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Generation of Anisotropic-Smoothness
Regularization Filters for EIT

Andrea Borsic, William R. B. Lionheart, and Christopher N. McLeod*

Abstract—In the inverse conductivity problem, as in any ill-
posed inverse problem, regularization techniques are necessary in
order to stabilize inversion. A common way to implement regu-
larization in electrical impedance tomography is to use Tikhonov
regularization. The inverse problem is formulated as a minimiza-
tion of two terms: the mismatch of the measurements against the
model, and the regularization functional. Most commonly, differ-
ential operators are used as regularization functionals, leading to
smooth solutions. Whenever the imaged region presents disconti-
nuities in the conductivity distribution, such as interorgan bound-
aries, the smoothness prior is not consistent with the actual situ-
ation. In these cases, the reconstruction is enhanced by relaxing
the smoothness constraints in the direction normal to the discon-
tinuity. In this paper, we derive a method for generating Gaussian
anisotropic regularization filters. The filters are generated on the
basis of the prior structural information, allowing a better recon-
struction of conductivity profiles matching these priors. When in-
corporating prior information into a reconstruction algorithm, the
risk is of biasing the inverse solutions toward the assumed distri-
butions. Simulations show that, with a careful selection of the reg-
ularization parameters, the reconstruction algorithm is still able to
detect conductivities patterns that violate the prior information. A
generalized singular-value decomposition analysis of the effects of
the anisotropic filters on regularization is presented in the last sec-
tions of the paper.

Index Terms—Anisotropic smoothing, electrical impedance to-
mography, GSVD, prior information, regularization.

I. INTRODUCTION

E LECTRICAL impedance tomography involves recon-
structing the conductivity of an object from current and

voltage measurements on the boundary. Usually, electrodes are
applied to the object and known currents are passed through
some of them; the resulting voltages are measured on the
electrodes. Reconstruction algorithms make use of a forward
model: simulated measurements are matched to the real ones
by acting on the discretized conductivity of the model; the
reconstructed conductivity is the solution of the least-squares
problem

(1)
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where is the vector of measured voltages,is the discrete con-
ductivity, and is the nonlinear forward operator from model
space to measurements space.

The reconstruction problem is ill conditioned and regulariza-
tion techniques are necessary in order to stabilize the process.
Commonly, (1) is solved using the Tikhonov regularization, for-
mulating the reconstruction as

(2)

where is the regularization functional and is the
regularization parameter. The conductivity being discrete, the
regularization functional is usually expressed as ,
where is the regularization matrix. The reconstruction is,
therefore, formulated as

(3)

The role of the regularization functional is to penalize solutions
that according to some prior knowledge are unlikely. A classic
choice for the matrix is suggested by the identity matrix, a
similar choice is made by the NOSER algorithm [1] which uses
a positive diagonal matrix. Matrices that approximate first- and
second-order differential operators have also been commonly
used in electrical impedance tomography (EIT) over the last
decade [2]. All these regularization methods achieve the sta-
bility of the inversion by penalizing sudden variations in the
conductivity; the cost is that the reconstruction is rendered in-
capable of describing sharp variations.

There are of course situations of practical interest where the
actual conductivity presents sudden variations. In the literature,
two different approaches have been proposed for dealing with
those situations. The first approach seeks solutions with the least
total variation [3] or uses the total variation as a regularization
functional [4], allowing the presence of step changes in the re-
constructed images. This approach is particularly suitable for
reconstructing piece-wise constant conductivities, although it
might lead to staircase effects in the presence of conductivity
gradients.

The second approach is that of incorporating structural prior
information into the reconstruction process to estimate the un-
known conductivity more closely [5]–[9]. By this means, it is
possible to enhance the sharpness of the images when the prior
information is matched by the actual experiment, as shown by
Kaipio et al. [10].

The approach followed in [10] is to use anisotropic
smoothness constraints in the regularization. The smoothness
constraints are relaxed along the direction of the expected
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changes, allowing faster transitions in this direction while
preserving the necessary smoothness tangentially. The study
proposes a way of constructing the filters for a piece-wise
linear two-dimensional (2-D) finite-element method (FEM)
forward model. The conductivity being linear, it is possible to
express the first partial derivatives of each element as functions
of the nodal values of. The reconstruction then penalizes them
differently, according to the local direction of the expected
changes.

In this paper, we present a method for constructing Gaussian
anisotropic filters for a piece-wise constant 2-D FEM forward
model. As the spatial derivatives are not readily available, the
filters express their directional properties by weighting appro-
priately the conductivity values of neighboring elements. The
approach is introduced first by analyzing the traditional forms
of regularization, then extending Gaussian isotropic filtering to
the anisotropic case.

II. STANDARD REGULARIZATION

An insight on the ill conditioning of the reconstruction
problem and on traditional regularization techniques is gained
by linearizing (1) about a point

(4)

and by analyzing the singular-value decomposition (SVD) of the
Jacobian of the forward operator. The matrix (
is the number of observations, andis the number of elements
in which the conductivity has been discretized) is decomposed
as

(5)

where and are and orthonormal matrices and
with . Given the de-

composition, the mapping of a change in the conductivity
can be expressed as

(6)

The ill posedness of the problem is shown by the singular values
rapidly decaying to zero: there are certain changes inpar-

allel to the higher singular vectors (SVs) that are strongly
attenuated and would become unobservable in the presence of
noise.

When inverting the conductivity, assuming thathas full
rank, solutions of (4) are expressed as

(7)

Terms with higher values of, for which observations are poor,
are strongly amplified by the factor , leading to a solution
that is dominated by noise.

The aim of regularization is, therefore, to dampen the con-
tribution of the higher SVs to the reconstructed image. This is
achieved explicitly by the truncated SVD technique stopping the
summation of (7) at an index for which the observations
are not exceeded by the noise level.

A similar filtering effect is achieved implicitly, at a minor
computational expense, by using the identity matrix in the reg-
ularization term or by using the NOSER algorithm, for which
the regularized solutions of (4) are expressed as

(8)

where are the diagonal elements of. The regularization pre-
vents the multiplicative term from diverging for .

Similarly, the effect of regularization matrices that are dis-
crete approximations of first- and second-order differential op-
erators can be understood in terms of SVD decomposition by
considering the fact that higher SVs tend to be more and
more oscillatory, therefore constraining the image to be smooth
rejects their contribution.

All the standard techniques, therefore, stabilize the inversion
by limiting the unreliable contribution of the higher SVs to the
reconstructed images.

III. STATISTICAL INTERPRETATION OF

A similar regularization approach is suggested by the statis-
tical interpretation of the reconstruction [11]. In this case, the
discretized conductivity is assumed to be a random variable
and the observationsto be contaminated by the random noise

(9)

Assuming also that is a Gaussian variable with mean and
covariance matrix and that has zero mean and covariance
matrix , the posterior probability density for the vector
given the observation is

(10)

Where subscripts indicate which probability densityis used.
Additionally, recalling (9)

(11)

If and are statistically independent

(12)

Given that is a constant since is fixed, and using (10)
and (12)

(13)

If is now estimated with themaximum a posteriori(MAP) cri-
terion, the maximum of is sought, which is equivalent
to minimizing the argument of the exponentials in (13)

(14)
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Formally, the Tikhonov solution of the inverse problem (3) is
identical to the MAP approach when ,
and is a prior estimate of. This connects the choice of
to the statistical information on.

The properties of reflect the prior knowledge of the system
under measurement. The diagonal elements of the matrix repre-
sent the variance of each element in the image, the off-diagonal
elements of the matrix are a function of the correlationbe-
tween elements of the image . It is, there-
fore, possible to envisage the possibility of constructing
on the basis of the structural knowledge of the system under
measurement, and of using a regularization matrixsuch that

.

IV. I SOTROPICGAUSSIAN SMOOTHING

The latter approach, , has been considered by
Adler et al. [12], even though the authors finally assumed only
the implicit information that a limited resolution is achieved
by EIT. They, therefore, used a covariance matrix that allowed
some correlation between neighboring image elements. In this
case, the inversion of the covariance matrix is ill posed and, thus,
numerically unstable. Observing that the covariance matrix has
the structure of a lowpass filter, the solution they proposed is to
use a Gaussian highpass filter to represent its inverse. For the
2-D case, the frequency response of the filter with a spatial fre-
quency of is

(15)

with the following convolution kernel:

(16)

A regularization matrix that approximates the filter can be
found by expressing the filtered valueof the continuous con-
ductivity at the mid-point coordinates of the th element
of the image

(17)

and assigning the value at the mid-point to the discrete conduc-
tivity

(18)

The integration can be carried out on the single elements,
after bringing the piece-wise constant conductivity out of the
integration

(19)

the filtered conductivity can be expressed as with the
following definition for :

(20)

Fig. 1. An object
 has an inclusion
 with a different conductivity (gray
area). The contour of the inclusion is bounded by� and� and is expected
to follow approximately the bounding profiles. In order to exploit the structural
information, the smoothing filter weights (represented by crosses) should be
anisotropic in the region bounded by the two� curves, allowing for a faster
variation of the conductivity in the direction of the expected changes.

V. ANISOTROPICGAUSSIAN SMOOTHING

The statistical interpretation of the matrixsets the basis for
incorporation of prior structural information into regularization.
In their study, Adleret al., however, did not assume this infor-
mation and used an isotropic Gaussian filter in order to mimic

. Nevertheless, their proposed method inspired the use of an
anisotropic Gaussian kernel that we adopt in this study for ex-
ploiting the anatomical priors, which are, in the medical imaging
context, the equivalent of the structural information.

We now consider the problem for which we propose a method
by examining the situation presented in Fig. 1. Assume that
a body has an inclusion that presents a different con-
ductivity from the surrounding body. The shape of the inclu-
sion is not precisely known, but it is bounded by and .
The boundary of the object is assumed to follow ap-
proximately the bounding curves. An organ expanding and con-
tracting during its physiological activity could be an example of
the depicted situation.

The region enclosed between the two bounding curves,
which we label , is where the expected conductivity dis-
continuity will occur. The objective is to relax the smoothing
constraints in the region along the direction normal to
the line of changes, that has yet to be defined. The tangential
smoothing can be maintained, expecting the changes to be or-
thogonal to that direction.

We, therefore, propose to use the anisotropic Gaussian kernel
that is obtained by transforming (16)

(21)

where and are the tangential and normal directions of the ex-
pected changes in the conductivity. Such a kernel would separate
control of the smoothing along and by varying the parame-
ters and . From a statistical point of view, this is equivalent
to assuming that the image elements are less correlated in the di-
rection of the expected changes.
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Theoretically, the use of such a filter is straightforward; in
practice the problem is to find a way of calculating the system
of coordinates given the geometry of the domains. The
normal and tangential directions need to be defined somehow
in the region , in order to make the use of the Gaussian
anisotropic kernel possible.

VI. FINDING NORMAL AND TANGENTIAL COORDINATES

The problem of finding the normal and tangential coordinates
can be solved naturally with a system of harmonic coordinates.
The intention is to find a system of coordinates where

on (22)

on (23)

in (24)

The solution we propose is to find satisfying (22)–(24) by
solving a partial differential equation (PDE).

Solving over with the following Dirichlet
boundary conditions:

on

on (25)

gives a solution defined over all the domain that can
be regarded as one of the coordinates of the system. Points
with will lie on , points with will lie on . The
vector is orthogonal to for and orthogonal to

for . Therefore, satisfies (22) and (23). Now assume
a crack in the domain as illustrated in Fig. 2, and that

is solved over with Dirichlet boundary condi-
tions

on one side of the crack.

on the other side of the crack. (26)

and Neumann conditions on and . The solu-
tions and will form a system of harmonic coordinates. The
level sets of are distributed radially on the domain ,
giving a vector that is orthogonal to on it, satisfying
(24). The coordinate change maps the cracked
domain to the rectangle in . The coordi-
nates can, therefore, be used to carrying out the integration
of the kernel (21) producing an anisotropic weighting matrix.

VII. COMMENTS ON CALCULATION OF

The idea of solving a PDE for the calculation of was
based on the opportunity of relying mostly on the forward solver
for the task. In EIT, the forward algorithm solves

(27)

where is the electric potential. It is sufficient to setto a con-
stant value in (27) order to enable the forward solver to solve
the Laplace equation. In order to apply Dirichlet boundary con-

Fig. 2. Calculation of the normal and tangential coordinates solving the
Laplace equation over the domain
 with opportune boundary condi-
tions. The solutionsn andt form a system of harmonic coordinates(n; t) that
maps the cracked domain
 to a rectangle.

ditions, however, the solver needs to be slightly modified; in
fact, Neumann or constrained Robin conditions are applied in
EIT depending on which electrode model is implemented [13].

An algorithm for the calculation of has been developed
in the MATLAB environment and integrated with the routines
currently in use for the forward solution. The algorithm pre-
supposes that a FEM mesh matching the external and internal
boundaries of the object to be imaged has been produced. The
user describes the structural information by selecting on the
screen the nodes on , . Given the two spatial frequencies

and the algorithm computes the transformation of the do-
main and calculates the anisotropic regularization ma-
trix .

For each finite-element belonging to the domain ,
the corresponding row of is calculated by integrating (21),
while for the rest of the elements the isotropic kernel (16) is
used.

VIII. SIMULATIONS

In this section, we compare reconstructions using prior in-
formation, in the form of anisotropic smoothing, and traditional
reconstructions using Gaussian isotropic smoothing. A simple
experiment involving a square inclusion embedded in a round
object was set up. The experiment has no physiological meaning
but its validity is general. The numerical simulations allowed us
to compare the two methods, and to present a generalized SVD
(GSVD) analysis of the effect of prior information on the regu-
larization.

A. Setup of the Experiment

The numerical experiment was set up as illustrated in Fig. 3.
An outer round object with a diameter of 30 cm is expected
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Fig. 3. Setup of the simulated experiment: round object with a square inclu-
sion, definition of the domains and dimensions in centimeters.

to contain a square-shaped inclusion with a different conduc-
tivity. The dimensions of the inclusion can vary, the side of the
anomaly can range from 8 cm to 16 cm.

A mesh of 798 triangular elements, shown in Fig. 4, was
used for the inverse computations. The mesh matches the in-
ternal boundaries and in order to allow the calculation
of with the PDE method. The forward solver uses a finer
mesh for calculating the electric potential, attaining higher ac-
curacy in the forward solutions. The finer mesh was obtained
from an adaptive refinement of the first mesh, resulting in 6346
elements. The mesh was used also for the generation of the test
conductivity profiles of the simulations. The inclusions of the
test profiles were generated not coincide with the discretization
of the coarse mesh, as this would be not representative of a real
situation. The disposition of the electrodes resembles the setup
of the OXBACT III [14] adaptive current tomograph: 32 current
electrodes, each one capable of injecting a current, are inter-
leaved with another 32 electrodes, used to measure the electric
potential, resulting in a total of 64 electrodes equispaced around
the object.

B. Reconstructions

A first test conductivity profile matching the expected struc-
ture was used to compare the reconstructions with and without
prior information. In the simulations, the conductivity of the sur-
rounding circular object was set to 1 m , and an 11–cm
square inclusion, with conductivity 0.7 m , was gener-
ated, as shown in Fig. 5(a).

For the reconstructions, trigonometric current patterns were
used and the resulting measurements were calculated with a
forward solver implementing the complete electrode model. A
Gaussian white noise with zero mean and a standard deviation
of of the voltage range was added to the measurements
to simulate instrument noise [15]. The reconstruction (3) is
solved iteratively, starting from a homogeneous conductivity
that best fits the data. The first four steps of the algorithm were
performed. In Fig. 5(b) and (c), respectively, the isotropic and

Fig. 4. Generated mesh, boundaries, and crack are shown in thick line.

anisotropic reconstructed conductivities are shown. Several
values of the ratio were used; a high ratio produces an
image conforming strongly with the prior information, while
a low ratio is close to conventional Gaussian smoothing. An
anisotropy of 2.5 was found to be a good compromise for these
experiments. As expected the isotropic solution smooths the
lateral discontinuities of the square inclusion and rounds off
the corners. The anisotropic solution, incorporating the prior
information, estimates the square shape of the detected object
more accurately.

In Fig. 6(a) and (b), cross sections of the true and recon-
structed conductivities are shown for an easier quantitative com-
parison. Fig. 6(a) illustrates a cross section along theaxis.
The anisotropic solution follows the sharp transitions and set-
tles closer to the correct value in the center of the object than
the isotropic one. The effect is more evident in Fig. 6(b). where
the cross section is cut on the 45diagonal, crossing the corners
of the inclusion. The discontinuity of the corners is even more
difficult to describe for the isotropic smoothing, resulting in a
larger difference in the two reconstructions.

C. Incorrect Priors

The risk in using prior information in the reconstruction
process is to bias the solution toward the assumed distribution,
and to miss inclusions that do not respect the prior assumptions.

In this section, are presented reconstructions comparing the
two methods in the case where the priors are incorrect. Fig. 7(a)
shows the test conductivity to be reconstructed. The inclusion
is a rectangular object with the lateral edges orthogonal to the
direction assumed for the conductivity changes in . The
object, therefore, violates the prior information assumed by the
regularization. The conductivity values for this test are again
1 m for the embedding object and 0.7 m for the
inclusion. In Fig. 7(b) and (c), the isotropic and anisotropic re-
constructions are shown. Both reconstructions were performed
with the same parameters as the ones used for the re-
sults of Fig. 5, and the same level of noise. The anisotropic solu-
tion detects the anomaly and locates it correctly. Some fake re-
sponses are, however, triggered in the region, resulting
in a poorer performance when compared with the isotropic re-
construction.
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(a) (b) (c)

Fig. 5. Comparisons of isotropic and anisotropic priors. (a) Test conductivity profile. (b) Reconstruction with Gaussian isotropic smoothing of the 10-cm square
inclusion. (c) Reconstruction using a Gaussian anisotropic filter.

(a) (b)

Fig. 6. Cross sections of the reconstructions. The thick line represents the true conductivity, the dashed line the anisotropic reconstruction and the dotted line the
isotropic one. (a) Cross section along the horizontal axis. (b) Cross section along the 45diagonal.

(a) (b) (c)

Fig. 7. Inclusion violating the priors. (a) A rectangular inclusion crosses the region
 , the prior assumptions are violated, the lateral borders of the inclusion
are orthogonal to the expected direction. (b) Isotropic reconstruction of the conductivity. (c) Anisotropic reconstruction of the same conductivity.

IX. GSVD ANALYSIS OF THE RESULTS

GSVD analysis allows study of the problem (3) in the generic
case where is a full rectangular matrix, rather then the more
restrictive case of a diagonal matrix allowed by the SVD [16].

The generalized decomposition can be applied, therefore, to the
Gaussian filter. Again, the linearization of (3) should be consid-
ered

(28)
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(a) (b)

Fig. 8. (a) Second SV calculated with the Gaussian isotropic matrixL. (b) Second SV in the Gaussian anisotropic case.

The matrices and (where is the number
of “regularization constraints,” in the Gaussian case) are
then decomposed as

(29)

where , , and .
The matrices and are orthonormal and nonsingular,
and are diagonal matrices ,
and with

(30)

and

(31)

The generalized singular values are defined as for
, they appear in nonincreasing order

(32)

Using this decomposition, the regularized solutions to the lin-
earized problem (28) can be expressed as

(33)

Similar conclusions can be drawn from (33) to those from the
SVD analysis. The generalized singular valuesshow the ill
posedness of the problem by rapidly decaying to zero for in-
creasing. The term should, therefore, tend to zero
with sufficient rapidity to prevent the first term at the right hand
side of (33) from diverging. The matrix pair is, there-
fore, understood to regularize the inversion in a similar fashion
to : by damping the content of the SVs for which the cor-
responding singular values are too small.

When anisotropic filtering is adopted, we have found inter-
esting changes in the structure that the SVs assume. Typically,
the SVs associated with bigger singular values are smooth; they
have components only in the lower part of the spectrum of spa-

tial frequencies and do not present discontinuities. The GSVD
analysis of the pair revealed that with the anisotropic
Gaussian filter the structure of the SVs changes.

Fig. 8(a) illustrates the second SV for the isotropic Gaussian
filter, which is a vertical gradient as usually happens. The cor-
responding vector for the anisotropic Gaussian filter is shown if
Fig. 8(b). The central region of the image presents a sudden vari-
ation corresponding to the area delimited by. Fig. 9 shows the
14th, 42nd, 108th, and 131st SVs for the anisotropic case. The
structural prior information appears to having been embedded
in the SVs, modifying the smooth structure that one would ex-
pect otherwise. Some of the vectorsdecouple the information
relative to the inclusion from the background by spanning only
particular regions of the image. The nonsmooth properties of the
lower SVs allow the reconstruction to describe more easily in-
clusions matching the prior information, as the spectral analysis
explains in more detail.

X. SPECTRAL ANALYSIS

As with the SVD decomposition, it is possible to express a
given conductivity distribution as a linear combination of the
SVs

(34)

The are said to be the spectral coefficients of. The actual
calculation of the coefficients differs from the standard SVD
case in that are not orthogonal but just linearly independent.
The first spectral coefficients can be calculated as

(35)

since the vectors are orthogonal for , and
for , .

The remaining coefficients can be calculated as

(36)

since the last columns of are orthogonal and
for , .

Traditionally, the lower SVs are smooth and the higher ones
are oscillatory. Smooth conductivity distributions will, there-
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(a) (b)

(c) (d)

Fig. 9. Generalized SVs calculated with the Gaussian anisotropic matrixL. (a) 14th, (b) 42nd, (c) 108th and (d) 131st.

fore, have components in the lower part of the spectrum and
vice versa. In this sense, the decomposition (34) is similar to a
Fourier analysis of .

As introduced earlier, the regularization dampens the con-
tribution of the higher SVs in the image. For a given conduc-
tivity distribution , the higher the spectral content, the more the
reconstructed image will suffer from the dampening. Thus, an
image with sharp changes, having significant components in the
higher part of the spectrum, will be heavily smoothed. However,
when anisotropic filtering is used, the lower SVs are able to span
certain sharp transitions, shifting the corresponding components
downwards in the spectrum. These conductivity patterns will,
therefore, survive the smoothing effect of the regularization.

The spectral shifting property was verified by expanding the
test conductivity of Fig. 5(a) in its spectral coefficients, using
the SVs derived both from the isotropic and anisotropic filters.
The SVs span the conductivity space of the mesh used for the
inverse calculations. The test conductivity, defined on a finer
mesh, was, therefore, projected onto this mesh. The distribution
of the spectral energy was compared by truncating the two ex-
pansions at an index for which

(37)

The results are shown in the first row of Table I labeled.
The lower 273 SVs are needed to describe the conductivity
within 4% error, if isotropic filtering is used. The same conduc-

TABLE I
NUMBER OF SINGULAR VECTORSREQUIRED TO DESCRIBE A TEST

CONDUCTIVITY WITHIN 0.04 ERROR

tivity is spanned within the same error by the lower 11 SVs in
the anisotropic case. The nonsmooth nature of the SVs deriving
from the anisotropic filter can, thus, describe a sharp conduc-
tivity profile with a smaller spectral content, resulting in less
smoothing from the regularization as shown by the reconstruc-
tions. The conductivity matches the prior information used
for setting up the matrix and for calculating the corresponding
SVs. For this reason, the sharp changes inare spanned by the
lower SVs.

The same experiment was repeated for the test conductivity
of Fig. 7(a); the results are reported in the second row of Table I,
labeled . In this case, the situation differs, 64 SVs are needed
to span the image within the 4% error in the anisotropic case,
versus 38 for the isotropic regularization. The conductivity
does not match the prior information, it isn’t spanned by the
lower SVs, resulting in a slightly worse spectral distribution.

XI. CONCLUSION

In this paper, a method is proposed for dealing with the re-
construction of conductivity images with sharp variations, as
encountered in situations of medical interest. The approach is to
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enhance the reconstructions by incorporating the prior structural
information into the regularization. This is achieved by using
Gaussian anisotropic filters, which relax the smoothness in the
direction of the expected changes. The effectiveness of the ap-
proach has been positively compared with the use of isotropic
filters by means of simulations. The simulations show that the
sharpness and quantitative estimation of the conductivity are en-
hanced when the experiment matches the prior information. On
the other hand, with a careful selection of the regularization pa-
rameters, the algorithm was able to detect a contrast that violated
the prior assumptions.

In our view, this paper addresses three different aspects
of anisotropic regularization: the introduction of anisotropic
Gaussian smoothing, a method for the calculation of the
regularization filter and a GSVD analysis of the regularized
problem. The first and the last contribution are of general
validity. We believe the method we propose for the calculation
of to be best suited for objects with a relatively simple
contour, and of reasonably large dimensions compared with the
mesh size.
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