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In many industrial processes granular materials are mixed together in partially filled
slowly rotating drums. In this paper a general theoretical framework is developed for
the quasi-two-dimensional motion of granular material in a rotating drum. The key
assumption is that the body can be divided into a fluid-like and a solid-like region,
that are separated by a non-material singular surface at which discontinuities occur.
Experiments show that close to the free surface there is a thin rapidly moving fluid-
like avalanche that flows downslope, and beneath it there is a large region of slowly
rotating solid-like material. The solid region provides a net transport of material
upslope and there is strong mass transfer between the two regions. In the theory the
avalanche is treated as a shallow incompressible Mohr–Coulomb or inviscid material
sliding on a moving bed at which there is erosion and deposition. The solid is treated
as a rigid rotating body, and the two regions are coupled together using a mass jump
condition. The theory has the potential to model time-dependent intermittent flow
with shock waves, as well as steady-state continuous flow. An exact solution for the
case of steady continuous flow is presented. This demonstrates that when the base of
the avalanche lies above the axis of revolution a solid core develops in the centre of
the drum. Experiments are presented to show how a mono-disperse granular material
mixes in the drum, and the results are compared with the predictions using the exact
solution.

1. Introduction
1.1. Intermittent and continuous flow

In many food manufacturing and industrial processes granular materials are often
placed into a drum, pivoted so that its axis of rotational symmetry lies horizontally,
and slowly rotated to try to mix the grains into a consistent blend (e.g. Ullrich 1969;
Metcalfe et al. 1995; McCarthy et al. 1996; Ristow 1996; de Gennes 1999). In all
these flows the motion is characterized by a thin rapidly moving fluid-like avalanche
of grains close to the free surface and a large solid-like region, beneath it, which
slowly rotates about the axis of revolution.

At slow rotation speeds there are essentially two flow regimes: intermittent flow
and continuous flow (Rajchenbach 1990). In the intermittent flow regime, which is
sometimes called avalanching flow, there are discrete avalanche events that come to
rest before the next event starts, whereas in the continuous regime granular material
is continually flowing downslope in a quasi-steady state. In this paper the term
avalanche will be used to refer to both the intermittent and continuous regimes, since
they are both described by a single system of avalanche equations.



2 J. M. N. T. Gray

In intermittent flow, the granular material is slowly rotated until the free surface
reaches the maximum angle of repose. Failure then occurs along an internal slip
line and and an avalanche is released, which flows rapidly downslope. If the flow is
supercritical a shock wave (Gray & Hutter 1997) is generated when the avalanche
front reaches the drum wall. The shock wave propagates upslope in the opposite
direction to the flow, bringing the avalanche to rest. The free surface inclination angle
then lies below the maximum angle of repose, and the material that is deposited is
absorbed into the solid body region. Further rotation induces another avalanche and
the process is repeated. The solid deposit is slowly rotated until it eventually reaches
the top of the avalanche again, providing a net transport of material upslope. The
intermittent flow regime is therefore characterized by discrete avalanche events and
shock wave propagation. The picture is complicated further by mass transfer between
the avalanche and the underlying solid region whilst the avalanche is in motion.
Intermittent flow occurs at rotation periods above about 100 s per revolution. The
exact range for this flow regime is dependent on the shape and surface roughness of
the grains, the size of the container and whether slip occurs between the granular
material and the drum wall.

Continuous flow occurs in the range 10–100 s per revolution in the experiments
presented here. In this regime the free surface is steady, there is continuous avalanching
flow and continuous mass transfer with the underlying solid body region. Material
is fed to the top half of the avalanche by slow rotation in the solid body region,
the avalanche then transports this material rapidly downslope, where it is reabsorbed
into the solid body region and transported to the top again. All processes take place
continuously and this flow configuration is stable in a wide range of rotation periods.
As the rotation period is decreased below about 10 s per revolution the avalanche
has difficulty in transporting the large volume of granular material that is supplied
along the upper half of the solid interface rapidly enough downslope. The free surface
therefore steepens up to angles that are significantly above the angle of repose, and
intermittent breaking waves develop. At even faster rotation periods the centrifugal
forces become important and voids open up within the solid region of the granular
material (e.g. Gray & Hutter 1998).

The differences between continuous and intermittent flow become immediately
apparent when a mixture of small dark and large white particles is placed into a thin
drum and rotated (Gray & Hutter 1997, 1998).

1.2. Solid- and fluid-like regions

The key assumption in the theoretical treatment presented here is that the fluid-like
avalanche and the solid-like region can be treated as separate bodies with a non-
material singular surface between them, at which the field variables are discontinuous.
This is a mathematical idealization and in practice there is a thin layer between the
two regions, where there are large gradients of the velocity and density. However,
it appears to be a very good approximation as the subsequent work will show. The
dominant physical processes are the dynamics of the avalanche and the mass transfer
between the avalanche and the solid region beneath it. The constitutive properties of
the solid granular material are therefore kept as basic as possible.

Granular avalanches not only take place in rotating drums, but are abundant in
our natural environment on a wide range of length scales. In the kitchen or on the
dining table sugar and salt can form avalanches on the scale of a few centimetres if
the surface layer is tilted so that it becomes unstable. Avalanches also take place at
the free surface of stock piles, hopper flows and silos. They can also be observed on
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the geophysical scale as landslides, debris flows, rock-falls and snow (slab) avalanches.
Yet despite the enormous difference in length scales the dominant physical mechanisms
that drive the flow are similar. The motivation for the avalanche model derived in
this paper comes from a continuum theory that was developed by Savage & Hutter
(1989) for modelling snow slab avalanches.

1.3. The Savage–Hutter avalanche theory

The original Savage & Hutter (1989) theory for plane two-dimensional flow assumed
that the avalanche was a shallow incompressible Mohr–Coulomb material that slid
down a rigid impenetrable surface inclined at an angle ζ0 to the horizontal. The
leading-order mass and momentum equations were integrated through the avalanche
depth to obtain a one-dimensional theory along the flow direction. The model enabled
the avalanche thickness and the depth-averaged velocity to be computed, once the
basal topography was prescribed together with suitable initial values and boundary
conditions. This model has been particularly effective at modelling shallow granular
flows both in nature and in laboratory experiments. Savage & Hutter (1991) extended
their theory to allow the flow on more complicated slopes to be modelled by intro-
ducing a slope-fitted curvilinear coordinate system. This allowed the inclination angle
of the slope ζ to change as a function of the distance down the slope. Laboratory
experiments on an exponentially curved chute (Hutter & Koch 1991) and on concave
and convex chutes (Greve & Hutter 1993; Hutter et al. 1995) showed that the model
was in very good agreement. More recently the theory has been generalized to three
dimensions (Hutter et al. 1993; Greve, Koch & Hutter 1994; Gray, Weiland & Hutter
1999) to model flows over complex three-dimensional topography. These models have
been very effective at modelling the laboratory flows on inclined planes, and on chutes
both with and without lateral curvature (Wieland, Gray & Hutter 1999; Koch, Greve
& Hutter 1994).

Here a theory is derived for the two-dimensional plane motion of shallow granular
avalanches flowing on a moving bed at which there is erosion and deposition of the
granular material. The model differs in four key points to the model of Savage &
Hutter (1989). First, the three-dimensional conservative form of the momentum bal-
ance is used to derive two conservative two-dimensional depth-integrated momentum
balances, in contrast to the non-conservative momentum balances derived by Savage
& Hutter (1989). While this difference is not important for classical smooth solutions
(e.g. Hutter & Nohguchi 1990; Hutter & Greve 1993; Hutter 1996) it is important to
use this form when constructing shock-capturing numerical methods for non-classical
solutions with shocks (e.g. Yee 1989; Nessyahu & Tadmor 1990; Tóth & Odstrc̆il
1996; Jiang & Tadmor 1997). This is essential for obtaining the correct shock speeds
in the intermittent flow regime. The second and most important difference is that
surface and basal erosion and deposition are considered. Thirdly the basal topography
is allowed to have a non-zero velocity, and finally both Mohr–Coulomb and inviscid
constitutive models are considered.

2. Avalanches with erosion and deposition
2.1. Conservation equations and boundary conditions

Granular materials exhibit dilatancy effects during plastic yield. Once failure has
occurred and the material is fluidized, however, it is reasonable to assume that it is
incompressible with constant uniform density, ρ0. The conservative form of the mass
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and momentum balances reduce to

∇ · u = 0, (2.1)

∂t(ρ0u) + ∇ · (ρ0u⊗ u) = −∇ · p + ρ0g, (2.2)

where ∇ is the gradient operator, u is the velocity, ∂t indicates differentiation with
respect to time, ⊗ is the tensor (or dyadic) product, p is the pressure tensor (the
negative Cauchy stress) and g is the gravitational acceleration.

The avalanche lies between an upper non-material free surface, Fs(x, t) = 0, and a
basal non-material interface, Fb(x, t) = 0. These surfaces are defined so that the unit
normals at the free surface ns = ∇Fs/|∇Fs| and base nb = ∇Fb/|∇Fb| point outward
from the avalanche. The superscripts s and b indicate that a variable is evaluated at
the surface or the basal interface, respectively. Assuming that the non-material surface
and basal interfaces have velocities vs and vb the kinematic boundary conditions are

Fs(x, t) = 0: ∂tF
s + vs · ∇Fs = 0, (2.3)

Fb(x, t) = 0: ∂tF
b + vb · ∇Fb = 0. (2.4)

The avalanche is traction free at the surface and slides over the underlying material
at the base generating a shear traction that is proportional to the basal pressure, i.e.
Coulomb dry friction is assumed

Fs(x, t) = 0: psns = 0, (2.5)

Fb(x, t) = 0: pbnb = (ur/|ur|) tan δ(nb · pbnb) + nb(nb · pbnb), (2.6)

where δ is the basal angle of friction and the factor (ur/|ur|) ensures that the Coulomb
friction opposes the avalanche motion. The relative velocity ur = ub+ − ub− is the
velocity difference between the base of the avalanche, ub+, and the basal topography,
ub−. This definition differs from that of Savage & Hutter (1989) to reflect the fact that
the basal topography can have a non-zero velocity component parallel to the interface.
Additional effects such as air drag, rate-dependent basal drags and momentum thrust
terms due to mass interaction are neglected.

A fixed Cartesian coordinate system oxz with origin o is defined, so that the x-axis
lies approximately parallel to the bed interface, Fb, and points in the downslope
direction. The x-axis is, therefore, inclined at an angle ζ to the horizontal and the
z-axis is chosen along the upward pointing normal. The coordinate system is illustrated
in figure 1. The velocity u has components u and w in the downslope and normal
directions, respectively, and the symmetric pressure tensor has components pxx, pxz, pzz .

In typical rotating drum experiments and in geophysical flows the granular
avalanche depth, H , is much smaller than the avalanche length, R. It is conve-
nient to introduce non-dimensional variables to reflect the shallowness of the granular
avalanche

(x, z, t) = (Rx̃,Hz̃, (R/g)1/2t̃),
(u, w, vsn, v

b
n) = (Rg)1/2(ũ, εw̃, εṽsn, εṽ

b
n),

(pxx, pzz) = ρ0gH(p̃xx, p̃zz),
(pxz) = ρ0gHµ(p̃xz),

 (2.7)

where the tildes denote non-dimensional variables, g is the constant of gravitational
acceleration and ε = H/R � 1 is the aspect ratio. Note, that the Coulomb friction
law (2.6) implies that the magnitude of the shear stress is equal to the magnitude of
the basal pressure, ρ0gH , multiplied by Coulomb friction coefficient µ = tan δ0.
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Figure 1. A sketch of the avalanche and basal topography. A fixed Cartesian coordinate system
oxz is defined with the x-axis pointing in the downslope direction and inclined at an angle ζ to the
horizontal. The avalanche free surface lies at z = s(x, t) and the base at z = b(x, t). The avalanche
thickness h(x, t) is measured parallel to the z-axis. The accumulation rate ds and the deposition rate
db are the equivalent volumes of granular material that are either deposited on the avalanche free
surface, or eroded from the avalanche base, respectively, per unit area per unit time.

Applying the scalings (2.7) the non-dimensional mass balance (2.1) is

∂xu+ ∂zw = 0, (2.8)

where the tildes are now dropped, and ∂x and ∂z denote differentiation with respect
to x and z, respectively. The downslope and normal components of the momentum
balance (2.2) are

∂tu+ ∂x(u
2) + ∂z(uw) = sin ζ − ε∂x(pxx)− µ∂zpxz, (2.9)

ε{∂tw + ∂x(uw) + ∂z(w
2)} = − cos ζ − εµ∂x(pxz)− ∂zpzz. (2.10)

The avalanche free surface, Fs = z − s(x, t) = 0, and the basal interface Fb =
b(x, t) − z = 0, are defined by their heights above the z = 0 plane. These definitions
ensure that the surface and basal unit normals point outwards from the avalanching
material and are given by

ψsns = −ε∂xsex + ez, ψbnb = ε∂xbex − ez, (2.11)

where ex and ez are unit vectors in the downslope and normal directions, respectively,
and the normalization factors ψs = {1 + ε2(∂xs)

2}1/2 and ψb = {1 + ε2(∂xb)
2}1/2. The

surface and basal interfaces are modified by accumulation and deposition. Let the
normal accumulation rate, ds, be the equivalent volume of granular material deposited
on the avalanche free surface per unit area per unit time. Then the velocity of the
interface vs = us + dsns. Similarly, if the normal deposition rate, db, is the equivalent
volume of granular material deposited at the avalanche base per unit area per unit
time, the velocity of the basal interface vb = ub − dbnb. It follows that the surface and
basal kinematic conditions (2.3) and (2.4) are

z = s(x, t): ∂ts+ us∂xs− ws = ψsds, (2.12)

z = b(x, t): ∂tb+ ub∂xb− wb = ψbdb. (2.13)

There are many situations in which surface accumulation or basal deposition can
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occur, for instance when a heap of granular material is built up on a horizontal plane.
The granular material that is poured onto the top of the pile provides a source of
surface accumulation to the avalanche and as the granular material comes to rest it is
deposited into the solid body region of granular material beneath it. This deposition
mechanism can equivalently be viewed as a moving phase boundary between solid
and fluid-like regions.

At the free surface the traction-free boundary condition (2.5) has downslope and
normal components

−εpsxx∂xs+ µpsxz = 0, (2.14)

−εµpszx∂xs+ pszz = 0, (2.15)

and the Coulomb friction law (2.6) has downslope and normal traction components

εpbxx∂xb− µpbxz = (nb · pbnb)(ψb(ur/|ur|) tan δ + ε∂xb), (2.16)

εµpbzx∂xb− pbzz = (nb · pbnb)(ψb(εwr/|ur|) tan δ − 1). (2.17)

Note that as a first approximation the accumulation and deposition is assumed to
have no effect on the mechanical boundary conditions at the surface and base of the
avalanche. In general more complex boundary conditions may be necessary, which
take account of suction effects or the ‘granular temperature’ of the material.

2.2. Integration through the avalanche depth

Following Savage & Hutter (1989) the governing equations are now integrated through
the avalanche depth to obtain a simplified depth-averaged theory in which one spatial
dimension is removed from the problem. The avalanche thickness h is equal to the
difference between the free surface height, s(x, t), and the height of the basal interface,
b(x, t),

h = s− b, (2.18)

and the depth-averaged value f̄ of a function f is

f̄ =
1

h

s∫
b

fdz. (2.19)

Integrating the mass balance (2.8) through the avalanche depth and using Leibnitz’s
rule to interchange the order of integration and differentiation, it follows that

∂x(hū)− [u∂xz − w]sb = 0, (2.20)

where the square bracket is the difference between the surface and basal values of the
enclosed function, i.e. [f]sb = fs − fb. Substituting the kinematic boundary conditions
(2.12) and (2.13), and using (2.18), the depth-integrated mass balance is

∂th+ ∂x(hū) = ψsds − ψbdb. (2.21)

Integrating the downslope momentum balance (2.9) through the avalanche depth
using Leibnitz’s rule implies

∂t(hū) + ∂x(hu2)− [u(∂tz+ u∂xz−w)]sb = h sin ζ + ε∂x(hpxx)− [εpxx∂xz− µpxz]sb. (2.22)

Substituting the kinematic conditions (2.12) and (2.13) and the downslope traction
conditions (2.14) and (2.16) into the square bracketed terms gives the depth-integrated
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downslope momentum balance

∂t(hū) + ∂x(hu2)− (usψsds − ubψbdb)
= h sin ζ − (ψb(ur/|ur|) tan δ + ε∂xb)(n

b · pbnb)− ε∂x(hpxx). (2.23)

2.3. Order of magnitude estimates

The shallowness of the granular avalanche is now exploited by making a long-wave
approximation based on the small parameter ε = H/L. Since the friction coefficient
µ = tan δ0 is less than order unity, but greater than order ε, it is convenient to make
the approximation that µ = O(εγ), for some exponent γ ∈ (0, 1). To accurately describe
the flow of granular avalanches, terms of order ε must be retained in the theory, but
terms of order ε1+γ can be discarded. The effect of this scaling is to retain longitudinal
pressure gradients, but to neglect order-ε pressure corrections to the Coulomb dry
friction law.

Integrating the normal component of the momentum balance (2.10) with respect
to z and applying the free surface boundary condition (2.15), it follows that

pzz = (s− z) cos ζ + O(ε), (2.24)

and at the base

pbzz = h cos ζ + O(ε). (2.25)

Hence, the basal normal pressure nb ·pbnb = h cos ζ+O(ε) in the Coulomb dry friction
law. It follows that to order ε1+γ the depth-integrated mass and downslope momentum
balances reduce to

∂th+ ∂x(hū) = ds − db, (2.26)

∂t(hū) + ∂x(hu2)− (usds − ubdb) = hD − ε∂x(hpxx)− εh cos ζ∂xb, (2.27)

where the net driving force

D = cos ζ(tan ζ − (ur/|ur|) tan δ), (2.28)

is the difference between the gravitational acceleration and the Coulomb basal friction.

2.4. Constitutive properties

To complete the theory, a constitutive relation is required for the depth-averaged
longitudinal stress, pxx, in the fluid-like granular flow regime. This is still a subject of
current research, and two relations will be considered in this paper.

Following Savage & Hutter (1989), who assumed that the avalanche behaved as a
Mohr–Coulomb-type material at yield, it is assumed that on each plane element the
normal pressure N and the tangential shear stress S are related by a Mohr–Coulomb
yield criterion

|S| = N tanφ, (2.29)

where φ is the internal angle of friction. At the base of the avalanche the yield
criterion (2.29) and the sliding law (2.6) must be satisfied simultaneously. The basal
stress state, (pbzz,−pbzz tan δ), must therefore lie on a Mohr circle of stress that is
tangent to the yield lines |S| = N tanφ. A Mohr diagram showing the yield criterion
and sliding law is illustrated in Savage & Hutter (1989). There are two solution circles,
associated with ‘active’ and ‘passive’ states of the system.

Using the Mohr circle diagram Savage & Hutter (1989) used elementary trigono-
metrical relations to show that the basal longitudinal and normal pressures were
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linearly related,

pbxx = Kpbzz, (2.30)

by an earth pressure coefficient, K . In the active and passive states this takes the
values

Kact/pas = 2 sec2 φ(1∓ {1− cos2 φ sec2 δ}1/2)− 1, (2.31)

which are real valued provided δ 6 φ. The active and passive states are associated
with extensive (∂xu > 0) and compressive (∂xu < 0) motions, respectively. A smooth
transition for low strain rates (e.g. Tai & Gray 1998) can be adopted to avoid a jump
in longitudinal stress at ∂xu = 0. Savage & Hutter (1989) implicitly assumed that
for suitably thin avalanches, equations (2.30) and (2.31) hold through the avalanche
depth to order ε1+γ . Substituting (2.24) into (2.30) and integrating over the avalanche
depth implies that

hpxx = K cos ζh2/2 + O(ε), (2.32)

which provides an expression for the longitudinal pressure.
The assumption that a Mohr–Coulomb yield criterion is appropriate for rapidly

flowing granular material is rather strong, as the material may be well beyond the
point of yield. An inviscid fluid model, with an isotropic pressure distribution

pxx = pzz, (2.33)

is therefore also considered as an alternative method of closure. Integrating over the
avalanche depth, implies that the longitudinal pressure satisfies the simpler relation

hpxx = cos ζh2/2 + O(ε). (2.34)

A comparison with (2.32) shows that this is equivalent to assuming that the earth
pressure coefficient K = 1, and that there is no jump in the longitudinal stress. For
extensive flow it may be hard see any differences between the two models, as Kact is
close to unity for typical values of φ and δ.

2.5. Final system of conservation laws

Many observations (Melosh 1986; Dent et al. 1998; Keller, Ito & Nishimura 1998)
suggest that the downslope velocity profile with depth is rather blunt, and shear is
confined to a very thin layer. To order ε1+γ the downslope velocity is assumed to be
independent of depth, implying

ub = ū+ O(ε1+γ), us = ū+ O(ε1+γ), u2 = ūū+ O(ε1+γ). (2.35)

Using these relations together with the expressions for the longitudinal pressure
(2.32), or (2.34), the final system of conservation laws for the avalanche motion with
accumulation and deposition is

∂th+ ∂x(hu) = ds − db, (2.36)

∂t(hu) + ∂x(hu
2) + ε∂x(K cos ζh2/2) = hD − εh cos ζ∂xb+ u(ds − db), (2.37)

where, for simplicity, the averaging bar is now dropped on the downslope velocity
component. The driving force D is given by (2.28) and the earth pressure coefficient K
is either defined by (2.31), or is equal to 1 in the inviscid case. Given a slope inclination
angle ζ, basal friction angle δ, internal friction angle φ, the basal topography b, the
surface accumulation rate ds and the basal deposition rate db, this forms a closed
system of equations for the avalanche depth h and the depth-averaged downslope
velocity u.
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Figure 2. A sketch of a rotating drum of radius R partially filled with granular material. A Cartesian
coordinate system oxz is defined with the x-axis inclined at an angle ζ to the horizontal, so that it
lies approximately parallel to the avalanche free surface when the material is at failure. The origin
o lies close to the avalanching region. A second coordinate system OXZ is defined such that its
axes are parallel to those of oxz, but the origin O lies on the axis of rotation at the centre of the
drum. The components in the two coordinate systems are related by X = x and Z = l + z, where l
is defined as the fill level of the drum. The free surface of the avalanche lies at Z = S(X, t) and the
interface between the avalanching and solid granular material lies at Z = B(X, t). The avalanche
thickness h(X, t) is measured parallel to the Z-axis. In steady flow the top of the avalanche is taken
to lie at (−a, l) and mass balance implies h = 0 when u 6= 0 at the drum wall. In unsteady flow,
however, a shock wave of finite thickness may be generated if u = 0 at the wall. Strong mass
transfer takes place between the avalanche and the solid, the deposition rate db is the equivalent
volume of granular material that is eroded from the avalanche base per unit area per unit time. The
angular velocity Ω is positive for rotation in the counter-clockwise sense. The above configuration
is for clockwise rotation and the angular velocity is denoted by −Ω.

3. A theory for granular flow in rotating drums
3.1. Coordinate system

It is convenient to use two Cartesian coordinate systems oxz and OXZ to reflect
the different geometries in the avalanching and solid body regions. The avalanche
coordinate system oxz was defined in the previous section. The angle of inclination ζ
is chosen so that the downslope x-axis lies approximately parallel to the free surface
when the material is at failure. The z-axis is normal to it and points upward. The
OXZ coordinate system is defined so that its axes are parallel to those in oxz, but the
origin O is shifted so that it lies on the axis of revolution, as illustrated in figure 2.
The two coordinate systems are therefore related by

Z = l + z, X = x, (3.1)

where the constant l is defined as the fill level of the drum. This definition ensures that
the origin o of the coordinate system oxz lies at most a distance H from the avalanche
body, where H is a typical avalanche thickness. It follows from (3.1) that the free
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surface height, S(X, t), and singular surface height, B(X, t), in the OXZ system are
related to their counterparts, s(x, t) and b(x, t) in the oxz system by

S = l + s, B = l + b. (3.2)

The rotating drum is taken to have a radius R. Typical length scales in the solid
region will therefore be of order R, in both the X- and Z-directions. The avalanche
is also of length R in the x-direction, but because the avalanche is shallow, its
thickness is only of order H . As H � R the shallowness approximation holds for
avalanches in rotating drums and the theory of the preceding section can be directly
applied. The motion of the avalanche can therefore be computed by solving the
system of equations (2.36)–(2.37) together with the earth pressure coefficient (2.31),
once appropriate interfacial conditions have been prescribed.

3.2. Governing equations in the solid rotating granular material

Velocity and density fields within the solid material will be denoted with the super-
script −, to avoid confusion with these fields in the avalanche. It is assumed that the
solid granular material is a rigid body, of constant uniform density ρ−, which rotates
with angular velocity Ω(t) about the axis of revolution O. At the boundary between
the granular material and the drum slip may occur, and the angular velocity of the
drum, Ωd(t), is in general, not equal to Ω. The velocity field is therefore simply

u− = Ωrθ̂, (3.3)

where r is the distance from the axis of revolution O and θ̂ is the azimuthal unit
vector. It follows that the downslope and normal velocity components in the solid are

u− = −ΩZ, w− = ΩX. (3.4)

At the non-material singular interface, Fb, with the avalanching granular material,
the body is subject to a kinematic boundary condition

Fb(x, t) = 0: ∂tF
b + vb− · ∇Fb = 0, (3.5)

where vb− is the velocity of the interface. The superscript notation b+ and b− is
introduced to differentiate between variables that are evaluated on the avalanching
side (upper side) and solid body side (lower side) of the singular interface, Fb,
respectively.

3.3. Interfacial conditions and scalings

At the interface between the avalanche and the rotating granular material there are
discontinuities in the velocity and density fields. At such a singular surface the mass
jump condition (e.g. Chadwick 1976) is

[[ρ(u · nb − vbn)]] = 0, (3.6)

where the jump bracket, [[f]] = fb+ − fb−, is the difference between the value on the
upper and lower sides of the singular surface. This provides a coupling condition
between the velocities in the avalanche and the solid. If the typical angular velocity
magnitude of the rotating granular material is Ω∗, then the velocities in the solid body
are of magnitude Ω∗R. Assuming that density changes are relatively small, a balance
between the normal velocity components in (3.6) implies that Ω∗R = ε(gR)1/2.

The scalings (2.7) hold true for the avalanche in the rotating drum. New scalings
are now introduced for the fill height, the free and singular surface variations, and
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the variables in the solid rotating body:

(X,Z, l, B, S) = R(X̃, Z̃ , l̃, B̃, S̃),
(Ω) = ε(g/R)1/2(Ω̃),
(u−, w−, vb−n ) = ε(Rg)1/2(ũ−, w̃−, ṽb−n ),

 (3.7)

where the tildes are again used to indicate non-dimensional variables. In the avalanche
the downslope and normal length scales are scaled differently to reflect the shallowness
of the geometry, whilst in the solid body the coordinates are scaled using the same
length scales. Using (3.1) these differential scalings imply that the non-dimensional
coordinates are related by

Z = l + εz, X = x, (3.8)

where for simplicity the tildes are dropped. Henceforth all variables are non-
dimensional unless stated otherwise. It follows that the free surface height and the
interface height are

S = l + εs, B = l + εb. (3.9)

The velocity components in the solid body are

u− = −ΩZ, w− = ΩX, (3.10)

and, in particular, the velocity components on the lower side of the singular surface
are

ub− = −Ω(l + εb), wb− = Ωx, (3.11)

in coordinates oxz.
Let us suppose that the normal deposition rate of material of density ρ− into the

solid body per unit area per unit time is db−, then the velocity of the basal interface
vb− = ub− − db−nb. The normal interface speeds vb+ · nb = vb− · nb = vbn to prevent
internal void space opening up between the avalanche and the solid body. Thus, if
the avalanche density on the upper side of the singular surface is ρ+ the mass jump
condition (3.6) implies that

db+ = (ρ−/ρ+) db−, (3.12)

where the ratio of the densities is close to unity. The velocities on the lower (solid
body) side of the singular surface are prescribed by the nature of the rigid rotation
(3.11). It follows from the kinematic condition (3.5) that

db− = −εΩl∂xb− Ωx+ ∂tb+ O(ε2), (3.13)

which together with (3.12) provides an approximation for the deposition rate db+ to
order ε1+γ .

3.4. Governing equations in the avalanche region

The fluid-like region in the rotating drum can be modelled as a granular avalanche
with erosion and deposition at its basal interface. The theory of the previous section
is therefore appropriate and the coordinate system oxz and all the variables, scalings
and results are adopted here. In addition the avalanche is assumed to have constant
density ρ+ = ρ0 and the surface accumulation, ds, defined in the previous section is
taken equal to zero. The conservation laws therefore reduce to

∂th+ ∂x(hu) = −db+, (3.14)

∂t(hu) + ∂x(hu
2) + ε∂x(K cos ζh2/2) = hD − εh cos ζ∂xb− udb+, (3.15)
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to O(ε1+γ), where the deposition rate db+ is given by (3.12) and (3.13), and the earth
pressure coefficient is defined in (2.31). In the rotating drum experiments there is
a downslope velocity component in the solid region. This implies that the relative
velocity ur = u− εΩl + O(ε2), and the source term

D = cos ζ(tan ζ − sgn(u− εΩl) tan δ). (3.16)

4. Steady-state solutions
4.1. An exact solution for steady flow

Steady-state solutions to the rotating drum theory are now investigated. It is therefore
assumed that solid granular material rotates with constant angular velocity, Ω0, and
that all derivatives with respect to time are zero, ∂t() = 0. The basal friction angle δ(x)
is assumed to be equal to a constant value δ0. It follows that if the coordinate system
oxz is chosen such that its angle of inclination ζ = δ0, then the net driving force,
D, (defined in (3.16)) is equal to zero, provided that the magnitude of the avalanche
velocity is greater than |εΩ0l|. For classical smooth solutions the conservative form
of the momentum balance (3.15) can be simplified with the help of the mass balance
(3.14) to yield

∂x(hu) = (ρ−/ρ+)(εΩ0l∂xb+ Ω0x), (4.1)

hu∂xu+ ε∂x(K cos ζh2/2) = −εh cos ζ∂xb. (4.2)

Usually the avalanche equations (4.1)–(4.2) are solved for the avalanche thickness, h,
and velocity, u, given suitable initial and boundary conditions and basal topography, b.

Here a special class of solutions is considered in which the downslope avalanche
velocity is constant,

u = u0, (4.3)

and equations (4.1)–(4.2) are solved for the avalanche thickness, h, and the basal
topography, b, given suitable boundary conditions. Since ∂xu = 0 the earth pressure
coefficient is equal to a constant value K0 throughout the avalanche. For the inviscid
model K0 = 1, in the Savage & Hutter (1989) theory K0 = Kact, and in the regularized
model of Tai & Gray (1998) K0 = 2 sec2 φ − 1. For constant K = K0 the governing
equations reduce to

−λ∂xh = εl∂xb+ x, (4.4)

K0∂xh = −∂xb, (4.5)

where the order-unity constant

λ = − ρ
+u0

ρ−Ω0

. (4.6)

For solutions with positive avalanche thicknesses we shall show that λ is positive. It
may therefore be assumed, without loss of generality, that the downslope avalanche
velocity is positive, u0 > 0, and hence that the angular velocity is negative, Ω0 < 0.

The uppermost point of intersection between the avalanche free surface and the
drum wall defines the top of the avalanche and lies at (−a, l) in the OXZ system,
where l is the fill level and a = (R2 − l2)1/2. Integrating equations (4.4) and (4.5)
subject to the boundary conditions h = 0 and b = 0 at x = −a implies

−λh = εlb− (a2 − x2)/2, (4.7)

K0h = −b. (4.8)
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l = 0.20 l = 0.60

l = –0.20l = –0.60

Figure 3. The steady-state solution for the flow of granular material in a partially filled rotating
drum is illustrated for four differing fill heights. In each case R = 1, ρ−/ρ+ = 1.05, K0 = 2.0, λ = 3
and δ0 = 40◦. The position of the avalanche free surface and the interface between the avalanching
and solid regions are illustrated, as well as velocity vectors to show the relative speed and direction
of the flow.

It follows that the avalanche thickness and basal topography are

h = h0(a
2 − x2)/a2, (4.9)

b = −K0h0(a
2 − x2)/a2, (4.10)

where the constant

h0 =
a2

2(λ− εlK0)
(4.11)

is the avalanche thickness at x = 0. For positive order-unity values of λ the constant h0

and hence the avalanche thickness h are positive, confirming our original assumption.
Given free parameters λ, δ0, l and R, and using one of the constitutive models to
determine K0 the system of equations can be used to predict the avalanche thickness
h and the position of the free surface b.

The explicit solution is plotted in figure 3, assuming that K0 > 1, to give the
avalanche a characteristic crescent shape with a concave free surface for each of the
four fill levels. In the inviscid model (K0 = 1) the solution is similar except the free
surface is straight. If K0 < 1 then the free surface would be convex. In the experiments
presented here the free surface is slightly concave.
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The basal topography gradients imply that a point mass would be accelerated
in the region x < 0 and decelerated in the region x > 0. The avalanche thickness
gradients decelerate the avalanche in the region x < 0 and accelerate it in the region
x > 0. An exact balance between these competing effects ensures that there is no net
acceleration and the downslope avalanche velocity is constant along its length.

In the unstretched coordinate system, when ε is set equal to unity the non-
dimensional parameter λ becomes large. Using the scalings (2.7) and (3.7) it is
easily shown that λ = (ρ+u∗0)/(−ρ−Ω∗0R), where the starred variables u∗0 and Ω∗0 are
typical dimensional magnitudes of the downslope and angular velocities, respectively.
The downslope avalanche velocity, u∗0, is therefore much larger than the maximum
speed in the rotating granular material, RΩ∗0 . The parameter λ is a measure of the
ratio of the maximum avalanche to solid body speeds, and typically lies in the range
10 6 λ 6 30. The solutions in figure 3 are presented for the case λ = 3, i.e. downslope
avalanche velocities are three times larger than the solid body velocity close to the
drum wall. This value of λ allows the velocity vectors to be plotted on the same
diagrams and illustrates the effect of the ε terms in (4.11). For positive fill levels the
coupling with the solid body velocity field implies that the avalanche is thicker than
for negative values of l. In addition the curvature of the basal topography is larger
for increasing fill levels, which has also been observed in the experiments. As λ is
increased the avalanche thickness and curvature decrease and the velocity increases.

4.2. Particle paths

The particle paths within the avalanching flow can be determined by integrating the
differential equations

dx

dt
= u0,

dz

dt
= w, (4.12)

subject to the initial conditions that x = x0 and z = z0 at t = 0. The derivative d/dt
is the rate of change as observed when moving with a fixed particle. It follows that

x = u0t+ x0, (4.13)

since the downslope velocity is constant. The normal velocity w can be determined
from the incompressibility relation (2.8) subject to the interfacial condition (3.6). Since
the downslope velocity is constant incompressibility implies that ∂zw = 0. Integrating
this with respect to z gives

w = wb+, (4.14)

where the normal velocity at the base of the avalanche

wb+ = u0∂xb+ (ρ−/ρ+)Ω0(εl∂xb+ x) + O(ε2). (4.15)

Substituting (4.14) and (4.15) into the differential equation for the normal velocity
component (4.12) and using (4.13) to make the change of variables t = (x − x0)/u0

implies that

λ
dz

dx
= λ∂xb− (εl∂xb+ x) + O(ε2). (4.16)

Integrating with respect to x implies that the particle height as a function of position
is

z = z0 + b− (εl/λ)b− x2/(2λ) + O(ε2), (4.17)

where z0 is the initial height of the particle.
To aid the process of tracking particles it is convenient to introduce a new parameter
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Figure 4. A sketch showing a closed particle path (dot-dash line) for steady granular flow inside a
partially filled drum. At position [rb, θb1

] particles leave the avalanching region and rotate rigidly
until they reach position [rb, θb2

], where they re-enter the avalanche and are transported to [rb, θb1
]

again to complete the circuit. The angle between θb1
and θb2

measured through the region of solid
rotation is ∆θ. The base of the avalanche at X = 0 lies at B0. If B0 is greater than zero a solid core
develops in the centre of the drum and the particles in this region never enter into the avalanche.

α to label the particle paths that pass through the avalanching domain. The maximum
height of the avalanche is attained at x = 0 and therefore all the avalanche particle
paths cross the z-axis. Let α be the relative height of the avalanche particle path to
the maximum avalanche height h0 as it crosses the z-axis. It follows that α is linear
in z and equal to zero at the base of the avalanche and unity at the free surface. The
value of α uniquely labels the particle paths that pass through the avalanche.

It will now be shown that the avalanching particle paths form closed curves that
pass through the fluid- and solid-like regions. Using the definition of α above it follows
from (4.17) that the particle height

z = b+ h0α− (εl/λ)(b− b0)− x2/(2λ) + O(ε2), (4.18)

where b0 = −K0h0 is the position of the solid/avalanche interface at x = 0. Equation
(4.18) can be simplified by substituting for the basal topography, from (4.10) and
(4.11), in the third term on the right-hand side to give

z = b+ h0α− h0(x/a)
2 + O(ε2). (4.19)

A particle crosses the interface between the avalanche and the solid rotating granular
material when its height is equal to the height of the local basal topography, i.e. when
z = b. In this case (4.19) becomes a quadratic equation for the intersection positions
and has two real roots

xb1
= a
√
α = xb, xb2

= −a√α = −xb, (4.20)

where xb = a
√
α. These points lie an equal downslope distance on either side of

the z-axis. This is illustrated in figure 4. The associated normal components of the
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intersection points are

zb1
= b(xb1

), zb2
= b(xb2

), (4.21)

respectively, where b is given by (3.9) and (4.10). As the intersection points lie an equal
downslope distance on either side of the origin and since the basal interface, b, is an
even function, it follows that the intersection points have the same normal components
zb1

= zb2
(= zb say). Assuming that the velocity u0 is positive, a particle will cross from

the solid to the avalanche at {xb2
, zb} and pass back from the avalanche to the solid

at {xb1
, zb}, where the curly brackets {, } denote components in the oxz system. In the

OXZ system these points correspond to (Xb2
, Zb) and (Xb1

, Zb), respectively, where
Xb1

= xb1
, Xb2

= xb2
and Zb = l + εzb. Both of these positions lie an equal distance,

rb =

√
X2
b + Z2

b , (4.22)

from the axis of rotation at the centre of the drum.
The particles in the solid granular material are in rigid rotation about the origin

and their paths are given by solving

dX

dt

−
= −εΩ0Z

−,
dZ

dt

−
= εΩ0X

− (4.23)

subject to the initial conditions that X− = X−0 and Z− = Z−0 at t = 0. It is simple to
show that the particles move in circular arcs that are parameterized by

X− = r cos θ, Z− = r sin θ, (4.24)

where the azimuthal angle

θ = εΩ0t+ θ0 (4.25)

and θ0 = tan(Z−0 /X−0 ).
An avalanche particle path intersects the basal interface at positions (Xb1

, Zb) and
at (Xb2

, Zb). In polar coordinates these points have positions [rb, θb1
] and [rb, θb2

],
respectively, where the angles

θb1
= cos−1(Xb1

/rb), (4.26)

θb2
= cos−1(Xb2

/rb). (4.27)

It follows that after a particle has crossed from the avalanche to the solid at [rb, θb1
] it

then describes a circular arc until it reaches [rb, θb2
], where it re-enters the avalanche.

As both the starting and re-entry positions lie on the same circular arc it follows
that the particle paths in the rotating drum form closed curves that extend through
both the avalanching and solid body regions. Each of these closed curves is identified
by the relative height α as it crosses the x-axis in the avalanche. The solutions are
illustrated in figure 5 for four different fill heights.

A particularly interesting feature of the flow is that if the height of the basal
topography lies above the axis of rotation at x = 0, a solid central core develops in
which the particles never enter into the avalanche. That is, if the height of the basal
interface at x = 0

B0 > 0: a solid core develops,
B0 6 0: no solid core,

}
(4.28)

where B0 = l + εb0. For positive B0 the radius of the central core is B0 = l − εK0h0.
Thus, as the fill level increases, the size of the central core becomes progressively
larger as shown in the lower two panels of figure 5. This agrees well with laboratory
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B0 = –0.72,    l = –0.60 B0 = –0.03,    l = 0.24

B0 = 0.03,    l = 0.30 B0 = 0.37,    l = 0.60

Figure 5. A series of particle paths is shown for four differing fill heights. In each case R = 1,
λ = 4, ρ−/ρ+ = 1.05, K0 = 2.0 and δ0 = 40◦. For B0 6 0 (in the upper two panels) the steady-state
particle paths all form closed curves that pass through both the avalanching and rotating regions
of the granular material. In the case B0 > 0 (in the lower two panels) there is an additional central
solid core in which the particles remain entirely in the rigid rotating region of the granular material.

experiments. Figure 6 shows four long time exposures of a drum partially filled with
black and white poppy seeds. In the upper two panels the height of the basal interface
B0 < 0, which implies that all the particle paths intersect with the avalanching domain
close to the free surface. In the lower two panels the height of the basal interface
B0 > 0, so a solid core develops in which the particles are always in solid rotation.

4.3. Circuit times

The time a particle takes to complete a circuit around the drum is extremely sensitive
to the fill level of the drum, l, and the particle path, α. This has very important
consequences for the mixing of granular material, which will be shown experimentally
in the next section. A particle entering the avalanche at position {−xb, zb} takes a
time

ta = 2xb/u0 (4.29)

to reach the other end of the avalanche at {xb, zb}. Once the particle leaves the
avalanche it travels along a circular arc in the solid region from [rb, θb1

] to [rb, θb2
]
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Figure 6. Long time exposures showing the particle paths in a rotating drum partially filled with
black and white poppy seeds. In the solid rotating region the particles describe circular arcs. For
B0 6 0 in the upper two panels all the particle paths pass through the avalanche near the free
surface. For B0 > 0 (lower two panels) some of the particles never intersect with the free surface
and perform closed circuits entirely within the solid body region. For higher rotation speeds and
large drum sizes the free surface may become asymmetric.

taking a time

ts = ∆θ/(−εΩ0) (4.30)

where

∆θ = ang(θb1, θb2) (4.31)

is the angle between the intersection points measured through the solid region. The
angle lies in the range 0 6 ∆θ 6 2π. The factor ε−1 in (4.30) implies that the time
spent in the solid region is large compared to the time spent in the avalanche, i.e.
ts � ta. Note that the solutions in this and subsequent sections are all plotted with the
aspect ratio 1 : 1, which is achieved by setting ε = 1 in the avalanche flow solutions
to unstretch the coordinates. For simplicity, the angular velocity is chosen so that the
drum performs one complete revolution in a single non-dimensional time unit, i.e.
Ω0 = −2π. It follows that the particles travel through the avalanche in a time, ta � 1.

The total time tt taken for a particle to perform one complete circuit of the
drum is the sum of the time spent in the avalanche ta and the time spent in solid
rotation ts,

tt = ta + ts. (4.32)
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Figure 7. The total time for a particle to complete one circuit around the drum, tt, is plotted as a
function of the particle path α for a series of fill levels, l. In each case R = 1, λ = 15, ρ−/ρ+ = 1.05,
K0 = 2.0, δ0 = 40◦ and Ω0 = −2π. Recall, that when α = 1 the particles move around paths adjacent
to the drum wall and the free surface of the avalanche, whilst when α = 0 the particles move around
the circumference of the solid core or lie at the singular point (0, B0). The dashed line marks the
transition between flows with a central solid core, above the line, and those without, below the line.

This is plotted in figure 7 as a function of the particle path α for a series of fill
levels, l. In general, when a solid core develops (B0 > 0) grains that start on higher
particle paths, α, perform complete circuits of the drum faster than those on lower
ones. Close to the interface B0 = 0 interface curvature effects can cause the minimum
circuit time to occur internally, but this is a weak effect. At the point where the base
of the avalanche (0, B0) coincides with the axis of revolution, i.e. B0 = 0, there is a
very sudden transition, which is indicated by the dashed line in figure 7. For B0 6 0
the solid core disappears and grains that start on higher particle paths, α, take longer
to perform a circuit than those on lower paths. At the point (0, B0) there is singular
behaviour since it takes zero time to perform a circuit, which leads to very intense
mixing. These features will be explained with the help of the experiments of the next
section.

5. Steady mixing of granular material
5.1. Experimental configuration

The difference between the total time, tt, to complete a circuit on different particle
paths, α, leads to an apparent shearing or mixing of the granular material. Metcalfe
et al. (1995) designed a simple experiment to make this deformation and mixing
visible. In their experiments a divider was placed along the drum diameter and equal
amounts of differently coloured granular material were poured on either side. The
divider was then removed and the drum closed, so that the initial configuration was
similar to that shown in figure 8. As the drum rotated the initially straight interface
between the coloured regions was deformed making the mixing visible.
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Figure 8. The granular material is initially divided into two regions of equal mass with one half
shaded yellow and the other blue. All the particles are of the same size, surface roughness and
density and differ only in their colour. The drum is rotated with constant angular velocity and the
two regions mix during steady flow. The avalanche takes place in a thin layer close to the free
surface. The interface between the avalanche and solid body region below it is shown by the thin
black line.

In the experiments performed by Metcalfe et al. (1995) and McCarthy et al. (1996)
the drum was rotated so slowly that they were in the intermittent flow regime, in
which discrete avalanches were observed that stopped completely before the next one
began. Here experiments have been performed to investigate the mixing in the steady
continuous flow regime, which develops for constant rotation periods in the range
100–10 s per revolution. Initially the drum was filled with equal masses of yellow and
blue coloured quartz sand (as in figure 8) of the same density, surface roughness and
grain size distribution (0.35–0.65 mm). The drum, of diameter 25 cm and width 3 mm,
was then slowly rotated at constant speed. The narrow width was not an essential
feature the experiment, since three-dimensional effects are weak and the motion is
largely planar.

5.2. Fill level l = 0.6

A series of 24 photographs of the experimental results for a fill level l = 0.6 is shown
in figure 9. The photographs begin at the top left corner after 1/8 of a revolution and
are illustrated at 1/8 of a revolution intervals ending at the bottom left after three
complete revolutions. Time increases from left to right and from top to bottom. The
central solid core is immediately apparent as no deformation or mixing occurs in this
region and the interface remains straight.

Outside the central core the particle paths transport the grains through both the
solid- and fluid-like regions. The graph in figure 7 implies that grains on higher
particle paths, α, should perform circuits faster than those on lower paths. This
can clearly be seen in the experiments. Consider the upper portion of the interface
between the yellow and blue sand after 3/8 of a revolution (third image from the left
on the top row) in figure 9. It is still straight as it has not been deformed during the
rigid rotation in the solid body. After 4/8 of a revolution (right image on the top
row) the interface has passed through the avalanche and been deformed. The reason
for this is not because the particles themselves travel any faster, but simply because
of where they cross the singular surface, b. The angle between the entry and exit
points measured through the solid body, ∆θ, which was defined in (4.31), is smaller
for higher particle paths, α, than for lower ones. It follows that a grain simply spends
less time in slow solid rotation, and gets reabsorbed into the solid body ahead of
particles of lower particle paths, α. The interface between the yellow and blue sand is
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Figure 9. Photographs showing the mixing of blue and yellow sand during steady continuous
flow in a drum rotating at 100 s per revolution. The drum is of diameter 25 cm and width 3 mm.
The sands are identical except for the colour and have a particle size distribution in the range
0.35–0.65 mm. The fill level l = 0.6. The sequence of photographs begins at top left, after 1/8 of a
revolution, and ends at bottom right after three revolutions. The photographs are taken after each
1/8 of a revolution.
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therefore deformed so that it appears to ‘radiate’ away from the axis of rotation in a
clockwise sense.

The same portion of the interface starts to enter the avalanche again after 9/8
revolutions (left-hand image on the third row in figure 9). As the interface has already
been deformed it takes longer for all the particles on the interface to enter and exit
the avalanche. Particles that lie just above the solid core are the slowest, and do
not exit until 12/8 revolutions have occurred (right-hand image on the third row in
figure 9). The interface is stretched again and the deformation is compounded. This
demonstrates that the differences between the circuit times, on different particle paths,
accumulate linearly after each rotation.

The steady flow solution (4.9)–(4.11) together with the particle tracking and circuit
time information can easily be used to model continuous mixing in a partially filled
rotating drum. A series of marker points are used to track the position of the interface
between the yellow and blue sand. In the theory there is no transport or diffusion
across this interface and the marker points simply move around the particle paths. If
a marker point is placed on a known particle path α it stays on this path for all time.

Given the initial position of a marker point the problem is to find its position at
any given time T . Each circuit around path α takes a known time tt, which is defined
in (4.29)–(4.32). This makes tracking the particle easy as the total number of complete
rotations around the circuit α is simply

n = int(T/tt), (5.1)

where ‘int’ is the integer part. The problem therefore reduces to finding the position
of a particle in the finite time interval 0 6 τ < tt(α), where τ is the truncated time

τ = T − ntt. (5.2)

Since the path and the velocity along the path are known it is a simple matter to
compute the position of the particle at the truncated time τ.

Figure 10 shows the steady flow solution for the interface position at a series of
24 non-dimensional times between 1/8 and 3 non-dimensional time units. Recalling
that the drum completes one revolution in unit time, these times intervals correspond
to 1/8 of a drum revolution and the images are directly comparable to those of the
experiment in figure 9. In the simulations the granular material is assumed to dilate
by 5% as it fluidizes, the avalanche mass flux to rigid rotational mass flux λ = 15
and the slope inclination is assumed to be 35◦. These parameters were chosen to
approximate the actual conditions in the experiments. Particles at the base of the
avalanche, (0, B0), lie on the path α = 0 and take unit time to rotate with the solid
core. The fastest circuits of the drum are performed by particles on the path α = 1,
which lies along the free surface and the drum wall. The position and size of the
interface and central core are in good agreement with experiment. The exact steady
flow solution predicts the exact position of a sharp interface between the yellow
and blue sand. In the experiments random collisions between the particles as they
travel through the avalanche introduce some fluctuations that diffuse the flow. Each
time the interface passes through the avalanche it is therefore progressively diffused.
The effects of self-diffusion of the particles, in the avalanche, is not included in the
theory.

5.3. Fill level l = 0.2

Laboratory experiments have also been performed for a fill level of l = 0.2. A series
of 16 photographs of the experimental results is shown in figure 11 at 1/8 of a
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Figure 10. The mixing of a monodisperse granular material in a drum rotating with constant
angular velocity. The fill level l = 0.6 and the grains are initially divided so that yellow par-
ticles lie on the right-hand side and blue particles on the left-hand side of the drum. The
steady flow solution is illustrated for a sequence of 24 equal time steps ranging from 1/8
to 3 non-dimensional time units, top left to bottom right. The standard parameters R = 1,
λ = 15, K0 = 2, ρ−/ρ+ = 1.05, δ0 = 35◦ and Ω0 = −2π are used. One revolution of the drum
equates to one non-dimensional time unit. A computer animation of the solution is available at
http://www.ma.man.ac.uk/̃ ngray/Drums/drums.html/.
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Figure 11. As figure 9 but for fill level l = 0.2. The sequence of photographs begins in the top left
and ends in the bottom right after 15/8 revolutions. The photographs are taken after each 1/8 of
a revolution.

revolution intervals. A central core also develops here, but it is much smaller than in
the previous experiment. Most of the stretching of the interface between the yellow
and blue regions occurs in a region close to the solid core. As figure 7 predicts, there is
a large difference in the circuit times between particles in the solid core and particles
that lie on paths α < 0.2. Within this region particles on paths with larger α values
perform circuits much faster than particles in the solid core. The interface is therefore
stretched in this region, so that it ‘radiates’ out in a clockwise sense from the axis of
revolution. In the region α > 0.2 the circuit times are almost all the same and there
is very little stretching of the interface. This explains why the interface between the
yellow and blue regions remains approximately straight outside the neighbourhood
of the central core.

The larger the fill height of the drum the more time it takes for a particle on path
α > 0 to perform a complete circuit. It follows that the interface between the yellow
and blue regions wraps itself around the central core much faster in the case l = 0.2
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Figure 12. As figure 10 but for fill level l = 0.2. The steady flow solution is illustrated for a
sequence of 16 equal time steps starting at 0 and ending at 15/8 non-dimensional time units.

than in the case of l = 0.6. This is easily seen by comparing the photographs of the
drum for fill level l = 0.6 (right-hand image, second row of figure 9) and fill level
l = 0.2 (left-hand image, third row figure 11) after one complete revolution of the
drum.

Figure 12 shows the corresponding steady flow solution at intervals of 1/8 of a
non-dimensional time unit. The interface remains almost straight outside the neigh-
bourhood of the central core, indicating that the circuit times of the particle paths
are almost constant. Whilst close to the central core the stretching is concentrated in
a narrow region, which wraps itself around the core more rapidly than for larger fill
heights in accordance with the results in figure 7. Particles on the path α = 1 perform
more circuits, and travel through the avalanche more often, than for the same path
at a fill level l = 0.6. It follows that the experimental interface is slightly more diffuse
than in the previous experiment after the same number of drum revolutions.
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Figure 13. As figure 9 but for fill level l = −0.3. The sequence of photographs begins in the top
left and ends in the bottom right after 15/16 of a revolution. The photographs are taken after each
1/16 of a revolution.

5.4. Fill level l = −0.3

When the fill level lies below the centre of the drum the character of the explicit
solutions and the experimental results change dramatically. A series of 16 photographs
of the experiment are shown in figure 13 at 1/16 of a revolution intervals. In direct
contrast to the case B0 > 0, grains on higher particle paths, α, move round the
drum slower those on lower ones. Again the reason for this is simply the position at
which they cross the singular surface, b. The angle between the entry and exit points
measured through the solid body, ∆θ, is larger for higher particle paths, α, than for
lower ones, when the interface lies below the axis of revolution. These particles must
therefore spend more time in slow solid body rotation. It follows that the interface is
deformed so that it ‘radiates’ away from the axis of revolution in an anti-clockwise
sense. This can be clearly seen in the first eight images in figure 13.

Figure 14 illustrates the steady explicit solution at time increments corresponding
to those in the experiment. The interface position is in very good agreement for the
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Figure 14. As figure 10 but for fill level l = −0.3. The steady flow solution is illustrated for a
sequence of 16 equal time steps starting at 0 and ending at 15/16 of a non-dimensional time unit,
top left to bottom right.

early time intervals. It ‘radiates’ away from the axis of revolution in an anti-clockwise
sense, as in the experiments, indicating that the particles closer to the drum wall
and the free surface lag behind those in the centre of the flow. After about half a
drum revolution the interface has been deformed so much that the explicit solution
develops extremely fine-scale features close to (0, B0), which are well below the grain
scale. The cause of this is that in the limit as α → 0, the time tt for particles to
perform circuits tends to zero, as shown by the graph in figure 7. The interface
therefore wraps itself around the singular point very quickly, passing through the
avalanche many times and undergoing a large amount of diffusion. Since the exact
steady-state solution is an idealization that does not take grain size effects or diffusion
into account, it does not reproduce the experiments well close to the singular point
(0, B0).
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6. Discussion
A theoretical framework has been derived for the flow of granular materials in

partially filled slowly rotating drums. The assumption that the fluid-like avalanche
can be coupled to the solid rotating region by a non-material singular surface has
been shown to be a good one. The dominant physical processes are the dynamics of
the avalanche, mass transfer across the singular surface and the slow rotation of the
solid phase. In steady flow it is sufficient to consider the solid phase as a rigid rotating
body that is coupled to the avalanche phase by a mass jump condition. A simple
assumption then allows the complete flow field to be derived exactly. A particularly
interesting feature of the theory is that the particle paths form closed curves that pass
through both the avalanching and solid body regions. This is a good approximation
to what actually occurs in the experiments, although self-diffusive phenomena are not
modelled. When the base of the avalanche lies above the axis of revolution, B0 > 0,
a solid core develops in the centre of the drum. A dramatic transition in the flow
behaviour occurs when the base of the avalanche coincides with, or lies below, the
axis of revolution (B0 6 0). The solid core disappears and the point (0, B0) is singular
causing rapid mixing. These effects are demonstrated during the steady mixing of two
differently coloured granular materials.

This research was supported by the Deutsche Forschungsgemeinschaft through the
SFB 298 project ‘Deformation und Versagen bei metallischen und granularen Struk-
turen’. The exact solution was derived whilst on a NSC-DAAD exchange programme
at the National Taiwan University, Taipei. This paper is dedicated to Professor
Kolumban Hutter on the occasion of his 60th birthday.
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