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Abstract. We use Fourier analysis to investigate the instability of an equal-order mixed finite
element approximation method for elliptic incompressible flow equations. The lack of stability can be
attributed to the fact that the associated discrete Ladyzhenskaya–Babuška–Brezzi (LBB) constant
tends to zero as the mesh size is reduced. We develop a stabilization approach that is appropriate
to the periodic setting and deduce optimal choices of the associated stabilization parameter.
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1. Introduction. In recent years, computationally convenient stable low-order
discretization methods have been developed for the Stokes and Navier–Stokes equa-
tions modelling the steady-state flow of an incompressible fluid. These so-called “sta-
bilized formulations” are widely used by practitioners since they permit the use of
equal-order velocity and pressure approximations—a combination that is notoriously
unstable in the standard finite element framework. The drawback with this methodol-
ogy is the introduction of stabilization parameters that must be chosen sensibly if the
resulting method is to work well in practice; see Norburn and Silvester [8]. Although
the choice of such parameters has been addressed in our previous work (see, e.g., [10],
[11]), the characterization of optimal parameter choices is not yet resolved. This is
the motivation for this work.

For simplicity we restrict our attention to two-dimensional flow problems: the
generalization to three-dimensional approximation is quite straightforward. An out-
line of the paper is as follows. In section 2, the analysis of periodic Stokes flow
problems is reviewed. Discretization using a Q1-Q1 mixed (C0 bilinear velocity and
pressure) finite element method is then outlined in section 3. In section 4, we analyze
the stability of the discrete approximation using standard Fourier analysis techniques.
(Although this is a classical approach, the only other work we know of that addresses
Ladyzhenskaya–Babuška–Brezzi (LBB) stability from this viewpoint is that of Idel-
sohn, Storti, and Nigro [7].) Section 5 contains the novel contribution: we consider a
standard stabilization technique (originally introduced by Brezzi and Pitkäranta [1] in
the case of P1-P1 mixed approximation) and deduce the optimal choice of stabilization
parameter which minimizes the condition number of the Schur complement matrix
that determines stability. Contrary to our expectations, it turns out that the optimal
parameter is not uniquely determined—there is an interval of parameter values over
which optimality is achieved.

2. Periodic Stokes flow formulations. In order to define a periodic flow prob-
lem we need to introduce the concept of periodicity. To this end, let Φ be a vector or
scalar field defined over R

2; then Φ is said to be periodic in x (over R
2) with period
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L if

Φ(x + L) = Φ(x) ∀x ∈ R
2.

In general, the vector L defines a rectangular Lx×Ly period cell C ⊂ R
2 with boundary

∂C =
⋃4

i=1 ∂Ci such that

Φ|∂C1 = Φ|∂C3 ,(1)

Φ|∂C2
= Φ|∂C4 .(2)

However, to simplify notation it is convenient to consider flows which have the same
periodicity in both coordinate directions; thus we choose the cell C=[0, L] × [0, L].

The regularity of functions defined over C may be classified in terms of their
Fourier series expansion. To this end, let Z

2=Z×Z and consider

Φ =
∑
k∈Z2

ck exp
2πik · x

L
, where ck ∈ C with c̄k = c−k ∀k ∈ Z

2.

The usual scale of Sobolev spaces, Hm
p (C), m≥0, is then defined as follows:

Hm
p (C) =

{
Φ |

∑
k∈Z2

c2k|k|2m <∞
}
.(3)

Denoting zero mean functions from Hm
p (C) by

Hm
p (C)/R =

{
Φ ∈ Hm

p (C)| c0 = 0
}
,(4)

it is easily shown that the H1(C) seminorm,

|Φ|1 = (∇Φ,∇Φ)
1
2

(where (·, ·) denotes the usual L2 inner product over C), provides a norm onHm
p (C)/R.

Note that, denoting the dual space of H1
p (C)/R by H−1

p (C), it follows that the defi-
nition of Hm

p (C)/R in (3) and (4) generalizes to the case m=−1 (in fact, it is valid
for all m∈R; see, e.g., Temam [13]).

The periodic Stokes problem (with viscosity set to unity) is formally stated below.
Given a periodic vector field f ∈ [H−1

p (C)/R]2, the goal is to find u and p satisfying

−∆u + ∇p = f in C,(5)

∇ · u = 0 in C,(6)

together with boundary conditions

u|∂C1 = u|∂C3 , u|∂C2 = u|∂C4 and p|∂C1 = p|∂C3 , p|∂C2 = p|∂C4 .(7)

The classical problem can be shown to be well posed by introducing the Fourier
expansions for u, p, and f ; see Temam [13, p. 9] for details.

A conventional weak formulation of (5)–(7) is the following. Given f∈[H−1
p (C)/R]2

the goal is to find (u, p) ∈ [H1
p (C)/R]2 × (H0

p (C)/R) such that

(∇u,∇v) − (p,∇ · v) = (f ,v) ∀v ∈ [H1
p (C)/R]2,(8)

−(q,∇ · u) = 0 ∀q ∈ H0
p (C)/R;(9)
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see Girault and Raviart [3]. We note that the stability of mixed formulations like
(8)–(9) is a consequence of the LBB condition established by the following lemma.

Lemma 2.1. ∃γ > 0 such that

sup
v∈[H1

p(C)/R]2

(q,∇ · v)

|v|1 ≥ γ‖q‖0 ∀q ∈ H0
p (C)/R.

Proof. Noting that

H1
0 (C) = H1

p (C)/R ∩ {
Φ ∈ H1(C)|Φ = 0 on ∂C

}
,

L2
0(C) = H0

p (C)/R,

we can appeal to the proof of Theorem 5.1 in [3, p. 80]; ∃γ > 0 such that

sup
v∈[H1

0 (C)]2

(q,∇ · v)

|v|1 ≥ γ‖q‖0 ∀q ∈ L2
0(C).

Then since H1
0 (C)⊂H1

p (C)/R, we have that

sup
v∈[H1

p(C)/R]2

(q,∇ · v)

|v|1 ≥ sup
v∈[H1

0 (C)]2

(q,∇ · v)

|v|1
≥ γ‖q‖0,

where L2
0(C) = H0

p (Ω)/R.
Using a technique introduced by Stoyan [12] the quotient appearing in the LBB

condition can be bounded from above by unity.
Lemma 2.2.

sup
v∈[H1

p(C)/R]2

(q,∇ · v)

|v|1‖q‖0

≤ 1 ∀q ∈ H0
p (C).

Proof. For any q∈H0
p (C) we have by the Cauchy–Schwarz inequality

(q,∇ · v)2

|v|21‖q‖2
0

≤ ‖q‖2
0‖∇ · v‖2

0

|v|21‖q‖2
0

.(10)

On noting the identity

(∇v,∇w) ≡ (∇ · v,∇ ·w) + (rotv, rotw) ∀v,w ∈ [H1
p (C)/R]2,

we have that |v|21≥‖∇ · v‖2
0, and hence from (10) we have

sup
v∈[H1

p(C)/R]2

(q,∇ · v)2

|v|21‖q‖2
0

≤ 1.

This result will be seen to be useful later.

3. Q1-Q1 finite element approximation. Without loss of generality, here it
may be assumed that L=1 with C=[0, 1]×[0, 1]. Partitioning C into a mesh Th of n2

squares of side h=1/n, we take the standard bilinear finite element spaces for both
velocity components and the pressure. More precisely, for each T∈Th we denote the
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Fig. 1. Periodic boundary conditions on a 10×10 mesh of Q1-Q1 elements.

space of bilinear polynomials (linear in each coordinate direction) on T by Q1(T ) and
construct a pressure approximation space

Qh =
{
q ∈ C0(C) : q|T ∈ Q1(T ) ∀T ∈ Th

} ∩H1
p (C)

and a velocity space

Vh = Qh ×Qh.

The discrete formulation of (8)–(9) is as follows. Find (uh, ph)∈Vh×Qh such that

(∇uh,∇v) − (ph,∇ · v) = (f ,v) ∀v ∈ Vh,(11)

−(q,∇ · uh) = 0 ∀q ∈ Qh.(12)

The stability of (11)–(12) is governed by the following discrete LBB condition: we
seek γ̄h > 0 such that

sup
v∈Vh/R2

(∇ · v, q)
|v|1 ≥ γ̄h‖q‖0 ∀q ∈ Qh(13)

and require that γ̄h ≥ γ̄∗ > 0 as h → 0. In the case of (nonperiodic) enclosed flow it
is well known that the analogue of (13) is not uniformly satisfied with respect to the
mesh parameter h (for uniform square grids γ̄h = O(h)). We postpone discussion of
the periodic case until the next section.

To solve a periodic Stokes flow problem starting from the standard finite element
basis functions defined on the domain C, the periodic boundary conditions (7) must
be used to eliminate the velocity and pressure degrees of freedom associated with
nodes on the boundary segment ∂C2∪∂C3 (see Figure 1), i.e., we need to ensure that
Vh⊂[H1

p (C)]2 and Qh⊂H0
p (C). In practice this may be achieved by combining rows

and columns of the assembled finite element matrices; see Segal, Vuik, and Kassels [9]
for details. The upshot is a block matrix system of the form

 A 0 BT
x

0 A BT
y

Bx By 0





ux

uy

p


 =


 fx
fy
0


 ,(14)
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where the component matrices A (the discrete Laplacian operator), Bx, and By (which
together form the discrete divergence operator) are circulant matrices. See Horn and
Johnson [5, p. 20] for a summary of the properties of such matrices. We explore
the eigenvalue spectrum of the matrices in (14) in the next section. At this point, we
simply note that the matrices A, Bx, and By are all singular and have a zero eigenvalue
corresponding to a nullspace consisting of constant vectors—this is a consequence of
the fact that the requirement for uniqueness, i.e., uh∈ [H1

p (C)/R]2 and ph∈H1
p (C)/R

is not explicity enforced in the construction of (14).

4. Fourier analysis of Q1-Q1. The LBB stability of Q1-Q1 in this periodic
setting will now be assessed using discrete Fourier analysis. To this end, we note that
after elimination of the 2n+1 nodes on the boundary segment ∂C2∪∂C3, we are left
with a square mesh consisting of n2 nodes (see Figure 1). If we label the remaining
mesh points lexicographically, the discrete Fourier modes may be defined as follows:

Ψi,j(θ) = exp {i(θxi+ θyj)}, i =
√−1, 0 ≤ i, j ≤ n− 1,

θ = (θx, θy) ∈ ΘN =

{
2π

n
(k, l) : −m ≤ (k, l) ≤ m+ p

}
,(15)

where

m =

{
(n/2) − 1 for n even,
(n− 1)/2 for n odd

and p =
{

1 for n even,
0 for n odd.

The set ΘN is referred to as the wave number set and describes the N=n2 frequencies
that can be exhibited on an n×n mesh. Here we emphasize that ΘN consists of wave
numbers that take discrete values in the intervals

−π +
2π

n
≤(θx, θy)≤ π, n even,

−π +
π

n
≤(θx, θy)≤ π − π

n
, n odd.

The eigenvalues of the discrete Q1 Laplacian matrix can now be identified.
Lemma 4.1. The n2 eigenvalues of A arising in (14) are given by

ΛA(θ) =
2

3
(4 − cos θx − cos θy − 2 cos θx cos θy), θ ∈ ΘN .(16)

Proof. The difference equation associated with the Q1 discrete Laplacian on a
uniform grid is the following:

Aui,j =
1

3
(8ui,j − (ui+1,j + ui+1,j+1 + ui+1,j−1 + ui,j+1

+ ui,j−1 + ui−1,j+1 + ui−1,j + ui−1,j−1)).

(17)

Substituting the Fourier mode Ψi,j(θ) defined in (15) into (17) yields

AΨi,j = 1
3 (8 − (Ψ1,0 + Ψ1,1 + Ψ1,−1 + Ψ0,1 + Ψ0,−1 + Ψ−1,1 + Ψ−1,0 + Ψ−1,−1))Ψi,j

= 1
3 (8 − 2(cos θx + cos θy + cos (θx + θy) + cos (θx − θy)))Ψi,j

= 2
3 (4 − cos θx − cos θy − 2 cos θx cos θy)Ψi,j .
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Corollary 4.2. The null space of A is one-dimensional, corresponding to the
frequency θ=0.

Similarly, the difference equations corresponding to the matrices Bx, By in (14)
are, respectively, given by

Bxui,j =
h

12
(4ui+1,j − 4ui−1,j + ui+1,j+1 − ui−1,j−1 + ui+1,j−1 − ui−1,j+1) ,

Byui,j =
h

12
(4ui,j+1 − 4ui,j−1 + ui+1,j+1 − ui−1,j−1 + ui−1,j+1 − ui+1,j−1) .

Moreover, applying the technique in Lemma 4.1 gives the eigenvalues.
Lemma 4.3. The n2 eigenvalues of Bx and By are, respectively, given by

ΛBx(θ) =
ih

3
sin θx(cos θy + 2), θ ∈ ΘN , and

ΛBy (θ) =
ih

3
sin θy(cos θx + 2), θ ∈ ΘN .(18)

The other discrete operator that arises in the discrete LBB stability condition
(13) is the (pressure) mass matrix Q that is associated with the L2 inner product over
the space Qh. An important point here is that the definition of the space Qh ensures
that Q is a circulant matrix—it is characterized by the following difference equation:

Qui,j =
h2

36
(16ui,j + 4ui+1,j + 4ui−1,j + 4ui,j+1 + 4ui,j−1 + ui+1,j+1

+ ui+1,j−1 + ui−1,j+1 + ui−1,j−1) .

This means that the eigenvalues of Q can be explicitly identified.
Lemma 4.4. The n2 eigenvalues of the pressure mass matrix Q are given by

ΛQ(θ) =
h2

9
(cos θx + 2)(cos θy + 2), θ ∈ ΘN .(19)

The next lemma characterizes the LBB stability condition (13) in the form of a
generalized eigenvalue problem.

Lemma 4.5. The discrete LBB constant γ̄h associated with (11)–(12) is given by
the square root of the smallest nonzero eigenvalue satisfying

(BxA
†BT

x +ByA
†BT

y )p = λQp,(20)

where A† is the usual (Moore–Penrose) pseudoinverse of A.
Proof. Using Corollary 4.2 and the fact that A is square and symmetric, there

exists a matrix U∈R
n2×n2

and diagonal matrix Σ∈R
n2×n2

such that A = UΣUT with
UTU=I and Σ = diag (σ1, σ2, . . . , σn2−1, 0) . The pseudoinverse of A is defined by
A† = UΣ†UT , where Σ† = diag (1/σ1, 1/σ2, . . . , 1/σn2−1, 0) . For the discrete LBB
condition, we seek γ̄h > 0 such that for all q∈Qh,

γ̄h‖q‖0 ≤ sup
v∈Vh/R2

(q,∇ · v)

|v|1

= max
vx,vy �∈Null(A)

vT
xB

T
x q + vT

y B
T
y q(

vT
xAvx + vT

y Avy

) 1
2

= max
zx,zy �∈Null((A†)

1
2 A(A†)

1
2 )

zTx (A†)
1
2BT

x q + zTy (A†)
1
2BT

y q

(zTx (A†)
1
2A(A†)

1
2 zx + zTy (A†)

1
2A(A†)

1
2 zy)

1
2

.

(21)
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Here we have made the change of variable vx = (A†)
1
2 zx and vy = (A†)

1
2 zy, where

(A†)
1
2 = U(Σ†)

1
2UT and (Σ†)

1
2 = diag(1/

√
σ1, 1/

√
σ2, . . . , 1/

√
σn2−1, 0).We note that

the first n2−1 columns {ui}n
2−1

i=1 of U , say, Ū , form a basis for R
n2\Null(A). Also

zx, zy ∈ span {ui}n
2−1

i=1 and

(A†)
1
2A(A†)

1
2 = U(Σ†)

1
2UTUΣUTU(Σ†)

1
2UT

= Udiag (1, 1, . . . , 1, 0)UT = ŪIn2−1Ū
T .

Writing zx =
∑n2−1

i=1 αiui, for some real coefficients {αi}n
2−1

i=1 , we have that

zTx (A†)
1
2A(A†)

1
2 zx =


n2−1∑

i=1

αiui




T

ŪIn2−1Ū
T


n2−1∑

i=1

αiui


 =

n2−1∑
i=1

α2
i = zTx zx.

Thus

sup
v∈Vh/R2

(q,∇ · v)

|v|1 = max
zx,zy

zTx (A†)
1
2BT

x q + zTy (A†)
1
2BT

y q(
zTx zx + zTy zy

) 1
2

=
[
qT (BxA

†BT
x +ByA

†BT
y )q

] 1
2 ,

and hence γ̄h is characterized by

γ̄2
h = min

q∈Rn2

qT (BxA
†BT

x +ByA
†BT

y )q

qTQq
.

The following lemma provides a sharp upper bound on the eigenvalues satisfying (20).
Lemma 4.6. The maximum eigenvalue λmax of (20) satisfies λmax ≤ 1.
Proof. SinceQh ⊂ H1

p (C) ⊂ H0
p (C), then for any qh∈Qh, we can apply Lemma 2.2:

sup
v∈[H1

p(C)/R]2

(qh,∇ · v)2

|v|21‖qh‖2
0

≤ 1.

Also, since Vh/R
2 ⊂ [H1

p (C)/R]2 we have that

1 ≥ max
qh∈Qh

sup
v∈[H1

p(C)/R]2

(qh,∇ · v)2

|v|21‖qh‖2
0

≥ max
qh∈Qh

max
vh∈Vh/R2

(qh,∇ · vh)2

|vh|21‖qh‖2
0

= max
q∈Rn2

qT (BxA
†BT

x +ByA
†BT

y )q

qTQq

= λmax.

The next lemma relates the LBB eigenvalue problem to the eigenvalues of the com-
ponent matrices in (14). Specifically, eigenvalues of (20) are a simple combination of
the eigenvalues of A, Bx, By and the mass matrix Q.

Lemma 4.7. The LBB eigenvalue problem (20) simplifies to

(ΣQ)−1(ΣA)†(ΣH
Bx

ΣBx + ΣH
ByΣBy)q = λq,

where ΣM denotes a diagonal matrix whose entries are the eigenvalues of M . MH

denotes the conjugate transpose of M .
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Proof. As is evident in establishing the results (16), (18), and (19), A, Bx, By, and

Q share the same set of eigenvectors
{

Ψθ
}
θ∈ΘN

so that for each θ∈ΘN , Ψθ∈C
n2×1

has entries defined by[
Ψθ

]
G(i,j)

= exp {i(θxi+ θyj)} , 0 ≤ (i, j) ≤ n− 1,

where G(i, j) denotes the lexicographical numbering of the mesh points. Thus, the
Fourier matrix

U =
1

n

[
Ψθ1

,Ψθ2
, . . . ,Ψθn2

]
∈ C

n2×n2

satisfies

UHAU = ΣA, UHQU = ΣQ,

UHBxU = ΣBx , UHByU = ΣBy ,

UH = U−1.

Applying a similarity transformation to (20) yields

λΣQU
Hq = UH

(
BxA

†BT
x +ByA

†BT
y

)
UUHq

=
(
UHBxA

†BT
x U + UHByA

†BT
y U

)
UHq.

Setting q̄=UHq,

λΣQq̄ =
(
UHBxU(ΣA)†UHBT

x U + UHByU(ΣA)†UHBT
y U

)
q̄

=
(
ΣBx

(ΣA)†UHBT
x U + ΣBy

(ΣA)†UHBT
y U

)
q̄

=
(

(ΣA)†ΣBxΣH
Bx

+ (ΣA)†ΣByΣH
By

)
q̄.

Therefore

Σ−1
Q (ΣA)†

(
ΣH

Bx
ΣBx + ΣH

By
ΣBy

)
q̄ = λq̄.

We summarize the main result of the section in the following theorem.
Theorem 4.8. On an n× n mesh the n2 eigenvalues Λlbb(θ) of (20) satisfy

Λlbb(θ) =
3
[

sin2 θx(cos θy + 2)2 + sin2 θy(cos θx + 2)2
]

2(4 − cos θx − cos θy − 2 cos θx cos θy)(cos θy + 2)(cos θx + 2)
,

θ ∈ ΘN .(22)

Proof. From Lemma 4.7 we may write

Λlbb(θ) =
|ΛBx(θ)|2 + |ΛBy

(θ)|2
ΛA(θ)ΛQ(θ)

, θ ∈ ΘN .(23)

Substituting (16), (18), and (19) into (23) gives the result.
The surface generated by plotting Λlbb(θ) over [−π,π]2 is illustrated in Figure 2.

We shall refer to this surface as Slbb. It can be seen that there appears to be eight
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Fig. 2. The LBB eigenvalue surface.

points where Slbb vanishes. The maximum value of Slbb also appears to be unity. The
following lemmas confirm these observations.

Lemma 4.9.

lim
θ→0

Slbb(θ) = 1.

Proof. We use an argument based on l’Hôpital’s rule and write

Slbb(θ) =
3f(θ)

2g(θ)
,

where

f(θ) = sin2 θx(cos θy + 2)2 + sin2 θy(cos θx + 2)2,

g(θ) = (cos θy + 2)(cos θx + 2)(4 − cos θx − 2 cos θy cos θx − cos θy).

Expanding f and g using Taylor series about θ=0, we have

lim
θ→0

Slbb(θ) =
3

2
lim
h→0

f(0) + h · ∇f |θ=0 + 1
2h

T (Hf)h|θ=0 + O(h3)

g(0) + h · ∇g|θ=0 + 1
2h

T (Hg)h|θ=0 + O(h3)
,(24)

where H is the Hessian matrix.
Since Slbb(θ) is locally symmetric about θ=0, limθ→0 Λlbb(θ) is invariant of the

direction that the limit is taken from. Therefore to simplify matters we may take
h=(h, 0) in (24). Calculating derivatives we have

∂f

∂θx
= 2 sin θx cos θx(cos θy + 2)2 − 2 sin2 θy sin θx(cos θx + 2),

∂2f

∂θ2x
= 2 cos2 θx(cos θy + 2)2 − 2 sin2 θx(cos θy + 2)2

+2 sin2 θy sin2 θx − 2 sin2 θy cos θx(cos θx + 2),

∂g

∂θx
= sin θx(cos θy + 2)(4 cos θx cos θy + 5 cos θy + 2 cos θx − 2),
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∂2g

∂θ2x
= cos θx(cos θy + 2)(4 cos θx cos θy + 5 cos θy + 2 cos θx − 2)

− sin θx(cos θy + 2)(4 sin θx cos θy + 2 sin θx).

It is clear that f(0)=0, g(0)=0, with

∂f

∂θx
|θ=0 = 0 and

∂g

∂θx
|θ=0 = 0.

Therefore

lim
θ→0

Slbb(θ) =
3

2
lim
h→0

1
2h

2 ∂2f
∂x2 + O(h3)

1
2h

2 ∂2g
∂x2 + O(h3)

=
3

2
× 18

27
= 1.

Lemma 4.10.

Slbb(φ) = 0 for φ ∈ {±(π, π),±(π,−π),±(π, 0),±(0, π)} .
Proof. Putting Λlbb=0 from (22) gives

sin2 θx(2 + cos θy)2 = 0 and sin2 θy(2 + cos θx)2 = 0.

Since the bracketed terms are strictly positive this implies that

sin θx = 0 = sin θy.

On noting that limθ→0Slbb(θ)=1, by Lemma 4.9, we arrive at the desired result.
Remark 4.1. From Lemma 4.10 we see that for n even, the discrete divergence

operator in (14), B=[Bx, By], is rank deficient by three. On the other hand, for n
odd, B is of full rank.

To complete our discussion in this section we show that the Q1-Q1 approximation
is unstable in the sense that the discrete LBB constant tends to zero as h tends to
zero.

Lemma 4.11. There exists θh∈ΘN such that Λlbb(θ
h) = O(h2).

Proof. We consider the case of n even and set θh=θs+h, where θs=(−π,−π)
and h=(h, h)=(2π

n ,
2π
n ).1 As in the proof of Lemma 4.9 we expand the numerator

and denominator of Slbb using Taylor series about θs. Since we are expanding in the
direction θx=θy we may parameterize both f and g (see the proof of Lemma 4.9) and
write

f(θx, θy) = f(θx, θx),

g(θx, θy) = g(θx, θx) along θx = θy.

Thus,

Slbb(θ
s + h) =

f(−π,−π) + 2h ∂f
∂θx

|θx=−π + h2 ∂2f
∂θ2

x
|θx=−π + O(h3)

g(−π,−π) + 2h ∂g
∂θx

|θx=−π + h2 ∂2g
∂θ2

x
|θx=−π + O(h3)

.(25)

Evaluating the various terms in (25) yields

Slbb(θ
h) = Slbb(θ

s + h) =
2h2

4 + O(h2)
≤ 1

2
h2.

Finally, since θh∈ΘN we have Λlbb(θ
h) ≤ 1

2h
2.

1In the case when n is odd we may take h= (π
n
, π
n
).
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5. Stabilization of the discrete formulation. We now consider a stabilized
version of the discrete formulation (12) that is analogous to the method introduced
by Brezzi and Pitkäranta [1] and developed by Brezzi and Douglas [2]. A consistent
implementation (having a nonzero right-hand side) was introduced by Hughes, Franca,
and Balestra [6].

Find (uh, ph)∈Vh ×Qh such that

(∇uh,∇v) − (ph,∇ · v) = (f ,v) ∀v ∈ Vh,(26)

−(q,∇ · uh) − βCh(ph, q) = 0 ∀q ∈ Qh,(27)

where β > 0 is the stabilization parameter and

Ch(ph, q) = h2
∑
T∈Th

∫
T

∇ph · ∇q dT for ph, q ∈ Qh ⊂ H1
p (C)

is the stabilization operator.
A crucial point here is that the stabilization operator is defined on a periodic

(pressure) space, so the corresponding stabilization matrix is the scaled discrete Q1

Laplacian with periodic boundary conditions. Specifically, the stabilized matrix prob-
lem is 

 A 0 BT
x

0 A BT
y

Bx By −βh2A





ux

uy

p


 =


 fx
fy
0


(28)

(cf. (14)) and the corresponding (stabilized) LBB eigenvalue problem is given by

(BxA
†BT

x +ByA
†BT

y + βh2A)q = λQq.(29)

The following theorem is immediate.
Theorem 5.1. On an n× n mesh the n2 eigenvalues of (29) are given by

Λ(θ, β) = Λlbb(θ) + β Λstab(θ) ∀θ ∈ ΘN ,(30)

where Λlbb(θ) is given by (22) and

Λstab(θ) = 6
(4 − cos θx − cos θy − 2 cos θx cos θy)

(cos θx + 2)(cos θy + 2)
.(31)

Proof. The generalized eigenvalue problem (29) diagonalizes to[
Σ−1

Q Σ†
A(ΣH

Bx
ΣBx + ΣH

ByΣBy) + βh2Σ−1
Q ΣA

]
q = λq.

Substituting in the eigenvalue expressions for A,Bx, By and Q yields (30)–(31).
Figures 3–5 give an illustration of how the stabilized LBB surface evolves as β is

increased. For a given frequency θ, (30) describes Λ(θ) as a continuous linear function
in β. The rate at which this linear function grows is determined by the specific value
of Λstab(θ). Denoting the surface generated by Λstab(θ) when θ is allowed to range
over [−π, π]2, by Sstab(θ), the eigenvalues that evolve the fastest and the slowest are
characterized by the following lemma.
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Fig. 3. Stabilized LBB surface for β = 0.01 and β = 0.03.
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Fig. 4. Stabilized LBB surface for β = 0.04 and β = 0.05.

Lemma 5.2.

Sstab(θ
�) = max

θ∈[−π,π]2
Sstab(θ) = 24,

where

θ� = ±(π, π) or ± (π,−π)

and

Sstab(0) = min
θ∈[−π,π]2

Sstab(θ) = 0.
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Fig. 5. Stabilized LBB surface for β = 0.1 and β = 1.

Proof. The stationary conditions are

∂Sstab

∂θx
= 0 and

∂Sstab

∂θy
= 0,

which implies

sin θx = 0 = sin θy,(32)

which has the solutions (θx, θy)=(0, 0),(±π, 0), (0,±π),±(π, π), and ±(π,−π). By
simply substituting these stationary points back into the expression for Sstab(θ), we
can explicitly see that ±(π, π) and ±(π,−π) are the (global) maxima of Sstab(θ) with
Sstab(θ

�)=24. Likewise it can be seen that θ=(0, 0) is in fact the global minimum of
Sstab(θ) with Sstab(0)=0.

We now let θ range over [−π, π]2 and denote the surface generated by Λ(θ, β) by
S(θ, β), i.e.,

S(θ, β) = Slbb(θ) + βSstab(θ).

(Typical examples are plotted in Figures 3–5.) Lemmas 4.9 and 5.2 imply that the
eigenvalue S(0, β) equals unity for all values of β. Moreover, using Lemma 4.10, we see
that θ�∈S, and hence the fastest evolving eigenvalue with respect to the stabilization
parameter is of the form S(θ�, β)=24β and is of multiplicity four.

Lemma 5.3. Let

Smax(β) = max
θ∈[−π,π]2

{S(θ, β)} .

Then,
(i) Smax(β) = 1 β ≤ 1

24 ,
(ii) Smax(β) = S(θ�) β ≥ 1

24 ,
where θ� is given by Lemma 5.2.
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Proof. (i) We first examine the case when β=0. By Lemmas 4.6 and 4.9 we have
that

Smax(0) = max
θ∈[−π,π]2

(S(θ, 0)) = max
θ∈[−π,π]2

(Slbb(θ)) = Slbb(0) = 1.

Furthermore, from Lemma 5.2 the eigenvalue S(0, β) is stationary at unity as β
is increased from zero. Since Sstab(θ)>0 for all θ ∈ [−π, π]2\ {0}, each eigenvalue
Sθ(β)=S(θ, β), θ ∈ [−π, π]2\ {0} , increases linearly from some point S(θ, 0)<1 to-
wards unity, that is, for a given θ ∈ [−π, π]2\ {0}

∂Sθ
∂β

= Sstab(θ) > 0 and Sθ(0) < 1 ∀θ ∈ [−π, π]2\ {0} .

We now determine the first instance when an eigenvalue coincides with the stationary
eigenvalue at unity. To this end we let

B� =
{
β : Sθ(β) = 1, θ ∈ [−π, π]2\ {0}} ;

denote the set of stabilization parameter values at which each eigenvalue coincides
with unity. Notice that

β ∈ B� ⇐⇒ β =
1 − Slbb(φ)

Sstab(φ)
for some φ ∈ [−π, π]2\ {0}.

We now define β� to be the smallest value of β for which some eigenvalue attains the
value unity. Thus β� is given by

β� = glb (B�) = min
θ∈[−π,π]2\{0}

1 − Slbb(θ)

Sstab(θ)
.(33)

Calculating the stationary points of the quotient in (33) results in the conditions

3 sin θx(cos θy + 2)(cos θy − 1)(cos θy − cos θx)

2(4 − cos θx − 2 cos θx cos θy − cos θy)3
= 0

and

3 sin θy(cos θx + 2)(cos θx − 1)(cos θx − cos θy)

2(4 − cos θx − 2 cos θx cos θy − cos θy)3
= 0,

giving the solutions θ=±(α, 0),±(0, α) and (α,±α) for any α∈[−π, π]2\ {0}. By
substituting back into the quotient in (33) we see that the solutions of the form
θ=(α,±α) are global minima with β�= 1

24 . This completes the proof of (i). On
noting that θ� (the fastest growing eigenvalue w.r.t. β) is of the form (α,±α) we
deduce that Smax(β)=Sθ�(β) for β≥ 1

24 by Lemma 5.2.
Lemma 5.4. Let

Smin(β) = min
θ∈[−π,π]2

{S(θ, β)} .

Then,
(i) Smin(β) = S(θ+, β); β ≤ 1

12 , where θ+=(0,±π) or (±π, 0),
(ii) Smin(β) = 1; β ≥ 1

12 .
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Proof. Returning to the proof of Lemma 5.3, we saw that (0,±α) and (±α, 0) are
stationary points of the quotient given in (33). On further inspection it can be seen
that these points are in fact global maxima with

1 − Slbb(φ)

Sstab(φ)
=

1

12
; φ = (0,±α) or (±α, 0).

Consequently lub(B�) = 1/12. Thus, the last eigenvalues to coincide with unity do
so when β= 1

12 and are given by S(φ, β) (where φ=(0,±α) or (±α, 0)). Notice that

θ+ is of the form (0,±α) or (±α, 0). Moreover, at β=0, S(θ+, 0)=0 by Lemma 4.10.
Therefore we must have that Smin(β)=S(θ+, β) for β≤ 1

12 . This proves (i). Since

S(θ+, β) is the last eigenvalue to coincide with unity, all the other eigenvalues must
be greater than unity when β= 1

12 . Therefore Smin(β)=1 for β≥ 1
12 .

Remark 5.1. For n even, notice that (0, 0), (π, π), (0, π) and (π, 0) can be repre-
sented on the mesh (see the definition of θN in (15)). Thus, the fastest and the slowest
evolving eigenvalues with respect to the stabilization operator are Λ(π, π, β)=24β and
Λ(0, 0, β)=1 with the maximum eigenvalue for β≥ 1

24 being of multiplicity one given
by Λ(π, π, β)=24β. Also the smallest eigenvalue for 0≤β≤ 1

12 is of multiplicity two
and is given by Λ(π, 0, β)=Λ(0, π, β)=12β.

In view of the above remark it is convenient to assume that n is even and then
take θ� to be (π, π) and θ+=(0, π) or (π, 0) in the following. Our main result is now
stated in the following theorem.

Theorem 5.5. The condition number κ of the stabilized formulation (28), defined
by

κ(β) ≡ Λmax(β)

Λmin(β)
,

where Λmax(β)=maxθ∈ΘN
Λ(θ, β) and Λmin(β)=minθ∈ΘN

Λ(θ, β), is minimized on

the interval [ 1
24 ,

1
12 ].

Proof. We consider the intervals I1=(0, 1
24 ), I2=( 1

24 ,
1
12 ), and I3=( 1

12 ,∞) sepa-
rately. For β∈I1 we have that Λmax(β)=1 and Λmin(β)=12β. Hence

κ =
1

12β
for β ∈ I1.

For β∈I2 we have that Λmax(β)=24β and Λmin(β)=12β. Thus

κ =
24β

12β
= 2 for β ∈ I2.

Finally, for β∈I3, Λmax(β)=24β and Λmin(β)=1 and so

κ =
24β

1
= 24β for β ∈ I3.

Consequently we have

dκ

dβ
=

−1

12β2
< 0 for β ∈ I1,

dκ

dβ
= 0 for β ∈ I2,

dκ

dβ
= 24 > 0 for β ∈ I3.
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Fig. 6. Condition of the stabilized pressure Schur complement corresponding to a Q1-Q1 ap-
proximation of a periodic Stokes problem on an 8×8 grid.

Thus κ is minimized on I2.
Remark 5.2. The optimal stabilization parameter β∗ can be identified with the

value which minimizes the condition number κ in Theorem 5.5; see Silvester [10]. The
conclusion is that there is an interval of optimal stabilization parameter values.

An illustration of how κ varies with β on a fixed grid is given in Figure 6 (the
dotted lines indicate the parameter values β= 1

24 and β= 1
12 ). The plot is in exact

agreement with the above analysis.
The final remark relates Theorem 5.5 to the case of more realistic (nonperiodic)

boundary conditions.
Remark 5.3. Given general boundary conditions, an analysis based on eigenvalue

bounds (see [10] and [4, pp. 533–549]) suggests a “default” choice of β; namely,
β∗ = Γ2/Φ2 with

Γ2 = max
qh∈Qh

max
vh∈Vh

(qh,∇ · vh)2

|vh|21‖qh‖2
0

and Φ2 = max
qh∈Qh

Ch(qh, qh)

‖qh‖2
0

.

Here, Lemmas 4.6 and 5.2 imply that Γ2 = 1 and Φ2 = 24. Thus the suggested value
β∗ corresponds to an optimal value in the case of periodic boundary conditions.

6. Extensions. It is obvious that Fourier analysis may be used to study sta-
bilization of any equal-order approximation of a periodic Stokes flow problem. For
triangular elements, however, the identification of the particular value β∗ minimizing
κ as defined in Theorem 5.5 is not straightforward, unlike the square element case.

One specific result that we have established in the case of stabilized P1-P1 approx-
imation on a uniform mesh of bisected squares is that β= 11

288 minimizes the quantity
Λmax−Λmin. That is, at β= 11

288 the width of the spectrum corresponding to (29) is
minimized. An illustration of how the P1-P1 condition number varies in practice is
given in Figure 7 (here the dotted line indicates the parameter value β= 11

288 ). Notice
that, in contrast to the Q1-Q1 case, the “optimal” value appears to be unique.
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Fig. 7. Condition of the stabilized pressure Schur complement corresponding to a P1-P1 ap-
proximation of a periodic problem on a bisected 8×8 grid.
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