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(Received 4 September 2002 and in revised form 23 December 2002)

A fully coupled finite-element method is used to investigate the steady flow of a
viscous fluid through a thin-walled elastic tube mounted between two rigid tubes. The
steady three-dimensional Navier–Stokes equations are solved simultaneously with the
equations of geometrically nonlinear Kirchhoff–Love shell theory. If the transmural
(internal minus external) pressure acting on the tube is sufficiently negative then the
tube buckles non-axisymmetrically and the subsequent large deformations lead to a
strong interaction between the fluid and solid mechanics. The main effect of fluid
inertia on the macroscopic behaviour of the system is due to the Bernoulli effect, which
induces an additional local pressure drop when the tube buckles and its cross-sectional
area is reduced. Thus, the tube collapses more strongly than it would in the absence of
fluid inertia. Typical tube shapes and flow fields are presented. In strongly collapsed
tubes, at finite values of the Reynolds number, two ‘jets’ develop downstream of the
region of strongest collapse and persist for considerable axial distances. For sufficiently
high values of the Reynolds number, these jets impact upon the sidewalls and spread
azimuthally. The consequent azimuthal transport of momentum dramatically changes
the axial velocity profiles, which become approximately �-shaped when the flow enters
the rigid downstream pipe. Further convection of momentum causes the development
of a ring-shaped velocity profile before the ultimate return to a parabolic profile far
downstream.

1. Introduction
In many physiological systems, viscous fluids are transported via networks of elastic

tubes, e.g. the circulatory, pulmonary, renal and excretory systems. The moving fluid
exerts a traction on the vessel walls, which can deform significantly in response. If the
vessel is subjected to a sufficiently negative transmural pressure, Ptm (internal minus
external pressure), it buckles non-axisymmetrically. In this regime, small changes in
transmural pressure cause large changes in the cross-sectional area of the vessel. The
accompanying changes in the fluid loading on the wall can lead to a strong fluid–
structure interaction, potentially causing phenomena such as flow limitation and the
development of large-displacement self-excited oscillations, manifested physiologically
as wheezing and the Korotkoff sounds present during sphygmomanometry.

Most experimental studies of flow in collapsible tubes are performed using a
Starling Resistor: a pressure chamber that encloses a finite-length elastic tube mounted
between two rigid tubes. Flow in the Starling Resistor exhibits a rich dynamical
behaviour and large-displacement self-excited oscillations of great complexity have
been observed; see the recent review by Bertram (2002).
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Previous theoretical and computational studies of collapsible-tube flow have been
comprehensively reviewed by Heil & Jensen (2002). In brief, the earliest theoretical
studies were based on spatially one-dimensional models, which captured behaviour
such as flow limitation, wave propagation and the system’s propensity to develop self-
excited oscillations. However, these one-dimensional models rely on a large number
of ad hoc assumptions and provide limited insight into the details of the complex
interactions between the fluid and solid mechanics. In an attempt to develop a more
rational model of collapsible-tube dynamics, Rast (1994) and Luo & Pedley (1995,
1996, 1998, 2000) considered the two-dimensional equivalent of a Starling Resistor,
namely the flow through a channel in which a section of one wall is replaced by
an elastic membrane. An important feature of this system is the development of a
large region of separated flow downstream of the point of strongest collapse and
the generation of vorticity waves during the self-excited oscillations. It is not clear,
however, if these phenomena have any relevance in the three-dimensional system
where the topology of the flow can be much more complex than in two dimensions
(Lighthill 1963; Tobak & Peake 1982).

There are relatively few theoretical investigations of flow in three-dimensional
collapsible tubes. Benmbarek (1997) and Naili, Thiriet & Ribreau (2002) have
considered the steady flow of a Newtonian fluid through rigid tubes with geometries
similar to those of buckled elastic tubes. Naili et al. (2002) considered the flow
through a uniformly buckled cylinder, whereas Benmbarek’s (1997) geometry was
determined from experiments using a Starling Resistor. However, we believe that the
only theoretical studies that include both the flow and the wall mechanics in three-
dimensional collapsible tubes are those of Heil & Pedley (1996) and Heil (1997, 1998),
who considered the steady motion of a viscous fluid through a buckled cylindrical
shell at zero Reynolds number.

The present paper extends these previous studies by considering the effects of fluid
inertia upon the system. The primary aim of the study is to investigate the details of
the three-dimensional velocity fields, in order to determine to what extent, if at all, the
flow features resemble those assumed in the lower-dimensional models. A secondary
aim is to characterize the macroscopic behaviour of the system, i.e. the relationships
between pressure drop and flow rate.

2. The model
We consider the steady flow of a viscous fluid through a thin-walled elastic tube

of undeformed radius R, length L∗, wall thickness h, Poisson ratio ν and Young’s
modulus E. The fluid is assumed to be incompressible and Newtonian, with viscosity
µ and density ρ, and the axial flow rate is Q∗. We formulate the problem in Cartesian
coordinates, x = (x1, x2, x3) = x∗/R, and use an asterisk to distinguish dimensional
quantities from their dimensionless equivalents. The x3-direction is chosen to lie along
the tube’s axis and x1, x2 are the transverse coordinates, see figure 1. At its upstream
(x∗

3 = 0) and downstream (x∗
3 = L∗) ends, the elastic tube is mounted on two rigid

tubes also of diameter R and of lengths L∗
up and L∗

down, respectively.

2.1. Wall equations

We use geometrically nonlinear Kirchhoff–Love shell theory to model the deformation
of the elastic tube (see e.g. Wempner 1973) . The assumptions underlying the theory
are that (i) the dimensionless wall thickness h/R is small; (ii) material lines normal
to the undeformed midplane remain unstretched and normal to the midplane during
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Figure 1. Sketch illustrating the coordinate system and the geometry of the collapsible tube.
An elastic tube of lengths L∗ is mounted on two rigid tubes of lengths L∗

up and L∗
down. The fluid

pressure at the upstream end of the system (x∗
3 = −L∗

up) is p∗
up; the downstream fluid pressure

(at x∗
3 = L∗ + L∗

down) is p∗
down and the external pressure is P ∗(ext). Note the small secondary

buckling pattern at the downstream end of the elastic segment.

the deformation; and (iii) the ratio of the wall thickness, h, to the minimum radius
of curvature of the deformed shell remains small. Assumption (ii) implies that the
deformation of the shell is completely specified by the displacements of its midplane,
v = v∗/R. Lagrangian coordinates ζ α = ζ ∗α/R, where α = 1, 2, are introduced to
parameterize the midplane and its location in the undeformed configuration is given
by the position vector, r = r∗/R

r = (cos(ζ 2), sin(ζ 2), ζ 1), ζ 1 ∈ [0, L], ζ 2 ∈ [0, 2π], (1)

where L = L∗/R. The deformation of the midplane may be characterized by the
strain and bending tensors, γαβ and καβ , respectively, defined in Appendix A, § A.1,
and its position after deformation is given by

R(ζ α) = r(ζ α) + v(ζ α). (2)

The large bending deformations of the thin-walled elastic tube that occur in the
present system only generate small strains, allowing us to employ a linear constitutive
equation (Hooke’s law), although the theory permits the use of more general
constitutive relations, see Appendix A, § A.2. The principle of virtual displacements,
which describes the shell’s deformation, becomes∫ 2π

0

∫ L

0

Eαβγ δ

(
γαβδγγ δ +

1

12

(
h

R

)2

καβδκγ δ

)
dζ 1 dζ 2

=
1

12

(
h

R

)3
1

1 − ν2

∫ 2π

0

∫ L

0

(
R

h

)
f · δR

√
A dζ 1 dζ 2, (3)

where we use the convention that repeated indices are summed over all possible
values of the index. Throughout this paper, Greek indices take the values α = 1, 2,
and Latin indices take the values i = 1, 2, 3. f = f ∗/K is the traction per unit area
of the deformed midplane, non-dimensionalized by the bending modulus of the shell,
K = E(h/R)3/12(1−ν2); Eαβγ δ is the plane stress stiffness tensor, non-dimensionalized



82 A. L. Hazel and M. Heil

by Young’s modulus; and A is the determinant of the metric tensor of the deformed
midplane, see Appendix A, § A.1.

We assume that the tube is clamped at both ends:

v = 0 at ζ 1 = 0, L, (4a)

∂vr/∂ζ 1 = 0 at ζ 1 = 0, L, (4b)

where vr is the component of the displacement in the radial direction.
We now choose to resolve the displacement vector into components in the global

Cartesian basis. This representation, which differs from the one used by Heil (1997),
is readily extendible to more general shell geometries and also reduces the algebraic
complexity of the resulting variational equations.

We decompose the domain into NS (two-dimensional) elements and use a
displacement-based finite-element method to discretize the variational equation (3),
which becomes∫ 2π

0

∫ L

0

Eαβγ δ

(
γαβ Aγ ψ

(S)
,δ +

1

12

(
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R

)2
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[
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ψ
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A
ψ

(S)
,2

− N · Aγ,δ

A

{
(A22 A1 − A12 A2)ψ

(S)
,1 + (A11 A2 − A12 A1)ψ

(S)
,2

}])
dζ 1 dζ 2

=
1

12

(
h

R

)3
1

1 − ν2

∫ 2π

0

∫ L

0

(
R

h

)
f ψ (S)

√
A dζ 1 dζ 2. (5)

Here, ψ (S) are Hermite (bi-cubic) shape functions interpolating the displacements and
their derivatives (Bogner, Fox & Schmit 1967). Aα = R,α , where the comma denotes
partial differentiation with respect to ζ α . Aαβ = Aα · Aβ is the metric tensor of the
deformed midplane and N = A1 × A2/|A1 × A2| is the (inward) unit normal to the
deformed midplane.

The clamping condition (4b) was applied by imposing

v1
,1 cos ζ 2 + v2

,1 sin ζ 2 = 0,

in the form v1
,1 = −v2

,1 tan ζ 2 when ζ 2 ∈ [0, π/4] and v2
,1 = −v1

,1 cot ζ 2 when ζ 2 ∈
(π/4, π/2].

2.2. Fluid equations

We use the average axial velocity through the undeformed tube, Ū = Q∗/(πR2), to
non-dimensionalize the fluid velocity, so that u = u∗/Ū , and scale the internal fluid
pressure on the viscous scale, p = p∗/(µŪ/R), so that no rescaling is required to solve
the equations in the absence of fluid inertia. The flow is governed by the dimensionless
steady Navier–Stokes equations:

Re

(
uj

∂ui

∂xj

)
= − ∂p

∂xi

+
∂

∂xj

(
∂ui

∂xj

+
∂uj

∂xi

)
, (6a)

and the continuity equation

∂ui

∂xi

= 0, (6b)

where Re = ρŪR/µ is the Reynolds number.
The boundary conditions are those of no-slip on the tube walls,

u = 0 on the tube walls, (7a)
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a prescribed fully developed Poiseuille profile upstream

u1 = 0, u2 = 0, u3 = 2
(
1 − x2

1 − x2
2

)
at the inlet (x3 = −Lup), (7b)

and parallel, axially traction-free outflow

u1 = 0, u2 = 0, −p + 2
∂u3

∂x3

= 0 at the outlet (x3 = L + Ldown), (7c)

where Lup,down = L∗
up,down/R. We decompose the fluid domain into NF finite elements,

within which we interpolate the velocities by tri-quadratic and the pressures by tri-
linear basis functions (Taylor & Hood 1973). The discretized version of the momentum
equations is based upon their weak form, generated by integrating (6a) over the fluid
domain and using the velocity basis functions, ψ (F ), as test functions. The viscous and
pressure gradient terms are integrated by parts to give the following set of equations:∫∫∫ [

p
∂ψ (F )

∂xi

−
(

∂ui

∂xj

+
∂uj

∂xi

)
∂ψ (F )

∂xj

− Re

(
uj

∂ui

∂xj

)
ψ (F )

]
dV

+

∫∫ [
−pni +

(
∂ui

∂xj

+
∂uj

∂xi

)
nj

]
ψ (F ) dS = 0. (8a)

The volume integrals are evaluated over the entire fluid domain, V , and the surface
integrals over the boundary of the domain, S, where n is the normal directed out of
the bounding surface.

Similarly, the continuity equation (6b) is weighted by the pressure basis functions,
ψ (P ), to give ∫∫∫

∂ui

∂xi

ψ (P ) dV = 0. (8b)

2.3. Fluid–solid coupling

The fluid and solid domains interact in two ways: (i) the fluid exerts a traction on the
elastic wall and (ii) the deformations of the elastic wall change the geometry of the
fluid domain. An automatic mesh generation scheme, based on a variation of Kistler
& Scriven’s (1983) ‘Method of Spines’, is used to update the fluid mesh in response
to changes in the wall shape. The mesh thus deforms with the tube and figure 2(b)
shows illustrative cross-sections of the fluid mesh in a deformed tube.

The traction that the fluid exerts on the wall is part of the load terms in equations (3)
and (5), which are given by

f = P (ext)Ni − Q

(
pNi −

(
∂ui

∂xj

+
∂uj

∂xi

)
Nj

)
, (9)

where N is the (inward) normal to the deformed shell midplane and P (ext) = P ∗(ext)/K

is the external pressure. The non-dimensional parameter

Q =
µŪ

RK
(10)

represents the ratio of viscous forces to the tube’s bending stiffness and large values
of Q indicate a strong fluid–structure interaction. The limit Q → 0 corresponds to
the case in which the tube’s stiffness is much larger than the fluid traction, and so
the tube shape is determined solely by the action of the constant external pressure,
P (ext). Q may also be interpreted as a dimensionless flow rate and, furthermore, 8Q
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(a)

(b)

Figure 2. (a) The finite-element mesh for the shell. (b) Cross-sectional slices through the
finite-element mesh for the fluid in the elastic section of the domain. The fluid surface mesh
is indicated by light lines. The generic cross-sectional mesh deforms with changes in the wall
position. It was found to be computationally efficient to choose the solid mesh such that the
axial position of the nodal points coincides with the axial position of the nodal points on the
surface of the fluid mesh.

is the dimensionless pressure drop, �p∗/K , per unit length for Poiseuille flow in the
undeformed tube.

If Q = 0, equation (9) would seem to suggest that the fluid pressure does not affect
the deformation of the tube. In terms of the solid mechanics, however, an increase
in the fluid pressure is completely equivalent to a decrease in the external pressure.
The boundary condition (7c) fixes the fluid pressure at the outlet, setting it to zero.
Therefore, in our model, a net change in transmural pressure is always achieved by a
change in the external pressure, even when Q �= 0.

2.4. Numerical implementation

In experiments (e.g. Conrad 1969; Bonis & Ribreau 1978), elastic tubes in Starling
Resistors usually collapse into a two-lobed shape (i.e. the circumferential wavenumber
is N = 2). Heil’s (1996) stability analysis confirmed that N = 2 is the most unstable
buckling wavenumber for tubes of sufficient length. Therefore, we restrict attention
to cases in which the system is symmetric about the planes x1 = 0 and x2 = 0,
and discretize only one quarter of the domain: x1 � 0, x2 � 0 and ζ 2 ∈ [0, π/2].
This restriction precludes the investigation of asymmetric fluid velocity fields that may
occur even in symmetric geometries (e.g. Sobey & Drazin 1986). Such an investigation
would require the discretization of the entire fluid domain, at substantially higher
computational cost.
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The coupled nonlinear algebraic equations (5, 8a, b) were solved numerically using
a Newton–Raphson method. A frontal scheme (Duff & Scott 1996) was used to
assemble and decompose the Jacobian matrices. The entries of the Jacobian matrix
in the fluid block were assembled analytically, but those in the solid and coupling
blocks were generated by finite differencing.

It was found that the front size was minimized by placing the nodes in the shell
mesh at the same axial locations as the nodes on the surface of the fluid mesh.
Two Hermite shell elements (Bogner et al. 1967) were therefore used to cover the
axial extent of one Taylor–Hood fluid element (Taylor & Hood 1973). This leads
to a finer-than-necessary discretization of the shell equations. However, the increase
in computational cost caused by the (modest) increase in the overall number of
degrees of freedom was outweighed by a significant reduction in the number of
(expensive-to-generate) entries in the interaction blocks of the Jacobian matrix.

An initial configuration in which the undeformed tube conveys Poiseuille flow
was used as the initial guess for the Newton iteration. In the first computation, the
transmural pressure was set to a small positive value to ensure that the system’s
equilibrium state was axisymmetric. The converged axisymmetric solution was then
used as the initial guess for the subsequent parameter variations. In a physical
experiment, the external pressure would be used as the parameter which controls
the tube’s collapse. However, the axisymmetric state can lose its stability to non-
axisymmetric perturbations via a subcritical bifurcation (see e.g. Heil 1997 and
figure 14). Therefore, we employed a displacement-control technique which specifies
the degree of tube collapse by prescribing the radial displacement of a chosen control
point on the shell (usually at ζ 1 = 0.75 L, ζ 2 = π/2). This constraint is accommodated
by making the external pressure, P (ext), one of the unknowns in the problem. The
displacement of the control point thus becomes the control parameter in the problem
and was typically varied from 0 to 85% of the tube’s initial undeformed radius. In
practice, the axisymmetric solution is remarkably robust and so a perturbation of
the form Pc cos(2ζ 2) was initially added to the external pressure to force the solution
onto the non-axisymmetric branch. Once the tube had buckled, Pc was set to zero
and the solution was recomputed before increasing the collapse further.

For typical initial guesses, the residuals are O(1) and the iteration was deemed to
have converged when the absolute value of the largest residual is less than 10−8. A
typical problem involving approximately 80 000 degrees of freedom required about
fifteen minutes of CPU time per Newton iteration on a 1.4 Ghz Linux PC and
convergence was generally achieved within 4 iterations.

The shell solver was validated by comparing the computed buckling loads with
theoretical predictions (Yamaki 1984) and a comparison of the non-axisymmetric tube
shapes under uniform pressure loading with the predictions from Flaherty, Keller &
Rubinow’s (1972) inextensible Euler–Bernoulli model. The results were also compared
with the shell solver used by Heil (1997) to confirm that the Cartesian formulation
does not affect the results.

To validate the fluid solver, we constructed velocity and pressure fields which
corresponded to the flow in an axially varying tube. This flow field was made an exact
solution of the Navier–Stokes equations by adding appropriate body force and source
terms to (8a) and (8b), see Appendix B, § B.1. Finally, the fully coupled code was used
to reproduce the previous results of Heil (1997) in the case when the Reynolds number
is zero – Stokes flow. Mesh convergence of the results was confirmed by repeating
selected calculations using finer discretizations, see figures 5, 14 and Appendix B,
§ B.2.
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3. Results
In all the computations presented here, we use Lup = 1, L = Ldown = 10, Poisson’s

ratio ν = 0.49 and h/R = 1/20. It is convenient to introduce a new dimensionless
grouping

H =
Re

Q
=

ρKR2

µ2
, (11)

which depends solely upon the material parameters of the system. Thus, in any
physical experiment using a given fluid and a given tube, H will be a constant.
H → 0 corresponds to the flow of a very viscous fluid, the case previously investigated
by Heil (1997), whereas if H > 0 fluid inertia will affect the results. For fixed H ,
Q is proportional to the flow rate through the tube and it will be interpreted as
such in the macroscopic parameter studies presented in § 3.3. The reported Reynolds
number will be based upon the diameter of the undeformed tube ReD = 2ρŪR/µ, as
in experiments.

In all the computations, the tube was forced to buckle in such a way that the radial
displacement was inwards in the plane x1 = 0 and outwards in the plane x2 = 0. In the
subsequent sections, we shall refer to these planes as vertical (x1 = 0) and horizontal
(x2 = 0).

In § 3.1, we demonstrate the gross effects of fluid inertia on the overall pressure
distribution in the system and the deformation of the elastic tube. In the next
subsection, we investigate the effects of fluid inertia on the velocity fields under
two different parameter variations. In § 3.2.1, we consider a procedure in which the
Reynolds number is increased by increasing the flow rate through the system, while
maintaining the same degree of collapse. In contrast, § 3.2.2 describes the results when
the Reynolds number is fixed, but the degree of collapse is increased by varying the
external pressure relative to pdown, the pressure at the downstream end of the system.

The final subsection, § 3.3, is concerned with the macroscopic behaviour of the
system and we analyse the dependence of the flow rate on the pressure drop through
the system for two typical experimental parameter studies: (i) external pressure fixed
relative to the upstream pressure (§ 3.3.1); (ii) external pressure fixed relative to the
downstream pressure (§ 3.3.2).

3.1. Effects of fluid inertia upon pressure drop and wall deformation

Figure 3 compares the pressure distribution along the tube centreline for the flow
through a strongly collapsed tube at H = 0 to that at H = 1000. In order to make a
meaningful comparison, both computations were performed at the same Q = 0.064,
the fluid pressures at the far downstream end were set to pdown = 0, and the tubes were
forced to have the same degree of collapse (as specified by their vertical displacements
at ζ 1 = 7.5 and ζ 2 = π/2). This last requirement was enforced by setting the external
pressures to P (ext) = 26.8 for H = 0 and P (ext) = 22.4 for H = 1000. In figure 3, these
values are shown as symbols and indicate the axial position downstream of which the
tube becomes subject to a compressive transmural pressure.

In both cases, the upstream half of the elastic tube is only slightly deformed, hence
the pressure gradient is approximately equal to that for Poiseuille flow in a rigid
circular tube i.e. ∂p/∂x3 ≈ 8Q = 0.51. Once x3 > 5 the tube begins to buckle non-
axisymmetrically, the cross-sectional area decreases and the viscous flow resistance
increases dramatically. In the case when H = 1000, the viscous pressure drop is
augmented by the Bernoulli effect via the increase in fluid velocity and the pressure
is lowest at the point of strongest collapse, x3 ≈ 7.5. Once the tube begins to reopen,
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Figure 3. Pressure distribution along the tube centreline for two different values of H . In
both cases Q = 0.064. The point at which the transmural pressure, Ptm, is zero is marked in
each case (open circle H = 0, closed circle H = 1000) and the corresponding tube shapes are
also shown. At H = 1000 the tube is more inflated at the upstream end.

the fluid velocity decreases and, in the case with fluid inertia, considerable pressure
recovery is achieved. In the downstream rigid section, the pressure gradient approaches
the Poiseuille value, although when H = 1000 this does not occur until x3 ≈ 15.

The difference in the internal pressure distribution for the two cases is responsible
for the slight variation in the tube shapes, illustrated by the inset in figure 3. The
Bernoulli effect causes the fluid pressure for H = 1000 to remain consistently below
that for H = 0. If both tubes were subject to the same external pressure, the tube with
H = 1000 would therefore be more strongly compressed. To compensate for this effect,
the tube with H = 1000 was subjected to a smaller external pressure. In consequence,
the tube is only compressed in the region x3 > 5.5 and remains inflated upstream.
Conversely, when H = 0 the tube is subject to a compressive load over most of its
length (x3 > 0.5).

3.2. Velocity fields

In this section, we present details of the velocity fields, paying particular attention
to the degree of three-dimensionality in the flow, in order to assess to what extent it
might affect the validity of the approximate lower-dimensional models.

3.2.1. Effects of flow rate for a fixed degree of collapse

Figure 4 shows contours of the axial velocity in three strongly collapsed tubes for
ReD = 64, 191, 350. The contours are shown in the horizontal and vertical planes of
symmetry and in a number of cross-sectional planes. In all cases H = 104, so the
Reynolds number is increased by increasing the flow rate. Hence, the increase in ReD is
accompanied by an increase in the viscous pressure drop along the tube, see figure 5(a).
Once again, the external pressure was adjusted so that the maximum radial
displacement is the same in all three cases, see figure 5(b). As a result, the increase in
ReD causes a decrease in the length of the region over which the tube is compressed
and the compressive load in this region increases dramatically. When ReD = 350 the
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Figure 5. (a) Fluid pressure along the centreline as a function of axial distance, x3, for
H = 104 and three different Reynolds numbers, ReD = 64 (solid), 191 (dash-dot), 350 (dashed).
The results for a finer fluid discretization are overlaid as symbols for ReD = 350. The open
circle shows the point where Ptm = 0 for ReD = 350 (Ptm is always negative for ReD = 64, 191).
(b) Wall shapes in the symmetry planes x1 = 0 (lower lines) and x2 = 0 (upper lines) as a
function of axial distance, x3 for ReD = 64 (solid), 191 (dash-dot), 350 (dashed). A secondary
buckling of the sidewall is observed when ReD = 350.

compressive load near the downstream end of the tube has become so large that the
sidewalls of the tube also buckle inwards. This secondary buckling pattern can also
be seen in figure 1.

The flow field when ReD =64, figure 4(a), is similar to that already presented by
Heil (1997) for Stokes flow. In the most strongly collapsed part of the tube, the
point of maximum axial velocity moves from the tube’s centreline into the two outer
lobes which offer less flow resistance than the strongly collapsed central part of the
cross-section. The fluid velocity on the tube’s centreline is strongly reduced while the
peak velocity increases owing to the reduction in cross-sectional area in the buckled
tube. The two regions of high axial velocity that develop in the buckled region only
persist for a short distance into the rigid tube and the centreline velocity returns to
within 1% of the Poiseuille value by x3 ≈ 13.2.

At ReD = 191, the flow rate has increased and the point of strongest collapse has
moved further downstream, leading to a steeper wall slope in the reopening region, see
also figure 5(b). Compared to the case when ReD = 64, the reduction in the centreline
velocity is less pronounced and the velocity profile in the most strongly collapsed
section of the tube is much more blunt. This is a consequence of the greater axial
momentum of the fluid, which opposes the viscous retardation. The Reynolds number
and wall slope are so large that a region of reversed flow develops downstream of the
point of strongest collapse. The areas of high axial velocity that develop in the two
lobes now develop into two ‘jets’ and persist for much greater axial distances. In the

Figure 4. Contours of axial velocity, u3, for H = 104 and (a) ReD = 64, (b) 191, (c) 350. In
all cases the minimum cross-sectional area is approximately the same and P (ext) = 9, 11.3, 17.6,
respectively.

Figure 9. Contours of axial velocity, u3, for H = 104 and ReD = 350 and (a) P (ext) = 9.02,
(b) P (ext) = 11.3, (c) P (ext) = 13.6 and (d) P (ext) = 25.8. Also shown are streamlines in the
transverse cross-sections and vertical symmetry plane and lines of skin friction on the tube
wall.
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Figure 6. Axial velocity profiles for H = 104, ReD =350 and P (ext) = 17.6 at x3 = 6, 8, 10,
12, 14, 16, 18. A dimensionless velocity of u3 = 1 corresponds to a distance of 0.16 along the
x3-axis.

downstream rigid tube, the axial momentum in the jets diffuses back across the tube.
However, the evolution towards a Poiseuille profile occurs much more slowly than at
ReD = 64 and the centreline velocity is still 20% lower than the Poiseuille value by
the end of the rigid tube (x3 = 20).

At the highest Reynolds number shown, ReD = 350, the point of strongest collapse
moves even further downstream and the region of reversed flow increases in extent.
The jets also persist for longer axial distances and impinge on the vertical sidewalls
of the tube, which causes the jets to flatten and spread azimuthally. The fluid pressure
in the region of impingement is approximately uniform across the tube, indicating
that the spreading of the jets is driven by a balance between fluid inertia and viscous
dissipation, rather than by a transverse pressure gradient. This type of flow structure
has previously been observed experimentally by Bertram & Godbole (1997), who
measured the steady flow through a rigid tube that had been deformed into the shape
of a typical collapsed tube. The Reynolds number in the experiments was 705, yet
the flow development appears to be essentially the same as found here: to whit, a
blunt velocity profile in the region of strongest collapse, followed by the development
of two pronounced jets with reversed flow between them until ultimately “a complete
ring of high-magnitude velocity [. . .] surrounds a large central region of relatively
insignificant flow” (Bertram & Godbole 1997).

The development of the ring structure can be seen in figure 6, which shows the axial
velocity profiles in a number of cross-sections through the tube. On exit from the
elastic tube, the velocity profile takes the shape of a �, with regions of high velocity
in the circumferential ring and across the tube centreline in the horizontal plane
x2 = 0. The centreline velocity decreases as the jets spread and the velocity profile
becomes more ‘O’-shaped by x3 = 16. Diffusion of momentum will eventually restore
the velocity to a parabolic Poiseuille profile; however the centreline velocity is still
30% lower than that of Poiseuille flow at x3 = 20. Our resolution of these flow features
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Figure 7. Wall shapes in the symmetry planes x1 = 0 (lower lines) and x2 = 0 (upper lines)
as a function of axial distance, x3. The sets of three curves are for P (ext) = 7.7 (solid), 7.9
(dash-dot), 25.8 (dashed). Re = 350 and H = 104.

was tested by repeating the calculations with a finer resolution, see Appendix B, § B.2
for further details.

3.2.2. Effects of degree of collapse for a fixed flow rate

In this section, we consider an alternative procedure in which the flow rate is fixed
at a Reynolds number ReD = 350 and the degree of collapse is controlled by varying
the external pressure. Figure 7 shows the shape of the elastic tube in the symmetry
planes x1 = 0 and x2 = 0 at three different values of P (ext). If the degree of collapse is
small, the point of strongest collapse is close to the centre of the tube, as it would be
under uniform external loading. As the tube collapses further, the viscous pressure
drop increases and the point of strongest collapse moves downstream.

If the axial slope of the tube wall is large enough, a strong adverse pressure gradient
develops in the reopening region, leading to reversed flow near the upper and lower
walls of the tube. The development of the reversed flow region is reflected by a change
in the topology of the skin-friction lines, lines to which the wall-shear-stress vector is
everywhere tangent (Lighthill 1963; Tobak & Peake 1982), on the tube wall, shown
in figure 8. In figure 8(a), the tube is moderately collapsed and there is no reversed
flow. Hence, the lines of skin friction are all in the same direction and there are no
points at which the wall shear stress is zero. In figure 8(b), the tube is more strongly
collapsed and two points of zero wall shear stress have developed. The skin-friction
lines converge at the upstream point, which is therefore a three-dimensional point
of separation. The skin-friction lines diverge at the downstream point, indicating
that it is a point of re-attachment. The axial distance between the separation and
re-attachment points provides a measure of the length of the region of reversed axial
flow, which increases as the tube collapses yet further, figure 8(c).

Figure 9 shows details of the flow fields near the downstream end of the elastic
tube, as it collapses. Again, contours of axial velocity are shown in the horizontal
and vertical symmetry planes and in a number of axial cross-sections. In addition,
the skin friction lines are also shown. As the degree of collapse increases, the height



92 A. L. Hazel and M. Heil

(a) (b) (c)

Figure 8. Lines of skin friction, for H = 104, ReD = 350 and (a) P (ext) = 7.33, (b) P (ext) = 9.02
and (c) P (ext) = 11.3. A topological change occurs after flow separation when two points of
zero wall shear stress develop.

and length of the reversed flow region increase. In moderately collapsed tubes, the
flow field in the tube’s vertical plane of symmetry is not dissimilar to that found
in two-dimensional collapsible channel flows: fluid recirculates inside a ‘separation
bubble’ above a streamline connecting the points of separation and re-attachment.
The flow in a two-dimensional plane taken from a three-dimensional flow field need
not be divergence free, however, and this allows the formation of foci, see figure 9(a).
The flow under the separation bubble has an upward (u2 > 0) component in the
plane x1 = 0. This motion drives secondary flows in the transverse cross-sections
x3 = constant and leads to the formation of weak axial vortices (maximum magnitude
of transverse flows ≈ 0.05Ū ).

As the tube collapses more strongly, the extent of the separation bubble increases
and, accordingly, a greater proportion of the flow in the plane x1 = 0 has a downward
(u2 < 0) component. This is reflected in the transverse flows which are directed
downwards near the plane x1 = 0 and change the sense of rotation of the secondary
vortices, see figure 9(c).

As the tube collapses yet further, the height of the separation bubble increases to fill
the entire tube, something that is not possible in two-dimensional channel flow. The
secondary motions driven by the separation combine with the azimuthal spreading
of the axial jets to generate strong axial vortices (maximum magnitude of transverse
flow ≈ 0.25Ū in figure 9d). The axial vortices transport momentum towards the top
of the tube, causing the length of the reversed flow region to decrease significantly.
In figure 9(c), the distance between the separation and re-attachment points is ∼ 6.3
whereas in figure 9(d) it has decreased to ∼ 3.8.

The nodal point (a free stagnation point) in the vertical plane in figure 9(d) is
close to the upper wall of the tube and may be interpreted as the point at which the
two azimuthally spreading jets collide, see also figure 6. The azimuthal transport of
momentum following the impact of a ‘jet’ on a tube wall has previously been observed
by Ethier et al. (1999) who studied flow in a 45◦ junction (e.g. see their figure 10).
In that geometry the collision of the jets (termed secondary-flow boundary layers by
Ethier et al.) on the upper wall was postulated as the mechanism for flow separation
upstream of the point of collision. Figure 9(a) indicates that, in the collapsible tube,
flow separation can occur without collision of the jets. Furthermore, in contrast to
Ethier et al.’s (1999) findings, the collision of the jets after a relatively short axial
distance in figure 9(d) could be said to inhibit flow separation as it causes a reduction
in length of the region of reversed flow.
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Figure 10. Volume flux, Q, as a function of pressure drop, �p = pup − pdown, for constant
upstream transmural pressure. The different line thickness denotes two different upstream
transmural pressures: Ptm(up) = 0 (thick) and −2.5 (thin). The points at which the axisymmetric
state becomes unstable to non-axisymmetric perturbations is indicated by A (Ptm(up) = 0) and
B (Ptm(up) = −2.5).

3.3. Macroscopic parameter studies

In this subsection we consider the effects of fluid inertia upon the macroscopic
behaviour of the system. In particular, we consider the relationship between the
pressure drop and flow rate through the tube. We investigate the cases in which either
the upstream or downstream transmural pressure is held constant. The upstream and
downstream transmural pressures are taken to be those at the ends of the system,
i.e. at the ends of the rigid tubes, see figure 1. In experiments, these pressures, in
particular the downstream pressure, are often measured nearer the ends of the elastic
tube, which, although changing the quantitative results, does not affect the qualitative
behaviour of the system.

3.3.1. Fixed upstream transmural pressure

First, we consider the case when the upstream transmural pressure (Ptm(up) = pup −
P (ext)) is held constant. This corresponds to an experimental procedure in which the
upstream end of the tube is connected to a large constant-head reservoir, while the
flow is driven by lowering the pressure pdown at the downstream end.

If there is no flow, there is no pressure drop and the entire tube is subjected
to a constant transmural pressure. The tube’s buckling pressure, under zero flow
conditions, is approximately −6, and hence, at �p = 0, the tube’s deformation is
axisymmetric for both the cases shown in figure 10 (Ptm(up) = 0, −2.5). For small
increases in the pressure drop, the wall remains axisymmetric and, because the
axisymmetric deformations are small, the flow rate increases approximately linearly
in accordance with Poiseuille’s law. An increase in the pressure drop causes the
transmural pressure at the downstream end of the elastic tube to become increasingly
negative and when it falls below a critical value (indicated by the points A and B

in figure 10), the tube buckles and the system bifurcates subcritically. If �p is held
constant during the buckling, the tube jumps (dynamically) into a strongly collapsed
equilibrium configuration. The buckled tube has a much greater flow resistance and
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hence the flow rate through the system decreases during the bifurcation. Any further
increase in �p causes a reduction in the flow rate – a phenomenon known as ‘negative
effort dependence’. If the external pressure is increased, corresponding to a lower value
of Ptm(up), a smaller viscous pressure drop is required to reach the critical buckling
pressure and hence the bifurcation point moves closer to the origin, as previously
demonstrated for Stokes flow by Heil (1996, 1997) and observed experimentally by
Bertram & Castles (1999).

As seen in § 3.1, the inclusion of fluid inertia causes an additional local pressure
drop due to the Bernoulli effect. Thus, when the axisymmetric solution loses stability,
the tube becomes more strongly collapsed, with an additional decrease in the flow
rate. The position of the bifurcation point at any given value of Ptm(up) remains
approximately unchanged, however, because it is determined by the loading on
the elastic tube, which is hardly affected by fluid inertia while the tube remains
axisymmetric. An increase in H increases the ‘strength’ of the Bernoulli effect and
causes an increased collapse at a given pressure drop. The Bernoulli effect is more
pronounced at higher flow rates (higher Reynolds numbers) and hence the inertial
effects are less pronounced at more negative upstream transmural pressures, where
the tube buckles at lower flow rates.

Flow limitation and negative effort dependence can occur by essentially the same
mechanism in any system in which an increase in �p causes an increase in downstream
collapse and the effects of the accompanying increase in flow resistance exceed those
of the increase in �p. Indeed, qualitatively similar behaviour, has been found in
previous lower-dimensional models (Shapiro 1977; Luo & Pedley 2000) and has also
been observed experimentally (Bonis & Ribreau 1978; Bertram & Castles 1999) over
a wide range of Reynolds numbers. In the lower-dimensional models, however, the
absence of a persistent, albeit unstable, axisymmetric state leads to a change in the
mathematical structure of the solutions. In particular, the pressure-drop–flow-rate
curves presented by Luo & Pedley (2000) for their two-dimensional model exhibit
limit points, rather than subcritical bifurcations.

3.3.2. Fixed downstream transmural pressure

We next turn to the case in which the downstream transmural pressure is held
constant. This corresponds to an experimental procedure in which the downstream
end of the tube is connected to the reservoir and the flow is driven by raising the
pressure upstream. We consider cases in which the external pressure is large enough
to hold the tube in a buckled configuration when there is no flow. Increasing the
pressure drop will now increase the transmural pressure in the elastic tube, causing
it to reopen until it eventually becomes axisymmetric. At low values of the pressure
drop, the flow rates are all very low and figure 11 shows that fluid inertia has little
effect. Indeed for the lowest external pressure when the tube is only slightly buckled
initially, the flow rates required to reopen the tube are so small that inertial effects
remain completely negligible.

At greater external pressures, inertial effects begin to manifest themselves, once the
flow rate is large enough. In general, a greater pressure drop is required to maintain
the same flow rate as H increases. This is again due to the additional Bernoulli
suction which holds the tube in a more strongly collapsed configuration at any given
pressure drop. It therefore follows that a greater pressure drop is required to reopen
the tube at a given external pressure compared to the Stokes flow case. Note that
at the highest external pressure, the lines do not reach the origin. This is because,
in these cases, the external pressure exceeds the pressure at which, in the absence of
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Figure 11. Volume flux, Q, as a function of pressure drop, �p = pup − pdown, for constant
downstream transmural pressure. The different line thicknesses denote three different
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Figure 12. Pressure drop, �p = pup − pdown, as a function of volume flux, Q, for constant
downstream transmural pressure and H = 1000. The axisymmetric branch is shown as the
dashed line and the dotted lines represent solution branches that are unstable if the flow rate,
Q, is prescribed.

flow, the elastic tube makes opposite wall contact and this effect is not included in
the present numerical code.

A feature previously observed in experiments in which the downstream transmural
pressure is held constant is so-called ‘pressure-drop limitation’, where the pressure
drop becomes approximately independent of the flow rate (Brower & Scholten 1975;
Bonis & Ribreau 1978; Bertram 1986). The experimental data illustrating ‘pressure-
drop limitation’ are usually presented with Q on the abscissa and, to aid the discussion,
we replot the data for H = 1000 in this form in figure 12.
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Increasing the external pressure, equivalent to decreasing Ptm(down), causes the curves
to steepen near the origin, as observed experimentally and in the one-dimensional
model of Jensen & Pedley (1989). The steepening is due to the greater degree of tube
collapse at higher external pressures and hence a higher initial flow resistance. After
the initial rise in pressure drop, there is a region where the curves become almost
parallel and their gradient is approximately equal to that of the axisymmetric solution.
It is this region that has been described as exhibiting ‘pressure-drop limitation’.

Typically, the experimental studies have included cases in which the external
pressure is so great that the tube is strongly collapsed over its entire length, leading
to higher maximum values of �p∗/K than in figure 12. The vertical scale in the
experimental plots, e.g. figure 11 of Bonis & Ribreau (1978), is therefore greater than
in figure 12, causing the gradient of the axisymmetric branch to appear closer to
zero; it was this apparent shallow gradient of the pressure-drop–flow-rate curves that
gave rise to the term ‘pressure-drop limitation’. In these experiments, however, the
tube remained buckled even at the highest flow rates, so the axisymmetric branch
was never attained. Conrad (1969) considered a slightly different parameter variation
(fixed downstream resistance, as opposed to fixed Ptm(down)), but continued to increase
the flow rate until the tube had completely reopened. In that case, the results, e.g.
figure 4(a) in his paper, are qualitatively similar to those shown in figure 11.

The values of H in the experiments were considerably higher than those presented
here, e.g. in Bonis & Ribreau’s (1978) experiments, H ≈ 1.6 × 106. The consequent large
Reynolds numbers, even at modest flow rates, prevents a direct comparison between
the experimental data and our results. A further complication is the appearance of
self-excited oscillations in this regime (Bertram 1986).

4. Discussion
In this paper, we have investigated the steady finite-Reynolds-number flow of a

viscous fluid through a thin-walled elastic tube (a model Starling Resistor).
The macroscopic behaviour of the system may be completely understood by

regarding the fluid pressure drop as having a viscous contribution and a further
contribution due to the Bernoulli effect. This latter contribution becomes more
pronounced as the flow rate (or Reynolds number) increases. In the case when
the upstream transmural pressure is held constant, so that an increase in flow rate
is destabilizing, the degree of collapse immediately after the axisymmetric solution
loses stability increases with Reynolds number. In the case when the downstream
transmural pressure is constant, so that an increase in flow rate is stabilizing, the
pressure drop required to reopen the tube increases with increasing Reynolds number.

The details of the velocity field are not so simply understood and quite complex
velocity profiles can develop as the Reynolds number increases. At all Reynolds
numbers, once the tube is sufficiently collapsed the highest axial velocities are no
longer confined the tube’s centreline. The two-lobed shape of the collapsed tube drives
the formation of two axial ‘jets’. As the Reynolds number increases, the centreline
velocity decreases more slowly and hence the development of the jets occurs over
longer axial distances, but, once established, they also persist for greater distances
downstream. A dramatic change in the flow field occurs when the jets impinge upon
the sidewalls of the tube, after which they flatten and spread azimuthally.

In one-dimensional models, a key parameter is the speed index, S, defined to be the
ratio of the average flow speed, ū, to the propagation speed of small-amplitude waves
that travel along the tube, c (Shapiro 1977). In the one-dimensional theory, ū = Ū/α
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elastic tube, x3 for the results presented in § 3.2.1: H =104 and ReD = 64 (solid), 191 (dash-dot)
and 350 (dashed).

and c is given by c2 = (αK/ρ) ∂P/∂α, where α is the ratio of the cross-section area
of the tube to the undeformed area (πR2). P(α) is the ‘tube law’, a single-valued
relationship between the cross-sectional area of the tube and the local transmural
pressure, which is usually approximated by the pressure–area relation of an infinitely
long tube. It follows that

S2 =
ρŪ 2

K

[
1

α3

(
∂P
∂α

)−1
]

= ReQ

[
1

α3

(
∂P
∂α

)−1
]

, (12)

demonstrating that the local speed index is proportional to the square-root of the
global parameter ReQ, which represents the ratio of fluid inertia to bending stiffness
of the tube.

If ū approaches c anywhere along the tube, the one-dimensional model predicts that
there can be no steady solution, a phenomenon known as ‘choking’ which occurs when
S → 1. It has been speculated, therefore, that the onset of self-excited oscillations
coincides with the occurrence of supercritical flow, ū > c, at some point along the
tube.

In the present system it is possible to calculate approximate values of S as a
function of the axial distance along the tube. For this purpose, the tube law for an
infinite tube subject to uniform pressure loading was calculated numerically using the
shell solver and ∂P/∂α was then determined by finite differences. The cross-sectional
area of the finite-length tube was assumed to be the same as the cross-sectional area
of an infinitely long tube with the same (inward) displacement in the plane x1 = 0.
Equation (12) was then used to calculate S(x3) for the data presented in § 3.2.1. The
results are shown in figure 13, and correspond to the wall displacements and pressure
drops shown in figure 5.

At the lowest Reynolds number, S < 1 and the flow is entirely subcritical. At ReD =
191, the flow is supercritical only in the region of the constriction and at ReD = 350,
S > 1 and the flow is supercritical everywhere. Thus, steady three-dimensional
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solutions can exist even when the flow becomes supercritical, although the computed
steady solutions may be unstable.

Previous studies have stressed the role of flow separation. Indeed, Cancelli & Pedley
(1985) proposed that the dissipation necessary to allow the development of self-excited
oscillations in collapsible tube flow occurred mainly in the regions of flow separation
downstream of the point of strongest collapse. The two-dimensional calculations of
Luo & Pedley (1996) showed that, in fact, most of the energy is dissipated in the
boundary layers upstream of the point of strongest collapse. In our three-dimensional
study, we also find that the fluid dissipation is greatest near the upper and lower walls
in the region of strongest collapse. At larger Re, there is also significant dissipation
near the point where the high-velocity jets impinge on the sidewall, particularly if the
sidewall has buckled inwards.

We further find that three-dimensional flow ‘separation’, as defined by a topological
change in the skin friction lines, does have a significant effect on the velocity field
downstream of the point of strongest collapse. For sufficiently large wall slopes, a
region of reversed flow develops, increasing with Re and the degree of collapse. In
this situation, the velocity field on the vertical symmetry plane is not dissimilar to that
predicted by the two-dimensional studies. An important difference is that the reversed-
flow region is open and can extend to fill the entire vertical symmetry plane. This is
impossible in two dimensions, where the reversed-flow region is closed and cannot
occupy the entire tube without violating conservation of mass. Once the reversed flow
occupies the entire height of the tube, the motion of fluid towards the tube’s centreline
drives a transverse flow, which combines with the azimuthal spreading of the jets to
create strong transverse vortices. The transverse vortices transport momentum from
the two axial jets towards the upper and lower walls of the tube. This leads to a
�-shaped velocity profile, with high velocities across the tube’s horizonal plane of
symmetry and in a surrounding ring. Continued convection of momentum by the
vortices to the ring leads to the development of an O-shaped profile before the
ultimate return to Poiseuille flow. In this regime, the flow is highly three-dimensional
and any lower-dimensional model is unlikely to provide an adequate representation
of the system’s behaviour.

There have been few experimental measurements of velocities in three-dimensional
collapsible tubes (e.g. Ohba, Sakurai & Oka 1997; Kounanis & Mathioulakis 1999)
and the Reynolds numbers in these experiments are considerably higher than in our
computations. It remains to be seen how the flow structures are affected by further
increasing Re. Nonetheless, the development seen here appears to be very similar to
that reported in Bertram & Godbole’s (1997) study of steady flow in a rigid ‘buckled’
tube at ReD = 705, although they postulated a pressure-based mechanism for the
initiation of the secondary flow that leads to the formation of the high-velocity ring.
In a more recent set of experiments in the same rigid model of a collapsed tube,
Bertram et al. (2001) found that the flow at ReD = 5900 was qualitatively similar
to the measurements at ReD =705. Despite the fact that the flow is turbulent at
ReD = 5900, Bertram et al. (2001) observed a blunt velocity profile in the region
of strongest collapse and the development of the downstream jets into “an almost
complete annulus of high-speed forward flow”. In contrast to our results, Bertram
et al. (2001) observed the development of a region of reversed axial flow on tube’s
centreline, downstream of the region of strongest collapse. This should be interpreted
as a further topological change following the situation in figure 9(d) and is probably
a result of the combination of a high Reynolds number and a high degree of tube
collapse (maximum inward displacement was ∼95% of the undeformed radius).
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A direct comparison with experimental measurements of steady high-Re velocity
fields in elastic tubes would be difficult. At large Re, symmetric steady flows are likely
to be unstable and, therefore, impossible to realize experimentally. Symmetry-breaking
bifurcations for flows in rigid symmetric geometries have been found in channel and
pipe flows and recently Kounanis & Mathioulakis (1999) have observed symmetry
breaking in three-dimensional collapsible-tube experiments. Furthermore, irrespective
of its symmetry, the steady state will probably be unstable to temporal disturbances,
giving rise to self-excited oscillations.

In the light of these observations, rather than extending our steady calculations to
higher Reynolds numbers, a more natural continuation of the present work would be
the extension to time-dependent problems, an extension that is currently in progress.
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Appendix A. Details of solid mechanics
A.1. Geometrical quantities used in shell theory

In order to characterize the geometry of the shell’s undeformed midplane, we
determine the base vectors aα = r,α , where the comma denotes partial differentiation
with respect to ζ α , and construct the covariant midplane metric tensor aαβ = aα · aβ ,
with determinant a = a11a22 − a12a21 = 1. We define a curvature tensor, bαβ = n · aα,β ,
where n = a1 × a2/|a1 × a2| is the unit normal to the midplane.

Uppercase letters are used to denote shell variables associated with the deformed
midplane and we define the deformed midplane base vectors, Aα = R,α; deformed co-
variant midplane metric tensor, Aαβ = Aα · Aβ , with determinant A; and deformed
curvature tensor, Bαβ = N · Aα,β , where N = A1 × A2/|A1 × A2| is the unit normal to
the deformed midplane.

The strain and bending tensors are then defined to be

γαβ = 1
2
(Aαβ − aαβ), καβ = −(Bαβ − bαβ),

and the plane stress stiffness tensor is given by

Eαβγ δ =
1

2(1 + ν)

(
aαγ aβδ + aαδaβγ +

2ν

1 − ν
aαβaγ δ

)
, (A 1)

where aαβ is the contravariant metric tensor of the undeformed midplane.

A.2. Extension to nonlinear constitutive laws

The principle of virtual displacements for large deformations of a three-dimensional
elastic body loaded by surface tractions, t (force per unit area of the deformed surface)
may be written as ∫∫∫

σ ij δεij dv =

∫∫
t · δv dA, (A 2)

where σ ij is the second Piola–Kirchhoff stress tensor, εij is the Green–Lagrange strain
tensor, and v is the (virtual) displacement field of the body, see e.g. Wempner (1973),
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Bathe (1996). The principle applies for any general constitutive relation between the
stress and strain tensors.

Equation (3) follows from using the linear constitutive equation σ ij = Êijklεkl ,
assuming a stress-free initial state, plane stress in the midplane, and integrating
through the thickness of the shell analytically, under the assumption that normals
to the undeformed midplane remain unstretched and normal to the midplane during
the deformation. These assumptions may also be applied to derive a shell theory for
a general constitutive relation, although integration through the thickness may then
have to be performed numerically.

Appendix B. Validation of numerical results
B.1. Construction of an ‘exact’ solution

In order to validate the fluid solver, we considered a rigid tube of axially varying
elliptical cross-section that approximated the shape of a collapsed elastic tube. The x3-
axis was taken to be the tube’s centreline and the tube had length L = 10 (−5 � x3 � 5).
The semi-axes of the ellipses were aligned with the coordinate directions x1 and x2

and

R1 = 1 +
1

625
(x3 − 5)2(x3 + 5)2, R2 = 1 − 1

1250
(x3 − 5)2(x3 + 5)2. (B 1)

We postulated the following velocity and pressure fields:

u
†
1(x) =

1

625
x1(x3 − 5)2(x3 + 5)2

{
1 −

(
x1

R1

)2

−
(

x2

R2

)2
}

, (B 2a)

u
†
2(x) =

1

625
x2(x3 − 5)2(x3 + 5)2

{
1 −

(
x1

R1

)2

−
(

x2

R2

)2
}

, (B 2b)

u
†
3(x) = 1 −

(
x1

R1

)2

−
(

x2

R2

)2

, (B 2c)

p†(x) = 5 − x3, (B 2d)

which satisfy the no-slip condition at the tube walls (7a) and ensure parallel axially
traction-free outflow (7c) at L = 5.

Equations (B 2a–d) were substituted into the governing equations (6a, b) to give

Re

(
u

†
j

∂u
†
i

∂xj

)
+

∂p†

∂xi

− ∂

∂xj

(
∂u

†
i

∂xj

+
∂u

†
j

∂xi

)
= F

†
i , (B 3a)

∂u
†
i

∂xi

= Q†. (B 3b)

The resulting body-force terms, F
†
i , and the mass-source term, Q†, were added to the

weak form of the governing equations (8a, b), leading to one additional term in each
equation ∫∫∫

F
†
i ψ (F ) dV,

∫∫∫
Q†ψ (P ) dV, respectively.

The augmented system of equations was solved numerically by the method described
in § 2.4, but without any fluid–structure interaction. The values of the postulated
velocity field at x3 = −5 were used as a Dirichlet boundary conditions at the inlet.
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Approx. no. of degrees of freedom E

10 000 0.033
40 000 0.00068
60 000 0.00043

Table 1. Values of the global error norm, E, at three different mesh resolutions for Re= 350.

5 10 15 20 5 10 15 20
0

5

10

15

20

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

P*(ext)/K                                                                               P*(ext)/K

R
ad

ia
l d

is
pl

ac
em

en
t o

f 
co

nt
ro

ls
 p

oi
nt

s

(a)                                                                                        (b)

�p*

K

Figure 14. (a) Pressure drop along the entire system vs. external pressure for ReD = 350 and
H = 104. The results for a refined mesh are shown as symbols overlaid on the line. The dashed
line is the pressure drop through the axisymmetric system. (b) Radial displacement of the
control points in the symmetry planes at ζ 1 = 7.5, vs. external pressure for the same system.
The dashed line is the axisymmetric branch.

The computed velocity and pressure fields were compared with those postulated for a
number of different values of the Reynolds number and mesh resolutions, using the
global error norm

E =
1

4




3∑
i=1

√√√√√√√
∑

n

(
uin − u

†
in

)2

∑
n

(
u

†
in

)2
+

√√√√√√√
∑

m

(p
m

− p†
m
)2

∑
m

(p†
m
)2




,

where
∑

n/m denotes the pointwise sum over the velocity/pressure nodes. Table 1
shows the values of E for three different mesh resolutions at Re= 350, illustrating the
decrease of E with increasing resolution.

B.2. Mesh refinement

In order to validate the numerical results, we conducted the parameter study described
in § 3.2.2 at a number of different mesh resolutions. H , Q and therefore ReD were fixed
and the external pressure P (ext), measured relative to the downstream fluid pressure,
was used as the control parameter. In each study, the pressure was increased until the
walls came close to opposite wall contact.

Figure 14(a) shows typical results for the pressure drop through the tube,
�p = pup − pdown, as a function of the external pressure. At P (ext) = 0, the tube is
axisymmetric, actually slightly inflated, and the pressure drop follows from Poiseuille
flow. As the external pressure increases, the tube remains axisymmetric until P (ext) ≈ 8,
at which point it buckles non-axisymmetrically with a ‘snap-through’ bifurcation.
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Figure 15. Axial velocity profiles at x3 = 10 for ReD = 350 and a strongly collapsed tube
(a) 80 000 d.o.f.s, (b) 180 000 d.o.f.s, (c) 350 000 d.o.f.s. Note that although the jet is
under-resolved at the coarsest resolution, the global flow features remain completely unchanged
under mesh refinement.

The bifurcation may be seen more clearly in figure 14(b) which shows the radial
displacement of two material points, (ζ 1, ζ 2) = (7.5, 0) and (7.5, π/2), on the tube
surface plotted against P (ext). On losing stability, the tube immediately jumps into a
strongly collapsed equilibrium configuration in which the minimum cross-sectional
area is reduced by approximately 40% with an approximate doubling of the pressure
drop. Further increasing the external pressure causes the tube to buckle more strongly
and the pressure drop continues to increase, almost linearly with external pressure.

The lines in figure 14 were generated by using our standard resolution of ∼80 000
degrees of freedom. The symbols were generated by using a finer mesh of ∼180 000
degrees of freedom and the maximum relative error between the two sets of results is
less than 0.05%.

The standard resolution is, therefore, perfectly adequate for the macroscopic
parameter studies. On close inspection of the velocity fields, however, it was found
that the standard resolution under-resolves (slightly) the boundary layers that develop
in the strongly collapsed cross-sections at high Reynolds numbers. We therefore, used
an even finer mesh of ∼350 000 degrees of freedom to confirm the mesh independence
of the flow features. The velocity profiles in the cross-section x3 = 10, where the flow is
at its most complex, are shown at all three resolutions in figure 15 and are practically
indistinguishable.
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