J̃) = q−1

2 ({0}), and On(J, J̃ , C) = q−1
3 ({0}). For

1 ≤ k ≤ 3, qk is clearly differentiable. We have that

dq1(H1)∆H1 = HT
1 J∆H1 + ∆HT

1 JH1,
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dq2(H2)∆H2 = H∗
2J∆H2 + ∆H∗

2JH2,

dq3(H3)∆H3 = HT
3 J∆H3 + ∆HT

3 JH3.

To compute the dimension of the three manifolds, we need to determine their

tangent spaces that is the null space of each dqk(Hk), k = 1: 3, with Hk being in

one of these manifolds. We have that

null(dq1(H)) = JH−TSkew(R),

null(dq2(H)) = JH−∗SkewH,

null(dq3(H)) = JH−TSkew(C).

Thus, following the dimensions given by (1.9)-(1.12), On(J, J̃) is a n2−n
2

dimen-

sional manifold, Un(J, J̃) is a n2 dimensional manifold and On(J, J̃, C) is n2 − n

a dimensional manifold.

Let X ∈ Omn(J, J̃), Y ∈ Umn(J, J̃) and Z ∈ Omn(J, J̃, C). There exists dif-

ferentiable one-to-one functions φk, 1 ≤ k ≤ 3, open sets V1 ⊂ Rd, V2 ⊂ Rn2
,

V3 ⊂ R2d, VX ⊂ Rm×n, VY ⊂ Cm×n and VZ ⊂ Cm×n such that

φ1(V1) = VX ∩ On(J, J̃), (1.13)

φ2(V2) = VY ∩ Un(J, J̃), (1.14)

φ3(V3) = VZ ∩ On(J, J̃, C). (1.15)

Moreover, the differential of these maps φk have full rank over the entire space

where they are defined.

1.6 Matrix Operators Properties

For an operator or a linear map T defined on Kn×n, the 2-norm is defined by

‖T ‖2 = sup
‖X‖F =1

‖T (X)‖F .
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Some authors denote this norm by ‖ ·‖F,F . The choice of this norm is justified by

its differentiability properties and its computational simplicity. We now present

some notations and we give some results that are needed throughout this thesis.

Theorem 1.4 Let A, B, X ∈ Kn×n. We define the operators T2X = X ◦ A and

T1X = AXB. Then,

‖T2‖2 = max
ij

|aij|, (1.16)

‖T1‖2 = ‖(A ⊗ B)‖2 = ‖A‖2‖B‖2, (1.17)

If A and B are nonsingular then

min
‖X‖F =1

‖T1(X)‖F = ‖A−1‖−1
2 ‖B−1‖−1

2 . (1.18)

Proof. It is straightforward to show that the right hand side of (1.16) is an

upper bound for ‖T2‖2. Let |apq| = maxij |aij|. Then, the bound is attained by

epe
T
q .

Let A = Q1S1Z
T
1 and B = Q2S2Z

T
2 be the singular value decompositions of

A and B. Then (A ⊗ B) = (Q1 ⊗ Q2)(S1 ⊗ S2)(Z
T
1 ⊗ ZT

2 ) so that

‖(A ⊗ B)‖2 = ‖(S1 ⊗ S2)‖2 = ‖A‖2‖B‖2

proving the second part of (1.17). We have

‖T1(X)‖F = ‖(A ⊗ B)vec(X)‖2,

‖T1‖2 = ‖(A ⊗ B)‖2 = ‖A‖2‖B‖2.

Similarly, for (1.18), we have

min
‖X‖F =1

‖T1(X)‖F = min
‖X‖F =1

‖(S1 ⊗ S2)vec(Z2XZT
1 )‖F ,

= ‖A−1‖−1
2 ‖B−1‖−1

2 .
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We now focus on particular matrix equations that arise in the following chap-

ters. Let A ∈ Rn×n be diagonalizable with the eigendecomposition

A = V DV −1, with D = diag(λk).

For X ∈ Skew(K), we consider the equation

AX ± XAT = Z±,

where Z+ ∈ Skew(K) and Z− ∈ Sym(K). The two matrix operators that arise

naturally are then defined on Skew(K) by

T±(A)X = AX ± XAT . (1.19)

Let F and G be the linear subspaces of Sym(K) defined by

F = {Y ∈ Sym(K): Πd(V
−1Y V −T ) = 0},

G = {Y ∈ Sym(K): Πd(Y ) = 0}.

We define M± ∈ Cn×n

M± =

(
1

λi ± λj

)

ij

. (1.20)

Theorem 1.5 Let A ∈ Rn×n be diagonalizable, A = V DV −1 with D = diag(λk)

and let T±(A) be the operator defined by (1.19). Then,

(i) T+(A): Skew(K) −→ Skew(K) is invertible if for all k1, k2, such that

1 ≤ k1, k2 ≤ n and k1 6= k2, we have λk1 + λk2 6= 0.

(ii) T−(A): Skew(K) −→ F is invertible if the eigenvalues of A are distinct.

Then, when T±(A)−1 exists,

T±(A)−1Z± = V ((V −1Z±V −T ) ◦ M±)V T ,

where Z+ ∈ Skew(K), Z− ∈ Sym(K) and M± is defined by (1.20).
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Proof. We consider the equation T±(A)X = Z±. We have

V DV −1X ± XV −T DV T = Z±, DX̃ ± X̃D = Z̃±,

where X̃ = V −1XV −T and Z̃± = V −1Z±V −T . Since X̃ is complex skew-

symmetric and D is diagonal we have Πd(DX̃ ± X̃D) = 0. Also Πd(Z̃±) = 0.

Thus, if the eigenvalues have the properties required in each case then the solution

exists and is unique. It is given by X± = V (Z̃± ◦ M±)V T .

If K = R, we need to show now that X± is real. Without loss of generality,

assume that

V = [V1 V2 V 2 ] , V −T = [ UT
1 UT

2 U
T

2 ] and

D = diag(D1, D2, D2),

where V1, U1 and D1 are real and V2, U2 and D2 are complex with a nontrivial

imaginary part. Then, V = V P and V T = PV ∗, where

P =




I 0 0

0 0 I

0 I 0




is partitioned conformably to V . For Y ∈ Cn×n, PY P = Y if and only if

Y =




Y11 Y12 Y 12

Y21 Y22 Y23

Y 21 Y 23 Y 22


 ,

with Y11 real. Note that

PZ̃±P = Z̃± and PM±P = M±,

P Z̃± ◦ M±P = Z̃± ◦ M±.

Hence, X = X and X is real.
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Theorem 1.6 Let A ∈ Rn×n be diagonalizable, A = V DV −1 with D = diag(λk).

Then,

(i) T̃+(A): Sym(K) −→ Sym(K) defined by T̃+(A)X = AX + XAT is in-

vertible if for all k1, k2, such that 1 ≤ k1, k2 ≤ n and k1 6= k2, we have

λk1 + λk2 6= 0.

(ii) T̃−(A): G −→ Skew(K) defined by T̃−(A)X = AX − XAT is invertible if

the eigenvalues of A are distinct.

Then, when T̃±(A)−1 exists,

T̃±(A)−1Z± = V ((V −1Z±V −T ) ◦ M±)V T ,

where Z+ ∈ Skew(K), Z− ∈ Sym(K) and M± is defined by (1.20).

Proof. The proof is similar to Theorem 1.5.

Applying the vec operator to T±(A)−1 and T̃±(A)−1 in Theorems 1.5-1.6, we

obtain

‖T±(A)−1‖2 = ‖T̃±(A)−1‖2 = ‖(V ⊗ V )diag(vec(M±))(V −1 ⊗ V −1)‖2.

Note that if A is symmetric then V is orthogonal, thus

‖T̃−(A)−1‖2 = ‖T−(A)−1‖2 = ‖vec(M−)‖∞,

‖T̃+(A)−1‖2 = ‖T+(A)−1‖2 =
1

2
‖A−1‖2.

Furthermore, the adjoint operator of T̃−(A) is given by T̃ T
− (A) = T T

− (AT ). F is

the orthogonal complement of {X ∈ Sym(R), AT X = XA}. This is a general-

ization of the orthogonal direct sum decomposition of Sym(R) given in [6].
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1.7 Condition Number and Backward Error

We briefly describe the concept of condition numbers and backward errors. For

that, we consider f : R → R to be twice differentiable and for x ∈ R, we let

y = f(x).

The condition number is a measure of the sensitivity of the output y when

the input x is subject to perturbation. Let ∆x be a perturbation of x and

ỹ = f(x + ∆x). By Taylor’s theorem, we have

ỹ − y = f ′(x)∆x + O(|∆x|2).

Thus

|ỹ − y| ≤ |f ′(x)||∆x| + O(|∆x|2), (1.21)

and if f(x) 6= 0, we have

|ỹ − y|
|y| ≤ |xf ′(x)|

|f(x)|
|∆x|
|x| + O(|∆x|2). (1.22)

The condition number or the idea of conditioning is to quantify the first order

variation, that is, the coefficient of |∆x| in (1.21) or the coefficient of |∆x|
|x| in (1.22).

The value |f ′(x)| is known as the absolute condition number and |xf ′(x)|
|f(x)| as the

relative condition number. We expect ỹ to be close to y if |f ′(x)| is small, which

we qualify as well-conditioned. If |f ′(x)| is relatively big then for a given ∆x,

small enough, we can have a large |ỹ− y|, which is by analogy the ill-conditioned

case.

Let ŷ be an approximation of y. The aim of backward error analysis is to find

∆x such that ŷ = f(x + ∆x). ∆x might not be unique. Thus, we try to find ∆x

that has the smallest absolute value. We can define the backward error by,

η(ŷ) = min {ε : ŷ = f(x + ∆x), |∆x| ≤ ε} .
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The condition number and backward error can be used to bound the forward

error. They are related by the following inequality [37], at the first order in the

backward error

forward error ≤ condition number × backward error.

We conclude this paragraph by a necessary definition that will be used through-

out this thesis.

Definition 1.6 We define the condition number of a matrix with respect to in-

version, generally called the condition number of the matrix by

κα(X) = ‖X‖α‖X−1‖α, (1.23)

where ‖ · ‖α is a norm over K
n×n.

1.8 The Polynomial Eigenvalue Problem

Let P (A, λ) be an n × n matrix polynomial of degree m as in (1.1).

Definition 1.7 We say that P (A, λ) is regular if

det(P (A, λ)) 6≡ 0.

We will assume throughout this thesis that P (A, λ) is regular.

PEP is to find scalars λ and nonzero vectors x and y satisfying

P (A, λ)x = 0, y∗P (A, λ) = 0.

λ is called an eigenvalue and, x and y are the corresponding right and left eigenvec-

tors. Equivalently, the eigenvalues are the roots of the characteristic polynomial

det(P (A, λ)) = 0.
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Let d be the degree of the scalar polynomial det(P (A, λ)). The d roots of

det(P (A, λ)) are called the finite eigenvalues. If d < mn, then we say that

P (A, λ) has mn − d infinite eigenvalues. Let Am be singular. We consider the

PEP associated to P (A, µ), where µ = 1
λ
. We see that the value µ = 0 is an

eigenvalue of the PEP and the eigenvectors are the vectors that generate null(A).

The 0 eigenvalues of the PEP associated to λmP (A, 1
λ
) correspond to the infinite

eigenvalues of the PEP associated to P (A, λ).

We now give several definitions in order to characterize the eigenvalues.

Definition 1.8 Let λ be an eigenvalue of P (A, λ).

The algebraic multiplicity of λ denoted by p is the multiplicity of λ as a root

the characteristic polynomial det(P (A, λ)).

The geometric multiplicity of λ denoted by q is the number of linearly inde-

pendent eigenvectors spanning nullP (A, λ).

Let p be the algebraic multiplicity of λ and let q be the geometric multiplicity

of λ. The eigenvalue λ is simple if p = 1. When p > 1, λ is a multiple eigenvalue.

In the case where p > 1 and q = p, λ is semi-simple. Otherwise, λ is a defective

eigenvalue.

Remark 1.7 For the standard eigenvalue problem Ax = λx, A is diagonalizable

if its eigenvalues are simple or semi-simple. Otherwise A admits a non trivial

Jordan form.

While the polynomial eigenvalue problem is usually written as P (A, λ)x = 0,

this representation has a disadvantage because it gives special emphasis to zero

or infinite eigenvalues, which leads to difficulties in characterizing and computing

condition numbers and backward errors. For example in [71] the condition num-

ber is not defined for zero eigenvalues. For the infinite eigenvalues, the condition

number and the backward error can be obtained by computing the limit of the
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appropriated quantity as |λ| tends to infinity. With the homogeneous form of the

PEP, finite and infinite eigenvalues are treated on the same footing. This facili-

tates the characterization and computation of condition numbers and backward

errors. This alternative is discussed in the next section.

1.9 Homogeneous PEPs

Let A = (A0, A1, . . . , Am) ∈ Mn(C)m+1. We define the homogeneous matrix

polynomial P (A, α, β) by

P (A, α, β) =

m∑

k=0

αkβm−kAk, (1.24)

that is, P (A, α, β) is homogeneous of degree m in (α, β) ∈ C2.

We assume that P (A, α, β) is regular, that is det P (A, α, β) 6≡ 0, for all

(α, β) 6= (0, 0).

The homogeneous polynomial eigenvalue problem (PEP) is to find pairs of

scalars (α, β) 6= (0, 0) and nonzero vectors x, y ∈ C
n satisfying

P (A, α, β)x = 0, y∗P (A, α, β) = 0. (1.25)

The vectors x, y are called right and left eigenvectors corresponding to the eigen-

value (α, β). Hence, an eigenvalue is now any line through the origin in C2 of

solutions of det(P (A, α, β)) = 0.

For β 6= 0, we define λ =
α

β
. Thus, we can link the non-homogeneous matrix

polynomial P (A, λ) to the homogeneous one by

P (A, λ) = βmP (A, α, β).

We see that solving the homogeneous PEP is equivalent to solving the non-

homogeneous PEP.

37



For example, we have the well-known form

(βA − αB)x = 0, (1.26)

for the homogeneous generalized eigenvalue problem [68].
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Chapter 2

Condition Numbers for

Eigenvalues and Eigenvectors

Let A = (A0, A1, . . . , Am) ∈ Mn(K)m+1. We consider the homogeneous matrix

polynomial P (A, α, β) defined by

P (A, α, β) =

m∑

k=0

αkβm−kAk.

2.1 Introduction

The condition number of an eigenvalue reveals the sensitivity of the eigenvalue

to perturbations in the data. Assume that P (A, α, β) is regular and that (α, β)

is a simple eigenvalue of P . Let

Ã = (Ã0, Ã1, . . . , Ãm),

= (A0 + ∆A0, A1 + ∆A1, . . . , Am + ∆Am) ∈ Mn(C)m+1

be a perturbation of A and let (α̃, β̃) be the corresponding perturbation of (α, β).

Two approaches can be taken to define condition numbers.
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1. Generalization of Stewart and Sun’s approach for the GEP

We can use Rice’s definition of condition numbers [61]. The condition

number c(α, β) of a simple eigenvalue (α, β) can be defined by

c(α, β) = lim
ε→0

sup

{
dc((α, β), (α̃, β̃))

ε
, ‖E‖ ≤ ε

}
,

where dc is the chordal distance given in Definition 2.3. It follows that in

first order approximation the inequality

dc((α, β), (α̃, β̃)) ≤ c(α, β)‖E‖

holds. Stewart and Sun [68] and Sun [69] derive an expression for c(α, β)

by bounding dc((α, β), (α̃, β̃)).

2. Dedieu and Tisseur’s approach

Dedieu [25] and Dedieu and Tisseur [26] first define a map from a matrix

m + 1-tuple to an eigenvalue. Then they define the condition operator of

the differential map. The norm of this differential is the condition number.

Dedieu [25] showed for the GEP that approaches 1 and 2 are equivalent. The

second approach has several advantages.

The differential calculus approach is described in more detail in the next

section.

2.2 A Differential Calculus Approach

2.2.1 Preliminaries

In [25] and [26], the authors apply the implicit function theorem to the equation

f(A, x, α, β) = 0,
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where f(A, x, α, β) = P (A, α, β)x. The aim is to find a function g that maps Ã, in

a neighborhood of A to the corresponding eigenpair (x̃, α̃, β̃), in a neighborhood

of (x, α, β). The implicit function theorem can not be applied as it is since the

dimension of f(A, x, α, β) ∈ Cn and (x, α, β) ∈ Cn+2 do not match. A way to

overcome this problem is to introduce projective spaces. The use of these spaces

for this problem arises naturally as we show below.

Let ρ ∈ C \ {0}. We consider the PEP defined by (1.25). We see that ρ(α, β)

is also an eigenvalue which is another representation of (α, β). Thus, it becomes

natural to work with projective spaces.

2.2.2 Projective Spaces

Definition 2.1 Let R be the equivalence relationship on Ck \ {0} defined by

∀(x, y) ∈ C
k × C

k xRy ⇐⇒ (∃ρ ∈ C \ {0} y = ρx) .

The quotient space Ck/R is called the projective space and it is denoted by P(Ck).

It follows immediately from Definition 2.1 that

dim(P(Ck)) = k − 1.

Thus, we denote P(Ck) = Pk−1. Note that P(Ck) can also be identified to the

quotient space of the unite sphere of Ck

S = {x ∈ C
k : ‖x‖2

2 = 1}

for the equivalence relationship R̃ defined by

∀(x, y) ∈ C
k × C

k xR̃y ⇐⇒
(
y = eiθx, θ ∈ R

)
.

The quotient space associated to the eigenvalue (α, β) is the projective space

P(C2) = P1 of dimension 1. For the eigenvectors, it is more familiar to consider
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projective spaces, since the eigenvectors span a linear subspace of Cn. Also, pro-

jective spaces avoid the problem of choosing a normalization for the eigenvalues

and eigenvectors (see [3, Sec. (4)] where several normalizations are discussed).

Thus, we take

(x, α, β) ∈ Pn−1 × P1, (2.1)

which has now dimension n. Let TxPk−1 be the tangent space to Pk−1. This

tangent space is identified with

x⊥ = {y ∈ C
k : 〈y, x〉 = 0}.

The scalar product over TxPk−1 and the induced norm are then given by

〈y1, y2〉x⊥ =
〈y1, y2〉
〈x, x〉 ,

‖y‖x⊥ =
√

〈y, y〉x⊥ (2.2)

and it is independent from the chosen representatives.

2.2.3 Condition Numbers

In this section, we compute the condition operators and the corresponding con-

dition numbers of a simple eigenvalue and the associated eigenvector. We define

a function g on VA a neighborhood of A ∈ Mn(C)m+1 that maps to Ã ∈ VA to

the corresponding eigenpair (x̃, α, β), such that P (Ã, α̃, β̃)x̃ = 0. The function g

is not explicitly accessible but its differential can be computed. To characterize

g we proceed as follow. As in [26], the main tool for this analysis is the implicit

function theorem. Let

f : Mn(C)m+1 × Pn−1 × P1 → C
n,

(A, x, α, β) 7→ P (A, α, β)x,
(2.3)
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and let

VP =
{
(A, x, α, β) ∈ Mn(C)m+1 × Pn−1 × P1 : P (A, α, β)x = 0

}

be the set of polynomial eigenvalue problems. We define the following projections

Π1 : VP → Mn(C)m+1, Π2 : VP → Pn−1 × P1,

Π1(A, x, α, β) = A, Π2(A, x, α, β) = (x, α, β).

Definition 2.2 [26] (A, x, α, β) is defined as a well-posed problem when Π1

is invertible. Otherwise, we refer to (A, x, α, β) as an ill-posed problem.

We now focus on well-posed problems for which we can compute the condition

operator and the condition number. In what follows, we see that a well-posed

problem is equivalent to the eigenvalue (α, β) being simple. We define the vector

v that is used throughout this section by

v =

(
β̄

∂P (A, α, β)

∂α
− ᾱ

∂P (A, α, β)

∂β

)
x. (2.4)

In the following theorem [26], we summarize the necessary results for the rest of

this section.

Theorem 2.1 Let (α, β) be a simple eigenvalue, let x, y be associated right and

left eigenvectors and v be defined by (2.4) . Then,

1. v 6∈ range(P (A, α, β)),

2. Πv⊥P (A, α, β)|x⊥ is nonsingular,

3. y∗v 6= 0,

where Πv⊥ denotes the projection onto the orthogonal space to v.

We write d2f = ∂f
∂x

+ ∂f
∂α

+ ∂f
∂β

where f is defined by (2.3). The following theorem

states a property of d2f(A, x, α, β) for a simple eigenvalue (α, β).
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Theorem 2.2 Let (α, β) be a simple eigenvalue of P (A, α, β) and let x and y be

the corresponding right and left eigenvectors. Then,

d2f(A, x, α, β) : TxPn−1 × T(α,β)P1 → Cn

is nonsingular.

Proof. Let ∆x ∈ TxPn−1 and (∆α, ∆β) ∈ T(α,β)P1. Then 〈∆x, x〉 = 0 and

(∆α, ∆β) = ρ(β̄,−ᾱ), where ρ ∈ C. Assume that

d2f(A, x, α, β)(∆x, ∆α, ∆β) = 0.

We have

d2f(Z1)Z2 = P (A, α, β)∆x + ∆α
∂P

∂α
(A, α, β)x + ∆β

∂P

∂β
(A, α, β)x,

= P (A, α, β)∆x + ρv = 0,

where Z1 = (A, x, α, β) and Z2 = (∆x, ∆α, ∆β), so that premultipication by

y∗ gives ρy∗v = 0. By Theorem 2.1, y∗v 6= 0. Thus, ρ = 0 and therefore

(∆α, ∆β) = 0. On the other hand ∆x ∈ x⊥ and Πv⊥P (A, α, β)|x⊥ is nonsingular.

Thus, ∆x = 0.

Note that when d2f(A, x, α, β) is nonsingular then the problem is well-posed,

that is, Π1(A) is invertible. In this case, from the implicit function theorem, we

know that there exists VA a neighborhood of A, Vx × V(α,β) a neighborhood of

(x, (α, β)) and a differentiable map

g : VA → Vx × V(α,β)

such that for all Ã ∈ VA, we have

g(Ã) = (x̃, α̃, β̃) , P (Ã, α̃, β̃)x̃ = 0.
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The differential at A, dg(A) is then given by

dg(A) = −(d2f(A, x, α, β))−1 ∂f

∂A
(A, x, α, β),

dg(A)∆A = −(d2f(A, x, α, β))−1P (∆A, α, β)x. (2.5)

We set g = (g1, g2) such that for all Ã ∈ VA,

g1(Ã) = x̃, g2(Ã) = (α̃, β̃).

We can now define the condition operator for the eigenvector and for the eigen-

value to be

dg1 and dg2.

We set ∆x = dg1(A)∆A and (∆α, ∆β) = dg2(A)∆A. We have that ∆x ∈ TxPn−1

and (∆α, ∆β) ∈ T(α,β)P1. Thus, ∆x ∈ x⊥ and (∆α, ∆β) = ρ(β̄,−ᾱ). From (2.5),

we get

P (A, α, β)∆x + ρv = −P (∆A, α, β)x. (2.6)

The condition numbers for the eigenvector x and the eigenvalue (α, β) are defined

by

c1(A, α, β, x) = ‖dg1(A)‖x⊥ = max
‖∆A‖≤1

‖dg1(A)∆A‖2

‖x‖2

,

c2(A, α, β, x) = ‖dg2(A)‖(α,β)⊥ = max
‖∆A‖≤1

‖dg2(A)∆A‖2

‖(α, β)‖2
,

where the norm on ∆A is arbitrary and the Hermitian structure of the projective

spaces is defined by (2.2).

We now focus on computing the condition operator and condition number

of the eigenvector and eigenvalue. We will take for the norm on Mn(K)m+1

the µ-weighted Frobenius norm of Definition 1.4. For a weight µ ∈ R
m+1, ‖.‖F,µ

measures the perturbations of the coefficients of the matrix polynomial P (A, α, β)
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relative to the weights in µ = ( 1
µk

). The absolute condition number is obtained by

setting all the components of µ equal to 1 whereas the relative condition number

is given by setting µk = ‖Ak‖F if ‖Ak‖F 6= 0, for 0 ≤ k ≤ m + 1. The case

‖Ak‖F = 0 is discussed at the end of this paragraph.

The following theorems give the condition operator and condition number of

the eigenvector and eigenvalue. The method to obtain the condition operators

is similar to [26] although here we apply the implicit function theorem directly.

The condition numbers and the corresponding optimal perturbations (where the

condition number is attained by dgk(A), k = 1, 2) are computed with some

differences from [26] since we use a weighted Frobenius norm. We define the

scalar γ that is used in the following two theorems by

γ = γ(α, β, µ) =

(
m∑

k=0

|α|2k|β|2(m−k)µ2
k

) 1
2

. (2.7)

Theorem 2.3 Let (α, β) be a simple eigenvalue of P (A, α, β), x and y be the

corresponding left and right eigenvectors and v be as in (2.4). The eigenvector

condition operator is given by

dg1(A)∆A = −(Πv⊥P (A, α, β)x⊥)−1Πv⊥P (∆A, α, β)x. (2.8)

The condition number of an eigenvector of P (A, x, α, β), with perturbations mea-

sured in the weighted Frobenius norm is given by

c1(A, α, β, x) =

(
m∑

k=0

|α|2k|β|2(m−k)µ2
k

) 1
2

‖(Πv⊥P (A, α, β)x⊥)−1‖2. (2.9)

Proof. Applying the orthogonal projection onto v⊥ to (2.6), we obtain

Πv⊥P (A, α, β)x̃ = −Πv⊥P (∆A, α, β)x,

where x̃ = dg1(A)∆A. We recall that x̃ ∈ x⊥ and by Theorem 2.1, we know that

Πv⊥P (A, α, β)|x⊥ is nonsingular. Thus,

dg1(A)∆A = −(Πv⊥P (A, α, β)x⊥)−1Πv⊥P (∆A, α, b)x.
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Tacking norms and applying Cauchy-Schwarz inequality, we get

‖x̃‖2

‖x‖2
≤ ‖(Πv⊥P (A, α, β)x⊥)−1‖2

m∑

k=0

|α|k|β|m−k‖∆Ak‖F

≤ γ‖(Πv⊥P (A, α, β)x⊥)−1‖2‖∆A‖F,µ, (2.10)

where γ is defined by (2.7). Let u ∈ Cn with ‖u‖2 = 1 be such that

‖(Πv⊥P (A, α, β)x⊥)−1u‖2 = ‖(Πv⊥P (A, α, β)x⊥)−1‖2.

Note that u ∈ v⊥. The inequality (2.10) is attained by

∆Ak =
1

‖x‖2γ
ᾱkβ̄m−kux∗, k = 0: m.

Theorem 2.4 Let (α, β) be a simple eigenvalue of P (A, α, β), x and y be the cor-

responding left and right eigenvectors and v be as in (2.4). Then, the eigenvalue

condition operator is given by

dg2(A)∆A =
y∗P (∆A, α, β)x

y∗v
(−β̄, ᾱ). (2.11)

The condition number of a simple eigenvalue (α, β) of P (A, α, β), with perturba-

tions measured in the weighted Frobenius norm is given by

c2(A, α, β, x) =
‖x‖2‖y‖2

|y∗v|

(
m∑

k=0

|α|2k|β|2(m−k)µ2
k

) 1
2

. (2.12)

Proof. Let (α̃, β̃) = dg2(A)∆A. Since (α̃, β̃) ∈ T(α,β)P1, then there exists a

ρ ∈ C such that

(α̃, β̃) = ρ(β̄,−ᾱ),

and since (α, β) is an eigenvalue, we obtain from (2.6)

ρy∗v = −y∗P (∆A, α, β)x.
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Thus, from Theorem 2.1, y∗v 6= 0 for a simple eigenvalue and

dg2(A).∆A =
y∗P (∆A, α, β)x

y∗v
(−β, α). (2.13)

We have

c2(A, α, β, x) = sup
‖∆A‖F,µ≤1

‖(α̃, β̃)‖(α,β)⊥ = sup
‖∆A‖F,µ≤1

√
|α̃|2 + |β̃|2
|α|2 + |β|2 . (2.14)

Then we obtain

|α̃|2 + |β̃|2
|α|2 + |β|2 =

|y∗P (∆A, α, β)x|2
|y∗v|2 ,

y∗P (∆A, α, β)x =

m∑

k=0

αkβm−ky∗∆Akx.

Using the triangle inequality, we obtain

|y∗P (∆A, α, β)x| ≤
m∑

k=0

µk|α|k|β|m−k|y∗(
1

µk
∆Ak)x|,

and by applying the Cauchy-Schwarz inequality gives

|y∗P (∆A, α, β)x| ≤ ‖x‖2‖y‖2

(
m∑

k=0

µk|α|k|β|(m−k)‖ 1

µk
∆Ak‖F

)
,

where ‖·‖F is the usual Frobenius norm. Applying once more the Cauchy-Schwarz

inequality, we have

|y∗P (∆A, α, β)x| ≤ γ‖x‖2‖y‖2‖∆A‖F,µ,

where γ is defined by (2.7). Hence

c2(A, α, β, x) ≤ ‖x‖2‖y‖2

|y∗v| γ.

By using the matrices

S =

[
y

‖y‖2

, 0

]
and ∆Ak =

αkβ
m−k

µ2
k

γ
S

48



with ‖∆A‖F,µ = 1 , we show that c2(A, α, β, x) reaches
‖x‖2‖y‖2

|y∗v| γ. Thus

c2(A, α, β, x) =
‖x‖2‖y‖2

|y∗v|

(
m∑

k=0

|α|2k|β2(m−k)|µ2
k

) 1
2

.

Note that the condition number c1(A, α, β, x) and c2(A, α, β, x) are well defined,

since the right-hand side in (2.9) and (2.12) is independent of the choice of rep-

resentatives of the eigenvector x and the eigenvalue (α, β).

The condition number given in Theorem 2.4 measures the absolute sensitivity

of a simple eigenvalue if we choose µk = 1, k = 0: m or the relative sensitivity if

µk = 1
‖Ak‖F

with Ak 6= 0, k = 0: m. This means that all the coefficient matrices

are subject to a perturbation. An interesting approach, physically meaningful,

is to allow some of the matrices to not be perturbed. In order to compute the

condition number, we see that dg2(A) is constant along the direction that are not

perturbed. Thus, it is equivalent to allow the components of µ that correspond

to the unperturbed directions to be zero in Theorem 2.4. We therefore define the

weights by

µ̃k =





1/µk, if µk 6= 0,

0, if µk = 0.

2.3 Perturbation Analysis

In this section, we investigate the first order variation of the perturbed eigenvalue

(α̃, β̃) by extending results in [25] for the GEP to the PEP. The following theorem

enables us to work in a Hilbert space instead of a projective space.

Theorem 2.5 Let (α, β) be a simple eigenvalue of P (A, x, α, β), normalized so

that ‖(α, β)‖2 = 1 and x be a right eigenvector of unit norm. Let ∆A be a
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perturbation of A and (x̃, (α̃, β̃)) ∈ P(C2) be the perturbed eigenvalue. We choose

the following representatives of x and (α̃, β̃):

(α̃, β̃) = (α, β) + (α⊥, β⊥),

x̃ = x + x⊥,

where

〈
(α, β), (α⊥, β⊥)

〉
= 0,

〈
x, x⊥〉 = 0.

Then, we have

x̃ = x + dg1(A)∆A + O(ε2),

(α̃, β̃) = (α, β) + dg2(A)∆A + O(ε2),

where ε = ‖∆A‖F,µ.

Proof. Let (e1, e2) be an orthonormal basis of C2 with e1 = (α, β). Recall

that (α, β) 6= (0, 0). We introduce the local chart:

V =
{
ξ1e1 + ξ2e2, (ξ1, ξ2) ∈ C

2, ξ1 6= 0
}

⊂ P(C2),

φ(ξ1e1 + ξ2e2) =
ξ2

ξ1
e2 ∈ C

2.

We have

g2(A) = (α, β) ∈ P(C2),

g2(A + ∆A) = (α̃, β̃) ∈ P(C2),

φ ◦ g2(A + ∆A) = (α⊥, β⊥).

On the other hand, we have

φ ◦ g2(A + ∆A) = φ(g2(A)) + d(φ ◦ g2(A))∆A + O(ε2)
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and

d(φ ◦ g2(A)) = dφ(α, β) ◦ dg2(A)).

We obtain finally

d(φ ◦ g2(A)) = dg2(A)

since dg2(A) takes its values in (α, β)⊥ and dφ(α, β) is the identity for unitary

(α, β). Thus,

(α̃, β̃) = (α, β) + dg2(A)∆A + O(ε2).

The perturbation expansion for the eigenvector is found in a similar way by

considering the following local charts

Ṽ =

{
n∑

k=1

ξkek, (ξ) ∈ C
n, ξ1 6= 0

}
⊂ P(Cn),

φ̃(
n∑

k=1

ξkek) = (
ξ2

ξ1

, . . . ,
ξn

ξ1

) ∈ C
n−1,

where e1 = x and the vectors ek, k = 1: n form an orthonormal basis of Cn.

Definition 2.3 We consider the projective space Pn−1(C) with the usual scalar-

product 〈., .〉 over Cn. The angle between (u, v) ∈ Cn × Cn is the Riemannian

distance and it is defined by

dr(u, v) = arccos

( | 〈u, v〉 |
‖u‖2‖v‖2

)
.

We define the chordal distance between (u, v) ∈ Cn × Cn by

dc(u, v) = sin(dr(u, v)),

=

(
1 − | 〈u, v〉 |2

‖u‖2
2‖v‖2

2

) 1
2

.

For n = 2, u = (α, β) and v = (α̃, β̃), the chordal distance becomes

dc(u, v) =
|αβ̃ − α̃β|

‖(α, β)‖2‖(α̃, β̃)‖2

.
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Corollary 2.6 Let (α, β) be a simple eigenvalue of P (A, α, β) and x be the cor-

responding right eigenvector. For ∆A small enough, the perturbed polynomial

P (A + ∆A, α, β) has a simple eigenvalue (α̃, β̃) with associated eigenvector x̃.

Then, we have

dc(x̃, x) ≤ c1(A, α, β, x)ε + O(ε2),

dc((α̃, β̃), (α, β)) ≤ c2(A, α, β, x)ε + O(ε2),

where ε = ‖∆A‖.

Proof. For any vectors u, v ∈ Ck, we have the following identity

dc(u, v) =

(
1 − | 〈u, v〉 |2

‖u‖2
2‖v‖2

2

) 1
2

=

∥∥∥∥
u

‖u‖2
− 〈u, v〉

‖u‖2‖v‖2
2

v

∥∥∥∥
2

.

Thus, by applying Theorem 2.5 to

x

‖x‖2

and
〈x, x̃〉

‖x̃‖2
2‖x‖2

x̃,

we obtain

x̃ = x + dg1(A)∆A + O(ε2).

Thus,

dc(x̃, x) ≤ c1(A, α, β, x)ε + O(ε2).

The second inequality for the eigenvalue is obtained similarly.

We know that for 0 ≤ θ < π
2
, we have

sin(θ) ≤ θ ≤ tan(θ).

Applying this fact to the distances in Definition 2.3, we have

dc ≤ dr ≤ dt,
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where dt(u, v) = tan(dr(u, v)). Thus, if we apply Theorem 2.5 to

(α, β)

‖(α, β)‖2

and
‖(α, β)‖2(α̃, β̃)〈
(α̃, β̃), (α, β)

〉

and to

x

‖x‖2
and

‖x‖2x̃

〈x̃, x〉 ,

we get the following inequalities

dt(x̃, x) ≤ c1(A, α, β, x)ε + O(ε2),

dt((α̃, β̃), (α, β)) ≤ c2(A, α, β, x)ε + O(ε2).

Note that dt is not a distance since it does not satisfy the triangular inequality

[25].

2.4 Link to the Non-Homogeneous Form

Generally, matrix polynomials are considered in the non-homogeneous form. For

β 6= 0, λ = α
β
, we have

P (A, λ) = P (A, λ, 1). (2.15)

Corollary 2.7 For λ = α
β

and λ̃ = eα
eβ
, we define the chordal distance by

χ(λ̃, λ) =
|λ̃ − λ|√

1 + |λ̃|2
√

1 + |λ|2
.

Then, we have χ(λ̃, λ) ≤ c2(A, α, β, x)ε + O(ε2).

Proof. The result is obtained from Corollary 2.6:

dc((α̃, β̃), (α, β)) =
|α̃β − αβ̃|

‖(α̃, β̃)‖2‖(α, β)‖2

=
|λ̃ − λ|√

1 + |λ̃|2
√

1 + |λ|2
.

Thus, we have

χ(λ̃, λ) ≤ c2(A, α, β, x)ε + O(ε2).
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2.5 Particular Case: the GEP

The generalized eigenvalue problem corresponds to the case of a matrix polyno-

mial of degree m = 1 in (1.26). We consider the pair (A,−B), where A, B ∈ Cn×n.

We now focus on computing the condition number for the eigenvalue for the ma-

trix polynomial

P ((A,−B), α, β) = βA − αB.

From Theorem 2.4, the absolute eigenvalue condition number is given by

c2((A,−B), α, β, x) =
(|α|2 + |β|2) 1

2 ‖x‖2‖y‖2

|y∗(β̄B + ᾱA)x| , (2.16)

where x and y are the right and left eigenvectors. We have

(βA − αB)x = 0,

βy∗Ax = αy∗Bx.

Thus,

(α, β) = ρ(y∗Ax, y∗Bx) ∈ P1, ρ ∈ C.

By tacking the representative (y∗Ax, y∗Bx) for the eigenvalue (α, β), we obtain

c2((A,−B), α, β, x) =
‖x‖2‖y‖2√
|α|2 + |β|2

,

which is the condition number given by Stewart in [67, p. 140]. Now, for the

standard eigenvalue problem, B = I and β 6= 0 always. Letting λ = α
β
, (2.16)

becomes

c2((A,−I), α, β, x) =
‖x‖2‖y‖2

|y∗x|
1√

1 + |λ|2
.

We recall that

κ(λ) =
‖x‖2‖y‖2

|y∗x|
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is the standard condition number of a simple eigenvalue for Ax = λx [78]. If A

is normal, we can take x = y so that

κ(λ) = 1,

and

c2((A,−I), α, β, x) =
1√

1 + |λ|2
≤ 1.

Note that c2 and κ have different interpretation: c2 bounds the angle between

the exact and perturbed eigenvalue whereas κ bounds the distance between the

exact and perturbed eigenvalue.

2.6 Hermitian Structured Condition Numbers

We consider a Hermitian PEP P (A, α, β), which means that all the coefficient

matrices are Hermitian. Let x be an eigenvector associated with (α, β). Then,

y = x is an eigenvector associated with (ᾱ, β̄).

The Hermitian structured condition number for a simple eigenvalue (α, β) is

defined by

c2,Herm(A, α, β, x) = max
∆A∈Hermm+1,‖∆A‖≤1

‖dg2(A)∆A‖2

‖(α, β)‖2
.

Clearly

c2,Herm(A, α, β, x) ≤ c2(A, α, β, x).

Let (α, β) be real. We see that in the proof of Theorem 2.4, the equality above

is attained by the Hermitian perturbations

∆Ak =
αkβm−kµ2

k

γ

xx∗

‖x‖2
2

, k = 0: m.

Thus, as for the standard eigenvalue problem, for real eigenvalues, we have

c2,Herm(A, α, β, x) = c2(A, α, β, x).
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2.7 Conclusion

This chapter focused on eigenvalue and eigenvector condition numbers of matrix

polynomials. We generalized the work of Stewart and Sun, and Dedieu on the

GEP to arbitrary degree matrix polynomial. The use of a weighted Frobenius

norm allows flexibility on how the perturbations are measured. It enabled us

first to define relative condition numbers. Then, by modifying the definition of

weights, we showed that it also covers the case where of some the coefficient

matrices are not perturbed (by setting to 0 the corresponding weights). In [69],

this condition number is called the partial condition numbers since it corresponds

to the norm of a partial differential.

Moreover, the results in this chapter and the results on backward errors in the

next chapter contributed to the development of MATLAB’s function polyeig. A

pseudocode that computes the condition number (2.12) is given in Section 5.3.
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Chapter 3

Backward Errors

3.1 Introduction

In backward error analysis, we consider that an approximate eigenpair (α̂, β̂, x̂)

of P (A, α, β) is the exact solution of a perturbed PEP P (A + ∆A, α, β). Note

that the perturbation ∆A may not be unique. We aim to characterize ∆A by

focusing on perturbations that minimize the 2-norm or the Frobenius norm. If the

backward error is in some sense small then the approximate solution is an exact

solution of a nearby problem. The normwise backward error analysis is the study

of perturbations that minimize a given norm. If we restrict the perturbations

that minimize the norm to some subset of structured matrices, then the analysis

is called structured normwise backward error analysis. The structures that we

encounter in this chapter are symmetric and Hermitian.

In the first part of this chapter, we extend the results on backward error for

nonhomogeneous PEPs [71] to homogeneous PEPs. The homogeneous form of P

allows to treat on the same footing both finite and infinite eigenvalues. Then, we

move on to structured backward errors.
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3.2 Normwise Backward Error

The results on the backward error hold for the 2-norm or the Frobenius norm.

Let A = (∆Ak)0≤k≤m ∈ Mn(C)m+1 and let (α̂, β̂) be an approximate eigenvalue

of P (A, α, β) and let x̂, ŷ be the corresponding right and left eigenvectors. The

vector µ = (µk) ∈ R
m+1 contains the nonnegative weights µk that allows flexibility

on how the perturbations are measured. We define

Eδ,µ(α̂, β̂, x̂) = {ε : P (A+∆A, α̂, β̂)x̂ = 0, ‖∆Ak‖δ ≤ εµk, k = 0 : m},

Eδ,µ(α̂, β̂, ŷ∗) = {ε : ŷ∗P (A+∆A, α̂, β̂) = 0, ‖∆Ak‖δ ≤ εµk, k = 0 : m},

Eδ,µ(α̂, β̂, x̂, ŷ∗) = Eδ,µ(α̂, β̂, x̂) ∩ Eδ,µ(α̂, β̂, ŷ∗). (3.1)

Definition 3.1 The δ-norm backward error of (α̂, β̂, x̂) is defined by

ηδ,µ(α̂, β̂, x̂) = min Eδ,µ(α̂, β̂, x̂).

By analogy, the δ-norm backward error for the triplet ((α̂, β̂), x̂, ŷ) is defined by

ηδ,µ(α̂, β̂, x̂, ŷ∗) = min Eδ,µ(α̂, β̂, x̂, ŷ∗).

Definition 3.2 For z ∈ C, we define its sign by

sign(z) =





z̄
|z| if z 6= 0,

1 if z = 0.

Theorem 3.1 An explicit expression for the 2-norm or the Frobenius norm back-

ward error for the approximate eigenpair ((α̂, β̂), x̂) is given by

η2,µ(α̂, β̂, x̂) = ηF,µ(α̂, β̂, x̂) =
‖P (A, α̂, β̂)x̂‖2

‖x̂‖2

∑m
k=0 |α̂|k|β̂|m−kµk

. (3.2)

Proof. One can easily show that the right-hand side of (3.2) is a lower bound

for η. This bound is attained by the following perturbations,

∆Ak = −1

γ
sign(α̂kβ̂m−k)µk

P (A, α̂, β̂)x̂x̂∗

‖x̂‖2
2

,
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where γ =

m∑

k=0

|α̂|k|β̂|m−kµk.

Theorem 3.2 The 2-norm backward error for the triplet ((α̂, β̂), x̂, ŷ) is given

by

η2,µ(α̂, β̂, x̂, ŷ∗) = max(η2,µ(α̂, β̂, x̂), η2,µ(α̂, β̂, ŷ∗)).

The Frobenius norm backward error for the triplet ((α̂, β̂), x̂, ŷ) is given by

ηF,µ(α̂, β̂, x̂, ŷ∗) =

( ‖r‖2
2

‖x̂‖2
2

+
‖s‖2

2

‖ŷ‖2
2

− |s∗x̂|2
‖x̂‖2

2‖ŷ‖2
2

) 1
2

,

where r = P (A, α̂, β̂)x̂ and s∗ = y∗P (A, α̂, β̂).

Proof. Let ε ∈ E2,µ(α̂, β̂, x̂, ŷ∗). As in Theorem 3.1, it can be shown that

η2,µ(α̂, β̂, x̂) ≤ ε, η2,µ(α̂, β̂, ŷ∗) ≤ ε.

Thus, we obtain that

max(η2,µ(α̂, β̂, x̂), η2,µ(α̂, β̂, ŷ∗)) ≤ ε.

In order to show that this bound is attained, we use a result from [41]:

min{‖H‖2 : Hx̂ = r, ŷ∗H = s∗} = max

{‖r‖2

‖x̂‖2
,
‖s‖2

‖ŷ‖2

}
. (3.3)

Let H be the optimal matrix in (3.3) and for 0 ≤ k ≤ m, let

∆Ak = −1

γ
sign(α̂kβ̂m−k)µkH,

where γ =

m∑

k=0

|α̂|k|β̂|m−kµk. We have that

P (A + ∆A, α̂, β̂)x̂ = 0, ŷ∗P (A + ∆A, α̂, β̂) = 0

and

‖Ak‖2 = µk max(η2,µ(α̂, β̂, x̂), η2,µ(α̂, β̂, ŷ∗)).
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The backward error with the perturbations measured with the Frobenius norm

is obtained by solving the optimization problem

min{‖H‖F : Hx̂ = r, ŷ∗H = s∗}. (3.4)

Let
ε√
2
∈ EF,µ(α̂, β̂, x̂, ŷ∗). Then,

ηF,µ(α̂, β̂, x̂)2 + ηF,µ(α̂, β̂, ŷ)2 ≤ ε2.

Then, the H that achieves (3.4) is given in [41] by

H =
rx̂∗

‖x̂‖2
2

+
ŷs∗

‖ŷ‖2
2

− s∗x̂

‖x̂‖2
2‖ŷ‖2

2

ŷx̂∗.

with

‖H‖2
F =

‖r‖2
2

‖x̂‖2
2

+
‖s‖2

2

‖ŷ‖2
2

− |s∗x̂|2
‖x̂‖2

2‖ŷ‖2
2

.

We measured the perturbations individually in the definition of the backward

error at the beginning of Section 3.2. In the previous chapter, when we computed

the condition number, the perturbations are measured globally by the norm given

in Definition 1.4. In order to be consistent, we need to compute the backward

error using the same norm as for the condition number so that we can use the

first order bound of the forward error. We define

Ẽδ,µ(α̂, β̂, x̂) = {ε : P (A+∆A, α̂, β̂)x̂ = 0, ‖∆A‖δ,µ ≤ ε}.

Definition 3.3 The δ-norm backward error of (α̂, β̂, x̂) is then defined by

η̃δ,µ(α̂, β̂, x̂) = min Ẽδ,µ(α̂, β̂, x̂).

We measure the perturbations with either the weighted 2-norm ‖∆A‖2,µ or the

weighted Frobenius norm ‖∆A‖F,µ.
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Theorem 3.3 The normwise backward error of an approximate eigenpair (α̂, β̂, x̂)

for the weighted 2-norm ‖ · ‖2,µ or weighted Frobenius norm ‖ · ‖F,µ is given by

η̃δ,µ(α̂, β̂, x̂) =
‖r‖2

γ‖x̂‖2

, (3.5)

where δ = 2, F , r = P (A, α̂, β̂)x and

γ =

(
m∑

k=0

|α̂|2k|β̂|2(m−k)µ2
k

) 1
2

.

Proof. We have

‖r‖2

‖x̂‖2
≤

m∑

k=0

|α̂|k|β̂|m−k‖Ak‖δ,

‖r‖2

‖x̂‖2

≤
m∑

k=0

|α̂|k|β̂|m−kµk‖
1

µk

Ak‖δ,

where ‖ · ‖ in the inequalities above is 2-norm or the Frobenius norm. Using

Cauchy-Schwarz inequality, these inequalities become

‖r‖2

‖x̂‖2
≤ γ‖∆A‖δ,µ,

This bound is attained by the following perturbation

∆Ak =
‖r‖2

γ2‖x̂‖2
2

µ2
k
¯̂α

k ¯̂
β

m−k

rx̂∗.

3.3 Normwise Structured Backward Error for

the Symmetric PEP

In this section we consider structured backward errors for symmetric PEPs for

which the coefficient matrices are symmetric or Hermitian. Our analysis is mo-

tivated by the development of structure preserving algorithms. It enables us to
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check if an approximate eigenpair of a symmetric PEP is the exact eigenpair of

a nearby symmetric PEP.

Let

ES,δ,µ(α̂, β̂, x̂) =
{
ε : P (A + ∆A, α̂, β̂)x̂ = 0, ∆A ∈ Sym(R)m+1, ‖∆A‖δ,µ ≤ ε

}
.

Definition 3.4 The normwise structured backward error for an approximate eigen-

pair (α̂, β̂, x̂) is defined by

ηS,δ,µ(α̂, β̂, x̂) = min ES,δ,µ(α̂, β̂, x̂). (3.6)

We measure the perturbations with either the weighted 2-norm ‖∆A‖2,µ or the

weighted Frobenius norm ‖∆A‖F,eµ with µ̃ = µ√
n

(Definition 1.4).

Theorem 3.4 The structured normwise backward error of a real eigenpair for

the weighted 2-norm ‖ · ‖2,µ or weighted Frobenius norm ‖ · ‖F,µ̃ with µ̃ = µ/
√

n

is given by

ηS,δ,µ(α̂, β̂, x̂) =
‖r‖2

γ‖x̂‖2
,

where

r = P (A, α̂, β̂)x̂ and γ =

(
m∑

k=0

|α̂|2k|β̂|2(m−k)µ2
k

) 1
2

.

Proof. We have

‖r‖2

‖x̂‖2

≤
m∑

k=0

|α̂|k|β̂|m−k‖Ak‖,

‖r‖2

‖x̂‖2

≤
m∑

k=0

|α̂|k|β̂|m−kµk‖
1

µk

Ak‖,

where ‖ · ‖ in the inequalities above is 2-norm or the Frobenius norm. Using

Cauchy-Schwarz inequality, these inequalities become

‖r‖2

‖x̂‖2
≤ γ‖∆A‖2,µ,

‖r‖2

‖x̂‖2
≤ γ‖∆A‖F,µ.
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Let S be a symmetric matrix such that Sx̂ = r. We can take S = ‖r‖2

‖bx‖2
H, where

H is Householder matrix if r and x̂ are linearly independent, otherwise H = I.

Then, the optimal perturbations are given by

∆Ak =
‖r‖2

γ2‖x̂‖2
µ2

kα̂
kβ̂m−kH.

We see that the unstructured backward error (3.5) and the symmetric structured

backward error in Theorem 3.4 are equal. Hence, imposing symmetric structures

does not change the backward error.

In Chapter 6, we analyze the HZ algorithm that computes the eigenvalues of

a real symmetric pair (A, B). Complication occur when (A, B) are real and the

eigenpair is complex. In this case computing the symmetric structured backward

error is an optimization problem that we solve in the next section.

3.4 Normwise Structured Backward Error for

the Symmetric GEP

We consider the GEP in the nonhomogeneous form

Ax = λBx, (3.7)

where A and B are n × n real symmetric matrices. We assume B nonsingular

which justifies the use of the nonhomogeneous form.

63



3.4.1 Real Eigenpair

Suppose that the approximate eigenpair (λ̂, x̂) is real. Then, Theorem 3.4 with

λ̂ = α̂/β̂ and m = 1 gives

ηS,δ(λ̂, x̂) =
1√

µ2
A + |λ̂|2µ2

B

‖(A − λ̂B)x̂‖2

‖x̂‖2

, (3.8)

This explicit expression for the backward error differs slightly from the one de-

rived by D.J. Higham and N.J. Higham [32], where a different measure of the

perturbations is used. If we restrict the perturbation to be real for a complex

eigenvalue with a non trivial imaginary part, we face an optimization problem

that is treated in detail in the next section.

3.4.2 Complex Eigenvalues

To compute ηS,δ, we can use the Kronecker product approach described in [32]

but the disadvantage of this technique is its computational cost. Our aim is to

compute the structured backward error in O(n) operations if the residual vector

r = (A − λ̂B)x̂ is given or in O(n2) otherwise.

Let (λ̂, x̂) be an approximate complex eigenpair of the GEP (3.7). We know

then that (
¯̂
λ, ¯̂x) is also an approximate eigenpair of the GEP . Thus, we have the

following system

(A + ∆A)x̂ = λ̂(B + ∆B)x̂, (3.9)

(A + ∆A)¯̂x =
¯̂
λ(B + ∆B)¯̂x. (3.10)

We write λ̂ = τ + iν, τ, ν ∈ R and x̂ = w + iz, w, z ∈ R
n. By adding first (3.9)

to (3.10) and then by subtracting (3.9) to (3.10), we get the following equivalent

system

(∆A − τ∆B)w + ν∆Bz + r1 = 0, (3.11)

(∆A − τ∆B)z − ν∆By + r2 = 0, (3.12)
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where r1 = (A − τB)w + νBz and r2 = (A − τB)z − νBw. We define

M(∆A, ∆B) =

[
∆A − τ∆B ν∆B

−ν∆B ∆A − τ∆B

]

and we rewrite (3.11)-(3.12) as

M(∆A, ∆B)a + r = 0, (3.13)

where

a =

[
w

z

]
and r =

[
r1

r2

]
.

We recall that ν 6= 0 and that at least one of the components of z is non-zero.

We define the map

g : Sym(R) × Sym(R) → R2n,

(∆A, ∆B) 7→ M(∆A, ∆B)a + r.

The perturbations are measured with the weighted Frobenius norm

‖(∆A, ∆B)‖F,µ =

(‖∆A‖2
F

nµA
+

‖∆B‖2
F

nµB

) 1
2

.

We rewrite the problem of computing the structured backward error as a con-

strained optimization problem. We define the objective function by

N(∆A, ∆B) = ‖(∆A, ∆B)‖2
F,µ̃

and the feasible set

Ω = {(∆A, ∆B), g(∆A, ∆B) = 0}.

Thus, the problem becomes to minimize the objective function N on Ω,

min
(∆A,∆B)∈Sym(R)2

N(∆A, ∆B) subject to g(∆A, ∆B) = 0.

The Lagrange multipliers theorem 1.2 is the main tool to solve this optimiza-

tion problem. Thus, we need to show that Ω is a differentiable manifold and

then compute its dimension. The following lemma will help us to compute the

dimension of Ω.
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Lemma 3.5 Let λ̂ = τ + iν and x̂ = w + iz be an eigenpair of (Ã, B̃) = (A +

∆A, B+∆B). If the pencil Ã− λ̂B̃ is regular and ν 6= 0 then w and z are linearly

independent.

Proof. Let ν 6= 0 and let the pencil (Ã − λ̂B̃) be regular. Assume first that

w = 0. Then, (Ã − λ̂B̃)x̂ = 0 implies

B̃z = 0 and Ãz = 0.

Thus z ∈ nullÃ∩nullB̃ and (Ã−λ̂B̃) is nonregular which contradicts the assump-

tion. Since ν 6= 0 then w 6= 0. Similarly, we show that z = 0 implies (Ã− λ̂B̃) is

nonregular. Thus, w 6= 0 and z 6= 0.

Assume that z = ξw, for some ξ ∈ R \ {0}. Then,

Ãw = τB̃w + iνB̃w.

Thus, ν = 0 which contradicts the hypothesis. Hence, w and z are linearly

independent.

Theorem 3.6 Ω is a (n2 − n)-dimensional differentiable manifold, that is, the

components of the gradient of g are made up 2n linearly independent functionals.

Proof. Since g is linear, it is differentiable and

dg(∆A, ∆B) = g − r.

Thus, applying the vec operator, dg(∆A, ∆B) becomes

dg(∆A, ∆B)(E, F ) = M̃(y, z) ⊗ In

[
vec(E)

vec(F )

]
,

where

M̃(y, z) =

[
yT (−τw + νz)T

zT −(τw + νz)T

]
.
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By Lemma 3.5, w and z are linearly independent. Thus,

rank(M̃(w, z) ⊗ In) = 2n.

Hence, Ω is a (n2−n)-dimensional differentiable manifold by Definition 1.5.

We recall that N and g are differentiable and we denote respectively their

differentials by dN and dg. By the Lagrange multipliers theorem we know that

if N has a minimizer (∆A∗, ∆B∗) on Ω then there exist 2n constants, (ci)1≤i≤2n,

such that

dN(∆A∗, ∆B∗) =
2n∑

i=1

cidgi(∆A∗, ∆B∗), (3.14)

where N reaches its local extremum. We define

u = −τw + νz and v = τz + νw.

We identify the coefficients in (3.14). We have

∆aii =
µA

2
(ciwi + cn+izi), (3.15)

∆bii =
µB

2
(ciui − cn+ivi), (3.16)

∆aij =
µA

4
(ciwj + cjwi + cn+izj + cn+jzi), (3.17)

∆bij =
µB

4
(ciuj + cjui − cn+ivj − cn+jvi). (3.18)

Since (∆A, ∆B) ∈ Ω, we have g(∆A, ∆B) = 0. Also (3.15-3.18) are equivalent

to

∆A =
µA

4
(c1w

T + wcT
1 + c2z

T + zcT
2 ), (3.19)

∆B =
µB

4
(c1u

T + ucT
1 − c2v

T − vcT
2 ), (3.20)

where c1 = c(1: n) and c2 = c(n + 1: 2n). Then, using (3.19-3.20) in (3.11-3.12)

and factorizing the Lagrange multipliers out gives

Tc = (S0 ⊗ In + S1)c = 4r, (3.21)
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where c = [ cT
1 cT

2 ]T ,

S0 =

[
µA‖w‖2

2 + µB‖u‖2
2 µA 〈w, z〉 − µB 〈u, v〉

µA 〈w, z〉 − µB 〈u, v〉 µA‖z‖2
2 + µB‖v‖2

2

]
∈ R

2×2

and

S1 =

[
µAwwT + µBuuT µAzwT − µBvuT

µAwzT − µBuvT µAzzT + µBvvT

]
∈ R

2n×2n.

Theorem 3.7 The problem of minimizing N on Ω has a unique solution.

Proof. Let X = (X1, X2), Y = (Y1, Y2) ∈ Sym(R)2 and let t be such that

0 ≤ t ≤ 1. We have

‖tX1 + (1 − t)Y1‖2
F ≤ t2‖X1‖2

F + (1 − t)2‖Y1‖2
F + 2t(1 − t)‖X1‖F‖Y1‖F

≤ t‖X1‖2
F + (1 − t)‖Y1‖2

F .

Similarly,

‖tX2 + (1 − t)Y2‖2
F ≤ t‖X2‖2

F + (1 − t)‖Y2‖2
F .

Thus,

N(tX + (1 − t)Y ) ≤ tN(X) + (1 − t)N(Y ).

N is convex. Assume that X, Y ∈ Ω. Then, by definition

g(X) = 0 and g(Y ) = 0.

Thus,

tg(X) + (1 − t)g(Y ) = 0,

M(tX + (1 − t)Y ) + ((1 − t) + t)r = 0,

g(tX + (1 − t)Y ) = 0.

Hence, Ω and N are convex and lim
+∞

N = +∞. Thus the solution to the opti-

mization problem exists [20].
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Assume now that the optimization problem has several solutions. For each

of these solutions, Equations (3.14)-(3.21) are valid. In particular, T in (3.21) is

singular and the solutions are of the form c = c0 + c̃ with c̃ ∈ null(T ). Thus, for

all ξ ∈ R, c = c0 + ξc̃ is a solution. Let ∆A(ξ) and ∆B(ξ) be the corresponding

optimal perturbations. Since,

lim
ξ→∞

N(∆A(ξ), ∆B(ξ)) = +∞,

the minimization problem cannot have a solution. Thus, null(T )) = 0 and T is

nonsingular and the solution to the minimization problem is unique.

In order to compute the structured backward error, we just need to solve (3.21).

Now, if we know the values of 〈ck, w〉 and 〈ck, z〉, for k = 1, 2, we can obtain the

optimal perturbations. Thus, we just need to apply successively wT and zT to

(3.21). We obtain a 4 × 4 linear system

T̃ ã = r̃, (3.22)

where

ã = [ 〈c1, w〉 〈c1, z〉 〈c2, w〉 〈c2, z〉 ]T ,

r̃ = [ 〈r1, w〉 〈r1, z〉 〈r2, w〉 〈r2, z〉 ]T . (3.23)

Note that T̃ is nonsingular since T is nonsingular. Let
[

c̃1

c̃2

]
= S1

[
c1

c2

]
.

c̃1 = 〈c1, w〉 ((µA + τ 2µB)w − µBτνz) + 〈c1, z〉µB(ν2z − τνw)

+ 〈c2, w〉 ((µA + τ 2µB)z + µBτνw) − 〈c2, z〉µB(ν2w + τνz),

c̃2 = 〈c1, w〉µB(τνw − ν2z) + 〈c1, z〉 ((µA + τ 2µB)w − µBτνz)

+ 〈c2, w〉µB(ν2w + τνz) + 〈c2, z〉 ((µA + τ 2µB)z − µBτνw).
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By apply successively wT and zT , T̃ = (t̃ij) is given by

t̃11 = (2µA + τ 2µB)‖w‖2
2 + µB(‖u‖2

2 − τν 〈w, z〉),

t̃12 = µB(ν2 〈w, z〉 − τν‖w‖2
2),

t̃13 = (2µA + τ 2µB) 〈w, z〉 + µB(τν‖w‖2
2 − 〈u, v〉),

t̃14 = −µB(ν2‖w‖2
2 + τν 〈w, z〉),

t̃21 = (µA + τ 2µB) 〈w, z〉 − µBτν‖z‖2
2,

t̃22 = µB(ν2‖z‖2
2 + ‖u‖2

2 − τν 〈w, z〉) + µA‖w‖2
2,

t̃23 = (µA + τ 2µB)‖z‖2
2 − µBτν 〈w, z〉 ,

t̃24 = µA 〈w, z〉 − µB(τν‖z‖2
2 + 〈u, v〉 + ν2 〈w, z〉),

t̃31 = µA 〈w, z〉 + µB(τν‖w‖2
2 − ν2 〈w, z〉 − 〈u, v〉),

t̃32 = (µA + τ 2µB)‖w‖2
2 − µBτν 〈w, z〉 ,

t̃33 = µA‖z‖2
2 + µB(‖v‖2

2 + τν 〈w, z〉 + ν2‖w‖2
2),

t̃34 = (µA + τ 2µB) 〈w, z〉 − µBτν‖w‖2
2,

t̃41 = (µA + τνµB) 〈w, z〉 − µB(ν2τν‖z‖2
2 + 〈u, v〉),

t̃42 = (2µA + τ 2µB) 〈w, z〉 − µB(τν‖z‖2
2 + 〈u, v〉),

t̃43 = µB(τν‖z‖2
2 + τν 〈w, z〉),

t̃44 = (2µA + τ 2µB)‖z‖2
2 + µB(‖v‖2

2 + τν 〈w, z〉).

Now that (3.22) is solved, the values of 〈ck, w〉 and 〈ck, z〉 are known for k = 1, 2.

Assume that a, b ∈ Rn with a = (ak), b = (bk). Let U(a, w, b, z) = awT + waT +

bzT + zbT . Then,

‖U(a, w, b, z)‖2
F =

n∑

i,j=1

(aiwj + wiaj + bizj + zibj)
2,

= 2(‖a‖2
2‖w‖2

2 + ‖b‖2
2‖z‖2

2 + 〈a, w〉2 + 〈b, z〉2

+2(〈a, b〉 〈w, z〉 + 〈a, z〉 〈w, b〉)). (3.24)
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Applying formula (3.24) to (∆A, ∆B), the norm of the optimal perturbation are

easily computed in O(n) operation. Hence the structured backward error can be

computed in O(n) flops and if the optimal perturbations are required, they can

be computed in O(n2) flops.

Algorithm 3.8 Given an approximate eigenpair (λ̂, x̂), the residual vector (A−
λ̂B)x̂ and the weights µA, µB, this algorithm computes the symmetric structured

backward error in O(n) flops.

Set τ = <(λ̂), ν = =(λ̂). Set u = −τw + νz and v = τz + νw.

Compute 〈w, z〉 , 〈u, v〉 , ‖w‖2, ‖z‖2, ‖u‖2, ‖v‖2.

Compute r1 = <((A − λ̂B)x̂), r2 = =((A − λ̂B)x̂) and set r = [ r1 r2 ]T .

Compute r̃ in (3.23) and form T̃ .

Solve T̃ c̃ = r̃.

Using (3.24), compute

ηS,δ(λ̂, x̂) = ‖(∆A, ∆B)‖F,µ =

√
‖∆A‖2

F

nµ2
A

+
‖∆B‖2

F

nµ2
B

with δ = (F, µ̃).

If in practice the structured and normwise backward error are of the same

order then the algorithm in this section would be only of a minor theoretical

interest. Thus, in order to justify our work in this section we present a numerical

example where the structured and unstructured normwise backward error have a

large ratio. Our example is generated by the function mdsmax from N.J. Higham’s

Matrix Computation Toolbox [33]. Note that the size of the problem is small. The

GEP was solved by the QZ algorithm (see Chapter 5) implemented in MATLAB
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as eig. For n = 5, we obtained the symmetric pair (A, B) given by

A =




147 −25.5 201.5 76 −40.5

−25.5 74 −109.5 96 46.5

201.5 −109.5 −227 −40 −30.5

76 96 −40 36 1

−40.5 46.5 −30.5 1 −4




,

B =




−211 146.5 −9.5 −12 −4.5

146.5 57 −96 127 3.5

−9.5 −96 −218 −43.5 −50.5

−12 127 −43.5 41 −35.5

−4.5 3.5 −50.5 −35.5 159




.

The pair (A, B) has three real eigenvalues and a complex conjugate pair. For

the complex eigenpairs (λ̂, x̂) and (
¯̂
λ, ¯̂x), we found for the unstructured backward

error ηF,δ(λ̂, x̂) = 2.10−16 and for the structured backward error ηS,δ(λ̂, x̂) = 10−12

which gives

ηS,δ

ηF,δ
≥ 103, δ = (F, µ̃).

This result is not surprising since QZ destroys any symmetry in the matrix

pair. The HZ Algorithm (see Chapter 6) preserves the symmetry of the problem.

On this example, the unstructured normwise backward error for the eigenpairs

computed with HZ is the same as the one for the eigenpairs computed with QZ.

But, for the structured backward error, there is a slight improvement, ηS,δ(λ̂, x̂) =

10−13, which gives a ratio

ηS,δ

ηF,µ̃
≥ 102.

The results of this chapter are used in Sections 5.3 and 6.9.
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Chapter 4

Matrix Factorizations and their

Sensitivity

4.1 Introduction

In this chapter, we show how to introduce zeros in a vector or a matrix using

(J, J̃)-orthogonal matrices defined in Section 1.5. In Paragraph 4.2.1, we start

by recalling results on the so called unified rotations, then we describe gener-

alized Householder reflectors. In the last part of Paragraph 4.2.1, we present

zeroing strategies combined with a careful monitoring of the condition number

of the hyperbolic transformations used. We also present an error analysis of the

computation of hyperbolic rotations. The rest of this chapter focuses on matrix

factorizations in which (J, J̃)-orthogonal factors are involved. We describe each

factorization, we give the optimal first order perturbation bound, the condition

number of the factorization and we present numerical experiments.
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4.2 Zeroing with (J1, J2)-Orthogonal Matrices

4.2.1 Unified Rotations

Unified rotations include orthogonal and hyperbolic rotations. We present a brief

summary; for a more detailed presentation see [11], [74].

Let x = [x1, x2]
T and J = diag(σ1, σ2). Unified rotations have the form

[
c σ1

σ2
s

−s c

]
∈ R

2×2, (4.1)

with σ1c
2 + σ2s

2 = ±1. The aim is to find a matrix H such that

Hx =

[
ρ

0

]
and HTJH ∈ diagn

k(±1),

when σ1|x1| 6= σ2|x2|. Unified rotations can be classified into three types. The

first type is the well known Givens rotation, when J = ±I. In this case, we have

c =
x1√

x2
1 + x2

2

, s =
x2√

x2
1 + x2

2

and c2 + s2 = 1.

If J 6= ±I and |x1| > |x2|, we say that H is a hyperbolic rotation of type 1 and

we have

c =
x1√

x2
1 − x2

2

, s =
x2√

x2
1 − x2

2

and c2 − s2 = 1.

Finally, when J 6= ±I and |x1| < |x2|, we say that H is a hyperbolic rotation of

type 2 and we have

c =
x1√

x2
2 − x2

1

, s =
x2√

x2
2 − x2

1

and s2 − c2 = 1.

We recall that while orthogonal rotations are perfectly well conditioned, hy-

perbolic rotations satisfy

κ2(H) =
|c| + |s|
||c| − |s|| ,

which means they can be arbitrarily ill conditioned.
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4.2.2 Householder Reflectors

Let J ∈ diagq
n(±1) and u ∈ Rn such that 〈u, u〉J 6= 0 where 〈u, u〉J = 〈Ju, u〉

and (w, v) 7→ 〈w, v〉 denotes the usual inner product over Rn. For u ∈ Rn, a

hyperbolic Householder reflector [60] has the form

H(u) = J − 2

〈u, u〉J
uuT . (4.2)

H(u) is J-orthogonal and for any permutation P , H(u)P is (J, J̃)-orthogonal

with J̃ = P TJP . The first purpose of this section is to solve the problem given:

x, y ∈ R
n find u ∈ R

n such that

H(u)x = αy, (4.3)

for some α ∈ R\{0}. In the second part of this section, we focus on the numerical

stability of hyperbolic Householder reflector mainly by computing the condition

number of these transformations.

Assume that (4.3) is satisfied. Then, since H(u) preserves the indefinite norm,

we have

〈x, x〉J = 〈H(u)x, H(u)x〉J = α2 〈y, y〉J .

If 〈x, x〉J = 0 then it implies that 〈y, y〉J = 0 since H(u) is nonsingular. In this

case it is still possible to define H(u) if 〈x, y〉 6= 0. But in most applications,

y = e1 which implies 〈y, y〉J 6= 0 for all J ∈ diagn
q (±1). Thus, if y = e1 and

〈x, x〉J = 0, we have to look for a permutation matrix P such that 〈Px, Px〉J 6= 0.

Finally, if both 〈x, x〉J 6= 0 and 〈y, y〉J 6= 0, we still need the sign of each quantities

to agree in order to work with real matrices.

We are now able to give the following theorem that ensure the existence of

hyperbolic Householder reflectors in some cases.
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Theorem 4.1 Let J ∈ diagk
n(±1) and let x, y ∈ Rn such that

〈x,x〉J
〈y,y〉J

> 0. Define

u = Jx−αy ∈ Rn with α = ±
√

〈x,x〉J
〈y,y〉J

. Then, the hyperbolic Householder reflector

H(u) satisfies H(u)x = αy.

Proof. We have that

〈u, u〉J = 2(〈x, x〉J − α 〈x, y〉) and 〈x, u〉 = 〈x, x〉J − α 〈x, y〉 .

Thus,

H(u)x =

(
1 − 2

〈x, u〉
〈u, u〉J

)
Jx + 2α

〈x, u〉
〈u, u〉J

y = αy.

Finally, note that for any constant µ, H(µu) = H(u) and if H(u)x = αy then u

belongs to the linear subspace spanned by Jx − αy.

We are interested in computing the condition number of H(u) for some u ∈

Rn. Since H(u)T = H(u), we focus on the spectral properties of H(u).

Theorem 4.2 The eigenvalues of H(u) are

λ1,2 = − ‖u‖2
2

〈u, u〉J
±
√

‖u‖4
2

〈u, u〉2J
− 1,

corresponding to the eigenvectors v1,2 = λ1,2u+Ju and n−2 eigenvalue equal ±1

corresponding to the n− 2 eigenvectors that lie in the n− 2 orthogonal directions

to v1,2.

Proof. Let (λ, v) be an eigenpair of H(u). If 〈v, u〉 = 0 then λ is one of the

diagonal element of J . Otherwise, we have that

H(u)v = Jv − 2
〈v, u〉
〈u, u〉J

u,

which leads us to assume that v = αu + βJu where α, β ∈ R. We have

H(u)v = αJu +

(
β − 2

〈v, u〉
〈u, u〉J

)
u = λαu + λβJu.
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Since J 6= ±I (otherwise H(u) will be the usual orthogonal Householder matrix),

we have that u and Ju are linearly independent. Thus, we have to solve the

system

α = λβ, (4.4)

β − 2
〈αu + βJu, u〉

〈u, u〉J
= λα. (4.5)

From Equation (4.4) we have that α 6= 0 and β 6= 0 since λ 6= 0. Thus, by

substituting λ = α
β

in (4.5), we get the quadratic equation

λ2 + 2
‖u‖2

2

〈u, u〉J
+ 1 = 0.

Since
‖u‖2

2

〈u,u〉J
> 1, the solution are real and they are given by

λ1,2 = − ‖u‖2
2

〈u, u〉J
±
√

‖u‖4
2

〈u, u〉2J
− 1.

Note that 1
λ1

= λ2. We get that v1 is orthogonal to v2 and any vector orthogonal

to v1 and v2 is orthogonal to u which proves the theorem.

The following corollary gives the condition number of a hyperbolic Householder

matrix and shows that they can be arbitrarily ill conditioned as much as hyper-

bolic rotations.

Corollary 4.3 The condition number of H(u) for the 2-norm is given by

κ2(H(u)) =

(
‖u‖2

2

| 〈u, u〉J |
+

√
‖u‖4

2

〈u, u〉2J
− 1

)2

.

4.2.3 Error Analysis

We start by presenting the standard model for floating point arithmetic. We

assume the existence of the fl operator that satisfies

fl(x � y) = (x � y)(1 + ε1), |ε1| ≤ u,

f l(
√

x) =
√

x(1 + ε2), |ε2| ≤ u,
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where � denotes one of the algebraic operations +,−,×, / and u is the unit

roundoff.

It is well know for the orthogonal case that the computed values of c and s in

Givens rotation satisfies fl(c) = c(1+εc) and fl(s) = c(1+εs) with |εc| = O(u) and

|εs| = O(u). For an orthogonal Householder reflector H, the computed matrix

satisfies ‖fl(H) − H‖2 ≤ 10u. All these classical results and a more detailed

presentation of a model for floating point numbers can be found in [31, 78].

In the hyperbolic case (with J 6= ±I), several authors noticed that the way

hyperbolic transformations are applied to a vector is crucial for stability and also

the method of computing the c and s is of first importance to ensure a small

relative error. We analyze this problem for a 2 × 2 hyperbolic rotation of type

1. The main problem in computing the values of c and s is how to compute the

indefinite scalar product ρ = x2
1 − x2

2. First, we consider the two following ways

of computing ρ:

ρ1 = x2
1 − x2

2 and ρ2 = (x1 − x2)(x1 + x2).

We have

fl(ρ1) = (x2
1(1 + ε1) − x2

2(1 + ε2))(1 + ε3),

|fl(ρ1) − ρ1|
|ρ1|

≤ u(1 + ‖x‖2
2

(1 + u)

|ρ1|
),

where |εk| ≤ u for k = 1: 3. We see that the relative error for ρ1 is unbounded as

x1 becomes closer to x2. For the second approach, we have

fl(ρ2) = ρ2(1 + ε1)(1 + ε2)(1 + ε3),

|fl(ρ2) − ρ2|
|ρ2|

≤ u(3 + 3u + u2),

where |εk| ≤ u for k = 1: 3. It is clear that the second method is numerically

stable although it may suffer from overflow. Note that if |x1| > |x2| and t = x2

x1

then the corresponding ρ3 = x1(1− t)(1+ t) is still unstable like the first method.
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Another way of computing c and s is through the eigenvalues of H. For

example, the eigenvalues of H in (4.1) (type 1 rotation) are given by

λ± = c ± s =

√
x1 ± x2

x1 ∓ x2
.

Thus, we obtain

c =
λ+ + λ−

2
=

λ2
− + 1

2λ−
, (4.6)

s =
λ+ − λ−

2
=

1 − λ2
−

2λ−
. (4.7)

We chose λ− in the expression of c and s because in this case |λ−| ≥ |λ+| and

thus the computation of λ− is more stable than the computation of λ+. The error

analysis for λ− gives

|fl(λ−) − λ−|
|λ−|

= |γ1 − 1|,

γ1 = (1 + ε1)

√
(1 + ε2)(1 + ε3)

1 + ε4

,

where |εk| ≤ u for k = 1: 4. We have that

γ1 − 1 ≤ u
3 + u

1 − u
, 1 − M ≤ u

−3 + u

1 + u
,

|γ1 − 1| ≤ u max(
3 + u

1 − u
,
−3 + u

1 + u
),

|γ1 − 1| ≤ u
3 + u

1 − u
≤ 3u + 8u2.

Thus, fl(λ−) = (1 + α1)λ− where |α1| ≤ 3u + 8u2. Moreover, we have

fl(c) = γ2

1 + (1 + ε1)(1 + α1)
2λ2

−
2λ−

,

γ2 =
(1 + ε2)(1 + ε3)

(1 + ε4)(1 + α1)
,

where |εk| ≤ u for k = 1: 4. We have

|γ2 − 1| ≤ 7u + c1u
2, γ2 = 1 + α2, |α2| ≤ 7u + c1u

2,

(1 + ε1)(1 + α1)
2 = 1 + α3, |α3| ≤ 7u + c2u

2,
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where c1, c2 are constants. Thus,

|fl(c) − c|
|c| ≤ α2 + α3 + O(u2) ≤ 14u + O(u2).

Note that the computation of s with this method is unstable if λ+ or λ− are close

to 1. But |λ±| → 1 if x1

x2
→ 0 or x2

x1
→ 0 and thus in this case the other methods

mentioned at the beginning of the paragraph are stable.

We compare numerically the relative error of the computed c and s with the

different methods. Let

(ĉ1, ŝ1) = (fl(
x1√

x2
1 − x2

2

), f l(
x2√

x2
1 − x2

2

)),

(ĉ2, ŝ2) = (fl(
x1√

(x1 − x2)(x1 + x2)
), f l(

x2√
(x1 − x2)(x1 + x2)

)),

(ĉ3, ŝ3) = (fl(
λ2
− + 1

2λ−
), f l(

1 − λ2
−

2λ−
)).

The corresponding relative errors are denoted by

Rck =
|ĉk − c|

|c| and Rsk =
|ŝk − s|

|s| , k = 1: 3,

Rk = max(Rck, Rsk).

We compute the values of c and s for x = [ ξ ξ − δ ]T where ξ ∈ R and δ is small

parameter. The exact values of c and s where computed in extended precision.

Let p = | log(δ)

log(10)
|. The numerical results are displayed in Table 4.1. We see that

the last to strategies are more stable numerically. They have acceptable residues,

which confirms our analysis.

4.2.4 Zeroing Strategies

Let x ∈ Rn and J ∈ diagk
n(±1). Our aim in this paragraph is to discuss the

different zeroing approaches. We start with rotations. We can apply n − 1
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Table 4.1: Relative errors for c and s.

p ξ = 1 ξ = 100 ξ = 104

1
2
3
4
5
6
7
8
9

R1 R2 R3

0 0 0
0 0 0

6.10−16 6.10−16 5.10−16

5.10−14 6.10−14 5.10−14

2.10−12 2.10−12 2.10−12

4.10−18 4.10−18 2.10−16

8.10−17 8.10−17 2.10−16

2.10−17 2.10−17 2.10−16

7.10−17 7.10−17 9.10−17

R1 R2 R3

5.10−14 3.10−14 3.10−14

5.10−13 2.10−13 2.10−13

3.10−12 2.10−12 5.10−16

2.10−12 1.10−16 2.10−12

1.10−10 3.10−17 4.10−17

2.10−9 5.10−17 9.10−17

1.10−8 5.10−17 2.10−16

2.10−7 6.10−17 9.10−17

2.10−6 7.10−17 6.10−17

R1 R2 R3

3.10−12 2.10−12 2.10−12

3.10−12 6.10−17 1.10−16

2.10−10 7.10−17 8.10−17

5.10−10 6.10−17 6.10−17

1.10−9 6.10−17 1.10−16

1.10−7 1.10−16 1.10−16

1.10−6 4.10−17 8.10−17

4.10−6 9.10−17 9.10−17

6.10−5 8.10−17 8.10−17

rotations Hk, with 1 ≤ k ≤ n − 1, such that

H =
n−1∏

k=1

Hk and Hx = ρe1.

Since hyperbolic rotations can be ill-conditioned, we need to monitor their con-

dition number and minimize their number. For example, consider this case in

R3:

x = [ x1 x2 x3 ]T , J = diag(−1,−1, 1), |x1| < |x2| < |x3|.

If one chooses to annihilate x3 first and then x2 one needs two hyperbolic ro-

tations. On the other hand, x2 can be zeroed first with an orthogonal Givens

rotation in the (1, 2) plane and then a final hyperbolic rotation in the (1, 3) plane

is used to eliminate x3. This strategy has two main advantages. First, it reduces

the number of hyperbolic rotations used to at most 1. Secondly, it minimizes the

risk of having two hyperbolic rotations acting in the same plane. This tends to

reduce the growth of rounding errors and increases the chance that the largest

condition number of the individual transformations Hk is of the same order of

magnitude as the condition number of the overall transformation H.
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Thus, the best strategy is to apply first all the orthogonal rotations and to

apply last the hyperbolic rotations. With this strategy we only apply at most

one hyperbolic rotations during the zeroing process. The following algorithm is

the implementation of this strategy.

Algorithm 4.4 Given x ∈ Rn and J = diag(σk) ∈ diagk
n(±1) the following

algorithm compute H ∈ Rn×n such that Hx = ρe1 and HTJH ∈ diagk
n(±1).

Set H = I

Find I+ the list of indices such that σi = 1 if i ∈ I+

Find I− the list of indices such that σi = −1 if i ∈ I−

Let n1, n2 be the respective lengths of I+ and I−

Let i1, ĩ1 be respectively the first elements of I+ and I−

for k = 1 : n1

Apply a Givens rotation Hk in the (i1, k) plane such that

Hk [ xi1 xk ]T = ρke1

H([i1, k], :) = HkH([i1, k], :), x([i1, k]) = Hkx([i1, k])

end

for k = 1 : n2

Apply a Givens rotation Hk in the (̃i1, k) plane such that

Hk [ xĩ1
xk ]T = ρke1

H([̃i1, k], :) = HkH([̃i1, k], :), x([̃i1, k]) = Hkx([̃i1, k])

end

Set k = (1, max(i1, ĩ1))

Apply the hyperbolic rotation Hn−1 in the (1, k) plane such that

Hn−1 [ x1 xk ]T = ρn−1e1

H([1, k], :) = Hn−1H([1, k], :), x([1, k]) = Hkx([1, k])

In [9], the authors noticed that the way hyperbolic rotations are applied to a
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vector is of first importance to maintain accuracy and stability. This method can

be described as follows. Let x = [x1 x2 ]T , let H be given by (4.1), a hyperbolic

matrix of the first type and define y = Hx,
[

y1

y2

]
=

[
cx1 − sx2

−sx1 + cx2

]
.

We have [
x1

y2

]
= H̃

[
y1

x2

]
, H̃ =

1

c

[
1 s

−s 1

]
.

H̃ is a Givens rotation which suggests that the computation of y2 is likely to be

more stable than the computation of y1. Now that we have the value of y2 we

can apply the same method for y1. We have that
[

y1

x2

]
= Ĥ

[
x1

y2

]
, Ĥ =

1

c

[
1 −s

s 1

]
.

We recall that H and H̃ are related by the exchange operator H̃ = exc(H) defined

in [38]. The exchange operator maps hyperbolic matrices to orthogonal matrices

and it satisfies exc(exc) = exc.

We can also apply a Householder hyperbolic matrix described in Paragraph

4.2.2 to a vector to introduce zeros. In order to monitor the condition number of

these transformations, we need the same type of strategy described in Algorithm

4.4. Let I+ and I− be defined as in Algorithm 4.4. Let y = x(I+) ∈ Rn1 and

z = x(I−) ∈ R
n2 . Let G1 = (I − 2uuT ) ∈ R

n1×n1 and G2 = (I − 2vvT ) ∈ R
n2×n2

be the orthogonal Householder matrices such that G1y = ρ1e1 and G2z = ρ2e2.

We define ũ ∈ Rn and ṽ ∈ Rn by

ũk =





uI+(k) if k ∈ I+,

0 otherwise,
and ṽk =





vI−(k) if k ∈ I−,

0 otherwise.
(4.8)

Then, let G̃1 = I − 2ũũT and G̃2 = I − 2ṽṽT . We have that

G̃1G̃2x = G̃2G̃1x = ρ̃1e1 + ρ̃2ek,
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where ρ̃1, ρ̃2 ∈ R and k = max(i1, ĩ1) where i1 and ĩ1 are the first elements of I+

and I−. To finish the zeroing process, we just need to apply one 2× 2 hyperbolic

Householder reflector (or one 2 × 2 hyperbolic rotation) in the (1, k) plane. The

following algorithm describes the implementation of the zeroing strategy using

Householder type transformations.

Algorithm 4.5 Given x ∈ Rn and J = diag(σk) ∈ diagk
n(±1) the following

algorithm computes H ∈ Rn×n such that Hx = ρe1 and HTJH ∈ diagk
n(±1).

Find I+ the list of indices such that σi = 1 if i ∈ I+

Find I− the list of indices such that σi = −1 if i ∈ I−

Let n1, n2 be the respective lengths of I+ and I−

Let i1, ĩ1 be respectively the first elements of I+ and I−

Set y = x(I+), z = x(I−)

Compute orthogonal Householder matrix G1 = I − 2uuT such that G1y = ρe1

Compute orthogonal Householder matrix G2 = I − 2vvT such that G2z = ρe2

Compute ũ and ṽ using (4.8) and

the associated Householder matrices G̃1 and G̃2

Set k = max(i1, ĩ1), H = G̃1G̃2 and x = Hx = ρ1e1 + ρ2ek

Apply hyperbolic Householder transformation G̃ in the (1, k) plane.

Set H = G̃H

One can easily see that using the first method seems a good choice to introduce

zeros in a sparse matrix with unified rotations whereas the second approach with

the Householder reflectors is a better choice to introduce zeros in a full matrix.

In the following sections, we investigate several matrix factorizations that

have a hyperbolic or an orthogonal factor.
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4.3 Introduction to Matrix Factorization

Matrix factorization is a common tool in different branches of mathematics. A

general definition is given in [5]:

A matrix factorization theorem is an assertion that a matrix A can

be factorized into a product A = A1A2, of two special matrices A1,

A2. Some conditions may be necessary for such a decomposition to

exist, and some further conditions may ensure the uniqueness of the

factorization.

Throughout this chapter, we encounter matrix factorizations in which more than

two matrices are involved. The aim of this work is to analyze the sensitivity of

some matrix factorizations that involve at least one hyperbolic matrix and to give

a first order perturbation bound for the factors. The optimal first order perturba-

tion bound yields a condition number of the relevant matrix in the factorization,

which measures its sensitivity to perturbations in the data. For A, X, Y ∈ R
n×n,

let ϕ(X, Y ) = A be a factorization of A, where ϕ is a function describing the

factorization. For instance for the QR factorization, ϕ(X, Y ) = XY , where X is

unitary and R upper triangular. The classical theory of condition numbers [61]

employs the definitions

κX = lim
ε→0

sup
{
ε−1‖∆X‖, ϕ(X+∆X, Y +∆Y ) = A+∆A, ‖∆A‖ ≤ ε

}
,

κY = lim
ε→0

sup
{
ε−1‖∆Y ‖, ϕ(X+∆X, Y +∆Y ) = A+∆A, ‖∆A‖ ≤ ε

}
.

This definition has the advantage of being simple to present, although in most

cases the necessary computations to bound the condition number or to show it

is attained are far from being trivial. The method used in this thesis is quite

different. Our aim is to define a function g in a neighborhood of A such that

ϕ(X̃, Ỹ ) = A + ∆A with (X̃, Ỹ ) = g(A + ∆A). We define the condition number
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as the norm of ‖dg(A)‖, the differential of g at A. The main tool for this analysis

is the implicit function theorem. Our method is described in detail in Section

4.4.

Several results that we cite later on are available concerning orthogonal matrix

factorizations. In most cases, these results are only bounds and not the condition

number. In the literature, condition numbers for hyperbolic matrix factorization

have not been reported. In the rest of this chapter, we investigate some matrix

factorizations and for each of them we compute the condition number. Our proof

technique is not new. It was used in [5] and [24] to investigate perturbation

bounds for several matrix factorizations.

The HR factorization is the generalization of the usual QR factorization when

the orthogonal factor is allowed to be (J, J̃)-orthogonal. Perturbation bounds of

the QR factorization are given for example in [5], [17], [24], [45] and [65]. We

compute the condition number of the HR factorization and show that the classi-

cal perturbation bounds for the QR factorization are very weak. Our analysis (of

the HR factorization) is closer to the ones presented in [5], [24] and [45]. For the

singular value decomposition (SVD), it is well known that the condition number

for the singular values is 1 (see for example [66]). Perturbation bounds for the

singular vectors are also available in [64], [76]. In our case, we compute the condi-

tion number of the hyperbolic SVD (see Section 4.7), which is the generalization

of the usual SVD. In several papers, the polar factorization have been analyzed

(see for example [16], [34], [36], [44], [51]). Once more, we compute the condition

number of the indefinite polar factorization and apply our results to the usual

polar factorization, which allows us to give a short and easy computation of its

condition number. We also refer to two surveys, [5] where perturbation bounds

for several matrix factorizations are given and [36] where various conditioning

problems are treated.
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4.4 A General Method for Computing the Con-

dition Number

Let S be a linear subspace of Kn×n, X ∈ S and let VX ⊂ S be an open neighbor-

hood of X. S can be regarded as a set of matrices that have a particular structure

such as symmetry, Hermitian or a sparse structure such as upper triangular. In

this section, let H denote either Omn(J, J̃), Omn(J, J̃, C) or Umn(J, J̃). Let E be

a linear subspace of Kn×n. A (J, J̃)-orthogonal or (J, J̃)-unitary factorization of

a matrix A ∈ E can be described by a function

ϕ(X, Y ) = A, X ∈ VX and Y ∈ H

Our aim is to derive perturbation bounds for the X and Y factors when A is

subject to some perturbation ∆A. The main tool for this analysis is the implicit

function theorem. This technique was also used by Bhatia in [5]. This method is

divided into three steps.

Step 1 Using (1.13), we define

f : VA × VX × K
p → E ,

(Ã, X̃, ỹ) 7→ ϕ(X̃, Ỹ ) − Ã,

where Ỹ = φ(ỹ) is defined according to H in Lemma 1.3 and p is the

dimension of H. Note that f(A, X, y) = 0, with Y = φ(y). Assume that f

is differentiable. We denote the differential of f in the X and y direction

by

df2(A, X, y) =
∂f

∂X
+

∂f

∂y
.

For all the factorizations, df2(A, X, y) can be easily computed because ϕ is

linear in X and at most quadratic in Y .
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Step 2 In order to apply the implicit function theorem to f at (A, X, y), df2(A, X, y)

has to be nonsingular. Thus, null(df2(A, X, y)) needs to be computed, that

is we need to solve the equation

df2(A, X, y)(∆X, ∆Y ) = 0, ∆X ∈ E , ∆Y = dφ(y)∆y,

with ∆y ∈ Kp. Using Section 1.5, ∆Y is in the tangent space of H. Assume

that null(df2(A, X, y)) = {0}. Then, by computing dϕ(X, Y ), we have that

{0} = range

(
∂ϕ

∂X

)

|S

⋂
range

(
∂ϕ

∂y

)

|T (H)

.

Additionally, using (1.9)-(1.12) if dim E = dim S + p then we have that

df2(A, X, y) is invertible and the following splitting of E into a direct sum

decomposition of the type

E = range

(
∂ϕ

∂X

)

|S

⊕
range

(
∂ϕ

∂y

)

|T (H)

, (4.9)

holds, where T (Hn) is the tangent space of Hn at Y . The advantage of

(4.9) is that it enable us to invert df2(A, X, y) by using the corresponding

projector to the direct sum. Then, by the implicit function theorem, there

exists a differentiable function g = (gX , gY ) and an open neighborhood VA

of A satisfying

g : VA → VX × VY , (4.10)

Ã 7→ (gX(Ã), gY (Ã)),

where VX × VY is an open neighborhood of (X, Y ). Moreover, g satisfies

gX(A) = X, gY (A) = Y and

dg(A) = −(d2f(A, X, y))−1 ∂f

∂A
, (4.11)

f(Ã, gX(Ã), gY (Ã)) = 0, for all Ã ∈ VA, (4.12)

88



that is Ã = ϕ(g1(Ã), g1(Ã)) is the factorization of Ã. Let ΠS and ΠT (Hn)

denote the projectors corresponding to (4.9). We have that ∂f
∂A

= −I. Thus,

(4.11) becomes

dgX(A)∆A =

(
∂ϕ

∂X

)−1

ΠS∆A, (4.13)

dgY (A)∆A =

(
∂ϕ

∂Y

)−1

ΠT (H)∆A. (4.14)

Step 3 The condition number of the factorization is given by the norm of the linear

map dg(A). In some cases, only a bound for the norm of dg(A) will be given.

Finally, for Ã ∈ VA and ϕ(X̃, Ỹ ) = Ã, the first order perturbation bounds

and expansion are obtained using Taylor’s theorem

‖X̃ − X‖F ≤ ‖dgX(A)‖2ε + O(ε2), (4.15)

‖Ỹ − Y ‖F ≤ ‖dgY (A)‖2ε + O(ε2), (4.16)

where ε = ‖Ã − A‖F .

4.5 The HR Factorization

We say that A ∈ Rn×n admits an HR factorization with respect to a signature

matrix J ∈ diagk
n(±1) if

A = HR, R ∈ 4(R), H ∈ On(J, J̃),

where J̃ ∈ diagk
n(±1). The next theorem from [14] shows that almost every

matrix has an HR factorization with respect to J .

Theorem 4.6 Let A ∈ Rn×n be nonsingular and J ∈ diagn
q (±1). There exist

H, R ∈ Rn×n such that HTJH ∈ diagn
q (±1), R is upper triangular and A = HR

if and only if all principal minors of AT JA are nonzero.
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Proof. The assumption that all principal minors of AT JA are nonzero ensures

that AT JA has an LU factorization

AT JA = LU,

with L a unit lower triangular matrix and U a nonsingular upper triangular

matrix. Let D = diag(U) and U = DL̃T , where L̃ is a unit lower triangular

matrix. Since AT JA is symmetric, we get that L = L̃. We define J̃ = sign(D) and

we have AT JA = L|D| 12 J̃ |D| 12 LT . By Sylvester’s inertia theorem J̃ ∈ diagn
q (±1).

We define R = |D| 1
2 LT and H = AR−1. We have

HT JH = R−T AT JAR−1 = R−T L|D|1/2J̃ |D|1/2LT R−1 = J̃ .

Hence A can be factorized into A = HR with H such that HTJH ∈ diagn
q (±1)

and R is upper triangular.

We suppose now that A = HR, where H is a (J, J̃)-orthogonal and R upper

triangular. Then

AT JA = RT HT JHR = RT J̃R.

Since A is nonsingular, R is nonsingular. Moreover, for Ã = AT JA,

Ã(1: k, 1: k) = RT (1: k, 1: k)J̃(1: k, 1: k)R(1: k, 1: k), k = 1: n,

which shows that all the leading principal submatrices of AT JA are nonsingular.

For nonsingular matrices the HR factorization is unique up to a signature matrix.

We can make it unique by insisting that R has positive diagonal entries.

For A ∈ Rm×n, with m > n, the HR factorization with respect to J ∈

diagm
q (±1) is A = HR, where H ∈ Rm×m, HT JH ∈ diagm

q (±1) and R ∈ Rm×n is

upper trapezoidal.We now give two theorems that we shall use later on. We need

the following result for the implementation of the HZ algorithm (see Chapter 6)

in the eventual case where a shift might be an eigenvalue.
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Theorem 4.7 Let A ∈ Rm×n with m > n having full rank and J ∈ diagm
q (±1).

A has an HR factorization with respect to J if and only if all the principal minors

of AT JA are nonzero.

Proof. Assume that all the principal minors of AT JA are nonzero. Then,

like in Theorem 4.6, AT JA can be factorized as

AT JA = L|D| 12 J̃1|D| 12 LT ,

where L ∈ Rn×n is unit lower triangular, D ∈ Rn×n is nonsingular diagonal and

J̃1 ∈ diagm
q1

(±1) for some integer q1. Let R̃ = |D| 12 LT and R = [R̃T 0]T ∈ R
m×n

and define H1 = AR̃−1 ∈ Rm×n. We have that HT
1 JH1 = J̃1. Let H2 ∈ Rm×(m−n)

such that H = [H1, H2] is nonsingular. H2 can be chosen such that its columns

are J−orthogonal to the columns of H1, that is, HT
1 JH2 = 0. We now apply

a Gram-Schmidt type process to the columns of H2 = [hn+1, · · · , hm] which is

define by

h̃i = hi −
i−1∑

k=n+1

(hT
k Jhi)h̃k,

for n + 1 ≤ i ≤ m. Then, we set H2 = [h̃n+1 · · · h̃m] and we have

HT JH =

[
J̃1 0

0 J̃2

]
,

where J̃2 is diagonal. By Sylvester’s law of inertia, none of the diagonal entries

of J̃2 can be zeros. Thus, we can normalize the columns of H2 such that J̃2 ∈
diagm

q2
(±1) with q = q1 + q2. Thus A has an HR factorization.

The converse is similar to the one in the proof of Theorem 4.6.

Theorem 4.8 Let A ∈ Rn×n, with k = rank(A) < n and assume that the first

k columns of A are linearly independent. Write A = [A1, A2], A1 ∈ Rn×k, and

assume that A1 has an HR factorization with respect to J . Then, A has an HR

factorization.
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Proof. We are given that A1 = HR̃, where R̃ is upper trapezoidal and

H is (J1, J2)−orthogonal for some J1, J2 ∈ diagn
q . We have that range(A2) ⊂

range(A1) and since A1 has full rank, there exists a unique P ∈ Rk×(n−k) such

that

A2 = A1P.

Thus, we define R = [R̃ , R̃P ] and we have HR = H[R̃ , R̃P ] = A.

Corollary 4.9 Let A ∈ Rn×n, with k1 = rank(A) < n, J ∈ diagn
q (±1) and let k2

be the rank of AT JA. If k2 < k1, A does not have an HR factorization.

Proof. The proof is a consequence of Theorem 4.8.

The theorems and the corollary given above deal with HR factorization of real

matrices. These results are needed in Chapter 6 for the implementation of the

HZ algorithm. In the rest of this section, we focus on computing perturbation

bounds for the HR factorization. The following theorem is a trivial extension of

Theorem 4.6 to complex matrices.

Theorem 4.10 Let A ∈ Cn×n be nonsingular and J ∈ diagk
n(±1). There exist

H, R ∈ Cn×n such that H∗JH ∈ diagn
k(±1), R is upper triangular and A = HR

if and only if all principal minors of A∗JA are nonzero.

For rectangular matrix A ∈ Cm×n, the HR factorization with respect to a signa-

ture matrix J ∈ diagk
m(±1) is defined by

A = HR, R ∈ 4(C), H ∈ Umn(J, J̃),

where J̃ ∈ diagq
n(±1).

In the rest of this section, we use the following theorem to define the HR

factorization for rectangular complex matrices. It enables us to investigate the

perturbation of the HR factorization.
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Theorem 4.11 Let A ∈ Cm×n, with m ≥ n, rank(A) = n and let J ∈ diagk
m(±1).

A has an HR factorization with respect to J if and only if all principal minors of

A∗JA are nonzero.

Proof. Assume that all the principal minors of A∗JA are nonzero. Then, like

in Theorem 4.6, A∗JA can be factorized as

A∗JA = L|D| 12 J̃1|D| 12 L∗,

where L ∈ Cn×n is unit lower triangular, D ∈ Rn×n is nonsingular diagonal and

J̃ ∈ diagq
n(±1) for some integer q. Let R = |D| 1

2 L∗ and define H = AR−1 ∈

Cm×n. We have that H∗JH = J̃ . The converse is obtained like in Theorem 4.6.

4.5.1 Perturbation of the HR Factorization

Now that the definition of the HR factorization is given, our aim is to derive

perturbation bounds for the H factor and the R factor when A is subject to

some perturbation ∆A. In this section, we first generalize the results on the per-

turbation bounds for the HR factorization of square matrices in [5] to complex

rectangular matrices and then we extend the results concerning the QR factor-

izations in [17, 65, 45] to the HR factorization of complex rectangular matrices.

We also compute the condition number of the HR factorization.

Let Vh ⊂ Rp with p = n2−n
2

and according to Section 4.4 H = φ(h). Following

the general method developed in Section 4.4, we define

f : C
m×n ×4(C) × Vh → C

m×n,

(Ã, R̃, h̃) 7→ H̃R̃ − Ã,

where from (1.13) H̃ = φ(h̃). We have that ϕ(H, R) = HR. We get

d2f(A, h, R)(∆h, ∆R) = ∆HR + H∆R, (4.17)
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H∗Jd2f(A, h, R)(∆h, ∆R)R−1 = H∗J∆H + J̃∆RR−1, (4.18)

where ∆H = dφ(h)∆h. Note that H∗J∆H ∈ SkewH and J̃∆RR−1 ∈ 4(C).

We define the two projectors Π1 and Π2 by

Π1 : Cn×n → 4(C), Π1 = Πd + Πu + Π∗
l ,

Π2 : Cn×n → SkewH, Π2 = Πl − Π∗
l .

Note that X = (Π1 + Π2)X and range(Π1) ∩ range(Π2) = ∅. Hence

C
n×n = 4(C) ⊕ SkewH.

We have ‖Π2(X)‖2
F = 2‖Πl(X)‖2

F , thus, since Πl is an orthogonal projection

‖Π2‖2 =
√

2. It is straightforward to show that ‖Π1‖2 ≤
√

2. This bound is

attained by X =
√

2
2

(eie
T
j + eje

T
i ). Thus, from (4.17) and (4.17) and using (4.13)

we get

dgR(A)∆A = Π1(H
∗J∆AR−1)R.

If m = n then

dgH(A)∆A = HJ̃Π2(H
∗J∆AR−1).

If m > n, then there exits G = [H H0] ∈ Cm×m such that G∗JG ∈ diagk
m(±1) for

some integer k. Note that G and k are obtain by a Gram-Schmidt type process.

Thus,

dgH(A)∆A = JG−∗

[
Π2(H

∗J∆AR−1)

H∗
0J∆AR−1

]
,

‖dgH(A)∆A‖F = ‖G‖2((‖Π2‖2
2‖H‖2

2 + ‖H0‖2
2)‖R−1‖2

2‖∆A‖2
F )

1
2 ,

‖dgH(A)‖2 ≤
√

3κ2(G)‖R−1‖2.

Finally, we obtain the bounds

‖dgR(A)‖2 ≤
√

2κ2(R)‖H‖2, (4.19)

‖dgH(A)‖2 ≤
√

2κ2(G)‖R−1‖2. (4.20)
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Following (4.15) and (4.16), we obtain the following theorem.

Theorem 4.12 Let A = HR, H ∈ Umn(J, J̃) be the HR factorization of A and

for ∆A ∈ Cn×n such that ε = ‖∆A‖F is small enough, let A + ∆A = H̃R̃ be the

HR factorization of A + ∆A. Then

‖R̃ − R‖F ≤
√

2κ2(R)‖H‖2ε + O(ε2), (4.21)

‖H̃ − H‖F ≤
√

2κ2(H)‖R−1‖2ε + O(ε2). (4.22)

Theorem 4.12 generalizes the result in [5] to complex rectangular matrices and

also extends the results concerning the QR factorizations in [17, 65, 45] to the HR

factorization of complex rectangular matrices. The bounds are similar to those

obtained in [5, 45].

If we apply our result to the particular case of the QR factorization, then we

get the well-known bounds

‖R̃ − R‖2 ≤
√

2κ2(A)ε + O(ε2), (4.23)

‖H̃ − H‖2 ≤
√

2‖A−1‖2ε + O(ε2). (4.24)

(4.19) and (4.20) give a bound on the condition number of the HR factoriza-

tion. The exact condition number can be obtained by using a Kronecker product

approach. Let M1, M2, C and r̂ be defined by

M1 = (I ⊗ R∗J̃) + (R∗J̃ ⊗ I)CT,

M2 = (I ⊗ A∗J) + (A∗J ⊗ I)CT,

vec(A∗) = Cvec(A).

From (4.18) or by differentiating (A, R) 7→ R∗J̃R − A∗JA, we get

R∗J̃R̂ + R̂∗J̃R = A∗J∆A + ∆A∗JA. (4.25)
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Applying the vec operator to (4.25), we obtain

M1r̂ = M2vec(∆A),

r̂ = (M1)
−1
|4(C)M2vec(∆),

‖dgR(A)‖2 = ‖(M1)
−1
|4(C)M2‖2, (4.26)

where (M1)|4(C) is the restriction of M1 to vec(4(C)). Combining (4.26) with

the direct sum decomposition, we obtain

dgH(A)∆A = ∆AR−1 − H(dgR(A)∆A)R−1,

‖dgH(A)‖2 = ‖R−T ⊗ I − (M1)
−1
|4(C)M2‖2, (4.27)

Using (4.26) and (4.27), we have the following theorem.

Theorem 4.13 Let A = HR, H ∈ Umn(J, J̃) be the HR factorization of A and

for ∆A ∈ Cn×n such that ε = ‖∆A‖F is small enough, let A + ∆A = H̃R̃ be

the HR factorization of A + ∆A. Then, the sharpest perturbation bounds to first

order are given by

‖R̃ − R‖F ≤ ‖(M1)
−1
|4(C)M2‖2ε + O(ε2), (4.28)

‖H̃ − H‖F ≤ ‖R−T ⊗ I − (M1)
−1
|4(C)M2‖2ε + O(ε2). (4.29)

Theorem 4.12 is a generalization of the HR and QR factorization perturbation

bounds that can be found in the literature. Although Theorem 4.12 and 4.13

are similar, the bounds in Theorem 4.13 are the best possible. In Table 4.3, we

compare the bounds that are stated in these two theorems.

4.5.2 Numerical Experiments

The sensitivity of the HR factorization of A with respect to a signature matrix

J 6= ±I is closely related to the minors of A∗JA. If one of the minors of A∗JA
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vanishes or is close to zero, then R is ill conditioned which implies that H is also ill

conditioned or does not exist (if R is singular). To illustrate this fact numerically,

we construct a sequence of matrices Aε such that their first column aε = Aε(:, 1)

is almost isotropic, that is, aT
ε Jaε → 0 as ε → 0. We denote δε = ‖Aε0 − Aε‖F

and Aε0 = Hε0Rε0 . The results are in Table 4.2. In the second column of Table

4.2, the values of δε are relatively small. We see that the values of ‖Rε − Rε0‖F

in the third column and the values of ‖Hε − Hε0‖F in the fourth column do not

depend on δε. They depend instead on the values of aT
ε Jaε, in the sense that the

bounds in the third and the sixth column get more accurate when aT
ε Jaε increases

and in the meantime the value δε increases slowly. It confirms the fact that the

sensitivity of the HR factorization depends on the minors of A∗JA. Note that

the errors in R, in the third column (respectively H in the fifth column) are very

close to the expected value in the fourth column (respectively the sixth column).

This is due to the fact that we use the condition number. In the next numerical

experiment, with the QR factorization, we see that if the bound is not sharp,

then the expected values do not reflect the errors that are obtained.

Table 4.2: Perturbation bounds of the HR factorization.

aT
ε Jaε δε ‖Rε − R‖F ‖dgR(A)‖2δε ‖Hε − H‖F ‖dgH(A)‖2δε

−7e − 8 2e − 15 1.77e − 4 5.98e − 4 6.3e − 4 2.37e − 4
−5e − 6 2e − 14 2.14e − 6 2.97e − 6 5.21e − 7 2.02e − 6
−2e − 4 2e − 13 1.34e − 7 2e − 7 3.78e − 8 1.51e − 7
−7e − 3 2e − 12 4.67e − 8 6.61e − 8 1.88e − 8 1.36e − 7

For the QR factorization, we compare numerically (4.19) and (4.26). We

consider the following 2 × 2 example

Aε =

[
1 − ε 1

1 1 + ε

]
, κ2(Aε) = ε−2(1 +

√
1 + ε2)2.
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Let QεRε = Aε be the QR factorization of Aε and let ∆Aε = A0−Aε. We have that

‖∆Aε‖F = |ε|
√

2. The numerical results are in Table 4.3. Note that the expected

values in the second column, computed with our condition number, are just twice

the error on the R factor. Note that ‖A0‖F = 2. Thus, if we use relative errors

our bounds are the same as the computed values. The expected values obtained

with the usual bound are quite poor since the bound given by (4.23) is very poor.

These results suggest that in this example the QR factorization of Aε is a well

conditioned problem independent of the condition number of the matrix that is

factorized.

Table 4.3: Values of ‖dgR(A)‖2‖∆Aε‖F and
√

2κ2(Aε)‖∆Aε‖F as ε → 0.

ε ‖Rε − R‖F ‖dgR(A)‖2ε
√

2κ2(Aε)ε
10−1 1.001e − 1 2.107e − 1 8e1
10−2 1e − 2 2.01e − 2 8e2
10−3 1e − 3 2e − 3 8e3
10−4 1e − 4 2e − 4 8e4
10−5 1e − 5 2e − 5 8e5
10−6 1e − 6 2e − 6 8e6

4.6 The Indefinite Polar Factorization

We say that A ∈ Rn×n admits a polar factorization if A = HS with H orthogonal

and S symmetric definite positive. The indefinite polar factorization (IPF) is a

generalization of the usual polar factorization, that is, we want to generalize the

polar decomposition with H (J, J̃)-orthogonal.

A = HS, HTJH = J,
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The following theorem from [38] allows us to define this decomposition and it

gives necessary conditions for the existence and uniqueness of the IPF.

Theorem 4.14 If A ∈ Rn×n and JAT JA has no eigenvalues on the nonpositive

real axis, then A has a unique IPF A = HS, where H is (J, J)-orthogonal and S

is J-symmetric with eigenvalues in the open right half-plane.

In this thesis, we define the IPF as in Theorem 4.14. Throughout this section,

we assume that S is diagonalizable.

4.6.1 Perturbation of the IPF

We start by a preliminary result that will enable us to give the direct sum de-

composition like in (4.9). We assume that A is nonsingular and that it admits

the IPF A = HS, H ∈ On(J, J). Our aim is to derive perturbation bounds for

the H factor and the factor S when A is subject to some perturbation ∆A. Using

(1.13), we define

f : R
n×n × Vh × JSym(R) → R

n×n,

(Ã, S̃, h̃) 7→ H̃S̃ − Ã,

where H̃ = φ(h̃) and H = φ(h) and φ is defined by (1.13). Note that f(A, h, S) =

0. We define d2f = ∂f
∂h

+ ∂f
∂S

. We have

d2f(A, h, S)(∆h, ∆S) = ∆HS + H∆S,

HTJd2f(A, h, S)(∆h, ∆S)S−1 = HT J∆H + J∆SS−1,

where ∆H = dφ(h)∆h. Note that HTJ∆H ∈ Skew(R). In the following lemma,

we establish the direct sum decomposition as in (4.9).
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Lemma 4.15 Let J ∈ diagq
n(±1) and let S be nonsingular, J-symmetric such

that the eigenvalues of JS are positive. Then,

R
n×n = Skew(R) ⊕ Sym(R)S−1.

Furthermore, let Π1 be the projector on Skew(R) and Π2 be the projector on

Sym(R)S−1. Then,

Π1(Z) = T+(ST )−1(ZS − ST Z), (4.30)

Π2(Z) = T̃+(ST )−1(ST (Z + ZT )S)S−1, (4.31)

where T+(ST ) and T̃+(ST ) are defined in Theorem 1.5.

Proof. Let Z ∈ Rn×n and consider the equation X + Y S−1 = Z with X ∈
Skew(R) and Y ∈ Sym(R). We have that −X + S−TY = ZT . Thus,

ST X + XS = ZS − ST Z,

ST Y + Y S = ST (ZT + Z)S.

We see then the solutions are given by

X = T+(ST )−1(ZS − ST Z) and Y = T̃+(ST )−1(ST (Z + ZT )S)S−1.

To characterize g, we proceed as follows. We have ∂f
∂A

(A, S, h) = −∆A. We set

(Ĥ, Ŝ) = (dgH(A)∆A, dgS(A)∆A). Thus,

ĤS + HŜ = ∆A and ĤT JH + HT JĤ = 0.

Let X = HTJĤ ∈ Skew(R) and ∆̃A = HT J∆A. Thus,

ST X + XS = ∆̃A − ∆̃A
T
, (4.32)

ST JŜ + ŜT JS = ST ∆̃A + ∆̃A
T
S. (4.33)
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Thus, we obtain

dgH(A)∆A = HJ T̃ −1
ST (HT J∆A − ∆AT JH),

dgS(A)∆A = JT −1
ST (ST )(AT J∆A + ∆AT JA).

Let ST = V DV −1 be the eigendecomposition of ST . We define

M1 = (V ⊗ V T )diag(vec(M))(V −1 ⊗ V −T ),

M2 = −(HT J ⊗ I)T + I ⊗ HTJ,

M̃2 = (AT J ⊗ I)T + I ⊗ AT J.

Then, applying the vec operator, we obtain

‖dgH(A)‖2 = ‖(I ⊗ HJ)M1M2‖2, (4.34)

‖dgS(A)‖2 = ‖M1M̃2‖2. (4.35)

Using (4.34)-(4.35), we have the following theorem.

Theorem 4.16 Let A = HS, H ∈ On(J) be the IPF of A and for ∆A ∈ Rn×n

such that ε = ‖∆A‖F is small enough, let (A+∆A) = H̃S̃ be the IPF of A+∆A.

Then,

‖S̃ − S‖F ≤ ‖M1M̃2‖2ε + O(ε2),

‖H̃ − H‖F ≤ ‖M1M2‖2ε + O(ε2),

where M1, M2 and M̃2 are the matrices involved in the differential of the implicit

function in (4.34) and (4.35)

The above theorem gives the perturbation expansion of the IPF for a nonsingular

A. If A is singular and 0 is at most a simple eigenvalue of A then it is possible to

give the perturbation bounds of the factor S. We just need to apply the implicit

function theorem to (A, S) 7→ ST JS − AT JA. Also, from (4.34)-(4.35), we can
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give bounds of the condition number that less expensive to compute that the

exact condition numbers:

‖dgH(A)‖F ≤ 2mκ2(V )2κ2(H),

‖dgS(A)‖F ≤ 2mκ2(V )2‖A‖2,

where m = maxij |m+
ij| and M = (m+

ij) is defined by (1.20).

4.6.2 The Polar Factorization

The polar factorization is the particular case that is obtained when J = ±I. Thus,

A = QS is the polar factorization of A, with Q orthogonal and S symmetric.

Note that if A is complex then the perturbation bounds remain the same for the

unitary Q factor and the Hermitian factor S. In [5], a perturbation bound for the

Hermitian factor that involves the 2-norm of A is given but in [34] and [35], the

author found a constant bound
√

2. With our method, we obtain the condition

number for the Hermitian factor and for the unitary factor in a simpler way than

[16]. We proceed as follows.

Lemma 4.17 Let the two matrix operators T1 and T2 be defined by T1X = (X −

XT ) ◦M and T2X = (DX + XT D) ◦M where M is defined in (1.20) and D real

diagonal matrix with positive entries. Then

‖T1‖2 =
2

λn−1 + λn
, (4.36)

‖T2‖2 =
√

2

√
λ2

n + λ2
1

λn + λ1

, (4.37)

where λn−1 and λn are the two smallest diagonal entries of D and λ1 the largest

diagonal entry of D.
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Proof. Let X = (xij) ∈ Rn×n and assume that Y = T1(X) with Y = (yij).

We have

‖Y ‖2
F =

n∑

i,j=1

(xij − xji)
2

(λi + λj)2
≤ 4

n∑

i,j=1

x2
ij + x2

ji

(λi + λj)2
,

‖Y ‖F ≤ 2

λn−1 + λn
‖X‖F .

The bound in (4.36) is attained by E =
1√
2
(eneT

n−1 − en−1e
T
n ) where ek is the

k-th column of the identity matrix.

We now focus on (4.37). Assume that Y = T1(X) with Y = (yij). We have

that yij =
1

λi + λj
(λixij + λjxji), yii = xii. We define

µ = max
i,j

(
λ2

i + λ2
j

(λi + λj)2

)
.

and we have that y2
ij ≤ µ(x2

ij + x2
ji). Thus,

‖Y ‖2
F =

n∑

i=1

x2
ij +

n∑

i=2

i−1∑

j=1

2y2
ij ≤ 2 max

i,j

(
λ2

i + λ2
j

(λi + λj)2

)
‖X‖2

F ,

‖T2‖2 ≤
√

2µ.

Let

E =
1√

λ2
p + λ2

q

(
λpepe

T
q + λqeqe

T
p

)

with (p, q) the indices where µ is attained. Note that ‖E‖F = 1 and ‖T2(E)‖F =

1. Without loss of generality, assume that λp ≤ λq and define t = λp

λq
, with

0 ≤ t ≤ 1. We have that µ =
1 + t2

(1 + t)2
. It is straightforward to see that µ̃ : t 7→

1 + t2

(1 + t)2
is monotone and decreasing for 0 ≤ t ≤ 1. Thus, µ̃ attains its maximum

for t = 0. Thus, (p, q) = (n, 1).

Note that if A is nonsingular λ1 = ‖A‖2 and λn = 0, thus ‖T2‖2 =
√

2. Otherwise

if A is nonsingular λn = ‖A−1‖−1
2 and we obtain

‖T2‖2 =
√

2

√
‖A−1‖−2

2 + ‖A‖2
2

‖A−1‖−1
2 + ‖A‖2

=
√

2

√
1 + κ2(A)2

1 + κ2(A)
, (4.38)
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We consider (4.32)-(4.33), with H orthogonal, S symmetric and S = V T DV

the eigendecomposition of S. Let Z1 = V ∆̃AV T and Z2 = V T ∆̃AV . Then,

(4.32)-(4.33) become

DX̃ + X̃D = Z1 − ZT
1 and DY + Y D = DZ2 + ZT

2 D,

where X̃ = V XV T and Y = V ŜV T . Since ‖Z1‖F = ‖Z2‖F = ‖∆A‖F , applying

Lemma 4.17 and using (4.38) , we obtain

‖dgH(A)‖2 =
2

λn−1 + λn
and ‖dgS(A)‖2 =

√
2

√
1 + κ2(A)2

1 + κ2(A)
. (4.39)

Note that 1 ≤ ‖dgS(A)‖2 ≤
√

2. Both of these bounds are attained. If S is of

the type S = λI or S is orthogonal, then ‖dgS(A)‖2 = 1 and if A is singular then

‖dgS(A)‖2 =
√

2. We have the following theorem.

Theorem 4.18 Let A = HS, H ∈ On(I) be the polar factorization of A and for

∆A ∈ Rn×n such that ε = ‖∆A‖F is small enough, let (A + ∆A) = H̃S̃ be the

polar factorization of A + ∆A. Then,

‖H̃ − H‖F ≤ 2

λn−1 + λn

ε + O(ε2),

‖S̃ − S‖F ≤ αε + O(ε2),

where α =
√

2 if A is singular or α =
√

2

√
1 + κ2(A)2

1 + κ2(A)
otherwise.

The bounds given in the above theorem are the sharpest possible to first order.

Using the classical definition of condition number for the Hermitian factor, the

same condition number as in (4.39) is obtained in [16]. Our method has the

advantage of giving a shorter proof than [16] of several pages. Our method

allows us also to compute explicitly the Fréchet derivative of the factors. In [51],

the condition number in (4.39) for the orthogonal factor is given.
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4.6.3 Numerical Experiments

To compute the indefinite polar factorization and the usual polar factorization,

we used the iteration described in [38, Thm 5.2]. We recall that the iteration for

the J-orthogonal factor is given by

H0 = A, Hn+1 =
1

2
(Hn + JH−T

n J).

This iteration is guaranteed to converge if JAT JA has no eigenvalue with a

negative real part. We present two series of numerical tests. The first ones are

quite standard, their purpose being to illustrate the perturbation bounds given in

Theorem 4.16. We generated a matrix A0 using the function randn of MATLAB.

Then, we build a sequence of matrices Aε that converges to A0 as ε tends to zero.

We denote δε = ‖A0 − Aε‖F and A0 = H0S0, Aε = HεSε the indefinite polar

factorization of A0 and Aε. J was obtained by

J =(-1).^randperm(n)

using MATLAB. We shifted all these matrices so that JAT
ε JAε has all its eigen-

values in the open right half-plane. The results are displayed in Table 4.4. We see

that our perturbation bounds follow closely the computed values which confirms

that in this case the bounds obtained by Theorem 4.16 are sharp.

We denote by cH and cS the bounds of the condition number of the hyperbolic

and symmetric factors given by (4.36)-(4.36). Table 4.5 shows the first order

perturbation bounds obtained by using cH and cS. The bounds obtained by

using csand cH in the first 4 rows in Table in 4.5 are accurate. In the last row, we

see that the bound for the J-symmetric matrix is weak whereas the bound for the

hyperbolic factor is more reliable. We conclude that the bounds cS and cH given

by (4.36)-(4.36) should be used carefully when the norm of the perturbation is

small.
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Table 4.4: Perturbation bounds of the indefinite polar factorization.

δε ‖Sε − S0‖F ‖dgS0(A0)‖2δε ‖Hε − H0‖F ‖dgH0(A0)‖2δε

1e − 15 1e − 15 1e − 14 1e − 15 2e − 15
1e − 9 1e − 9 2e − 9 2e − 8 5e − 8
1e − 5 3e − 5 9e − 5 2e − 5 6e − 5
1e − 3 7e − 3 1.6e − 2 5e − 3 2e − 2
1e − 2 1e − 2 2.3 − 2 2e − 2 3.4e − 2

Table 4.5: Perturbation bounds of the IPF using bounds for the condi-
tion numbers cH and cS.

δε cSδε cHδAε

1e − 15 3.7e − 13 7.5e − 14
1e − 9 3.7e − 7 7.5e − 8
1e − 5 3.7e − 3 7.5e − 4
1e − 3 3.7e − 1 7.5e − 2
1e − 2 3.7 7.5e − 1

The aim of the second numerical experiment series is to give an example where

the bounds given by (4.36)-(4.36)) are very poor approximations of the exact

condition numbers. The test matrices are Hilbert matrices, built in MATLAB

and they can be called by the function hilb. The (i, j) element of a Hilbert

matrix is given by 1/(i + j − 1). These Hilbert matrices are symmetric and very

ill conditioned. The signature matrix J ∈ diagk
n(±1) is given by

J = diag(−Ibn/2c, Ibn/2c).

The logarithm of the condition number log10(‖dgS(A)‖2) for the J-symmetric

factor is represented by ? and by + for log10(‖dgH(A)‖2), the logarithm of the

condition number of the hyperbolic factor. The logarithm of the bound denoted

by cS in (4.36) is represented by � and by ◦ the bound cH in (4.36). We see

in Figure 4.1, in all the test matrices the exact condition number is very small
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compare to cS, the biggest ratio being of order 1018. For the hyperbolic factor,

the difference is less, the biggest ratio being of order 104.

2 4 6 8 10 12 14

2

4

6

8

10

12

14

16

18

20

22

n

lo
g

10
(c

)

Figure 4.1: Condition number and perturbation bounds of the IPF of Hilbert
matrices with log10(‖dgS(A)‖2) (©), log10(‖dgH(A)‖2) (�), log10(cS) (∗) and
log10(cH) (+).

4.7 The Hyperbolic Singular Value Decomposi-

tion

Let A ∈ Rm×n with m ≥ n. We say that A admits a hyperbolic singular value

decomposition (HSVD) if

A = QDHT
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with D diagonal, Q orthogonal and H ∈ On(J, J̃). The hyperbolic singular value

decomposition (HSVD) and the indefinite least square problem were analyzed in

[10], [12] and [55]. ED denotes the set of real diagonal matrices. The following

theorem establishes the existence of the HSVD. The theorem and the proof are

similar to those in [12, Sec. 2].

Theorem 4.19 Let A ∈ Rm×n with m ≥ n be a full rank matrix, J ∈ diagk
n(±1)

and assume that rank(AJAT ) = n. Then, there exists a positive nonsingular

diagonal matrix D ∈ Rm×n, Q orthogonal, J̃ ∈ diagk
n(±1) and H ∈ Un(J, J̃) such

that

A = QDHT .

Proof. Let AJAT = QSQT be an eigendecomposition. Assume that AJAT

is nonsingular. We define D = |S| 1
2 and J̃ = sign(S). Let

H = AT Q

[
D−1

0

]
.

We have

HT JH =

[
D−1

0

]T

QT AJAT Q

[
D−1

0

]
= J̃ .

In the definition of the HSVD, we see that only the n first columns of Q are

necessary to define the decomposition. Thus, in the rest of this section, we

consider that the HSVD of A ∈ Rm×n is given by

A = QDHT , Q ∈ Omn(I), H ∈ On(J, J̃), J, J̃ ∈ diagk
n(±1).
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4.7.1 Perturbation of the HSVD

The linear subspace of n × n real diagonal matrices is identified with Rn and it

is denoted by ED. Let

f : R
m×n × ED × Vq × Vh → R

n×n,

(Ã, D̃, q̃, h̃) 7→ Q̃D̃H̃T − Ã,

with Q̃ = φ1(q̃) and H̃ = φ2(h̃), where φ1 and φ2 are defined by (1.13). Note

that f(A, D, q, h) = 0. We define d2f = ∂f
∂D

+ ∂f
∂q

+ ∂f
∂h

, ∆Q = dφ1(q)∆q and

∆H = dφ2(h)∆h. We have

d2f(A, D, q, h)(∆A, ∆Q, ∆H) = ∆QDHT + QD∆HT + Q∆DHT ,

QT d2f(A, D, q, h)(∆A, ∆Q, ∆H)H−1 = QT ∆QD + D∆HT H−T + ∆D,

with QT ∆Q and ∆HT H−T J̃ skew-symmetric. The following lemma establishes

the direct sum decomposition (4.9).

Lemma 4.20 Let D = diag(λk). If the diagonal elements of J̃D2 are distinct,

then we have the following direct sum decomposition

R
n×n = ED ⊕ Skew(R)D ⊕ DSkew(R)J̃.

The corresponding projector Π1 on ED is just Πd whereas for all Z ∈ Rn×n the

projector on SkewHD is Π2D and the projector on DSkewHJ̃ is DΠ3J̃ where

Π2(Z) = (J̃ZD + DZT J̃) ◦ Λ, Π3(Z) = (DZ + ZT D) ◦ Λ, (4.40)

Λ = (µij), µij =





0 if i = j,

1

σ̃jλ2
i − σ̃iλ2

j

otherwise,
(4.41)

where D = diag(λi) and J̃ = diag(σ̃i) Moreover, the norms of the operators,

‖Π2‖2 and ‖Π3‖2 are given by

‖Π2‖2 = ‖Π3‖2 =
√

2max
i6=j

√
λ2

i + λ2
j∣∣σ̃iλ2

j − σ̃jλ2
i

∣∣ . (4.42)
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Proof. Let Z ∈ Rm×n, Z = (zij) and assume that ∆D + XD + DY J̃ = Z

where ∆D ∈ ED and X, Y ∈ Skew(R). Since X and Y are skew symmetric, we

have Πd(XD + DY ) = 0. Thus,

∆D = Πd(Z).

By computing the elements of (Πl + Πu)(XD − DY J̃), we get n2−n
2

2 × 2 linear

systems

Eij [ xij yij ]T = [ zij zji ]
T ,

where Eij is defined by

Eij =

[
λj σ̃iλi

−λi −σ̃jλj

]
.

We have det Eij = σ̃iσ̃j(σ̃jλ
2
j − σ̃jλ

2
i ) 6= 0. Hence, for i 6= j, we obtain the n2−n

2

solutions

xij = −σiλjzij + σ̃jλizji

σ̃jλ2
i − σ̃iλ2

j

, (4.43)

yij =
λizij + λjzji

σ̃jλ
2
i − σ̃iλ

2
j

. (4.44)

With (4.43) and (4.44), we obtain

X = −(J̃ZD + DZT J̃) ◦ Λ, (4.45)

Y = (DZ + ZT D) ◦ Λ, (4.46)

where Λ = (µij) is given by (4.41). Finally, we obtain Π1 = Πd, Π2(Z) = X and

Π3(Z) = Y .

Using the Cauchy-Schwarz inequality, we have that

x2
ij ≤

λ2
i + λ2

j

σ̃iλ2
j − σ̃jλ2

i

(z2
ij + z2

ji),

‖X‖2
F ≤ 2max

ij,i6=j

λ2
i + λ2

j∣∣σ̃iλ2
j − σ̃jλ2

i

∣∣‖Z‖2
F .
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The bound (4.33) is attained by

E =
σpλqepq + σqλpeqp√

λ2
p + λ2

q

,

with ‖E‖F = 1 and where (p, q) are the indices where

max
ij,i6=j

√
λ2

i + λ2
j∣∣σ̃iλ

2
j − σ̃jλ

2
i

∣∣

is attained. Similarly, using the same method, we show the second part of (4.33)

and that the bound is attained by

Ẽ =
λpepq + λqeqp√

λ2
p + λ2

q

,

with ‖Ẽ‖F = 1.

To characterize g, we proceed as in (4.11) and (4.13-4.14). We have ∂f
∂A

∆A =

−∆A. We set (D̂, Q̂, Ĥ) = (dgD(A)∆A, dgQ(A)∆A, dgH(A)∆A). We obtain the

linear system

Q̂DHT + QDĤT + QD̂H = ∆A, (4.47)

QT Q̂D + DĤTJHJ̃ + D̂ = QT ∆AJHJ̃,

QT Q̂ + Q̂T Q = 0,

ĤT JH + HTJĤ = 0.

Thus, by Lemma 4.20,

dgD(A)∆A = Πd(Q
T ∆AJHJ̃), (4.48)

dgH(A)∆A = J̃HTJΠ3(Q
T ∆AJHJ̃). (4.49)

If m = n, then

dgQ(A)∆A = QΠ2(Q
T ∆AJHJ̃). (4.50)

111



If m > n, then we know that there exist G = [Q, Q0] ∈ Rn×n such that GT G = I.

G is obtained as in Section 4.5 by the classical Gram-Schmidt process. Using

(4.47), we have

dgQ(A)∆A = G

[
Π2(Q

T ∆AJHJ̃)

QT
0 ∆AH−T D−1

]
. (4.51)

Let h̃k denote the k-th column HJ̃ . We have

‖dgD(A)∆A‖2 = sup
‖∆A‖F =1

‖Πd(Q
T ∆AJHJ̃)‖F ,

= sup
‖∆A‖F =1

‖Πd(∆AHJ̃)‖F ,

= ‖W‖2,

where W ∈ R
n×n2

has its k-th row defined by h̃T
k ⊗ eT

k . Thus,

‖dgD(A)∆A‖2 = ‖W‖2 = max
k

‖h̃k‖2 = max
k

‖H(k, :)‖2. (4.52)

We define

M1 = J̃HT J ⊗ QT , (4.53)

M2 = D ⊗ J̃ + (J̃ ⊗ D)T, M̃2 = I ⊗ D + (D ⊗ I)T. (4.54)

Applying the vec operator to (4.49) and taking norms, we obtain

‖dgH(A)‖2 = ‖(I ⊗ HTJ)diag(vec(Λ))M̃2M1‖2. (4.55)

Similarly, for Q factor, we obtain from (4.51)

‖dgQ(A)‖2 =





‖diag(vec(Λ))M2M1‖2, if m = n,

‖diag(vec(Λ))M2M1 + (D−1H−1) ⊗ In‖2, if m > n.

(4.56)

We are now able to give the first order expansion of the three factors of the

HSVD.
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Theorem 4.21 Let A = QDHT , H ∈ On(J, J̃) be the HSVD of A and for

∆A ∈ Rn×n such that ε = ‖∆A‖F is small, let (A + ∆A) = Q̃D̃H̃T be the HSVD

of A + ∆A. Then, using (4.56-4.55) and (4.52-4.61)

‖D − D̃‖F ≤ max
k

‖H(k, :)‖2ε + O(ε2), (4.57)

‖Q − Q̃‖F ≤ ‖dgQ(A)‖2ε + O(ε2), (4.58)

‖H − H̃‖F ≤ ‖dgH(A)‖2ε + O(ε2), (4.59)

where ‖dgQ(A) and ‖dgH(A)‖2 are given by (4.55) and (4.56). These bounds are

the sharpest possible to first order.

Using (4.50) and (4.49), note that the condition number of the HSVD can be

bounded by

‖dgQ(A)‖2 ≤





2

m
‖D‖2‖H‖2, if m = n,

(
4

m2
‖D‖2

2‖H‖2
2 + ‖H−T D−1‖2

2

) 1
2

, if m > n,

(4.60)

‖dgH(A)‖2 ≤ 2

m
‖D‖2κ2(H), (4.61)

where m = min
ij

|σ̃iλ
2
i − σ̃jλ

2
j | = ‖diag(vec(Λ))‖2. These bounds are less sharp

than (4.56) and (4.55) but they are easily computable. We also can give better

bounds than (4.60)-(4.61), using (4.42),

‖dgQ(A)‖2 ≤





α‖H‖2, if m = n,

(
α2‖H‖2

2 + ‖HJ̃D−1‖2
2

) 1
2

, if m > n,

(4.62)

‖dgH(A)‖2 ≤ ακ2(H), (4.63)

where α = ‖Π2‖2 = ‖Π3‖2 is defined in (4.42).
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For the usual SVD, H is orthogonal. We get the well-known result (see for

example [66]) for the singular values

‖dgD(A)‖2 = 1, ‖D − D̃‖F ≤ ε + O(ε2).

The condition numbers of Q and H can be easily computed since H is also

orthogonal

‖dgQ(A)‖2 =





α, if m = n,

(
α2 +

1

λ2
n

) 1
2

, if m > n,

(4.64)

‖dgH(A)‖2 = α, (4.65)

where α = ‖Π2‖2 = ‖Π3‖2 is defined in (4.42) and λn is the smallest singular

value of A. In [42] and [64], a bound for the singular vectors is proposed. This

bound is obtained by applying the fact that H is orthogonal in (4.60) and (4.61).

4.7.2 Numerical Experiments

We consider a 3 × 3 example with

D0 = diag(10, 9.9, 1) and A0 = U0D0V
T
0 ,

where (U0, V0) is a randomly generated orthogonal-hyperbolic matrix pair and

the signature matrices (J, J̃) such that V T
0 JV = J̃ are defined by

J = diag(−1,−1, 1),

J̃ = diag(−1, 1,−1).

We construct a sequence of matrices Aε = U0DεV
T
0 with Dε = D0 + εe2e

T
2 where

e2 denotes the second column of the identity. The results are in Table 4.6 for the
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singular values and in Table 4.7 for the orthogonal and hyperbolic factor, with

Aε = UεDεV
T
ε be the HSVD of Aε, δε = ‖A0 − Aε‖F . We see that the expected

bound for the hyperbolic singular values are very close to the computed values.

It is due to the fact that the bound on the hyperbolic singular value depends only

on the norm of the hyperbolic factor

Vε = AT
ε UεD

−1
ε ,

with κ2(Dε) = 10. The orthogonal and hyperbolic factors are more sensitive to

the fact that one of the hyperbolic singular values is becoming double which does

not appear easily in Theorem 4.21. But, we see in the expressions of dgQ and dgH

in (4.49) and (4.50)–(4.51) that the sensitivity of the orthogonal and hyperbolic

factors depend on Π2 and Π3 in (4.40). Moreover, the norms of these projectors

(4.42) vary proportionally to the inverse of minij ||λj| − |λi|| which explains the

numerical test in Table 4.7. The bounds in the last row of Table 4.7 (column 3

and 5) are quite poor. The first explanation is the fact that the value of δε = 10−5

is big, the corresponding perturbation is not in the required neighborhood VA (see

Section 4.4) in order to apply the implicit function theorem. Consequently, the

result on the condition number and the perturbation expansion in Theorem 4.21

are not valid. Another fact that we need to keep in mind is that the perturbation

expansion given in Theorem 4.21 gives a bound for the predicted result but it

does not guarantee any accuracy of these bounds.

In Figure 4.2, we plot the logarithms of the exact condition number of the

orthogonal and hyperbolic factor, the bounds given by (4.60), (4.61), (4.62) and

(4.63), against the value of ε. The exact condition number for the orthogonal

factor ‖dgQ(A)‖2 and the condition number for hyperbolic factor ‖dgH(A)‖2 are

represented by ◦ and �. We denote by cQ,1 and cH,1 the bounds of the condition

numbers given by (4.60), (4.61) and we denote by cQ,2 and cH,2 the bounds defined

115



by (4.62) and (4.63). In Figure 4.2, the symbols + and C represent the logarithm

of the bounds given by cQ,1 and cH,1 whereas the symbols ? and B are for the

logarithms of cQ,2 and cH,2. These values are labeled by log10(c) on the y-axes.

We see that the condition number and the bounds are of the same order and

seem to be the same asymptotically.

Table 4.6: Perturbation bounds for the singular values from HSVD.

δε ‖D0 − Dε‖F ‖dgD(A0)‖2δε

10−13 9.10−14 10−13

10−10 2.10−10 3.10−10

10−6 9.10−7 1.10−6

3.10−5 3.10−5 3.10−5

Table 4.7: Perturbation bounds for the orthogonal and hyperbolic fac-
tors.

δε ‖Qε − Q0‖F ‖dgQ(A0)‖2δε ‖Hε − H0‖F ‖dgH(A0)‖2δε

10−13 10−11 10−9 10−11 1.4.10−9

2.10−10 10−12 10−6 10−12 10−6

10−6 4.10−12 10−1 4.10−12 1.10−1

10−5 10−12 4 10−12 4

The behaviour of the usual SVD and HSVD can be quite different and unex-

pected. For n = 2, if the two singular values are close then the condition number

of the singular vector is large since the condition number for the orthogonal fac-

tors, (4.64)–(4.65) is unbounded. In the hyperbolic case, with J = diag(1,−1),

the condition number for the orthogonal factor and the hyperbolic factor is uni-

formly bounded on any subset of R2×2 \ {0} at a positive distance of the zero

matrix.
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Figure 4.2: Comparison between the condition number and its bounds with
log10(‖dgQ(A)‖2) (©), log10(‖dgH(A)‖2) (�), log10(cQ,1) (+), log10(cH,1) (C),
log10(cQ,2) (∗) and log10(cH,2) (B).
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4.8 Sensitivity of Hyperbolic Eigendecomposi-

tions

In this section, we consider a pair (S, J̃) with S ∈ Rn×n symmetric and J̃ ∈

diagk
n(±1). Throughout this section, we assume that the eigenvalues of J̃S are

simple. We say that S is diagonalizable with respect to J̃ if there exists H ∈

Omn(J, J̃, C) with J ∈ diagn(U) such that

S = HTDH, (4.66)

J̃ = HTJH. (4.67)

Note that

J̃−1S = H−1(J−1D)H,

that is, J̃−1S and J−1D are similar. If J̃ = ±I, then this process is the usual

diagonalization of a symmetric matrix, with H orthogonal and the existence of

this decomposition is well known and understood. For J̃ 6= ±I, we need to justify

the existence of (4.66)–(4.67). When the eigenvalues of J̃−1S are simple, Lemma

2 in [70] tells us that there exits a nonsingular matrix X ∈ Cn×n such that

X∗(S, J̃)X = (D̃, Σ),

where D̃, Σ are block diagonal matrices with 1 × 1 blocks corresponding to real

eigenvalues and 2 × 2 blocks corresponding to complex conjugate eigenvalues.

The k-th 2 × 2 diagonal block (D̃k, Σk) of (D̃, Σ) has the following form

D̃k =

[
0 d̃k

d̃k 0

]
, Σk =

[
0 βk

βk 0

]
.

Let (xk, xk) be the k−th and (k + 1)-th columns of X. We have

x∗
k(S, J̃)xk = (0, 0), x∗

k(S, J̃)xk = (d̃k, βk),
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or equivalently by taking conjugate,

xT
k (S, J̃)xk = (0, 0), xT

k (S, J̃)xk = (d̃k, βk).

Hence, XT J̃X = diag(βk). Let J ∈ diagn(U) be such that Σ = |Σ|J and define

H = |Σ|−1/2X−1 and D = diag(d̃k)|Σ|.

Then,

HT DH = X−T |Σ|−1/2D|Σ|−1/2X−1 = X−Tdiag(d̃k)X
−1 = S.

Also HT JH = J̃ . Therefore, H satisfies (4.66)–(4.67).

Note that the the derivation is still valid if the eigenvalues of J̃−1S are semi-

simple. In Chapter 6, we present a method, the HZ algorithm, to compute

Y ∈ Rn×n such that (S, J̃) = Y T (D0, J0)Y , with D0 ∈ Rn×n block diagonal

(with 1× 1 and 2× 2 blocks) and J0 ∈ diagk
n(±1). The decomposition defined by

(4.66)–(4.67) is obtained by splitting the 2×2 blocks with normalized eigenvector

matrix V such that V T J0V ∈ diagn(U).

4.8.1 Perturbation Analysis of the Diagonalization by Hy-

perbolic Matrices

The sensitivity of the eigendecomposition of the standard eigenvalue problem is

analyzed in [2] where no structure in the perturbations is taken into account.

Their analysis depends on the pseudospectra of the matrix and the distance to

the nearest defective matrix. The HZ algorithm described in Chapter 6 computes

the eigendecomposition (4.66)–(4.67). For this reason, we concentrate in this

section on decomposition of this type only. We also analyze some cases where

supplementary structures are imposed to S in (4.66).
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We consider the decomposition (4.66) and (4.67). Let n1 be the number of real

eigenvalues of (S, J̃) and 2n2 the number of complex eigenvalues of S. Without

loss of generality, we can assume that

D = diag(D1, D2, D2), J = diag(J1, J2, J2), HT = [ V1 V2 V 2 ] ,

where D1 ∈ Rn1×n1, D2 ∈ Cn2×n2, J1 ∈ diagk
n1

(±1), J2 ∈ diagn2
(U), V1 ∈ Rn×n1

and V2 ∈ Cn×n2. D1 is the diagonal matrix that contains the real eigenvalues of

(S, J̃) that corresponds to the eigenvectors in J̃V1J1 whereas D2 is diagonal and

contains the complex eigenvalues of (S, J̃) that corresponds to the eigenvectors

in J̃V2J2. Let A ⊂ C
n×n be the linear space of matrices that are partitioned as

in (4.68), that is,

A =
{
A ∈ C

n×n : AT = [A1 A2 A2 ] , A1 ∈ R
n×n1, A2 ∈ C

n×n2
}

.

We define

EH = On(J, J̃, C) ∩ A,

ED = diag(Cn) ∩ A. (4.68)

We recall that EH is an n2−n
2

dimensional differentiable manifold. Moreover, the

function φ defined in Section 1.5 has the following property

HT Jdφ(h) ∈ Skew(C).

Lemma 4.22 If the eigenvalues of J̃−1S are simple, then

Sym(R) = range(T−(SJ̃)) ⊕ HTEDH,

where T− is defined in Theorem 1.5 and ED is defined in (4.68). Moreover, the

projector ΠED
on ED is given by ΠED

(X) = Πd(H
−T XH−1).
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Proof. The proof is a consequence of Theorem 1.5.

We define

f : Sym(R) × ED × EH → Sym(R),

(S̃, D̃, h̃) 7→ H̃T D̃H̃ − S̃,

where H̃ = φ(h̃). Note that f(A, D, h) = 0, with H = φ(h).

Lemma 4.23 d2f(S, D, h) is nonsingular if the eigenvalues of J̃−1S are distinct.

Proof. Let ∆D ∈ ED and ∆h ∈ R
n2−n

2 be such that d2f(S, D, h)(∆D, ∆h) = 0.

Set ∆H = dφ(h)∆h and X = HT J∆H ∈ Skew(C). Thus,

d2f(S, D, h)(∆D, ∆h) = 0 ⇔ ∆HT DH + HT D∆H + HT ∆DH = 0,

⇔ ∆HT JHSJ̃ + SJ̃HTJ∆H + HT ∆DH = 0,

⇔ SJ̃X − XJ̃S + HT ∆DH = 0.

Since DJ is diagonal, Lemma 4.22 implies ∆D = 0 and ∆H = X = 0.

When the eigenvalues of J̃S are simple, d2f(S, D, h) is nonsingular and the

implicit function theorem shows there exists a differentiable function g = (gD, gH)

and an open neighborhood VS of S satisfying

g : VS → VD × VH ,

S̃ 7→ (gD(S̃), gH(S̃)),

where VD × VH is an open neighborhood of (D, H) with H = φ(h). Moreover, g

satisfies gD(S) = D, gH(S) = H and

∀S̃ ∈ VS, f(S̃, gD(S̃), gH(S̃)) = (0, 0),

that is, S̃ = gH(S̃)T gD(D̃)gH(S̃) = H̃T D̃H̃ is the diagonalization of S̃ with

respect to J̃ . To characterize g, we proceed as follows. Let d1f(S, D, h) =
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∂f
∂S

(S, D, h). The differential of g at A is then given by

dg(S)∆S = −(d2f(S, D, h))−1d1f(S, D, h)∆A.

We have d1f(S, D, h)∆S = −∆S. We set (D̂, Ĥ) = (dgD(S)∆S, dgH(S)∆S) and

thus

d2f(S, D, h)(D̂, Ĥ) = ∆S.

Hence,

ĤTDH + HTDĤ + HT D̂H = ∆S. (4.69)

Let X = HTJĤ ∈ Skew(C) and Y = H−T XH−1. Then, (4.69) becomes

∆SJ̃ = SJ̃X − XJ̃S + D̂, (4.70)

H−T ∆SH−1 = DJY − Y DJ + D̂. (4.71)

Using Theorem 1.5, we obtain the condition operators

dgD(S)∆S = D̂ = Πd(H
−T∆SH−1), (4.72)

dgH(S)∆S = Ĥ = JH−TT −1
− (SJ̃)(∆S). (4.73)

One can show that

‖dgD(S)‖2 = ‖W‖2,

where W ∈ Cn×n2
has its k-th row defined by uk ⊗ uk with uk = σkH(k, : )J̃.

Note that ‖W‖2 ≤ ‖H‖2
2. Thus, we obtain the following theorem that gives the

first order perturbation bound of D and H.

Theorem 4.24 Let S̃ = S + ∆S be such that ε = ‖∆S‖F is small enough. Let

S̃ = H̃T D̃H̃ be the diagonalization of S̃ with respect to J̃ , where H̃ ∈ On(J, J̃ , C).

Then,

‖D − D̃‖F ≤ ‖W‖2
2ε + O(ε2), (4.74)

‖H − H̃‖F ≤ γε + O(ε2), (4.75)
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where γ = ‖(I ⊗ JH−T )(HT ⊗ HT diag(vec(M−))H−T ⊗ H−T‖2 and M− is given

by (1.20).

The bounds in the above theorem are the sharpest possible to first order. Since

‖W‖2 ≤ ‖H‖2
2, the condition numbers of all the eigenvalues of (S, J̃) are bounded

by κ2(H) = ‖H‖2
2. The expression for γ in Theorem 4.24 is long and complicated.

Thus, we give a bound for γ that is easy and less expensive to compute. The first

bound can be obtain by tacking norms

γ ≤ κ2(H)2‖H‖2

min
i6=j

|λiσi − λjσj|
.

But, using (4.71), we can obtain a better bound. Let Y = (yij) and let Z =

(zij) = H−T∆SH−1 − D̂. We have

|yij|2 ≤ |zij|2
min
i6=j

|λiσi − λjσj|2
,

‖Y ‖F ≤
√

2
κ2(H)‖∆S‖F

min
i6=j

|λiσi − λjσj|
.

Using Theorem 1.4, we get

‖Ĥ‖F ≤
√

2
‖H‖2κ2(H)‖∆S‖F

min
i6=j

|λiσi − λjσj|
,

‖dgH(S)‖2 ≤
√

2
‖H‖2κ2(H)

min
i6=j

|λiσi − λjσj|
.

Similar results can be found in [18, Thm 4.2.1] for the standard eigenvalue prob-

lem.

We apply our results to the standard symmetric eigenvalue problem. We

consider (4.66) and (4.67) with J̃ = ±I. Then, H is orthogonal. Equation (4.72)

and (4.73) become

‖dgD(S)‖2 = 1, (4.76)

123



‖dgH(S)‖2 =

√
2

min
i,j,i6=j

|λi − λj|
.

A consequence of (4.76) is that gD(S + B(0, ε)) ⊂ D + B(0, ε) for ε sufficiently

small.

4.8.2 Condition Number Theorems

The matrix factorization that we analyzed in this section is the eigendecompo-

sition of a symmetric-diagonal pair when the eigenvectors are normalized such

that they form a (J, J̃)−orthogonal matrix. In this paragraph, we use the result

on the sensitivity of the eigendecomposition (4.66)–(4.67) to deduce structured

eigenvalue and eigenvector condition numbers. We specialize to the case of a

simple eigenvalue of (S, J̃) and we compute real structured condition numbers.

Consider the decomposition (4.66)-(4.67). Let λ = λk be an eigenvalue of

(S, J̃), the k−th diagonal element of D. The corresponding eigenvector is given

by

x = H−1ek = σkJ̃HT ek = σkJ̃H(k, : )T .

From (4.73), we have that the condition number for the eigenvector is given by

c(x) = ‖eT
k dgH(S)ek‖2

= sup
∆S∈Sym(R),‖∆S‖F =1

‖Y (k, :)H‖2,

= sup
∆S∈Sym(R),‖∆S‖F =1

‖xT ∆SH−1diag(M−(k, :))H‖2,

where Y satisfies (4.71) and M− is defined by (1.20). Let P and δ be defined by

P = H−1diag(M−(k, :))H,

δ = max(diag(M−(k, :))) = max
j,j 6=k

1

|σkλk − σjλj|
.

Thus, we have that

δ ≤ c(x) ≤ ‖x‖2‖P‖2 ≤ δ‖x‖2κ2(H).
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Note that the above inequalities hold for the unstructured eigenvector con-

dition number for the problem Ax = λx [18]. The condition number for the

eigenvalue is given by

c(λ) = ‖eT
k dgD(S)ek‖2 = sup

∆S∈Sym(R),‖∆S‖F =1

|H(: , k)T∆SH(: , k)|,

c(λ) = sup
∆S∈Sym(R),‖∆S‖F =1

|xT ∆Sx|, (4.77)

where dgD(S) is given by (4.72).

Theorem 4.25 Let λ be a simple eigenvalue of the symmetric diagonal pair

(S, J̃) and let x be the corresponding right eigenvector normalized so that |xT J̃x| = 1.

Then, the structured condition number c(λ) in (4.77) is given by

c(λ) = ‖x‖2
2.

Proof. We have that

|xT ∆Sx| = |(xT ⊗ xT )vec(∆S)|.

Let ∆s ∈ R
n2+n

2 such that vec(∆S) = TSym(R)∆s where TSym(R) ∈ R
n2×n2+n

2 is

an isometric mapping. We have that

c(λ) = ‖(xT ⊗ xT )TSym(R)‖2

and

vec(∆S) = TSym(R)∆s,

=

n∑

k=1

∆sii(ek ⊗ ek) +
1√
2

n−1∑

i=1

n∑

j=2

∆sij(ei ⊗ ej + ej ⊗ ei).

Thus,

(xT ⊗ xT )TSym(R) =
n∑

k=1

x2
k(ek ⊗ ek) +

1√
2

n−1∑

i=1

n∑

j=2

xixj(ei ⊗ ej + ej ⊗ ei),

‖(xT ⊗ xT )TSym(R)‖2
2 =

n∑

k=1

|xk|4 +
n−1∑

i=1

n∑

j=2

|xixj|2.
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Hence, c(λ) = ‖(xT ⊗ xT )TSym(R)‖2 = ‖x‖2
2.

In [43], Karow, Kressner and Tisseur use a different normalization for x, ‖x‖2 =

1 and they obtain a different expression for the structured condition number:

c(λ) = 1/|xT Jx|.

In [15], the authors analyze the condition number of complex eigenvalues of

real matrices under real perturbations. They prove inequality

1√
2
κ(λ) ≤ κR(λ) ≤ κ(λ),

where κR(λ) is the condition number computed for which the perturbations are

forced to be real and κ(λ) the usual condition number. That is, the real structured

condition number is within a small factor of the standard (complex) condition

number.

We now focus on eigenvalue condition numbers where supplementary struc-

tures are imposed to the perturbations. Let S ⊂ Sym(R) be a class of sparse

symmetric matrices. We recall that S is a linear subspace of Sym(R). Let ΠS be

the orthogonal projection on S and let m = dim(S). We define TS ∈ Rn2×m, the

injection from Rm on Rn2
such that

vec(Z) = TSz and ‖Z‖F = ‖z‖2,

for all Z ∈ S and z ∈ Rm. The structured condition number is defined by

c(λ, S) = sup
∆S∈S,‖∆S‖F =1

|xT ∆Sx|. (4.78)

For Z = (zij) ∈ S such that ‖vec(Z)‖2 = ‖TSz‖2 , we know that

Z =
∑

k∈K1

zkkeke
T
k +

1√
2

∑

(i,j)∈K2

zij(eie
T
j + eje

T
i ),

vec(Z) =
∑

k∈K1

zkk(ek ⊗ ek) +
1√
2

∑

(i,j)∈K2

zij(ei ⊗ ej + ej ⊗ ei), (4.79)

vec(Z) =
∑

k∈K1

TS(: , k)z +
∑

k∈K2

TS(: , k)z, (4.80)
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with vec(Z) = TSz and the number of the elements in K1 and K2 being m.

Theorem 4.26 Let λ be a simple eigenvalue of the symmetric diagonal pair

(S, J̃) and let x be the corresponding right eigenvector normalized so that |xT J̃x| = 1.

Then, for a symmetric sparse structure S, the structured condition number c(λ, S)

in (4.78) is given by

c(λ, S) = ‖ΠS(xxT )‖F ,

where ΠS is the projector on S.

Proof. We apply to (4.78) the result in (4.79)-(4.80) which gives

c(λ, S) = ‖(xT ⊗ xT )TS‖2,

= ‖(xT ⊗ xT )(
∑

k∈K1

TS(: , k) +
∑

k∈K2

TS(: , k))‖2,

= ‖(xT ⊗ xT )


∑

k∈K1

(ek ⊗ ek) +
1√
2

∑

(i,j)∈K2

(ei ⊗ ej + ej ⊗ ei)


 ‖2,

=


∑

k∈K1

|xk|4 + 2
∑

(i,j)∈K2

|xixj|2



1√
2

.

Thus, from the last equation above, we obtain c(λ, S) = ‖ΠS(xxT )‖F .

From Theorem 4.26, we can easily deduce the condition number when S is the

class of symmetric tridiagonal matrices. In this case the condition number is

given by the Frobenius norm of the tridiagonal part of xxT . Similar results are

in [54], where the authors analyze the structured eigenvalue condition numbers

with sparsity structure for the standard eigenvalue problem.

We now give an algorithm that allows us to compute structured condition

numbers for any symmetric linear structure that has m ≤ n2+n
2

degree of freedom.

Note that if m = n2+n
2

then the computed condition number is the one given by

Theorem 4.25. We represent a symmetric linear structure S with m matrices
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Mk ∈ Rk×2, with k = 1: m. The columns of Mk are the indices of the elements of

the matrix S ∈ S that are equal, that is, for all (i1, j1) and (i2, j2), entries of Mk,

S(i1, j1) = S(i2, j2). Using MATLAB’s notations, we obtain that the elements of

S(Mk(: , 1), Mk(: , 2)) are equal.

Algorithm 4.27 Given an eigenvector x of a symmetric-diagonal pair (S, J̃)

such that |xT Jx| = 1, m matrices Mk defining the structure S, this algorithm

computes the structured condition number C(λ,S).

Set C(λk, S) = 0, t = 0

For k = 1 : m

Get p the number of rows of Mk

Set t = 0

For q=1:p

i = Mk(q, 1), j = Mk(q, 2)

t = t + xixj

end

C(λk, S) = C(λk, S) + |t|2

end

C(λk, S) =
√

C(λk, S)
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Chapter 5

Numerical Solutions of PEPs

5.1 Introduction

The standard approach for the numerical solution of GEPs is to reduce the ma-

trices involved to some simpler form that reveals the eigenvalues, for instance the

generalized Schur form for a pair (A, B). Unfortunately, these canonical forms

do not generalize to λ-matrices of degree greater than one. This is a major

complication for the numerical solution of PEPs.

There are two major divisions in numerical methods for solving PEPs.

1. The first division is into methods that tackle the problem in its original

form and those that linearize it into a GEP of larger dimension and then

apply GEP techniques.

2. The second division is into methods for dense, small to medium size prob-

lems and iterative methods for large scale and sparse problems.

3. Particular cases that can be directly transformed into GEPs or can be solved

by alternative ways.
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In the first part of this chapter, we focus on QEPs with a rank one damping

matrix and we describe a method to solve it. Then, we concentrate on methods

for general PEPs based on linearizations. We also present a method to access the

quality of computed eigenpairs that is based on the concepts of condition number

and backward error presented in Chapters 2 and 3 and we give some numerical

experiments. Finally, we give an overview of three methods for solving symmetric

GEPs.

5.2 QEPs with a Rank one Damping Matrix

5.2.1 Preliminaries

We consider the quadratic eigenvalue problem

(λ2M − λσuuT + K)x = 0, (5.1)

where M, K are n × n nonsingular symmetric matrices, σ = ±1 and u ∈ Rn.

We assume that the pair (M, K) is diagonalizable, in the sense that there exists

nonsingular matrices (Q, Z) such that

Q(M, K)Z = (D, D̃),

where D and D̃ are diagonal matrices, possibly complex. We transform the

problem (5.1) into an equivalent problem by multiplying by Q and Z and we get

(λ2D − λσvṽ∗ + D̃)y = 0, (5.2)

where v = Qu, ṽ = Z∗u and y = Zx. From (5.2), we have

(λ2D + D̃)y = λσ 〈y, ṽ〉 v. (5.3)

We know that if the kth component of v is zero then Z−1ek is an eigenvector of

the QEP associated to the eigenvalue λ solution of λ2dk + d̃k = 0.
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We assume for the rest of this section that 〈y, ṽ〉 6= 0, λ2 is not an eigenvalue

of (D, D̃). Then, we know that (λ2D + D̃) is nonsingular. Thus, Equation (5.3)

becomes

y = λσ 〈y, ṽ〉 (λ2D + D̃)−1v,

〈y, ṽ〉 = λσ 〈y, ṽ〉
〈
(λ2D + D̃)−1v, ṽ

〉
,

λσ
n∑

k=1

vkṽk

λ2dk + d̃k

= 1, (5.4)

where D = diag(dk), D̃ = diag(d̃k), v = (uk) and ṽ = (ṽk). Equation (5.4)

is similar to the secular equation in the divide and conquer algorithm for the

symmetric eigenvalue problem. In the symmetric case, the secular equation has

several nice properties. The roots are all real and they satisfy an interlacing

property with the poles. We refer to [46] and [48] for efficient solutions to the

secular equation. In our case, the zeros of (5.4) are usually complex and there is

no apparent link between the roots and the poles. In what follows, we first solve

a particular case of (5.4) with M positive definite and K negative definite. In

this case, all the eigenvalues are real. We then describe a method to solve (5.4)

in the general case.

In the rest of this section, we derive global bounds for the eigenvalues of the

QEP define by (5.2). These bounds allow us to localize the roots of (5.4).

Theorem 5.1 Let (λ, x) be an eigenpair of (λ2A + λB + C)x = 0 with ‖x‖2 =

1. We assume that A and C are nonsingular. Then, there exist two positive

constants r1 and r2 such that

r1 ≤ |λ| ≤ r2, (5.5)

with

(r1, r2) =





(δ−, δ̃+) if δ̃− ≤ δ−,

(δ̃−, δ+) otherwise,
(5.6)
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where

δ± =
1

2‖A‖2

(
−‖B‖2 ±

√
‖B‖2

2 + 4
‖A‖2

‖C−1‖2

)
, (5.7)

δ̃± =
‖A−1‖2

2

(
‖B‖2 ±

√
‖B‖2

2 + 4
‖C‖2

‖A−1‖2

)
. (5.8)

Proof. On one hand, if the quadratic matrix polynomial has a zero eigenvalue,

then r1 = 0, otherwise we know that there exits r1 > 0 such that |λ| > r1. On the

other hand, M is nonsingular, thus there exits always an upper bound r2 such

that |λ| < r2. Our purpose is to evaluate these bounds for the eigenvalues.

Since (λ, x) is an eigenpair of the QEP, we have (λ2A + C)x = −λBx, which

implies

∣∣|λ2|‖Ax‖2 − ‖Cx‖2

∣∣ ≤ |λ|‖B‖2.

Thus, we obtain

−|λ|‖B‖2 + ‖Cx‖2 ≤ |λ|2‖Ax‖2 ≤ |λ|‖B‖2 + ‖Cx‖2.

By using (1.18) in Theorem 1.4, we get the following inequalities

|λ2|‖A‖2 + ‖B‖2|λ| −
1

‖C−1‖2

≥ 0, (5.9)

|λ|2
‖A−1‖2

− ‖B‖2|λ| − ‖C‖2 ≤ 0. (5.10)

By solving each of these inequalities (5.9) and (5.10), we obtain the values the

values of δ± and δ̃± defined in (5.7)–(5.8). The solution of these inequalities

are given by R \ (δ−, δ+) for (5.9) and by [δ̃−, δ̃+] for (5.10). We know that the

intersection of these sets is not void since the bounds for the eigenvalues exist.

Thus, by tacking the intersection of the solution sets, we obtain the solution
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of the system defined by the inequalities (5.9)–(5.9) and the bounds r1 and r2

defined by (5.6).

A more general version of this theorem is given in [40, Lemma 3.1], with a different

proof.

5.2.2 Real Eigenvalues with M > 0, K ≤ 0

We consider the case where M is definite positive, K is semi-negative definite and

the eigenvalues of (M, K) are distinct. We recall that in this case the eigenvalues

of (M, K) are real. Let M = GT
1 D1G be the eigendecomposition of M , with

G1 orthogonal. Define K̃ = D
−1/2
1 G1KGT

1 D
−1/2
1 and let K̃ = GT

2 D̃G2 be its

eigendecomposition, with G2 orthogonal. We define Q = G2D
−1/2
1 G1 and Z =

Q−1. Thus, by left and right multiplication by Q and Z, the QEP (5.2) becomes

with D = I,

(λ2I + λvvT + D̃)y = 0.

The associated secular equation is given by

f(λ) = 0,

where f is defined on R by

f(λ) = λσ
n∑

k=1

v2
k

λ2 + d̃k

− 1. (5.11)

Note that by Sylvester’s theorem, D−1/2G1KGT
1 D−1/2 is semi-definite negative.

Thus, f has 2n poles given by ±
√

−d̃k. On each interval (
√

−dk

√
−dk+1), the

derivative of f has a constant sign equal to −σ. f is monotone in each interval

(
√

−dk

√
−dk+1). Thus, we know that f has a zeros in each of these intervals.

We first apply the bisection method in each interval to approximate the zeros

of f . The approximate solutions can then be used as starting points for Newton’s

133



method. Without loss of generality, we choose σ = 1 which implies that f is

decreasing. Let z0 ∈ (
√
−dk

√
−dk+1) be a zeros of f for some k and let ε be a

given parameter to locate the zeros of f within the interval (z0 − ε, z0 + ε). The

iterations of the bisection method are then given by

a0 =
√
−dk, b0 =

√
−dk+1,

(an+1, bn+1) =





(an, an+bn

2
) if f(an+bn

2
) ≥ 0,

(an+bn

2
, bn) otherwise.

We perform the above iterations until bn − an < ε. For ε = 10−p, one can easily

see that the number of bisection iterations that are required is given by n ∈ N

such that

n >
log(

√
−dk+1 −

√
−dk)

log(2)
+ p

log(10)

log(2)
.

A global number of bisection iterations can be given using the bounds obtained

in Theorem 5.1,

n = b log(r2 − r1) + p log(10)

log(2)
c + 1.

Newton’s method in this case is the classical method for finding the zeros of a

nonlinear scalar function. The Newton iteration is defined by

zn+1 = zn − f(zn)

f ′(zn)
.

In the next section, we analyze the general case where the eigenvalues can be

complex.

5.2.3 General Case

We describe a basic method to solve (5.4) that consists of transforming (5.4) into

a root finding problem of a scalar polynomial. We consider the secular equation

(5.4) and we define the scalar polynomials

q(z) =

n∏

k=1

(dkz
2 + d̃k), q̃j(z) =

n∏

k=1,k 6=j

(dkz
2 + d̃k), j = 1: n.
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By multiplying (5.4) by q, we obtain an equivalent equation

q(z) − σz

n∑

k=1

vkṽkq̃k(z) = 0. (5.12)

We define the scalar polynomial p by

p(z) = q(z) − σλ
n∑

k=1

vkṽkq̃k.

Our aim is to obtain the coefficients of p in its developed form. Let

p(z) =

2n∑

k=0

akz
k.

p is a 2n degree polynomial and thus we need 2n + 1 distinct values of p in order

to determine ak for k = 0: 2n. Then, the coefficients of p are obtained by solving

a linear system Ax = b, with A ∈ C
(2n+1)×(2n+1), b = (bk) ∈ R

2n+1 is a vector

containing the 2n + 1 distinct values of p and x = (ak) is the vector containing

the coefficients of p. The entries of b are of the form bk = p(zk), where zk ∈ C

and k = 1: 2n+1. Our aim is to minimize the condition number of A so that the

solution x is accurate. We chose

zq = exp

(
i

2qπ

2n + 1

)
, q = 0: 2n.

We have

p(zq) =

2n∑

k=0

ak exp

(
i

2kqπ

2n + 1

)
.

Thus, we obtain the matrix A = (αkq) with

αq+1,k+1 = exp

(
i

2kqπ

2n + 1

)
, k, q = 0: 2n.

We see that (2n+1)−1/2A is unitary which is the best possible choice to solve the

system Ax = b by dividing each side by
√

2n + 1. Once we have the coefficients
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of p in its developed form, any method that finds the root of a polynomial can

be used. We refer to [8] where the author uses the Erhlich-Aberth method (see

Section 5.5.1) and Rouché’s theorem to approximate the zeros of a polynomial.

We believe more efficient methods can be derived to solve the secular equation

(5.4).

5.3 Solving PEPs Through Linearization

5.3.1 Different Linearisations

In order to solve numerically PEPs of order higher than one, we transform them

into GEPs of larger size (mn). This is the same idea as transforming an ordinary

differential equation (ODE) of order higher than one into an ODE of order one.

These transformations are known as linearizations, and they are not unique for

a given PEP.

Definition 5.1 [30] We say that the pair (A,B) is a linearization of the n × n

matrix polynomial P (A, λ) of degree m, if there exist two matrices E(λ) and F (λ),

of size mn, with a constant non-zero determinant such that

E(λ)(A− λB)F (λ) =


 P (A, λ) 0

0 In(m−1)


 .

After the linearization of the PEP, we end up with the new problem

(βA− αB)zr = 0, z∗l (βA− αB) = 0, (5.13)

where (α, β) are the eigenvalues of the PEP, and we still need to recover x and

y, the eigenvectors of the PEP from zr and zl.

In the following subsections, we focus on numerical methods and algorithms

for GEPs and then for PEPs, analyzing different types of linearizations. We first

state a well known theorem: the generalized Schur decomposition.
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Theorem 5.2 Let (A, B) ∈ Mn(C)2. There exist two unitary matrices Q and

Z such that Q∗AZ = T and Q∗BZ = S are triangular. For i = 1: n, we denote

αii and βii, the diagonal elements of T and S. If there exists an i such that

αii = βii = 0, then the spectrum of the matrix polynomial defined by the pair

(A, B) is the entire complex plane C, which corresponds to the non-regular case.

Otherwise the eigenvalues are given by (αii, βii), for i = 1: n.

Proof. We refer to [18] and [68] for two different proofs .

The standard way of solving the GEPs is via the QZ algorithm of C.B. Moler

and G.W. Stewart [53]. For a given matrix pair, this algorithm computes the

generalized Schur decomposition from which the eigenvalues are recovered as in

the above theorem.

We now focus on some linearizations.

5.3.2 Companion Linearization

Let

A =




A0 0 · · · 0

0 In
. . .

...

...
. . . 0

0 · · · · · · In




,

B =




−A1 −A2 · · · −Am

In 0 · · · 0

0
. . .

. . .
...

0 · · · In 0




.

The pencil A−λB is a linearization of P (A, λ) called the companion linearization.

A left and right eigenvector of P (A, λ), say y and x can be recovered from a left
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and right eigenvector of A − λB. We first assume that α 6= 0 and β 6= 0. We

define λ = α
β
. For a vector z ∈ Cmn, we write zk = z(nk + 1: n(1 + k)), for

0 ≤ k ≤ m− 1. Let zl and zr be the left and right eigenvectors satisfying (5.13).

We have

((βA− αB)zr)
0 = βA0z

1
r + α

m∑

k=1

Akz
k
r

and for 1 ≤ k ≤ m − 1,

((βA− αB)zr)
k = βzk+1

r − αzk
r .

By induction on 2 ≤ k ≤ m − 1, when (5.13) is satisfied, we show that

zk
r = λk−1z1

r ,
m∑

k=0

αkβm−kAkz
k
r = 0.

Thus, we can choose x = zk
r , for some 0 ≤ k ≤ m−1. We choose the zk

r for which

the backward error is minimal.

For the left eigenvector y, we can show by induction on m that y = z0
l , that

is, we can recover y by reading off the n leading components of zl.

Let’s assume now that β = 0. Then, we have for 1 ≤ k ≤ m − 1, zk
r = 0 and

x = zm
r , with x ∈ null(Am). In the case α = 0, we have for 2 ≤ k ≤ m, zk

r = 0

and x = z1
r , with x ∈ null(A0).

More generally, we can show [50] that x is an eigenvector of P with a finite

eigenvalue λ if and only if 


1

λ

...

λm−2

λm−1




⊗ x
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is an eigenvector of A− λB with eigenvalue λ. If λ is an infinite eigenvalue then

x is a right eigenvector of P if and only if e1 ⊗ x is a right eigenvector of A− λB

[50].

5.3.3 Symmetric Linearization

Let

A =




0 · · · · · · 0 A0

... A0 A1

... A1
...

0 A0 Am−2

A0 A1 · · · Am−2 Am−1




,

B =




0 · · · 0 A0 0

... 0 A0 A1
...

0
...

...

A0 A1 · · · Am−2 0

0 · · · · · · 0 −Am




.

If Am is nonsingular, one can show that A − λB is a linearization [30]. We see

that in the case where all the matrices Ak are symmetric, the matrices A and B

are symmetric. The main difference (with the companion linearization) is that

the left eigenvector has the same structure as the right one, which is zk
l = λk−1z1

l

for 2 ≤ k ≤ m. For the zeros and infinite eigenvalues, the eigenvector is obtained

using the same analysis that was done for the companion linearization.

5.3.4 Influence of the Linearization

Amongst the two linearizations defined in Sections 5.3.2 and 5.3.3, the companion

linearization is the most used in practice. Several open questions remain in the
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numerical solution of PEPs. It is clear that the linearization should have an

influence on the computed eigenpairs, it is a fact that we illustrate with a QEP

example in the second part of this paragraph. The first question is how to choose

the best linearization so that the eigenpairs are computed the most accurately.

The second question is how to describe all possible linearizations of a matrix

polynomial.

Let P (A, λ) be a matrix polynomial and A− λB be one of its linearizations.

The condition number of λ as an eigenvalue of the PEP should be less than the

condition number of λ as an eigenvalue of the GEP obtained after the linearization

process. There is no proof of this result. The heuristic argument is that the

class of possible perturbations for the PEP is smaller than the class of possible

perturbations for the corresponding GEP. An interesting question is how to find

the ”best” linearization, that is, a linearization for which the condition number

of λ as an eigenvalue of the GEP is minimal.

In [71], Tisseur analyzed three linearizations of QEPs and found bounds for

the corresponding condition numbers based on the norms of the coefficient ma-

trices and the modulus of the eigenvalue. More recently, a wide class of lineariza-

tions is described in [50]. The conditioning of these linearizations is analyzed in

[39]. When the problem is not too badly scaled, two particular linearizations are

shown to be almost optimal: they are about as well conditioned as the original

polynomial. Balancing or scaling matrices is common for SEPs and GEPs, [31],

[67]. In [39] and [71], the authors analyze the effect of scaling a PEP on the

condition number.

We consider a quadratic eigenvalue problem (λ2M + λD + K)x = 0 where

M, D, K ∈ Rn×n are symmetric, with n = 200. In this example, D = ese
T
s

with s = 100 and M and K are positive definite. The problem is stable, all the

eigenvalues are in the left half plane. This problem is described in more detail in
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Section 7.8.2.

Figures 5.1 and 5.2 illustrate the sensitivity of the linearization process. We

plotted in the complex plane the eigenvalues of a QEP that we first solved by the

companion linearization in Figure 5.1 and then by the symmetric linearization in

Figure 5.2. After the linearization, we used the QZ algorithm. We see in Figure

5.1 that some eigenvalues computed using the companion linearization have a

positive real part whereas those computed with the symmetric linearization have

a negative or 0 real part. Thus, in this case the symmetric linearization per-

forms better than the companion linearization. This fact can be explained by the

fact that the symmetric linearization preserves the symmetry structure whereas

the companion linearization destroys it. In Section 7.8.2, using the symmetric

linearization, we compare the eigenvalues obtained by a symmetry structure pre-

serving algorithm (the HZ algorithm, see Chapter 6) and the QZ algorithm.
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Figure 5.1: Spectrum computed with the companion linearization.
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Figure 5.2: Spectrum computed with the symmetric linearization.

5.3.5 Pseudocode

The following pseudocode solves the PEP by a companion linearization, then

gives the condition number c2(A, α, β).

Form (A,B) such that βA− αB is a companion linearization of P (α, β).

Compute the generalized Schur decomposition

S = Q∗AZ, T = Q∗BZ.

For k = 1 : nm

λk =





skk/tkk if tkk 6= 0,

inf if tkk = 0.

Solve u∗
l (tkkS − skkT ) = 0, zl = Q∗ul.

yk = zl(1 : n).

Solve (tkkS − skkT )ur = 0, zr = Z∗ur.

if skk = 0,

xk = zr(1 : n),
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end if.

if tkk = 0,

xk = zr((m − 1)n + 1 : nm),

end if.

% For the finite non zero eigenvalues, we take the right eigenvector

% of the PEP from the big eigenvector of the GEP. We choose the right

% eigenvector that has the minimal residual.

if (skk 6= 0 and tkk 6= 0),

r1 = ‖P (skk, tkk)z(1: n)‖
For i = 1 : m − 1

ri+1 = ‖P (skk, tkk)z(in + 1: (i + 1)n)‖

xk =





zr((i − 1)n + 1 : in) if ‖ri‖ ≤ ‖ri+1‖,

z(in + 1 : (i + 1)n) otherwise.

end.

end if.

% Compute ck = c2(A, skk, tkk).

Set ck = 0.

For k = 0 : m

ck = ck + |α|2k|β|2(m−k)

end

ck = ‖x‖2‖y‖2ck.

v = β̄βm−1A1x

For k = 2 : m

v = v + kβ̄αk−1βm−kAkx

end.

For k = 0 : m − 1

v = v + (m − k)ᾱαkβm−k−1Akx
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end.

ck = ck

|y∗v|

end.

5.4 Numerical Examples with condpolyeig

5.4.1 Lack of Numerical Tools

In Table 5.1, we give numerical tools for eigenvalue problems available in different

software. In the second row, polyeig is a MATLAB function that solves PEPs.

We see that polyeig is the only routine available for PEPs and that there are no

other routines (routines for the SEP) such as psa (computation of pseudospectra),

condeig (condition number). There is a lack of numerical tools for solving PEPs

and analyzing their sensitivity.

Table 5.1: List of eigentools.

Problem MATLAB built-in MATLAB other Scilab
A − λI eig(A), psa(A) (Wright), spec(A),

eigs(A), fv(A), bdiag(A),
condeig(A), gersh(A), htrianr(A)

schur(A)

λ2A + λB + C polyeig(C,B,A)

In an earlier version of MATLAB (version 6.1.0.450 (R12.1)), polyeig failed

to return the right eigenvector corresponding to infinite eigenvalues. Here is an

example of a MATLAB output:

>> A=rand(3);B=rand(3);C=rand(3);

>> C(:,3)=0;

>> [X E]=polyeig(A,B,C)
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Warning: Divide by zero.

> In /opt/matlab6.1/toolbox/matlab/matfun/polyeig.m at line 76

X =

Columns 1 through 4

NaN -0.4726 - 0.0561i 0.6889 + 0.2037i -0.0728 - 0.0984i

NaN 0.4687 + 0.0556i -0.5042 - 0.1490i -0.3683 - 0.4977i

NaN 0.7369 + 0.0875i -0.4369 - 0.1292i -0.4614 - 0.6235i

Columns 5 through 6

-0.4799 + 0.2784i 0.4033 + 0.3811i

0.1084 + 0.4092i -0.1993 + 0.3735i

0.4340 - 0.5697i -0.2918 - 0.6540i

E =

Inf

18.4943 + 0.0000i

2.3520 + 0.0000i

-1.3149 - 0.0000i

-0.1048 - 0.6647i

-0.1048 + 0.6647i

This problem is fixed in the new version 7.0.1 of MATLAB by analyzing

separately the right eigenvectors corresponding to zero or infinite eigenvalues.

In the next section, we present a MATLAB routine, condpolyeig, in our

quest of filling this lack of numerical tools for the PEP.

5.4.2 condpolyeig

Let (A0, · · · , Am) ∈ Mn(C)m+1, µ ∈ Cm+1. Once we have solved the correspond-

ing PEP, we would like to know how sensitive the eigenvalues are to perturbations
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in the data. For this reason, we present a MATLAB routine, condpolyeig, that

computes the condition number of a simple eigenvalue.

The call

>>[X,Y,E,s]=condpolyeig(A0,....,Am)

in the MATLAB prompt, returns the right and left eigenvectors in the n × mn

matrices X and Y. The eigenvalues,
α

β
are in the mn vector E and the corresponding

condition numbers in s. If the number of output is one then condpolyeig returns,

by default the condition numbers. These condition numbers are computed by

using the formula (2.4) where the default vector of weights µ is given by

µj =





1
‖Ej‖F

, Ej 6= 0,

1, Ej = 0.

The call

>>[X,Y,E,s]=condpolyeig(A0,....,Am,mu)

allows to compute the condition number using the weight defined in mu.

In order to solve a PEP of degree m, for n× n matrices, we use a companion

linearisation, described in Section 5.3.2. Then we use the qz function of MATLAB

that returns the right and left eigenvectors and the eigenvalues. We select the

left and right eigenvectors as explained in Section 5.3.2. Finally, we compute the

condition number.

5.4.3 Numerical Examples

We consider the quadratic eigenvalue problem with

P (Aθ, α, β) =




α2 − 3αβ + 2β2 −α2 + αβ −α2 + 9β2

0 α2 − αβ(1 + θ) 0

0 0 αβ − 3β2


 ,
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where θ is a positive parameter. Since P (Aθ, α, β) is upper triangular, the exact

eigenvalues are readily available. They are given in Table 5.2.

Table 5.2: Eigenvalues of P (Aθ, α, b).

k 1 2 3 4 5 6
(αk, βk) (0, 1) (1, 1) (1 + θ, 1) (2, 1) (3, 1) (1, 0)
λ = αk

βk
0 1 1 + θ 2 3 ∞

Our aim is to analyze the behaviour of the eigenvalues, when the parameter θ

tends to −1. The condition number for the infinite eigenvalue is 1. The eigenvalue

0 becomes double when θ = −1. Tables 5.3 and 5.4 give χ(λ̃, λ) (see Corollary

2.7), where λ̃ is computed by condpolyeig, λ = λθ the exact eigenvalue of

P (Aθ, α, β), the eigenvalue condition number c2(Aθ, α, β, x) in (2.12) and the

backward error η(α̂, β̂, x̂) in (3.5). Recall that from Corollary 2.7, for small

ε = ‖∆A‖F ,

χ(λ̃, λ) ≤ c2(Aθ, α, β, x)ε + O(ε2),

where χ(λ̃, λ) is the chordal distance between λ̃ and λ. We see that

c2(Aθ, α, β, x)η(α̂, β̂, x̂)

is in most cases of the same order as χ(λ̃, λ). This is an illustration of the formula:

forward error ≤ condition number × backward error.

Table 5.3: Condition number and backward error for λ = 0.

θ χ(λ̃, 0) c2(Aθ, α, β, x) η(α̂, β̂, x̂) c2(Aθ, α, β, x)η(α̂, β̂, x̂)
−1 + 10−4 8.10−14 1.104 7.10−18 7.10−14

−1 + 10−6 4.10−12 1.106 4.10−18 3.10−12

−1 + 10−8 1.10−9 9.107 1.10−17 1.10−9

−1 + 10−10 9.10−10 1.109 7.10−19 9.10−10
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Table 5.4: Condition number and backward error for λ = 1 + θ.

θ χ(λ̃, λ) c2(Aθ, α, β, x) η(α̂, β̂, x̂) c2(Aθ, α, β, x)η(α̂, β̂, x̂)
−1 + 10−4 7.10−14 9.1011 7.10−18 7.10−6

−1 + 10−6 4.10−12 2.1011 4.10−18 1.10−6

−1 + 10−8 1.10−9 7.108 1.10−17 1.10−8

−1 + 10−10 9.10−10 1.109 7.10−19 8.10−10

−1 + 10−16 2.10−9 6.108 7.10−18 2.10−9

5.5 An Overview of Algorithms for Symmetric

GEPs

We consider the generalized eigenvalue problem Ax = λBx, where A ∈ Rn×n,

B ∈ Rn×n are symmetric. For such problem, the eigenvalues λ can be real or

complex but they come in pairs (λ, λ̄). Symmetric GEPs arise as intermediate

steps in a variety of eigenvalue problems. For example, the quadratic eigenvalue

problem (λ2M +λD +K)x = 0 with symmetric coefficient matrices is frequently

encountered in structural mechanics [73]. The standard way of dealing with

this problem in practice is to reformulate it as a generalized eigenvalue problem

(GEP) Ax = λBx of twice the dimension. We recall that this process is called

linearization as the GEP is linear in λ. Symmetry in the problem is maintained

with an appropriate choice of linearization. For example, we can take

A =

[
0 K

K D

]
, B =

[
K 0

0 −M

]
, x =

[
u

λu

]
.

The resulting A and B are symmetric but not definite, and in general the pair

(A, B) is indefinite. Thus the Cholesky-QR algorithm [22], [31], or the symmetric

Lanczos algorithm in the sparse case, cannot be applied. Usually, the symmetric

indefinite GEP is solved by applying general GEP techniques that destroy any

symmetry in the problem; for example the QZ algorithm or an Arnoldi process

if A and B are large and sparse. Though symmetric indefinite GEPs do not
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have any special spectral properties there are some advantages to preserving the

symmetry, such as reductions in storage and the computational cost. When

A−λB is of small to medium size, it can be reduced to a symmetric tridiagonal-

diagonal form T − λS using one of the procedures described by Tisseur [74]. For

large and sparse matrices the pseudo-Lanczos algorithm of Parlett and Chen [56]

applied to A − λB yields a projected problem of the form Ax = λBx.

Tridiagonal-diagonal pencils arise also when solving nonsymmetric eigenvalue

problems Ax = λx. In the dense case, A can be reduced to nonsymmetric tridi-

agonal form T̃ [29], and in the sparse case, the nonsymmetric Lanczos algorithm

produces an nonsymmetric tridiagonal matrix T̃ . Assuming that T̃ has no zero

subdiagonal and superdiagonal entries, one can easily construct two nonsingular

diagonal matrices D1, D2 such that T − λJ = D1(T̃ − λI)D2 with T symmetric

tridiagonal and J diagonal with diagonal entries ±1.

We are interested in robust and efficient algorithms that compute all the eigen-

values and eigenvectors of T − λS while preserving the structure of the problem.

When applied to the nonsymmetric tridiagonal matrix S−1T , the QR algorithm

[31] does not preserve the tridiagonal structure: the matrix S−1T is considered as

a Hessenberg matrix and the upper part of S−1T is filled in during the iterations.

Therefore the QR algorithm requires some extra storage. Two alternatives appli-

cable to S−1T are the LR algorithm [62] for nonsymmetric tridiagonal matrices

and the HR algorithm [13], [14]. Both algorithms preserve the tridiagonal form of

S−1T but may be unstable as they use non-orthogonal transformations. Another

alternative is the Erhlich-Aberth method.
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5.5.1 The Erhlich-Aberth Method

We start by describing a method to compute roots of a polynomial. Let p be a

scalar polynomial of degree n and z = (zj) ∈ Cn. The Erhlich-Aberth iterations

given in [1] and [28], are defined by

z
(k+1)
j = z

(k)
j −

P (z
(k)
j )

P ′(z
(k)
j )

1 − P (z
(k)
j )

P ′(z
(k)
j )

n∑

q=1,q 6=j

1

z
(k)
j − z

(k)
q

, j = 1: n. (5.14)

These iterations converge locally to the n roots of p allowing to approximate

simultaneously all the roots. A detailed presentation and implementation is given

in [8], where the starting approximations are obtained by Rouché’s Theorem.

D. Bini and F. Tisseur proposed a method to compute the eigenvalues of a

symmetric GEP in [7] based on the Erhlich-Aberth iterations. An efficient and

robust implementation of these iterations depends on the set of starting values z(0)

and how the Newton correction p(λ)/p′(λ) are computed. Let T be symmetric

tridiagonal and J be a signature matrix. The Erhlich-Aberth method is then

applied to p(λ) = det(T − λJ). The Newton correction is given by

p(λ)

p′(λ)
= − 1

trace(T − λJ)−1
.

They propose a robust method to compute the Newton’s correction based on the

QR factorization of T − λJ . The initial approximations for (5.14) are obtained

using a divide and conquer strategy.

5.5.2 LR Algorithm

The LR algorithm [62] is an iterative process to compute the eigenvalues of a

matrix based on an LU factorization. The LR iterations are given by

T0 = T,
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Tk = LkUk (LU factorization),

Tk+1 = UkLk.

If T is tridiagonal, the LR iterations preserve the tridiagonal form. Note that

a successful implementation needs a pivoted LU factorization [78]. A detailed

analysis of the LR algorithm, its implementation and the first step that consists

of reducing a general matrix to a tridiagonal form is presented in [57] and [23].

5.5.3 HR Algorithm

The HR algorithm of Brebner and Grad [13] and Bunse-Gerstner [14] is an it-

erative procedure that begins with the pseudosymmetric matrix T̃0 = J−1T . It

produces a sequence of similar pseudosymmetric matrices T̃k = JkTk obtained

from an HR factorization with respect to Jk−1,

pk(T̃k−1) = HkRk, HT
k Jk−1Hk = Jk, (5.15)

where pk is a polynomial. It sets

T̃k = H−1
k T̃k−1Hk. (5.16)

Note that T̃k = (JkH
T
k Jk−1)T̃k−1Hk, which implies that if T̃k−1 is pseudosym-

metric then T̃k is pseudosymmetric. Also, T̃k = RkT̃k−1R
−1
k (with Rk upper

triangular) which implies that if T̃k−1 is tridiagonal then T̃k is tridiagonal. Hence

the HR iterations preserve pseudosymmetric tridiagonal forms.

This algorithm is analyzed in the following chapter.
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Chapter 6

The HZ Algorithm

6.1 Introduction

Our aim is to derive an efficient and robust implementation of the HZ algorithm

[13], [14]. We consider the symmetric pair (A, B). We assume that the pencil

A − λB is regular, that is, det(A − λB) 6≡ 0 and that B is nonsingular. For

nonregular pencils or singular B we refer to Lucas [49] who shows that the pencil

can be deflated and reduced to a regular pencil A− λB, where B is nonsingular.

The method we consider consists of three main steps.

6.1.1 Symmetric–Diagonal Reduction

We present briefly two methods that reduce the symmetric pair (A, B) to a

symmetric-diagonal pair (A, B) = MT (C, J)M .

We can use the eigendecomposition of B = QT DQ, where Q is orthogonal and

D diagonal. Then, J = sign(D), C = |D|−1/2QAQT |D|−1/2 and M = QT |D|−1/2.

Since B is indefinite we can also use a block LDLT factorization [37, Ch.11]

P TBP = LDLT , (6.1)
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where P is a permutation matrix, L is unit lower triangular and D is block

diagonal with 1 × 1 or 2 × 2 blocks on its diagonal. Let

D = X|Λ|1/2J̃ |Λ|1/2XT , J̃ ∈ diagn
q (±1), (6.2)

be the eigendecomposition of D, where X is orthogonal and Λ is the diagonal

matrix of eigenvalues of D. The pair (C, J̃) with

C = MT AM, M = PL−T X|Λ|−1/2 (6.3)

is congruent to (A, B) and is in symmetric-diagonal form. This reduction is not

as stable as the one based on the eigendecomposition of B since it uses non-

orthogonal transformations. We refer to [74] for an analysis of its numerical

stability. It is however a lot less expensive than computing the whole eigende-

composition of B.

6.1.2 Tridiagonal–Diagonal Reduction

The symmetric matrix C in (6.3) can be tridiagonalized using a sequence of

congruence transformations Q1Q2 · · ·Qn−2 = Q that preserve the diagonal form

of the second matrix J̃ ,

QT CQ = T, QT J̃Q = J, J ∈ diagn
q (±1).

For the Qi, Tisseur [74] suggests to use a product of two Householder reflec-

tors followed by a hyperbolic rotation. We refer to [74] for the details of the

implementation.

6.1.3 HR or HZ Iterations

The HR algorithm [13], [14] is an iterative process that begins with the pseu-

dosymmetric matrix T̃0 = J−1T . It produces a sequence of similar matrices T̃k,
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k ≥ 1 obtained, when it exists, from an HR factorization with respect to Jk−1,

pk(T̃k−1) = HkRk, HT
k Jk−1Hk = Jk, (6.4)

where pk is a polynomial. It sets

T̃k = H−1
k T̃k−1Hk. (6.5)

If T̃k−1 := Jk−1Tk−1 is pseudosymmetric (Tk−1 = T T
k−1) then

T̃k = (JkH
T
k Jk−1)T̃k−1Hk = Jk(H

T
k Tk−1Hk) := JkTk (6.6)

is pseudosymmetric. Also, T̃k = RkT̃k−1R
−1
k with Rk upper triangular so that

if T̃k−1 is tridiagonal then T̃k is tridiagonal. Hence the HR iteration (6.4)–(6.5)

preserves pseudosymmetric tridiagonal forms.

Using (6.6), the kth HR step (6.4)–(6.5) can be rewritten as

pk(T̃k−1) = HkRk,

Jk = HT
k Jk−1Hk, (6.7)

Tk = HT
k Tk−1Hk.

We will refer to (6.7) as the kth HZ step of the HZ algorithm. In an analogous

way to the QZ algorithm, the “Z” in HZ is explained by the fact that the iteration

(6.7) acts on the symmetric tridiagonal–diagonal pair (T, J) rather than on the

single pseudosymmetric tridiagonal matrix T̃ .

The HR algorithm belongs to the broader class of GR algorithms [75] and

convergence results on GR algorithms apply [75, Theorem 3.2]. One can show

that if the cumulative transforming matrices Hk are uniformly bounded then the

sequence Tk converges to block diagonal form with 1 × 1 and 2 × 2 blocks on

the diagonal, thus exposing the eigenvalues of the pseudosymmetric tridiagonal

matrix T̃0 = J−1T . Note that the HR factorization may not always exist. This
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may prevent the convergence of the HZ iterations. In practice we can modify

the polynomial of p so that p(T ) = HR exists but there is no guarantee of

convergence.

The HZ algorithm and its practical implementation are studied in more detail

in the next sections.

6.2 Preliminaries

So far, we have enough conditions in order to analyze the existence of the HR

factorization. We now present two theorems that enable us to classify difficulties

that we might face during the execution of the HZ algorithm. The following

theorem describes a property of the spectrum of the matrix pair (T, J).

Theorem 6.1 Let T ∈ R
n×n be tridiagonal symmetric and unreduced. Then

each eigenvalue of the pair (T, J) has geometric multiplicity 1.

Proof. Let λ ∈ C be an eigenvalue and x a corresponding eigenvector. Write

J = diag(σi). From (T − λJ)x = 0 we have

(t11 − λσ1)x1 + t12x2 = 0,

ti,i−1xi−1 + (tii − λσi)xi + ti,i+1xi+1 = 0, i = 2: n − 1,

tn,n−1xn−1 + (tnn − λσn)xn = 0.

Since T is unreduced, we have that ti,i+1 6= 0 for 1 ≤ i ≤ n − 2. Thus, by

induction we can express each component of x as a multiple of x1 in a unique

way. It follows that the eigenspace corresponding to λ has dimension 1, that is λ

has geometric multiplicity 1.
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Theorem 6.2 Let A ∈ Rn×n be pseudosymmetric for some J ∈ diagn
q (±1). If λ

is a defective multiple eigenvalue of A then p(A) = (A − λI)(A − λ̄I) does not

have an HR factorization with respect to J .

Proof. Let λ be an eigenvalue of A. We have by pseudosymmetry

p(A)T Jp(A) = Jp(A)2.

If λ is defective then

rank(p(A)T Jp(A)) < rank(p(A)).

Thus, by Corollary 4.9 p(A) does not have an HR factorization with respect to

J .

Combining Theorem 6.1 and 6.2 we have that for an unreduced tridiagonal

symmetric pair (T, J), the HR factorization of p(JT ) = (JT −λI)(JT − λ̄I) does

not exist if the shift λ is a defective eigenvalue. Hence, we may expect difficulties

for matrix pair with nontrivial Jordan blocks.

6.3 Practical Implementation of One HZ Step

We consider the symmetric pair (T, J) where T is unreduced tridiagonal and

J ∈ diagk
n(±1) a signature matrix. We recall that if T is not unreduced then

T =

[
T1 0

0 T2

]
,

and the spectrum of T is the union of the spectrum T1 and T2. The problem can

be split into smaller unreduced problems. From now on, we assume that T is

unreduced and J ∈ diagq
n(±1).

We consider one single HZ step on an unreduced T :

p(JT ) = HR, (6.8)

T̂ = HT TH, Ĵ = HT JH. (6.9)
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The degree of the polynomial p is called the multiplicity of the step. If p has degree

1, it is a single step. In our implementation, p is chosen to be the quadratic

p(z) = (z − ω1)(z − ω2), (6.10)

where ω1, ω2 ∈ C are called shifts. We discuss later on the choice of these shifts.

The HZ step can be carried out either explicitly or implicitly without forming

the matrix p(JT ) and its HR factorization [75]. We adopt the implicit form as it

involves fewer operations. For that, we need to build a (J, Ĵ)-orthogonal matrix

H̃ whose first column is the same as that of H in (6.8) and such that the matrix

T̃ = H̃T TH̃ is symmetric tridiagonal. Then T̃ and T̂ are essentially the same

[31], [67], [74].

Since T is in tridiagonal form, the first column of p(JT ) has a simple form.

If x = p(JT )e1 then x = [x1, x2, x3, 0, . . . , 0]T , where

x1 = t211 − tσ1t11 + σ1σ2t12t21 + d,

x2 = σ2t21(σ1t11 + σ2T22 − t),

x3 = σ2σ3t21t32,

with T = (tij)1≤i,j≤n, J = diag(σi), t = ω1 + ω2 and d = ω1ω2 . The aim is to

construct H̃ such that H̃x is a multiple of e1, and T̃ = H̃−1TH̃−T is symmetric

tridiagonal.

We first describe the matrix tools needed to construct H̃.

6.4 Implementing the Bulge Chasing

First we determine a (J, J0)−orthogonal matrix H0 such that H0x is a multiple

of e1 and compute T0 = HT
0 TH0. This creates a bulge at the top left corner of
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T0 as illustrated by the generic 8 × 8 matrix T0

T0 =




× × × ×

× × × ×
× × × ×

× × × × ×
× × ×

× × ×

× × ×
× ×




.

To recover the tridiagonal form the bulge is chased to the bottom right by ap-

plying carefully chosen unified rotations.

At the first stage of this process two unified rotations are used to introduce

zeros in positions (4, 1) and (3, 1). At stage p, 1 ≤ p ≤ n − 4, we get the pair

(Tp, Jp) = HT
p (Tp−1, Jp−1)Hp,

where Hp is (Jp−1, Jp)−orthogonal. Hp is the product of Hp−1 and two unified

rotations that introduce zeros in position (p + 3, p) and (p + 2, p). We write Hp

as

Hp = Hp−1Gq,p+3Gp+1,p+3,

where q ∈ {p + 1, p + 2} and Gq,p+3 is a unified rotation in the (q, p + 3) plane.

After n − 4 steps, the 4× 4 bulge is at the bottom right corner of Tn−4. We just

need to apply the zeroing process once more to obtain the tridiagonal-diagonal

pair (Tn−3, Jn−4) = (T̃ , J̃) defined by (6.8) and (6.9). We have

H = Πi=n−3
i=0 Hi, (6.11)

Ĵ = HT JH,

T̂ = HT TH.
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Hyperbolic rotations are not orthogonal and therefore may be numerically

unstable. We aim to use as few of them as possible. This goal can be achieved if

we use at most one hyperbolic rotation per step. At step p ≤ n−3 of the tridiago-

nalization process, we need to introduce zeros in positions (p+3, p) and (p+2, p),

we need to compute a 3×3 matrix H̃p such that H̃T
p T (j+p+2: j+p+3, j) = ρe1.

We apply first all possible orthogonal rotations and if necessary we finish the ze-

roing by applying a hyperbolic rotation. With this zeroing strategy, we apply at

most n − 2 hyperbolic rotations during the bulge chasing and tridiagonalization

process. Moreover, this zeroing strategy is also described in Algorithm 4.4 for

vectors in Rn in Section 4.2.4.

Bojanczyk, Brent and Van Dooren [9] noticed that how hyperbolic rotations

are applied to a vector is crucial to the stability of the computation. In our

implementation we use the mixed application of hyperbolic rotations as in Section

4.2.4 (see [9], [11] for a detailed description). Tisseur [74] showed that the residual

‖HTTH − T̂‖/‖T‖/‖H‖2 can be much smaller when one applies the hyperbolic

rotations in a mixed way rather than in a direct way.

In [74], Tisseur analyzes the tridiagonalization of a symmetric matrix with

respect to a signature matrix. The bulge chasing process is a tridiagonalization.

If at a step j of the tridiagonalization process (Algorithm 6.3), a hyperbolic

matrix does not exist or its condition number is too large, then we can apply a

random unified rotation on the first two rows and column. We then have nonzero

entries at the positions (3, 1) and (1, 3) and we can restart the tridiagonalization

and chase the bulge with j−2 unified rotations until we reach the new j th column

[74].

If at the k-th HZ iteration, the first column of the shifted matrix x = p(JT )e1

is isotropic, that is 〈x, x〉J = 0 or the condition number of the hyperbolic matrix

such that Qx = ρe1 is too large, then one can apply a random shift and hope that
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this technique prevents a breakdown. Assume now that x1, the first column of the

shifted matrix at the first HZ iteration is not isotropic and that the bulge chasing

process is accomplished successfully. Then, if the following first columns xk of

the shifted matrix at the k-th HZ iteration (k ≥ 2) are not isotropic, then all the

corresponding bulge chasing processes are accomplished successfully. The reason

is that 2 × 2 hyperbolic matrices preserve the modulus of the indefinite scalar

product. Thus, if 〈xk, xk〉J 6= 0 for all k ≥ 2 and the first bulge chasing process

is successful, then there will be no major breakdown during the HZ iterations.

Moreover, during the bulge chasing process, we need to check for deflations

that may occur before the process is completed. This is particularly important

if the last rotation at a given step k is hyperbolic. Let x = [ tk+1,k tq,k ]T with

q = k + 2 or q = k + 3 and J̃ = ±diag(1,−1). During our numerical tests, we

noticed that ‖x‖2 can be very small. If |x1| ≈ |x2|, the hyperbolic transformation

mapping x to ±(xT Jx)e1 has a large condition number, therefore affecting the

numerical stability of the process. Hence it makes sense to deflate before applying

the hyperbolic transformation rather than after. In our implementation, we chose

to set x to 0 if ‖x‖2 ≤ ε‖T‖2.

6.5 Pseudocodes

The following algorithm describes this process and the computation of H̃p (See

Section 6.3). The shifts are analyzed in Section 6.6 where we compare several

shifting strategies. Thus, in the next algorithm, we assume that we have the

shifts and the first column of the shifted matrix. We now give two algorithms in

order to describe the HZ implementation. We start by the implementation of a

single HZ step and we carry on with the HZ algorithm for a tridiagonal-diagonal

pair.
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Algorithm 6.3 Given an unreduced symmetric tridiagonal n × n matrix T and

a signature matrix J , this algorithm applies an implicit double HZ step to the

pair (T, J) with shifts ω1, ω2. It returns a tridiagonal diagonal pair (T̃ , J̃) and a

matrix H such that (T̃ , J̃) = HT (T, J)H.

Set H = I

Compute s = ω1 + ω2 and t = ω1ω2 (see Section 6.6).

Compute x = p(JT )e1 = ((JT )2 − tJT + dI)e1.

Apply Algorithm 4.4 to x and obtain Q such that QT x = ρe1

Compute QT T (1: 4, 1: 4)Q and update H(:, 1: 3) = HQ.

j = 1

While p ≤ n − 3

Set x = [ tj+1,j tj+2,j tj+3,j ]T

Apply Algorithm 4.4 to x and J(j + 1 : j + 3)

and obtain Q such that QT x = ρe1.

Compute QT T (j + 1: j + 3, j + 1: j + 3)Q.

Update H(2: j + 3, j + 1 : j + 3) = H(2: j + 3, j + 1 : j + 3)Q.

j = j + 1

end

Construct unified rotation G(n − 1, n) to zero out T (n − 1, n).

Update T = GT
n−1,nT (n − 1 : n, n − 1 : n)Gn−1,n.

Update H(: , n − 1 : n − 2) = H(: , n − 1 : n − 2)Gn−1,n.

Algorithm 6.4 Given an unreduced symmetric tridiagonal n×n T1, a signature

matrix J1 and a tolerance ε, this algorithm computes a block diagonal matrix T2

with 1× 1 and 2× 2 blocks, a signature matrix J2 and H such that T2 = HT T1H

and J2 = HTJ1H.
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Set H = I, T2 = T1, J2 = J1 and p = 1

while n > 2

Set k = min(n, 4), q = k + p − 1

Apply a double implicit step (Algorithm 6.3) on (T2(p : q, p : q), J2(p : q))

Update H(:, p : n) = H(:, p : n)Q where Q is return by Algorithm 6.3

for i = p : n

if |ti,i−1| ≤ ε(|ti−1,i−1| + |tii|)

Set ti,i−1 = 0, ti−1,i = 0

end

end

% Get smallest n such that tn,n−1 or tn−1,n−2 is non-zero

while or (tn,n−1 = 0, tn−1,n−2 = 0)

if Tn,n−1 = 0

n = n − 1

elseif tn−1,n−2 = 0

n = n − 2

end

if n ≤ 2

break

end

end

Get biggest p such that T (p : n, p : n) is unreduced

end

In Algorithm 6.3, the tolerance ε is usually u the unit roundoff and the defla-

tion is numerically allowed since rounding errors of order u‖T‖ are present during

the computations [31].
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6.6 Shifting Strategies

The shifts ω1, ω2 in Section 6.3 (Equation (6.10)) are based on the eigenvalues

λ1, λ2 of the bottom right corner 2 × 2 subpencil

T (n − 1: n, n − 1: n) − λJ(n − 1: n, n − 1: n).

The Francis shift consists of taking ω1 = λ1 and ω2 = λ2 [31]. The Wilkinson

shifts correspond to taking ω1 = ω2 = λ̃, where λ̃ is the nearest eigenvalue to

σntnn. We consider three shifting strategies:

1. Francis shifting strategy, where Francis shifts are used exclusively,

2. “mix 1” shifting strategy, where Francis shifts are used when

J(n − 1: n, n − 1: n) = ±diag(1,−1)

and Wilkinson shifts are used when

J(n − 1 : n, n − 1 : n) = ±I,

3. “mix 2” shifting strategy, described below, that is based on the eigenvalues

of the bottom right corner 3 × 3 subpencil.

The first two shifting strategies (Francis and “mix 1”) are commonly used in

eigenvalue algorithms. We give some justifications for our third shifting strat-

egy choice “mix 2”. “mix 2” uses a double shift even though the shifts are the

eigenvalues of the bottom right corner 3 × 3 subpencil. The reason is that once

the iteration is converging the eigenvalues of the bottom right corner 3 × 3 sub-

pencil are better approximations to the matrix eigenvalues than eigenvalues of

the bottom right corner 2 × 2 subpencil. Furthermore, it allows us to have a

heuristic criteria to “guess” if the next eigenvalue that appears in the Hessenberg
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form after deflation is complex or real. At the end of this section, we present

numerical experiments that show the number of HZ iterations is less using the

“mix 2” shifting strategy than using the other two shifting strategies.

In the rest of this section, we describe first the shifting strategy “mix 2” then

we compare numerically the three shifting strategies.

Let

q(z) = σn−2σn−1σn det(T (n − 2: n, n − 2: n) − zJ(n − 2: n, n − 2: n)),

= σn−2σn−1σn(z3 + a2z
2 + a1z + a0),

where

a2 = −trace(J(n − 2: n, n − 2: n)T (n − 2: n, n − 2: n)),

a0 = − det(J(n − 2: n, n − 2: n)T (n − 2: n, n − 2: n)),

a1 = σn−2σntnntn−2,n−2 + σn−1σntnntn−1,n−1 + σn−2σn−1tn−2,n−2tn−1,n−1

−σn−1σnt2n,n−1 − σn−2σn−1t
2
n−1,n−2.

We know that q has at least one real root. We have that

q′(z) = σn−2σn−1σn(3z2 + 2a2z + a1)

and that q′ ≥ 0 or q′ ≤ 0 if the determinant ∆ = 4(a2
2 − 3a1) ≤ 0. In this case q

has two complex conjugate roots. Now, if ∆ > 0, let ξk, k = 1, 2 with ξ1 ≤ ξ2 be

the two distinct real roots of q′. If q(ξk) = 0 then, q has two real distinct roots

(one simple and one double). If q(ξ1)q(ξ2) < 0 then q has three distinct real roots.

Otherwise, if q(ξ1) < 0 or q(ξ2) > 0, then q has one real root and two conjugate

complex roots. The roots of a scalar cubic polynomial can be obtain explicitly by

using Vieta’s substitution and Cardan’s formula. A practical method to obtain

the roots of q is to apply the HZ algorithm on (T̃ , J̃), where

T̃ = T (n − 2: n, n − 2: n), J̃ = J(n − 2: n, n − 2: n),
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by using the first two shifting strategies. Since the size (3 × 3) of the problem is

small, there is no difference in practice between the Francis and “mix 2” shifting

strategies. They need to perform one iteration on the 3×3 problem for a deflation

to occur. We obtain Q ∈ R3×3 such that T̂ = QT T̃Q is block diagonal and

QT J̃Q ∈ diagk
3(±1). From T̂ , we obtain easily the eigenvalues µ1, µ2 and µ3 of

(T̃ , J̃). The shifting strategy “mix 2” consists of applying a double Wilkinson

shift if all µk are real, the shift being µj the nearest eigenvalue to σntnn. If q has

complex conjugate roots then T̃ has one of the following forms:




×
× ×

× ×


 , (6.12)




× ×
× ×

×


 . (6.13)

If T̃ has the structure in (6.12), then we apply a double Francis shift with complex

shifts µk, µk, otherwise if T̃ has the structure in (6.13), we use a double Wilkinson

shift with real shift µk, the only real root of q. Algorithm 6.5 describes the shifting

strategy “mix 2”.

Algorithm 6.5 Given T = (tij), an unreduced tridiagonal symmetric n×n ma-

trix, a signature matrix J = diag(σk) and a tolerance parameter ε, this algorithm

chooses a shift for (T, J) described by the method “mix 2”.

Set T̃ = T (n − 2 : n, n − 2 : n), J̃ = J(n − 2 : n, n − 2 : n).

Compute T̂ = QT T̃Q, block diagonal with Ĵ = QT J̃Q ∈ diagk
3(±1).

Compute the eigenvalues µk, k = 1, 2, 3 of (T̂ , Ĵ).

if σn = σn−1 = σn−2

Apply a double Wilkinson shift with µ such that
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|σntnn − µ| = min
k=1,2,3

|σntnn − µk|

else

if =(µk) = 0, k = 1, 2, 3

if |t̂32| ≤ ε(|t̂22| + |t̂33|)

Apply a double Wilkinson shift with µ such that

|σntnn − µ| = min
k=1,2,3

|σntnn − µk|

else apply a double Francis shift with µ and µ̃ such that

|σntnn − µ| = min
k=1,2,3

|σntnn − µk|

|σntnn − µ̃| = min
k=1,2,3

|σntn−1,n−1 − µk|

end

else if |t̂32| ≤ ε(|t̂22| + |t̂33|)

Apply a double Wilkinson shift with µ such that

|σntnn − µ| = min
k=1,2,3

|σntnn − µk|

else Apply a double Francis shift with µ ∈ C \ R and µ̄

the eigenvalues of (T̂ , Ĵ).

end

end

end

We used random symmetric tridiagonal matrices generated with MATLAB’s

randn. J was obtained by MATLAB random permutation generator randperm:

J = diag((-1).^randperm(n)).

For each value of n, we used 100 tridiagonal-diagonal pairs. The total number

of iterations on average and the number of iterations per eigenvalue on average

are shown in Table 6.1 and Table 6.2, respectively. We see that the Francis

shifting strategy and the “mix 1” shifting strategy are equivalent in the sense
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that they require more or less the same amount of iterations. The Francis shifting

strategy seems to require less iterations than the mixed Francis-Wilkinson shifting

strategy. The last shifting strategy “mix 2” performs better than the two other

methods. It is due to the fact that the eigenvalues of the bottom right corner

3 × 3 subpencil are better approximations to the eigenvalues of (T, J) than the

eigenvalues of the bottom right corner 2 × 2 subpencil. The disadvantage of the

“mix 2” shifting strategy is that it is slightly more expensive to implement and

it fails if the bottom right corner 3 × 3 subpencil has a non-trivial Jordan block.

In Chapter 7, we present numerical experiments with different type of matrices

in order to see the behavior of the shifting strategies in the case of ill conditioned

problems.

6.7 Flops Count and Storage

The first step of the HZ algorithm described in Subsection 6.1.1 requires n3/3

flops for the LDLT decomposition of B and there is an additional cost of n3 flops

to update A. If instead, we use the QR algorithm to diagonalize B, we need

approximately (2/3 + 5)n3 flops and an additional 2n3 flops to update A.

The second step, that is, the reduction to a tridiagonal-diagonal pair requires

approximately (1/3)n3 +(1/2)n2 flops using Tisseur’s algorithm [74]. Finally, the

HZ algorithm on a tridiagonal-diagonal pair involves in average 10(n2 + n) + 5n2

operations for the bulge chasing and an additional 10n flops to compute the shifts

with Algorithm 6.5.

In Table 6.3, we compare the number of floating point operations in the HZ

and QZ algorithm. The first step in the QZ algorithm is the Hessenberg-triangular

reduction. Then, we apply the QZ algorithm to compute the real generalized

Schur decomposition. This algorithm is presented in detail in [53] and in [31],
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Table 6.1: Average number of iterations for each shifting strategy.

n Francis mix 1 mix 2
10 14.375 13.575 11.7
50 75.55 75.25 64
100 152.225 153.575 128.3
150 228.6 231.225 193.72
200 306.75 308.55 259.65
300 462.525 467.375 389.62
400 614.5 623.05 519.72

Table 6.2: Average number of iterations per eigenvalue for each shifting
strategy.

n Francis mix 1 mix 2
10 1.44 1.36 1.17
50 1.51 1.5 1.28
100 1.52 1.53 1.28
150 1.52 1.54 1.29
200 1.53 1.54 1.3
300 1.54 1.56 1.3
400 1.54 1.56 1.3

where all the flops counts are available. In total, the QZ algorithm requires 33n3

flops whereas the HZ algorithm requires 16.4n3 if we use an LDLT factorization

or 23n3 if we apply a symmetric QR algorithm.

We now focus on storage. We need n2 + n size vector to store the pair (A, B)

and a vector size n2 for the hyperbolic matrix. During the HZ iteration, we need

2(2n − 1) + 2n size vector to store the two tridiagonal-diagonal pairs and an

additional 5 × 5 workspace. In comparison, the QZ algorithm requires n2 + n

size vector to store the pair (A, B) and a vector size 2n2 for the two orthogonal

matrices Q and Z. An additional n2 + n is required to store the Hessenberg-

triangular pair. The storage saved with the HZ algorithm is of order 2n2.
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Table 6.3: Comparison of the number of floating point operations in the HZ and
QZ algorithms.

Step QZ HZ

1 9n3 QR LDLT

8n3 (4/3)n3

2 (1/3)n3

3 26n2 15n2

6.8 Eigenvectors

We consider the matrices T2 and J2 returned by Algorithm 6.4. T2 is block

diagonal. We have to consider two cases depending on the size of the blocks. For

a 1 × 1 block in the ith position, the corresponding eigenvector is just ei.

For a 2 × 2 block, with real or complex eigenvalues we need to solve the

equation

T2(i: i + 1, i: i + 1)y = λiJ(i: i + 1, i: i + 1)y. (6.14)

The matrix T2(i: i+1, i: i+1)−λiJ(i: i+1) has rank 1. Thus, (6.14) has a linear

subspace of dimension 1. We rewrite (6.14) as Ax = 0 with A = (aij)1≤i,j≤2. We

get two expressions for the same linear subspace which is spanned by

x1 = [−a12 a11 ]T ,

x2 = [−a22 a21 ]T ,

x2 = ρx1. (6.15)

Although x1 and x2 are linearly dependent in theory, in finite arithmetic one of

them can be computed more accurately than the other one. In the following

paragraphs, we present the chosen method for computing the eigenvector.

For real eigenvalues (6.14) gives us two expressions of y for each eigenvalue.
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We can choose y that minimizes the residual

‖(T2(i: i + 1, i: i + 1) − λiJ(i: i + 1, i: i + 1))y‖2

for a normalized eigenvector ‖y‖2 = 1. Then, the eigenvector x corresponding to

λi has zero entries except for the row i, i + 1 and we have x(i: i + 1) = y.

Complex eigenvalues come in pairs (λi, λ̄i) as the corresponding eigenvectors.

We solve equation (6.14) and we get two expressions for y and two for ȳ. We can

now choose y that minimizes

‖(T2(i: i+1, i: i+1)−λiJ(i: i+1, i: i+1))y‖2 or ‖(T2(i: i+1, i: i+1)−λ̄iJ(i: i+1, i: i+1))ȳ‖2.

Finally, to obtain the eigenvectors of the original T1 we just need to multiply

x by the accumulated transformations H.

6.9 Iterative Refinement

6.9.1 Newton’s Method

The iterative refinement is done by Newton’s method. In [72], Tisseur studied

Newton’s method in floating point arithmetic and showed how to apply iterative

refinement to the GEP. We apply the Newton method to the function f : Kn ×

K → Kn+1 defined by

f

([
x

λ

])
=

[
(A − λB)x

µeT
s x − µ

]
,

where K denotes R or the complex field C, µ > 0 and some 1 ≤ s ≤ n. Then,

Newton’s method for the GEP is finding the zeros of f . The Jacobian matrix of

f is given by

G

([
x

λ

])
=

[
A − λB −Bx

µeT
s 0

]
.
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Given a starting guess of the eigenpair (x0, λ0), the Newton iterations are defined

by

G

([
xp

λp

])[
∆xp+1

∆λp+1

]
= −f

([
xp

λp

])
, (6.16)

where ∆xp+1 = xp+1 − xp and ∆λp+1 = λp+1 − λp.

We assume that all the convergence conditions for the Newton iterations are

satisfied. Those conditions are informally that the Jacobian matrix (in the New-

ton iteration) is not too ill conditioned, the linear system solver is not too unstable

and the starting pair (λ0, x0) for the iteration is a good enough approximation.

Then, we have the following result on the backward error in the ∞−norm of a

refined eigenpair (λ̃, x̃) with residuals computed in fixed precision [72, Corollary

3.5]

η(λ̃, x̃) ≤ γn + u(3 + |λ|) max

(‖A‖∞
‖B‖∞

,
‖B‖∞
‖A‖∞

)
, (6.17)

where u is the unit roundoff, γn = cnu
(1−cnu)

and c is a small integer . We can expect

this backward error to be small enough (of order c̃nu, with c̃ a small constant) if

|λ|max

(‖A‖∞
‖B‖∞

,
‖B‖∞
‖A‖∞

)
≤ 1.

If |λ| > 1, we can consider the reciprocal matrix pencil B − λ
′
A, with λ

′
= 1

λ
. If

the GEP is not well balanced, that is

‖B‖∞
‖A‖∞

� 1 or
‖B‖∞
‖A‖∞

� 1,

we can consider the equivalent pencil

γA − (γλ)B,

with γ = ‖B‖∞
‖A‖∞ . Thus, in each case, we can change the GEP in order to obtain a

small backward error for the refined eigenpair.

We now consider Newton’s method and its implementation.
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6.9.2 Implementation

The direct implementation of this iteration is too expensive since it requires O(n3)

flops per iteration [72]. By using Tisseur’s reduction to tridiagonal-diagonal form

[74], we obtain the equivalent pencil

(T, J) = HT
1 (A, B)H1. (6.18)

Then, from the HZ algorithm 6.3 and 6.4, we know that there exists a matrix H2

such that HT
2 TH2 = D, HT

2 JH2 = J̃ , with T block diagonal and J̃ ∈ diagn
k(±1)

and we set H = H1H2.

In the rest of this paragraph, we describe a generalization of the method used

in [72] to complex eigenpairs. By using the eigendecomposition computed by the

HZ algorithm, the cost of the implementation can be reduced to O(n2) flops per

iteration. After manipulating Newton’s equation (6.16) and applying the same

ideas as [72], we obtain the iteration

HT Mpδp+1 = −HT (A − λpB)xp, (6.19)

where

Mp = (A − λpB) − ((A − λpB)es + Bx)eT
s and δp+1 = ∆xp+1 + (∆λp+1 − 1)es.

We define wp+1 = H−1δp+1, rp = (A − λpB)xp, vp = HT (A − λpB)es + HT Bxp

and d = HTes. Then, Equation (6.19) becomes

((D − λpJ̃) − vpd
T )wp+1 = −HT rp. (6.20)

To solve (6.20) we proceed as follows. We use Givens rotations to compute the

orthogonal matrix Ep such that

ET
p vp = ±||vp||2e1.
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The matrix ET
p ((D−λpJ̃)−vpd

T ) is upper Hessenberg with an extra subdiagonal

and its QR factorization requires only O(n2) flops. Hence wp+1 in (6.20) can be

obtained in O(n2) flops.

Algorithm 6.6 Given a tolerance ε, a symmetric pair (A, B), H, a block diag-

onal D and a signature matrix J̃ such that HT AH = D and HT BH = J̃ and an

approximate eigenpair (λ, x) with ‖x‖∞ = xs = 1, this algorithm applies iterative

refinement to λ and x.

Repeat until convergence

While η(λ, x) > ε

v = HT (A − λB)es + HT Bx

g = HT es

Compute orthogonal matrix E such that

ET v = ±||v||2e1

Compute orthogonal matrix F such that

R = F TET ((D − λJ̃) − vdT ) is upper triangular

Solve Rw = −F T ET HT (A − λB)x

δ = Hw

λ = λ + δT es

x = x + δ − (δT es)es

end

The implementation of Newton’s method described in the first part of this

section requires O(n2) operation per iterations. Any method that necessitates

a matrix-vector multiplication will requires O(n2) operations per iteration. We

are now going to present a method that is based on a modified version of the

Sherman-Morrison-Woodbury formula. Our first motivation is to reduce the cost
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to at most one n2 flops operation and to apply Newton’s method in real arith-

metic for complex eigenpair. The second aim of this method is to improve the

numerical stability without increasing the cost of computation. The tridiagonal-

diagonal pair (T, J) (6.18) is the most compact form that can be obtained in a

finite number of steps. The HZ iterations use hyperbolic rotations that add in-

stability to the reduction. Hence, the accumulated errors are larger when we use

the eigendecomposition within the Newton iteration rather than the tridiagonal-

diagonal form (T, J).

The iterations with the tridiagonal-diagonal pair (T, J) in (6.18) are given by

HT
1 Mpδp+1 = −HT

1 (A − λpB)xp, (6.21)

where

Mp = (A − λpB) − ((A − λpB)es + Bx)eT
s and δp+1 = ∆xp+1 + (∆λp+1 − 1)es.

We define wp+1 = H−1
1 δp+1, rp = (A − λpB)xp, vp = HT

1 (A − λpB)es + HT
1 Bxp

and d = HT
1 es. Then, (6.21) becomes

((T − λpJ) − vpd
T )wp+1 = −HT

1 rp. (6.22)

Refining real eigenpairs: To solve (6.22) when λp is real, we proceed as

follows. Let QR = (T − λpJ) be the QR factorization of the tridiagonal matrix

(T − λpJ). This factorization can be done in O(n) operations. Premultiplying

(6.22) by QT gives

(R − vdT )wp+1 = −QT HT
1 rp, v = QT vp. (6.23)

Note that since λp approaches an eigenvalue of (T, J), R is nearly singular so

we cannot use the Sherman-Morrison-Woodbury formula as it is. Let R̃ = (R −

vdT ) + vdT + uuT for some u ∈ Rn such that R̃ is nonsingular. Then,

R − vdT = R̃ − [ v u ]

[
dT

uT

]
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and (6.23) becomes
(

R̃ − [ v u ]

[
dT

uT

])
wp+1 = −QT HT

1 rp.

Since R̃ is nonsingular, we can use the Sherman-Morrison-Woodbury formula.

This gives

wp+1 =

(
In + R̃−1 [ v u ] C−1

[
dT

uT

])
R̃−1b, (6.24)

where

C = I2 −
[

dT

uT

]
R̃−1 [ v u ] and b = −QT HT

1 rp.

Note that for the choice u = es with s such that

|rss| = min
1≤k≤n

|rkk|,

R̃ is upper triangular with only 3 superdiagonals and any calculation of the form

R̃−1z cost O(n) operations.

Refining complex eigenpair: We now consider the complex case. Let (λ, x)

be a complex eigenpair, λ = α+iβ for some (α, β) ∈ R
2 with β 6= 0 and x = y+iz

for some (y, z) ∈ Rn×2 with z 6= 0. Separating real and imaginary parts in (6.22)

yields

Mpw̃p+1 = −r̃p, (6.25)

where Mp = M̃p − ṽpd̃
T and

M̃p =

[
T − αpJ βpJ

−βpJ T − αpJ

]
, ṽp =

[ <(vp) =(vp)

−=(vp) <(vp)

]
,

w̃p+1 =

[
H−1<(wp+1)

H−1<(wp+1)

]
, r̃p =

[
H−1<(rp)

H−1<(wp)

]
,

d̃ =

[
d 0

0 d

]
.
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The first approach is similar to the real case. Let M̃p = QR be the QR

factorization of the sparse matrix M̃p. This factorization can be done in O(n2)

operations. Premultiplying (6.25) by QT gives

(R − vd̃T )wp+1 = −QT r̃p, v = QT ṽp. (6.26)

Note that since λp approaches an eigenvalue of (T, J), R is nearly singular. It is

approaching a matrix of rank 2(n− 1). Once more, we cannot use the Sherman-

Morrison-Woodbury formula as it is. Let R̃ = (R − vd̃T ) + vd̃T + u1u
T
1 + u2u

T
2

for some u1, u2 ∈ R2n such that R̃ is nonsingular. Then,

R − vd̃T = R̃ − [ v u1 u2 ]




d̃T

uT
1

uT
2




and (6.26) becomes

R̃ − [ v u1 u2 ]




d̃T

uT
1

uT
2





wp+1 = −QT r̃p. (6.27)

Since R̃ is nonsingular, we can use the Sherman-Morrison-Woodbury formula.

This gives

wp+1 =


I2n + R̃−1 [ v u1 u2 ]C−1




d̃T

uT
1

uT
2





 R̃−1QT r̃p,

where

C = I4 −




d̃T

uT
1

uT
2


 R̃−1 [ v u1 u2 ] .

Note that for the choices u1 = es1, u2 = es2 with s1, s2 such that

|rs1s1| = min
1≤k≤n

|rkk|,

|rs2s2| = min
1≤k≤n,k 6=s1

|rkk|,
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R̃ is band upper triangular.

Throughout the Newton iterations, we have computed several QR factoriza-

tions of tridiagonal matrices. For a band matrix that has p subdiagonals and

p superdiagonals the R factor of the QR factorization can be obtained in O(n)

operations if p � n. R is upper triangular with 2p superdiagonals. The Q fac-

tor can be obtained in O(n2) operations. But, we recall that Q is not explicitly

required in order to solve the linear system within Newton’s iterations. Further

details on the QR factorization of a tridiagonal matrix can be found in [7].

Algorithm 6.7 Given a tolerance ε, a symmetric pair (A, B), H, a tridiagonal

T and a signature matrix J such that HTAH = T and HT BH = J and an

approximate real eigenpair (λ, x) with ‖x‖∞ = xs = 1, this algorithm applies

iterative refinement to λ and x.

Repeat until convergence

While η(λ, x) > ε

r = (A − λB)x

v = HT (A − λB)es + HT Bx, d = HT es

Compute the QR factorization of T − λJ = QR

Compute s such that |rss| = min
1≤k≤n

|rkk| and set R̃ = R + ese
T
s

Apply Sherman-Morrison-Woodbury formula (6.24) to solve

(R̃ − [ v es ]

[
dT

eT
s

]
)w = −QT HT r

δ = Hw

λ = λ + δT es

x = x + δ − (δT es)es

end
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Algorithm 6.8 Given a tolerance ε, a symmetric pair (A, B), H, a tridiagonal

T and a signature matrix J such that HTAH = T and HT BH = J and an

approximate complex eigenpair (λ, x) with ‖x‖∞ = xs = 1, this algorithm applies

iterative refinement to λ and x.

Repeat until convergence

While η(λ, x) > ε

% Compute the residues

r1 = (A −<(λ)B)y + =(λ)Bz, r2 = (A − <(λ)B)z −=(λ)By

Compute the QR factorization of

M =

[
T − <(λ)J =(λ)J

−=(λ)J T − <(λ)J

]
= QR

Compute s1 such that |rs1s1| = min
1≤k≤n

|rkk|

Compute s2 such that |rs2s2| = min
1≤k≤n,k 6=s1

|rkk|

Set R̃ = R + es1e
T
s1

+ es2e
T
s2

%Compute the rank 2 updates

v1 = HT
1 ((A − <(λ)B)es + B<(x)), v2 = HT

1 (=(λ)Bes − B=(x)),

v3 = HT
1 (−=(λ)Bes + B=(x)), v4 = HT

1 ((A − <(λ)B)es + B<(x))

v =

[
v1 v2

v3 v4

]
, d̃ =

[
d 0

0 d

]
, d = HT es

u1 = [ v es1 es2 ], u2 = [ d̃ es1 es2 ]

Apply Sherman-Morrison-Woodbury formula to solve

(R̃ − u1u
T
2 )w = −QT

[
HT

1 r1

HT
1 r2

]

δ1 = Hw(1: n), δ2 = Hw(n + 1: 2n)

<(λ) = <(λ) + δT
1 es, =(λ) = =(λ) + δT

2 es

<(x) = <(x) + δ1 − (δT
1 es)es, =(x) = =(x) + δ2 − (δT

2 es)es

end
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Algorithm 6.8 uses only real arithmetic to apply iterative refinement to a

complex λ and x. But, in this case the QR factorization is more expensive than

in Algorithm 6.7. Note that Algorithm 6.7 can be used for complex eigenpairs.

Its advantage will be that the only operation that requires n2 flops is one matrix-

vector multiplication. For a tridiagonal-diagonal pair, eigenvectors computed in

Section 6.8 might not be accurate. Thus, we can use the eigenvectors in Section

6.8 as starting approximations for the inverse iteration or the Newton iteration.
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Chapter 7

Numerical Experiments with HZ

and Comparisons

7.1 The HZ Algorithm

In Chapter 6, we described the HZ algorithm for symmetric GEPs. The first step

is a symmetric-diagonal reduction. Then, by applying Tisseur’s tridiagonalization

process, the pair is reduced to a tridiagonal-diagonal pair on which we perform

the HZ iterations.

The HZ algorithm can also be used to solve the standard real unsymmetric

eigenvalue problem (A, I). In this case, the first step is to reduce the pair (A, I) to

tridiagonal-diagonal pair (T, I). Details on this reduction were analyzed in [23],

[78] and more recently in [29]. Then, the tridiagonal matrix can be transformed

into an equivalent symmetric-diagonal pair (T̃ , J). For the reduction of a general

matrix to tridiagonal form, there is a an implementation in Fortran 77 [27] and

the codes are available on the web at http://www.netlib.org/toms/710. Finally,

the pair (T, I) can be transformed into an equivalent symmetric-diagonal pair
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(T̃ , J) as follows:

σ1 = 1, (7.1)

ak = tk,k−1tk−1,k, t̃k,k−1 =
√

|ak|, σk = sign(ak), k = 2: n. (7.2)

In the following sections, we present various numerical experiments. Unless

otherwise stated, we use the shifting strategy “mix 2” (see Algorithm 6.5, Section

6.6) with the HZ algorithm. In the tables and figures, HZ stands for our imple-

mentation of the HZ algorithm, LR for our implementation of the LR algorithm,

EA for Tisseur’s implementation of the Erhlich-Aberth method and QR and QZ

for MATLAB’s built in implementations of the QR and QZ algorithms. The

HZ and LR algorithms and the Erhlich-Aberth method are also implemented in

MATLAB.

7.2 Standard Numerical Experiment

We consider test matrices generated by MATLAB’s function randn as follows:

a = randn(n,1);

b = randn(n-1,1);

T = diag(a)+diag(b,1)+diag(b,-1);

J = diag((-1).^randperm(n));

T is a n×n symmetric tridiagonal matrix and J is a signature matrix. We generate

100 test matrices for each size n = 100, 200, 300 and n = 400. The number of HZ

iterations, in each case is on average 1.3 iterations per eigenvalue and there are on

average (3/4)n Newton iterations. For n = 100, 95 eigenpairs have a backward

error of order 10−16, 85, 65 and 65, respectively for n = 200, n = 300 and

n = 400, before applying the iterative refinement. These results are not surprising
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since these eigenvalue problems are well conditioned: the unstructured normwise

condition numbers are all between 5 and 18. In all these experiments, we find that

the following ratio between the structured and unstructured normwise condition

numbers

t =
κ(λ)

C(λ, S)

satisfies 1.5 ≤ t ≤ 1.75, where κ(λ) is the usual Wilkinson condition number and

C(λ, S) is given in Corollary 4.26. Here, S is the class of symmetric tridiagonal

matrices. The results on iterative refinement are summarized in Table 7.1. η1

denotes the normwise backward error on average for each size, before we apply it-

erative refinement. η2 denotes the normwise backward error on average, obtained

after iterative refinement. On average, 80% of the eigenpairs require iterative

refinement. The second and third column of Table 7.1 show that the ratio η2/η1

is of order 10−6 except for n = 400 where it is of order 10−8. The last column

shows that applying iterative refinement to an approximate eigenpair can reduce

the backward error to a quantity close to machine precision.

Table 7.1: Numerical results for randomly generated tridiagonal-diagonal pairs.

n Number of Newton Iterations η1 η2

100 77 10−10 1.6 × 10−16

200 158 8 × 10−8 9 × 10−16

300 237 5 × 10−9 3 × 10−15

400 320 10−7 8 × 10−15

Similarly, we present standard tests for symmetric GEPs Ax = λBx that are

randomly generated by

A = randn(n); A=A+A’;

B = randn(n); B=B+B’;
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In Table 7.2, we see that the number of Newton iterations is about two iterations

per eigenvalue. The average of the largest backward errors is given in column

two before iterative refinement (η1) and in column three after refinement (η2).

We see that iterative refinement improves the backward error. The ratio η2/η1 is

between 10−4 and 10−6. Note that the matrix that reduces the symmetric pair

into a tridiagonal-diagonal pair has a large condition number. For this reason,

the backward error in column three is only of order 10−12 for n = 400.

Table 7.2: Numerical results with randomly generated symmetric pairs.

n Number of Newton Iterations η1 η2 κ2(H)
100 184 3−10 2 × 10−14 103

200 411 10−9 6 × 10−14 1.8 × 104

300 649 8 × 10−8 5 × 10−13 3 × 104

400 879 10−6 1 × 10−12 105

7.3 Symmetric GEPs and Iterative Refinement

We first consider an example taken from the Harwell-Boeing Collection available

from http://math.nist.gov/MatrixMarket. The matrix A is ‘LUND A’ and the

matrix B is ‘LUND B’. A and B are both indefinite. The size of the problem is

n = 147. We have

κ2(A) = 2.2 × 108 and κ2(B) = 7.4 × 103.

The eigenvalues of A are in the region 80 ≤ |λA| ≤ 2.3 × 108 and those of B are

in the region 0.2 ≤ |λB| ≤ 7.4× 103. The eigenvalues of (A, B) are real and they

are in the interval

200 ≤ |λ| ≤ 1.4 × 106.
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The matrix that reduces the pair (A, B) to a tridiagonal-diagonal pair has a

condition number of order 150. The HZ algorithm performed 140 iterations and

154 Newton iterations were required. The largest backward error is of order 10−6

before and 10−15 after iterative refinement is applied.

In Figure 7.1, we plot in logarithmic scale the unstructured normwise back-

ward error against the modulus of the eigenvalues. The dashed line is the value

of γn in the expression of the bound of the backward error (6.17). We see that

the iterative refinement reduces the backward error and that the bound (6.17) is

satisfied.
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Figure 7.1: Normwise unstructured backward errors before (◦) and after (+)
iterative refinement.
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7.4 HZ on Tridiagonal-Diagonal Pairs

The following examples can be found in [7]. These test matrices are not symmetric

thus we use the process in (7.1)–(7.2) to obtain tridiagonal-diagonal pairs. In

factored form, these tridiagonal matrices are given by

T = D−1tridiag(1, α, 1), D = diag(δ), α, δ ∈ R
n.

Test 1 : ak = k(−1)bk/8c, δk = (−1)k/k, k = 1: n,

Test 2 : ak = 10(−1)bk/8c, δk = (−1)bkc, k = 1: n,

Test 3 : ak = k, δk = n − k + 1, k = 1: n,

Test 4 : ak = (−1)k, δk = (−1)bkc20, k = 1: n,

Test 5 : ak = 105(−1)k

(−1)bk/4c, δk = (−1)bk/3c, k = 1: n, (7.3)

Test 6 : ak = 2, δk = 1, k = 1: n,

Test 7 : ak =
1

k
+

1

n − k + 1
, δk =

1

k
(−1)bk/9c, k = 1: n,

Test 8 : ak = kbk/5cbk/13c, δk = (n − k + 1)2(−1)bk/11c, k = 1: n,

Test 9 : ak = 1, k = 1: n, δk = 1 ifk < n/2, δk = −1 if k ≥ n/2,

Test 9 : ak and δk are uniformly distributed in [−0.5, 0.5].

The eigenvalues of these test matrices have a variety of distribution as shown

in Figures 7.2, 7.3 and 7.4. We denote by λk the k-th eigenvalue computed in

extended precision and by λ̂k its approximation computed with either our imple-

mentation of the HZ algorithm, the LR algorithm or by Tisseur’s implementation

of the Erhlich-Aberth method. We compute the relative error for the test matrices

1–10 with n = 100 (Table 7.4) and n = 150 (Table 7.5).

The largest eigenvalue condition number for these test matrices are shown in

Table 7.3. They vary between 2 (test 4) and 1010 (test 5) for n = 100 and they
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are slightly larger for n = 150. Table 7.4 shows that the relative error on the

computed eigenvalues increases with the condition number. The approximations

obtained with the Erhlich-Aberth method are relatively accurate whereas the

ones returned by the LR algorithm have poor accuracy. The HZ algorithm has

an intermediate accuracy but for the test matrix 5 with n = 150 it fells to return

an acceptable approximation. The backward error with the HZ algorithm is of

order 10−16 except for the test 5 for which it is of order 10−11. These good results

on the backward error are not enough to ensure a small relative error.

Table 7.3: Largest eigenvalue condition number for test matrices 1–10 with n =
100 and n = 150

Test 1 2 3 4 5 6 7 8 9 10
maxk(C(λk)), n = 100 3e4 239 4e4 2 1.7e10 4e3 6e2 4e6 2e2 637
maxk(C(λk)), n = 150 6e4 6e2 9e4 2 4e10 9e3 7e2 1e7 4e2 5e3

An HZ iteration requires approximately 80n operations per iteration whereas

the EA iteration in [7] necessitates approximately 57n operations per iteration.

Thus, an HZ iteration requires 1.33 times more operations than an EA iteration.

In Table 7.6, we compare the number of iterations between the Erhlich-Aberth

method and the HZ algorithm. For n = 150, the ratio between the number of

iterations between the Erhlich-Aberth method and the HZ algorithm lies between

1.4 and 14. The large number of iterations in Table 7.6 for the Erhlich-Aberth

method is due to the quality of the starting approximations of the eigenvalues.

We illustrate this fact in the next numerical experiment by changing the starting

approximations of the eigenvalues for the EA method. Another disadvantage of

the Erhlich-Aberth method is the fact that it uses complex arithmetic and as a

result, it does not preserve the symmetry of the spectrum. We illustrate this fact

in Section 7.5.
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Table 7.4: Largest relative error of the computed eigenvalues for test matrices
1–10 with n = 100.

Test 1 2 3 4 5 6 7 8 9 10
HZ 6.8e-14 3e-14 5e-15 4e-15 1e-5 9e-13 1e-14 1e-14 3e-15 1e-14
LR 2.9e-13 4e-11 1e-14 7.4e-9 5e7 9e-10 1e-5 2e-10 6e-7 1e-8
EA 5.8e-16 2e-16 5e-16 1.9e-16 1e-10 4e-14 6e-16 6e-16 2e-15 2e-14

Table 7.5: Largest relative error of the computed eigenvalues for test matrices
1–10 with n = 150.

Test 1 2 3 4 5 6 7 8 9 10
HZ 6e-13 3e-12 3e-14 2e-15 1.3 6e-13 2e-12 2e-13 2e-14 2e-11
LR 2.9e-12 9e-9 3e-15 5e-9 2e2 2e-10 2e-7 8e-8 2e-8 2e-6
EA 3e-16 2e-14 2e-16 1e-16 2e-7 1e-13 7e-16 3e-16 2e-15 3e-16

The eigenvalues computed with HZ can be used as starting approximations

to the Erhlich-Aberth iteration. This can be viewed as an iterative refinement of

the eigenvalues only. The Erhlich-Aberth iteration fails to converge for test 5 and

n = 100, 150: in this case, the eigenvalues computed with the HZ algorithm are

poor approximations of the exact eigenvalues, which explains the non-convergence

of the Erhlich-Aberth iterations. For the test matrices 1 to 4 and 7 to 9, we

obtain a relative error of order 10−16 with at most two Erhlich-Aberth iterations

per eigenvalue. For the test matrix 6, the relative error is of order 10−13, with

a single Erhlich-Aberth iteration per eigenvalue. This represents a reduction of

85% in the total number of iterations compared to the case if we had used the

Erhlich-Aberth method only.
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Figure 7.2: The eigenvalues of tests 1 to 4 in the complex plan for n = 150.
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Figure 7.3: The eigenvalues of tests 5 to 8 in the complex plan for n = 150.
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Table 7.6: Number of HZ iterations and Erhlich-Aberth iterations, n =
150.

Test 1 2 3 4 5 6 7 8 9 10
HZ 190 232 148 303 664 307 268 170 289 278
EA 540 526 419 972 954 2062 765 355 4082 835

Table 7.7: Normwise backward errors for test matrices 1-10 with
n = 150.

Test 1 2 3 4 5 6 7 8 9 10
maxi(η1(λi, xi)) 1.9e-12 2e-13 8e-17 2e-7 2e-4 9e-16 2e-11 1e-15 1.9e-11 3e-11
maxi(η2(λi, xi)) 1.8e-16 3e-15 8e-17 1e-11 2e-16 4e-17 1e-16 1.7e-16 1.6e-16

k 65 70 0 86 337 76 92 4 120 95
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Figure 7.4: The eigenvalues of tests 9 and 10 in the complex plan for n = 150.
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7.5 Bessel Matrices

Nonsymmetric tridiagonal Bessel matrices associated with the generalized Bessel

polynomials [59] are defined by Ta = tridiag(β, α, γ) with

α1 = −2

a
, γ1 = −α1, β1 =

α1

a + 1
,

αk = −2
a − 2

(2k + a − 2)(2k + a − 4)
, k = 2: n,

βk = − 2k

(2k + a − 1)(2k + a − 2)
, k = 2: n − 1,

γk = 2
k + a − 2

(2k + a − 2)(2k + a − 3)
, k = 2: n − 1.

We carry out two experiments. In the first one, we take n = 18 a = −8.5. In

this case, the condition numbers of the eigenvalues lie between 108 and 9 × 1012.

In the second experiment, we take n = 60 and a = 12 and in this case the

condition numbers of the eigenvalue are between 4.4 × 103 and 5.9 × 1015. The

HZ algorithm performed 18 and 83 iterations to compute the eigenvalues for

n = 18 and n = 60, respectively. In both cases, the largest backward error

obtained with the HZ algorithm for an eigenpair is of order 10−16. For an exact

eigenvalue λ0 and a corresponding approximation λ1, we denote the relative error

by ε(λ0, λ1) = |λ0 −λ1|/|λ0|. Figure 7.5 shows that the relative error decreases as

the real part of the eigenvalues increases. It shows that relative to conditionning

all the algorithms provide a good approximation of the eigenvalues with a real

part greater than −0.06 as shown in Figure 7.6. The Bessel matrix with n = 18

and a = −8.5 is the only example for which the HZ algorithm provides the

best approximations. In this case, the Erhlich-Aberth method performed 112

iterations, which is six times more than the HZ algorithm. Thus, there might

be less error accumulated with the HZ algorithm. For the Bessel matrix with

n = 18 and a = −8.5, we see in Figure 7.6 that the Erhlich-Aberth method does

not preserve the symmetry of the spectrum.
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Figure 7.5: Relative errors of the eigenvalues of the Bessel matrix with
n = 18, a = − 8.5 computed with HZ (◦), EA (∗) and with QR (+).
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7.6 Lui Matrices

In [58], for a given A ∈ Cn×n, the author describes a process to build a pair (T, J)

with T symmetric tridiagonal and J ∈ diagk
n(±1) such that the pencils (A, I) and

(T, J) are equivalent. This process is based on the following theorem [58, Thm.

5.6].

Theorem 7.1 Let A ∈ Cn×n, p, q ∈ Rn, H
(k)
n (A, p, q) = (h

(k)
ij ) ∈ Rn×n where

h
(k)
ij = pT Ak+i+j−2q, i, j = 1: n. If H

(0)
n is nonsingular and permits triangular

decomposition H
(0)
n = LnJnL

T
n then the following pencils are equivalent

(H(1)
n , H(0)

n ), (A, I), (Tn, Jn).

Here Tn is the unreduced symmetric tridiagonal matrix Tn = L−1
n H

(1)
n L−T

n .

In [47], Liu applies this method to an n × n Jordan block A which has a unique

eigenvalue 0. The equivalent tridiagonal-diagonal pair (T, J) with

T = tridiag(b, a, b), a ∈ R
n, b ∈ R

n−1,

J = diag(σ), σ ∈ R
n,

is given below for n = 5, 14 and 28.

n = 5 : ak = 0, k = 1: n, b = [−1
√

2 −1/
√

2 −1/
√

2 ] ,

σ = [ 1 −1 −1 1 −1 ] ,

n = 14 : ak =





1 if k = 7, 8,

0 otherwise,

bk = 1, k = 1: n − 1,
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σ = [ 1 −1 −1 −1 1 1 −1 1 −1 −1 1 1 1 −1 ] ,

n = 28 : ak =





1 if k = 7, 8, 14, 14, 21, 22

0 otherwise,

bk = 1, k = 1: n − 1,

σ(1 : 7) = [ 1 −1 −1 −1 1 1 −1 ] ,

σ(8 : 14) = [ 1 −1 −1 1 1 1 −1 ] ,

σ(15 : 21) = [ 1 −1 −1 −1 1 1 −1 ] ,

σ(22 : 28) = [ 1 −1 −1 1 1 1 −1 ] .

For the Liu matrices, the HZ algorithm with the shifting strategies described

in Algorithm 6.5 fails to converge. The first column x of the shifted matrix is

either ek, with k = 1, 2, 3 or xT Jx = 0. For the same reasons, the HZ algorithm

does not converge with the shifting strategy that consists of Francis’s shifts only.

Thus our first series of experiments with the Liu matrices are with the shifting

strategy that consists of using a double Wilkinson shift if J(n) = J(n − 1) and

a double Francis shift otherwise. For n = 5, the spectrum is plotted in Figure

7.7. The figure on the right is a zoom of the center of the figure on the left. In

Figure 7.7 (on the right), we see that the HZ Algorithm returns poor results for 4

eigenvalues. But surprisingly, it finds one zero eigenvalue (of order 10−17, on the

left). For n = 14 and 28, in Figure 7.8, the HZ algorithm returns approximations

that are similar to the Erhlich-Aberth method and MATLAB’s implementation

of the QR algorithm eig.

In our second series of tests with Liu’s matrices 14 and 28, we modified Al-

gorithm 6.5 by adding a random shift. This random shift is used when the first
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Figure 7.7: The eigenvalues of Liu’s matrix 5 computed with HZ (◦), EA (∗) and
QR (+).

column of the shifted matrix is isotropic or when it is ek, k = 1, 2, 3. With this

shifting strategy, the Algorithm fails to return 4 eigenvalues for n = 14 and 6

for n = 28 with any reasonable accuracy. For the other eigenvalues, in Figure

7.9, the HZ algorithm returns better approximations than the Erhlich-Aberth

method or even eig. For n = 28, in Figure 7.9, the HZ algorithm returns better

approximations for 10 eigenvalues.

In all these experiments with Liu’s matrices, we see that the shifting strategy

influences strongly the approximations. One interesting question and a practical

problem to solve in the future is how to choose the optimal shifting strategy

for each matrix or at each HZ iteration. Even though Algorithm 6.5 gives good

approximations for the eigenvalues with a low number of iterations in most cases,

it does not perform well on Liu’s matrices.
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Figure 7.8: The eigenvalues of Liu’s matrices 14 and 28 computed with HZ (◦)
using shifting strategy “mix 1”, EA (∗) and QR (+).
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Figure 7.9: The eigenvalues of Liu’s matrices 14 and 28 computed with HZ (◦)
using shifting strategy “mix 2” and random shifts, EA (∗) and QR (+).
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7.7 Clement Matrices

Clement’s matrices are nonsymmetric tridiagonal and they were generated for

test purposes [21]. A famous example of a Clement matrix T also analyzed in

[7], is defined by T = tridiag(β, 0, γ) with βj = γn−j, γj = j, k = 1: n − 1. Its

eigenvalues are ±(n−1),±(n−3), . . . ,±1 for n even and ±(n−1),±(n−3), . . . , 0

for n odd. We see in Figure 7.10 that the eigenvalue condition numbers are large

in the middle of the spectrum and small at its ends.

0 10 20 30 40 50 60 70 80 90 100
0

2

4
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8

10

12

14

|λ|

lo
g

10
(κ

(λ
)) ← n=100

← n=50

Figure 7.10: Eigenvalue condition numbers for the Clement matrix for n = 50
and 100.

Since the sign of the product βjγj, j = 1: n − 1 is constant, the process

described in (7.1)–(7.2), yields a standard symmetric eigenvalue problem. In

Figure 7.11, we plot in the complex plane the eigenvalues of the problem for

n = 200 and n = 300, computed with QR. We see that they are a very poor

approximation of the exact eigenvalues. Note that applying the process (7.1)–

(7.2) to T yields a symmetric eigenvalue problem and in this case, the symmetric

QR algorithm produces good approximations. In this case, we do not present the

results with the HZ algorithm since it is equivalent to a symmetric QR.
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Figure 7.11: Eigenvalues of the Clement matrix with n = 200 and n = 300
computed with MATLAB’s function eig.

We modify the definition of Clement matrices in order to test the HZ algo-

rithm. For n = 50 and n = 100, we take

T = tridiag(β, 0, γ),

γj = (−1)jj, k = 1: n − 1,

βj = γn−j, k = 1: n − 1.

For these matrices, we have that sign(βjγj) = −sign(βj+1γj+1). Thus, the eigen-

value problem (T−λJ), where the pair (T, J) is obtained by the process described

in (7.1)–(7.2) is not a standard symmetric eigenvalue problem since J 6= ±I. The

spectrum of these matrices is plotted in Figures 7.12 and 7.13.

For n = 50, the condition numbers of the eigenvalues lie between 29 and

3 × 106 and for n = 100, they lie between 4 × 106 and 2 × 1021. The condition

number decreases as the modulus of the eigenvalue increases at the same rate as

in Figure 7.10. The HZ algorithm performed 216 and 328 iterations for n = 50

and n = 100, respectively, while the Erhlich-Aberth method needed 352 and 758

for n = 50 and n = 100, respectively.

In Table 7.8, we compute the largest relative error between the eigenvalues
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Table 7.8: Largest relative error of the computed eigenvalues of the modified
Clement matrices with n = 50 and n = 100.

n 50 100
HZ 4e-15 1.8e-14
QR 4e-11 6e-4
EA 1.3e-16 2.8e-16

computed in extended precision and the approximations obtained by the HZ

algorithm, QR or EA. Those returned by the Erhlich-Aberth method have the

smallest relative error. We see that in this example, the HZ algorithm returns bet-

ter approximations than eig (QR algorithm). The eigenvalues with the smallest

modulus have the largest relative error. This is due to the fact that the condition

number is big in the middle of the spectrum and small at its ends.
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Figure 7.12: The eigenvalues of the modified Clement matrices for n = 50.
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Figure 7.13: The eigenvalues of the modified Clement matrices for n = 100.

7.8 Symmetric QEPs

We now perform numerical experiments on symmetric QEPs. The QEP is first

linearized using a symmetric linearization and then the eigenpairs are computed

using either the QZ algorithm (that destroys symmetry) or the HZ algorithm that

exploits the symmetry. The relative backward error is computed using (3.2).
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7.8.1 Wave Equation

This example was presented in [40]. The equation of a free vibrating string

clamped at both ends in a spatially inhomogeneous environment is given by




∂2u

∂t2
+ εa(x)

∂u

∂t
= ∆u, ε > 0, x ∈ (0, π),

u(t, 0) = u(t, π) = 0,

u(0, x) = u0(x).

We search for solutions in the form

u(x, t) =
n∑

k=1

qk(t) sin(kx)

and by applying the Galerkin method, we obtain the second order differential

equation

Mq̈ + εCq̇ + Kq = 0,

where q = [ q1, . . . , qn ], M = (π/2)I, K = (π/2)diag(j2) and

C = (ckj), ckj =

∫ π

0

a(x) sin(kx) sin(jx)dx.

We take a(x) = x2(π − x)2 − δ, δ = 2.7 and ε = 0.1. The quadratic matrix

polynomial of interest is then defined by

Q(λ) = λ2M + λεC + K.

Its eigenvalues are plotted in Figure 7.14.

We compute the eigenpairs of Q for n = 50, 100 and n = 200. In Table 7.9,

we compare the QEP normwise backward errors for eigenpairs computed with

the HZ or the QZ algorithm. We see that the eigenpairs computed with the HZ

algorithm have smaller backward errors than those computed with QZ.

For n = 200, we plot in Figure 7.15 the modulus of the eigenvalues against

the logarithm of the backward errors. On this example the eigenvalues computed
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Table 7.9: Largest normwise QEP backward error.

n 50 100 200
HZ 5e-14 9e-13 4e-11
QZ 1.9e-12 2e-11 1.5e-10

with the HZ algorithm, marked with ◦ have a smaller backward error than the

ones computed with the QZ algorithm (+). This also illustrates the fact that

QZ is not necessarily backward stable for the solution of QEPs. The condition

number of the matrix H that reduces the pair (A, B) obtained from a symmetric

linearization to a tridiagonal-diagonal pair is relatively large, 5.2×102 for n = 50,

6×103 for n = 100 and 8.6×104 for n = 200. It appears that this ill conditioned

matrix does not have a high influence on the backward error of the approximate

eigenpairs of the QEP.
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−100

0
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ℑ
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)

Figure 7.14: Eigenvalues of the wave equation for n = 200.

203



0 20 40 60 80 100 120 140 160 180 200
−16

−15

−14

−13

−12

−11

−10

−9

|λ|

lo
g

10
(η

(α
,β

,x
))

Figure 7.15: Backward errors of the approximate eigenpairs (with λ = α/β) of
the wave problem computed with HZ (◦) and QZ (+) with n = 200.

7.8.2 Simply Supported Beam

The model of a simply supported beam can be described by [77]




EI
∂4u

∂x4
+ ρa

∂2u

∂t2
+ δ(x−xp)

∂u

∂t
= 0, 0 < x < L, t > 0,

u(0, t) = u(L, t) = 0,

∂2u
∂x2 (0, t) = ∂2u

∂x2 (L, t),

where δ(x−xp) is the Dirac measure centered at xp and

E = 7 × 1010, I = 6.25 × 10−9, L = 1, ρaL = 0.675.

Using the Galerkin method as in the previous example, we obtain the quadratic

matrix polynomial

Q(λ) = λ2M + λD + K,

where M and K are symmetric and D = eke
T
k . We took n = 200 and xp = L/2.

In this case k = 100. The spectrum is plotted in Figure 7.16.
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The QEP backward errors for the approximate eigenpairs lie between 10−7

and 10−8 with QZ and between 8 × 10−9 and 3× 10−18 with HZ. In Figure 7.17,

we see that the backward errors obtained from QZ is almost constant and large

whereas the backward errors from the HZ algorithm decreases exponentially with

the modulus of the eigenvalues. We see that on this example, the HZ algorithm

is more backward stable for solving the QEP than QZ. Note that only 367 HZ

iterations are performed which is less than one iteration per eigenvalue. Thus, in

this case the HZ algorithm is highly competitive with QZ to solve QEPs.
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Figure 7.16: Eigenvalues of the beam problem with n = 200 computed with HZ
(◦) and QZ (+).
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Figure 7.17: Backward errors of the approximate eigenpairs (with λ = α/β) of
the beam problem computed with HZ (◦) and QZ (+) with n=200.
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Chapter 8

Conclusion

8.1 Summary

We gave the condition number for an eigenpair of a PEP in its homogeneous

form, where the perturbations are measured with weighted Frobenius norms. It

has the advantage of defining relative condition numbers and partial condition

numbers where we assume that some coefficient matrices are not perturbed. Using

this approach, the condition number for λ = 0 and λ = ∞ is defined. We also

computed the backward error of an approximate eigenpair of a homogeneous PEP.

This work contributed to the improvement of polyeig in MATLAB (version 7.1)

which allows this routine to return condition numbers in the case of an infinite or

zero eigenvalue. We also computed structured condition numbers and backward

errors. We gave a method that computes the structured backward error of an

approximate eigenpair of a symmetric GEP in O(n2) operations where the O(n2)

operations comes from the computation of the residual vector.

We proved that the set of hyperbolic matrices or generally the set of (J, J̃)-

unitary and the set of (J, J̃)-orthogonal matrices are differentiable manifolds. It

allows us to define local coordinates which permits the application of the implicit
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function theorem to analyze the perturbation expansion of matrix factorizations.

Since the HZ algorithm is based on the HR factorization, we started by analyz-

ing its perturbation bounds for each of its factors and we continued by giving

a detailed analysis of perturbation bounds for several matrix factorizations: the

indefinite polar factorization, the hyperbolic singular value decomposition and

the diagonalization of a symmetric pair with respect to a signature matrix. In

each case, we computed the condition number of the factorization. For the last

factorization, we considered the eigenvalue problem (S − λJ̃)x = 0 with S sym-

metric, J̃ ∈ diag(±1) and the associated factorization (S, J̃) = HT (D, J)H where

H is (J, J̃, C)-orthogonal, J ∈ diagn(U) and D diagonal. We gave explicit com-

putable expressions for structured eigenvalue condition numbers and described

an algorithm to compute them when the structure is linear.

We presented an implementation of the HZ algorithm with several improve-

ments. The problems with single shifts are:

1. Need to use complex arithmetic to solve a real problem.

2. The HR factorization does not exist when the shift is a complex eigen-

value by an argument similar to that Theorem 6.2. This may prevent the

convergence of the algorithm.

We have seen that an implementation with a double shift allows to define the

matrices of the next step for almost every unreduced pseudosymmetric tridiag-

onal starting matrix. We also analyzed a shifting strategy that reduces in most

cases the number of iterations to 1.3 on average per eigenvalue. Moreover, the

HZ algorithm preserves the pseudosymmetric form and all the computations are

done in real arithmetic. It has a low operation cost. As we have seen in the

numerical examples, it returns a very good approximation of an eigenpair for

well conditioned problems and it returns comparable results to other classical
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algorithms when the problem is ill conditioned.

8.2 Future Projects and Improvements

In Chapter 6, we presented three shifting strategies for the HZ algorithm. The

shifting strategy influences the speed of the converges. We also have seen that

the HZ algorithm may fail to converge with one shifting strategy and converge

with another one. We see that there is a crucial need in obtaining an optimal

shifting strategy for the HZ algorithm.

The second improvement to be made in the HZ algorithm would be a stable

implementation of a Newton’s method for the iterative refinement that solves

directly the problem of diagonalizing a symmetric matrix with respect of a sig-

nature matrix. This idea can be explained as follows. We have computed the

condition number of an eigenpair by giving an explicit expression of the condition

operator. This condition operator can be used in the Newton method with the

notation in Section 4.8:

dgHn
(HT

n SHn)∆Hn+1 = JH−T
n T −1

− (HT
n DnHn)(Rn),

dgDn
(HT

n SnHn)∆Dn+1 = Πd(H
−T
n RnH−1),

where Rn = S −HT
n DnHn, ∆Hn+1 = Hn+1 −Hn, ∆Dn+1 = Dn+1 −Dn and dgHn

and dgDn
are given by (4.72)–(4.73). Theoretically, at each step Hn ∈ O(J, J̃, C)

but in practice due to rounding off errors the matrices Hn are not necessarily

on the manifold. Thus, the problem becomes finding an implementation that

guarantees that these matrices are on a nearby manifold of the type HT JH =

J̃ +O(ε) with ε small. For the orthogonal case, several authors suggested to apply

a QR factorization to the orthogonal factor at each iteration (see for example [19])

which allows the matrices to be numerically orthogonal (which implies that ε is
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relatively small). This occurs because the QR factorization is a more stable

process than the HR factorization.

There have been recent improvements on linearizations of matrix polynomi-

als where a whole class of linearizations were described. There were also recent

improvements on the conditioning of linearizations of matrix polynomials. There

are two unsolved problems that persist. We need to characterize all the lineariza-

tions of matrix polynomials and we have to find an algorithm that will allows

us to choose the appropriate linearization to a given polynomial eigenvalue prob-

lem.
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