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GOLDEN GASKETS:
VARIATIONS ON THE SIERPIŃSKI SIEVE

DAVE BROOMHEAD, JAMES MONTALDI, AND NIKITA SIDOROV

ABSTRACT. We consider the iterated function systems (IFSs) that consist of three general similitudes
in the plane with centres at three non-collinear points, and with a common contraction factor λ ∈ (0, 1).

As is well known, for λ = 1/2 the attractor, Sλ, is a fractal called the Sierpiński sieve, and for
λ < 1/2 it is also a fractal. Our goal is to study Sλ for this IFS for 1/2 < λ < 2/3, i.e., when there are
“overlaps” in Sλ as well as “holes”. In this introductory paper we show that despite the overlaps (i.e.,
the breaking down of the Open Set Condition), the attractor can still be a totally self-similar fractal,
although this happens only for a very special family of algebraic λ’s (so-called “multinacci numbers”).
We evaluate dimH(Sλ) for these special values by showing that Sλ is essentially the attractor for an
infinite IFS which does satisfy the Open Set Condition. We also show that the set of points in the
attractor with a unique “address” is self-similar, and compute its dimension.

For “non-multinacci” values of λ we show that if λ is close to 2/3, then Sλ has a nonempty interior.
Finally we discuss higher-dimensional analogues of the model in question.

INTRODUCTION AND SUMMARY

Iterated function systems are one of the most common tools for constructing fractals. Usually,
however, a very special class of IFSs is considered for this purpose, namely, those which satisfy the
Open Set Condition (OSC)—see Definition 1.1 below. We present—apparently for the first time—
a family of simple and natural examples of fractals that originate from IFSs for which the OSC is
violated; that is, for which substantial overlaps occur.

We consider a family of iterated function systems (IFSs) defined by taking three planar similitudes
fi(x) = λx+ (1− λ)pi (i = 0, 1, 2), where the scaling factor λ ∈ (0, 1) and the centres pi are three
non-collinear points in R2. Without loss of generality we take the centres to be at the vertices of an
equilateral triangle∆ (see Section 8). The resulting IFS has a unique compact attractor Sλ (depending
on λ); by definition Sλ satisfies

Sλ =
2
⋃

i=0

fi(Sλ).

More conveniently, Sλ can be found (or rather approximated) inductively by iterating the fj . Let

∆n =
⋃

ε∈Σn
fε(∆),

where ε = (ε0, . . . , εn−1) ∈ Σn, and Σ = {0, 1, 2}, and

fε = fε0 . . . fεn−1
.
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FIGURE 1. The Sierpiński Sieve.

Since fi(∆) ⊂ ∆ it follows that ∆n+1 ⊂ ∆n and then

Sλ = lim
n→∞

∆n =
∞
⋂

n=1

∆n.

In fact all our figures are produced (using Mathematica) by drawing∆n for n suitably large, typically
between 7 and 10.

For λ ≤ 1/2 the images of the three similarities are essentially disjoint (more precisely, the simi-
larities satisfy the open set condition (OSC)), which makes the attractor relatively straightforward to
analyse. For λ = 1/2 the attractor is the famous Sierpiński sieve (or triangle or gasket)—see Figure 1,
and for λ ≤ 1/2 the attractor is a self-similar fractal of dimension − log 3/ log λ. On the other hand,
if λ ≥ 2/3 the union of the three images coincides with the original triangle1 ∆, so that Sλ = ∆.

In this paper we begin a systematic study of the IFS for the remaining values of λ, namely for
λ ∈ (1/2, 2/3). Note that in [25] such attractors were called fat Sierpiński gaskets and it was shown
that dimH(Sλ) < − log 3/ log λ, the similarity dimension, for a dense set of λ’s.

In this region of parameters, the three images have significant overlaps, and the IFS does not sat-
isfy the Open Set Condition (Proposition 2.9), which makes it much harder to study properties of the
attractor. For example, it is not known precisely for which values of λ it has positive Lebesgue mea-
sure. We do, however, obtain a partial result: for λ ≥ λ∗ ≈ 0.648 it has non-zero Lebesgue measure
(Proposition 2.7). Moreover, it follows from a well-known result (see [8]) that for λ < 1/

√
3 ≈ 0.577

the attractor has zero Lebesgue measure (Proposition 4.3). We also show (Proposition 4.1) that the
Lebesgue measure vanishes for the specific value λ = (

√
5− 1)/2 ≈ 0.618.

The main result of this paper is that there is a countable family of values of λ in the interval
(1/2, 2/3)—the so-called multinacci numbers ωm—for which the attractor Sλ is totally self-similar

1By “triangle” we always mean the convex hull of three points, not just the boundary.
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The Golden Gasket Sω2

The attractor Sω3
The attractor Sω4

FIGURE 2. Three attractors in the family of golden gaskets: notice the convergence
towards the Sierpiński gasket of Figure 1.
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(Definition 1.2). We call the resulting attractors Golden Gaskets, and the first three golden gaskets
are shown in Figure 2. For these values of λ we are able to compute the Hausdorff dimension of Sλ
(Theorem 4.4). These multinacci numbers are defined as follows. For each m ≥ 2 the multinacci
number ωm is defined to be the unique positive solution of the equation

xm + xm−1 + · · ·+ x = 1.

The first multinacci number is the golden ratio ω2 = (
√
5 − 1)/2 ≈ 0.618, and the second is ω3 ≈

0.544. It is easy to see that as m increases, so ωm decreases monotonically, converging to 1/2.
The key property responsible for the attractor being totally self-similar for the multinacci numbers

is that for these values of λ the overlap fi(∆) ∩ fj(∆) is an image of ∆, namely it coincides with
fif

m
j (∆). On the other hand, we also show that if λ ∈ (1/2, 2/3) is not a multinacci number then the

attractor is not totally self-similar (Theorem 6.3).
The paper is organized as follows. In Section 1 we define the IFS, and introduce the barycentric

coordinates we use for all calculations. In Section 2 we describe the distribution of holes in the attrac-
tor, and deduce that for λ ≥ λ∗ ≈ 0.6478 the attractor has nonempty interior (Proposition 2.7). We
also show that the Open Set Condition is not satisfied by our IFS provided λ > 1/2 (Proposition 2.9).

In Section 3 we describe explicitly the new family of golden gaskets. The main result is that for
these values of λ the attractor is totally self-similar (Theorem 3.3). In Section 4 we give several results
on the Lebesgue measure and the Hausdorff dimension of the attractor, as described above, which
are proved in Section 5. For this proof, we need to consider points of the attractor as determined
by a symbolic address: to ε ∈ Σ∞ one associates xε ∈ Sλ by xε = limn→+∞ fε0 . . . fεn(x0)
(independently of x0). The set of uniqueness Uλ consists of those points in the attractor that have only
one symbolic address in Σ∞. For λ = ωm a multinacci number, we show Uωm to be a self-similar set
(for an infinite IFS), and compute its Hausdorff dimension in Theorem 5.4. We also show that “almost
every” point of Sωm (in the sense of prevailing dimension) has a continuum of different “addresses”
(Proposition 5.5).

The main result of Section 6 is that if λ is not multinacci, then the attractor is not totally self-similar.
In Corollary 6.5 we show how this theorem can be used to prove a result in number theory—an upper
bound for the “separation constant” that is slightly weaker than the one that is already known but our
proof is very different, and simpler.

There are several ways to generalize this model: one is to introduce more similitudes in the plane,
a second to introduce rotations, and a third is to pass into higher dimensions, but remaining with
simplices (generalizing the equilateral triangle to higher dimensions). The first two are very much
harder than the third, and in Section 7 we consider the third by way of a very brief discussion of the
“golden sponges” and a list of a few results that can be obtained by the same arguments as for the
planar case. Finally, in Section 8 we end with a few remarks and open questions.

There have been some other studies of families of IFSs in R2 with both holes and overlaps [20] (and
references therein), see also Remark 4.8. In R, there has been an attempt to do this systematically,
namely the famous “0,1,3”-problem. More precisely, the maps for that model are as follows: gj(x) =
λx+ (1− λ)j, where x ∈ R and j ∈ {0, 1, 3}. Unfortunately, the problem of describing the attractor
for this IFS with λ ∈ (1/3, 2/5) (which is exactly the “interesting” region) has proved to be very
complicated, and only partial results have been obtained so far—see [26, 13, 22] for more detail.

1. THE ITERATED FUNCTION SYSTEM

Our set-up is as follows. Let p0,p1 and p2 be the vertices of the equilateral triangle ∆:

pk =
2

3
(cos(2πk/3), sin(2πk/3)), k = 0, 1, 2
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(this choice of the scaling will become clear later). Let f0, f1, f2 be three contractions defined as

(1.1) fi(x) = λx+ (1− λ)pi, i = 0, 1, 2.

Under composition, these functions generate an iterated function system (IFS)2.
The attractor (or the invariant set) of this IFS is defined to be the unique non-empty compact set

Sλ satisfying

Sλ =
2
⋃

i=0

fi(Sλ).

An iterative procedure exists as follows (see, e.g., [8]): let ∆0 := ∆ and

(1.2) ∆n :=
2
⋃

i=0

fi(∆n−1), n ≥ 1.

The attractor is then:

Sλ =
∞
⋂

n=0

∆n = lim
n→+∞

∆n,

where the limit is taken in the Hausdorff metric.
From here on Σ := {0, 1, 2}, ε denotes (ε0 . . . εn−1) (for some n) and

fε := fε0 . . . fεn−1
.

As is easy to see by induction,
∆n =

⋃

ε∈Σn
fε(∆),

whence ∆n ⊂ ∆n−1.
A well studied case is λ = 1

2 , which leads to the Sierpiński sieve (or Sierpiński gasket or triangle)
S := S1/2—see Figure 1. Figure 2 shows the first three of the new sequence of fractals, for λ = ω2, ω3
and ω4 respectively (the first three multinacci numbers).

Definition 1.1. Recall that the Open Set Condition (OSC) is defined as follows: there exists an open
set O such that

⋃

i fi(O) ⊂ O, the union being disjoint.

Note that for λ = 1/2 the intersections fi(∆) ∩ fj(∆) (i, j = 0, 1, 2, i 6= j) are two-point
sets, i.e., by definition, this IFS satisfies the Open Set Condition. We would like to emphasize one
more important property of the Sierpiński sieve. Looking at Figure 1, one immediately sees that each
smaller triangle has the same structure of holes as the big one. In other words,

(1.3) fε(S) = fε(∆) ∩ S for any ε ∈ Σn and any n.

Definition 1.2. We call any set S that satisfies (1.3), totally self-similar.

Total self-similarity in the case of the Sierpiński sieve implies, in particular, its holes being well
structured: the nth “layer” of holes—i.e.,∆n \∆n+1—contains 3n holes (the central hole being layer
zero), and each of these is surrounded (at a distance depending on n only) by exactly three holes of
the (n + 1)th layer, each smaller in size by the factor λ (= 1/2 in this case). Later we will see that
only very special values of λ yield this property of Sλ.

If λ < 1/2, we have the OSC as well (the intersections fi(∆) ∩ fj(∆), i 6= j are clearly empty).
However, if λ ∈ (1/2, 1), then fi(∆) ∩ fj(∆) is always a triangle, which implies that the OSC is

2Often, in the literature, the term “IFS” means a random functions system endowed with probabilities. Our model
however is purely topological.
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not satisfied (Proposition 2.9). This changes the attractor dramatically. Our goal is to show that there
exists a countable family of parameters between 1/2 and 1 which, despite the lack of the OSC, provide
total self-similarity of Sλ and, conversely, that for all other λ’s there cannot be total self-similarity.

For technical purposes we introduce a system of coordinates in ∆ that is more convenient than the
usual Cartesian coordinates. Namely, we identify each point x ∈ ∆ with a triple (x, y, z), where

x = dist (x, [p1,p2]), y = dist (x, [p0,p2]), z = dist (x, [p0,p1]),

where [pi,pj ] is the edge containing pi and pj . As used to be well known from high-school geometry,
x + y + z equals the tripled radius of the inscribed circle, i.e., in our case, 1 (this is why we have
chosen the radius of the circumcircle for our triangle to be equal to 2/3). These are usually called
barycentric coordinates. The following lemma is straightforward:

Lemma 1.3. In barycentric coordinates f0, f1, f2 act as linear maps. More precisely,

f0 =





1 1− λ 1− λ
0 λ 0
0 0 λ



 , f1 =





λ 0 0
1− λ 1 1− λ
0 0 λ



 , f2 =





λ 0 0
0 λ 0

1− λ 1− λ 1



 .

From here on by a hole we mean a connected component in ∆ \ Sλ. First of all, we show that if
λ ≥ 2/3, then there are no holes at all:

Lemma 1.4. If λ ∈ [2/3, 1), then Sλ = ∆.

Proof. It suffices to show that
⋃

i fi(∆) = ∆. In barycentric coordinates, f0(∆) = {x ≥ 1 −
λ}, f1(∆) = {y ≥ 1 − λ}, f2(∆) = {z ≥ 1 − λ}. For (x, y, z) to lie in the hole, therefore, the
conditions x < 1− λ, y < 1− λ and z < 1− λ must be satisfied simultaneously. Since λ ≥ 2/3 and
x+ y + z = 1, this is impossible. ¤

2. STRUCTURE OF THE HOLES

Thus, the “interesting” region is λ ∈ (1/2, 2/3). Let H0 denote the central hole, i.e., H0 = ∆\∆1;
it is an “inverted” equilateral triangle.

Lemma 2.1. For any λ ∈ (1/2, 2/3), each hole is a subset of
⋃

ε∈Σn
fε(H0) for some n ≥ 1.

Proof. If x is in a hole, then there exists n ≥ 1 such that x ∈ ∆n \ ∆n+1. Now our claim follows
from

∆n \∆n+1 =
⋃

ε

fε(∆) \
⋃

ε

fε(∆1) =
⋃

ε

fε(∆ \∆1) =
⋃

ε

fε(H0).

¤

Remark 2.2. Note that although the fε(H0)may not be disjoint, any hole is in fact an inverted triangle
and a subset of at least one of the fε(H0). We leave this claim without proof, as it is not needed.

Let us now derive the formula for any finite combination of fi. For a given ε, put

ak =

{

1, εk = 0

0, otherwise
, bk =

{

1, εk = 1

0, otherwise
, ck =

{

1, εk = 2

0, otherwise
.

Thus, ak, bk, ck are 0’s and 1’s and ak + bk + ck = 1.
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Lemma 2.3. Let εk ∈ Σ for k = 0, 1, . . . , n. Then

fε =

















(1− λ)
n−1
∑

0
akλ

k + λn (1− λ)
n−1
∑

0
akλ

k (1− λ)
n−1
∑

0
akλ

k

(1− λ)
n−1
∑

0
bkλ

k (1− λ)
n−1
∑

0
bkλ

k + λn (1− λ)
n−1
∑

0
bkλ

k

(1− λ)
n−1
∑

0
ckλ

k (1− λ)
n−1
∑

0
ckλ

k (1− λ)
n−1
∑

0
ckλ

k + λn

















.

Proof. Induction: for n = 1 this is obviously true; assume that the formula is valid for some n and
verify its validity for n+ 1. Within this proof, we write

pn = (1− λ)
n−1
∑

0

akλ
k, qn = (1− λ)

n−1
∑

0

bkλ
k, rn = (1− λ)

n−1
∑

0

ckλ
k.

Then by our assumption,

fεf0 =





pn + λn pn pn
qn qn + λn qn
rn rn rn + λn









1 1− λ 1− λ
0 λ 0
0 0 λ





=





pn + λn pn + (1− λ)λn pn + (1− λ)λn

qn qn + λn+1 qn
rn rn rn + λn+1





=





pn+1 + λn+1 pn+1 pn+1
qn+1 qn+1 + λn+1 qn+1
rn+1 rn+1 rn+1 + λn+1



 ,

as pn+1 =
∑n
0 akλ

k = (1 − λ)
(

∑n−1
0 akλ

k + λn
)

, whence pn + λn = pn+1 + λn+1. For qn and

rn we have qn+1 = qn, rn+1 = rn. Multiplication by f1 and f2 is considered in the same way. ¤

Corollary 2.4. We have

fε(∆) =











x ≥ (1− λ)
∑n−1

k=0 akλ
k,

y ≥ (1− λ)
∑n−1

k=0 bkλ
k,

z ≥ (1− λ)
∑n−1

k=0 ckλ
k.

Proof. The set fε(∆) is the triangle with the vertices fε(p0), fε(p1) and fε(p2). By definition, in this
triangle x is greater than or equal to the joint first coordinate of fε(p1) and fε(p2), i.e., by Lemma 2.3,
x ≥ (1− λ)

∑n−1
k=0 akλ

k. The same argument applies to y and z. ¤

Corollary 2.5. We have

fε(H0) =



















x < (1− λ)
(

λn +
∑n−1

k=0 akλ
k
)

,

y < (1− λ)
(

λn +
∑n−1

k=0 bkλ
k
)

,

z < (1− λ)
(

λn +
∑n−1

k=0 ckλ
k
)

.

Proof. The argument is similar to the one in the proof of the previous lemma, so we leave it to the
reader (note that H0 = {(x, y, z) : x < 1− λ, y < 1− λ, z < 1− λ}). ¤
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FIGURE 3. The attractor for λ = 0.65.

The converse of Lemma 2.1 is false: not every fε(H0) is a hole, as we will see in Proposition 2.7
and Section 6. However, the following assertion shows that once we have one hole, we have infinitely
many holes.

Lemma 2.6. For any λ ∈ (1/2, 2/3) there is an infinite number of holes.

Proof. We are going to show that fni (H0) is always a hole for any i = 0, 1, 2 and any n ≥ 0. In view
of the symmetry, it suffices to show that fn0 (H0) is a hole. By Corollary 2.5,

(2.1) fn0 (H0) = {(x, y, z) : x < 1− λn+1, y < λn(1− λ), z < λn(1− λ)}.
Since the ∆n are nested, it suffices to show that fn0 (H0) ∩∆n+1 = ∅. By Corollary 2.4, this means
that the system of inequalities of the form

(2.2) x ≥ (1− λ)
n
∑

0

akλ
k, y ≥ (1− λ)

n
∑

0

bkλ
k, z ≥ (1− λ)

n
∑

0

ckλ
k

never occurs for (x, y, z) ∈ fn0 (H0). Indeed, if it did, then by (2.1), we would have bj = cj = 0 for
0 ≤ j ≤ n, whence a0 = · · · = an = 1, and by (2.2), x ≥ (1 − λ)(1 + λ + · · · + λn) = 1 − λn+1,
which contradicts (2.1). ¤

We call any hole of the form fni (H0) a radial hole.

Proposition 2.7. Let λ∗ ≈ 0.6478 be the appropriate root of

x3 − x2 + x =
1

2
.

Then Sλ has a nonempty interior if λ ∈ [λ∗, 2/3) and moreover, each hole is radial—see Figure 3.

Proof. We3 are going to show each hole of the kth level is radial. Assume this is true for k < n; by
the symmetry of our model, it suffices to show that f1fn0 (H0) ⊂ ∆n+1. More precisely, we will show

3We are indebted to B. Solomyak whose suggestions have helped us with the idea of this proof.
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that

(2.3) f1f
n
0 (H0) ⊂ f0(∆n).

By our assumption, ∆n contains only radial holes, whence (2.3) is a consequence of the following
relations:

(1) f1f
n−1
0 (H0) ⊂ f0(∆);

(2) f1f
n−1
0 (H0) ∩ f0fn−11 (H0) = ∅.

Let P be the vertex of H0 with barycentric coordinates (2λ− 1, 1− λ, 1− λ). Then (1) is effectively
equivalent to f1f

n−1
0 (P ) ∈ f0(∆), which by Lemma 2.3, leads to λn+1 − λn + λ ≥ 1

2 . By mono-
tonicity of the root of this polynomial with respect to n, the worst case scenario is n = 2, which is
equivalent to λ ≥ λ∗.

Let Q = (1− λ, 2λ− 1, 1− λ). The condition (2) is equivalent to the fact that the x-coordinate of
f1f

n−1
0 (P ) is bigger than the x-coordinate of f0f

n−1
1 (Q), which, in view of Lemma 2.3, yields the

inequality λ(1− 2λn−1 + 2λn) > (1− λ)(1 + λn) which is equivalent to

(2.4) 3λn+1 − 3λn + 2λ > 1.

The worst case scenario is n = 3, where (2.4) is implied by λ > 0.6421, i.e., well within the range.
¤

Remark 2.8. As is easy to see, λ∗ is the exact lower bound for the “purely radial” case, because if
λ < λ∗, the set f1f0(H0) \ f0(∆) has an empty intersection with ∆3 and hence is a hole. The details
are left to the interested reader.

Now we are ready to prove

Proposition 2.9. For each λ ∈ (1/2, 1) the IFS does not satisfy the Open Set Condition.

Proof. Assume there exists an open set O which satisfies Definition 1.1. Since fj(O) ⊂ O and
the images are disjoint, we have fifj(O) ∩ fi′fj′(O) = ∅ if (i, j) 6= (i′, j′), and by induction,
fε(O) ∩ fε

′(O) = ∅ provided ε 6= ε
′.

The same assertion holds for any subset of O; choose an open triangle D = {x > x0, y > y0, z >
z0} ⊂ O with x0+ y0+ z0 < 1. We claim that there exist ε, ε′ such that fε(D)∩ fε

′(D) 6= ∅; in fact,
we can even find ε, ε′ which do not contain 2’s. Indeed, by Lemma 2.3 all the 2n images of D are on
the same “level”, i.e., of the form {x > · · · , y > · · · , z > λnz0}. Since the size of each triangle is
const · λn and λ > 1/2, this is impossible. ¤

We finish this section by showing that the boundaries of fε(∆) do not contain any gaps.

Proposition 2.10. For λ ≥ 1/2
∂∆ ⊂ Sλ.

Consequently, for any ε,
∂fε(∆) ⊂ Sλ.

Proof. In barycentric coordinates, ∂∆ = {x = 0} ∪ {y = 0} ∪ {z = 0}. In view of the symmetry, it
suffices to show that K = {z = 0} ⊂ Sλ. Any point of K is of the form (x, 1− x, 0) with x ∈ [0, 1].
Now our claim follows from Lemma 2.3 and the fact that every x ∈ [0, 1] has the greedy expansion in
decreasing powers of λ, i.e., x = (1− λ)

∑∞
1 akλ

k. For y we put bk = 1− ak.
For the second statement, since Sλ is invariant, fi(Sλ) ⊂ Sλ, whence fε(Sλ) ⊂ Sλ for each ε.

Now our claim follows from ∂fε(∆) = fε(∂∆), together with the first part. ¤

It follows from this proposition that dimH(Sλ) ≥ 1.
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3. GOLDEN GASKETS

Within this section, let λ be equal to the multinacci number ωm, i.e., the unique positive root of

xm + xm−1 + · · ·+ x = 1, m ≥ 2.

For every m, ωm ∈ (1/2, 1). In particular, ω2 is the golden ratio, ω2 =
√
5−1
2 ≈ 0.618, ω3 ≈ 0.544,

etc. It is well known that ωm ↘ 1/2 as m → +∞. To simplify our notation, we simply write ω
instead of ωm within this section, as our arguments are universal.

We will show that Sω is totally self-similar (Theorem 3.3); in Section 6 the converse will be proved.
The key technical assertion is

Proposition 3.1. The set fε(H0) is a hole for any ε ∈ Σn.

Proof. Let ∆n be given by (1.2), and

(3.1) Hn :=
⋃

ε∈Σn
fε(H0), n ≥ 1.

As in Lemma 2.6, we show that Hn ∩∆n+1 = ∅. By Corollaries 2.4 and 2.5, it suffices to show that
the inequalities

(3.2)

ωn +
n−1
∑

0

akω
k >

n
∑

0

αkω
k,

ωn +
n−1
∑

0

bkω
k >

n
∑

0

βkω
k,

ωn +
n−1
∑

0

ckω
k >

n
∑

0

γkω
k

never hold simultaneously, provided all the coefficients are 0’s and 1’s, and ak+ bk+ ck = αk+βk+
γk = 1.

The key to our argument is the following separation result (we use the conventional notation here):

Theorem 3.2. (P. Erdős, I. Joó, M. Joó [5, Theorem 4]) Let θ > 1, and

(3.3) `(θ) := inf

{

|ρ| : ρ =
n
∑

k=0

skθ
k 6= 0, sk ∈ {0,±1}, n ≥ 1

}

.

Then `(θ) = θ−1 if θ−1 is a multinacci number.

From this theorem we easily deduce a claim about the sums in question. Indeed, put θ = ω−1 and
assume that ak ∈ {0, 1}, a′k ∈ {0, 1} for k = 0, 1, . . . , n, and

∑n
0 akω

k >
∑n
0 a

′
kω

k. Then

(3.4)
n
∑

0

(ak − a′k)ω
k ≥ ωn+1

(just put sk = an−k − a′n−k).
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We use inequality (3.4) to improve the inequalities (3.2). Formally set an = bn = cn = 1 and
include the ωn term of the left hand side of the inequalities (3.2) with the summation. Then by (3.4),

n
∑

0

akω
k ≥

n
∑

0

αkω
k + ωn+1,

n
∑

0

bkω
k ≥

n
∑

0

βkω
k + ωn+1,

n
∑

0

ckω
k ≥

n
∑

0

γkω
k + ωn+1,

which is equivalent to

(3.5)

(1− ω)ωn +
n−1
∑

0

akω
k ≥

n
∑

0

αkω
k,

(1− ω)ωn +
n−1
∑

0

bkω
k ≥

n
∑

0

βkω
k,

(1− ω)ωn +
n−1
∑

0

ckω
k ≥

n
∑

0

γkω
k.

By our assumption, just one of the values αn, βn, γn is equal to 1. Let it be αn, say; then the inequal-
ities (3.5) may be rewritten as follows:

n−1
∑

0

akω
k ≥

n−1
∑

0

αkω
k + ωn+1,

(1− ω)ωn +
n−1
∑

0

bkω
k ≥

n−1
∑

0

βkω
k,

(1− ω)ωn +
n−1
∑

0

ckω
k ≥

n−1
∑

0

γkω
k.

It suffices to again apply (3.4) to improve the first inequality. As
∑n−1

k=0 akω
k >

∑n−1
k=0 αkω

k, we have
∑n−1

k=0 akω
k −∑n−1

k=0 αkω
k ≥ ωn, whence

n−1
∑

0

akω
k ≥

n−1
∑

0

αkω
k + ωn,

(1− ω)ωn +
n−1
∑

0

bkω
k ≥

n−1
∑

0

βkω
k,

(1− ω)ωn +
n−1
∑

0

ckω
k ≥

n−1
∑

0

γkω
k.
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Summing up the left and right hand sides, we obtain, in view of ak + bk + ck = αk + βk + γk = 1,

2(1− ω)ωn +

n−1
∑

0

ωk ≥ ωn +

n−1
∑

0

ωk,

which implies ω ≤ 1/2, a contradiction. ¤

This claim almost immediately yields the total self-similarity of the attractor Sω:

Theorem 3.3. The set Sω is totally self-similar in the sense of Definition 1.2, i.e.,

fε(Sω) = fε(∆) ∩ Sω for any ε ∈ Σn.
Proof. LetHn be defined by (3.1). SinceHn+k =

⋃

ε∈Σn fε(Hk), we have fε(Hk) ⊂ Hn+k. Further-
more, fε(Hk+1) ⊂ fε(∆), whence fε(Hk) ⊂ Hn+k ∩ fε(∆). On the other hand, by Proposition 3.1,
either fε(H0) ∩ fε

′(H0) = ∅ or fε(H0) = fε
′(H0) for ε ∈ Σn+k. Hence the elements of Hn+k are

disjoint, and we have
fε(Hk) = fε(∆) ∩Hn+k.

Since we have proved in Proposition 3.1 that Hn+k ∩∆n+k+1 = ∅,
fε(∆k) = fε(∆) ∩∆n+k+1.

The claim now follows from the fact that ∆k → Sω in the Hausdorff metric and from fε being
continuous. ¤

4. DIMENSIONS

Within this section we continue to assume λ = ωm for some m ≥ 2. From Proposition 3.1 it is
easy to show that Sωm is nowhere dense. We prove more than that:

Proposition 4.1. The two-dimensional Lebesgue measure of Sωm is zero.

Proof. Our proof is based on Theorem 3.3. Note first that for any measure ν (finite or not),

ν(∆) = ν(f0(∆) ∪ f1(∆) ∪ f2(∆) ∪H0)
− ν(f0(∆) ∩ f1(∆))− ν(f0(∆) ∩ f2(∆))− ν(f1(∆) ∩ f2(∆)),

whence by Theorem 3.3,

(4.1)
ν(Sωm) = ν(f0(Sωm) ∪ f1(Sωm) ∪ f2(Sωm))

− ν(f0(Sωm) ∩ f1(Sωm))− ν(f0(Sωm) ∩ f2(Sωm))− ν(f1(Sωm) ∩ f2(Sωm))
(because H0 ∩ Sωm = ∅). The central point of the proof is that there exists a simple expression for
fi(Sωm) ∩ fj(Sωm) for i 6= j. Namely,

(4.2) fi(Sωm) ∩ fj(Sωm) = fif
m
j (Sωm).

To prove this, note first that in view of Theorem 3.3, it suffices to show that

(4.3) fi(∆) ∩ fj(∆) = fif
m
j (∆).

Moreover, because of the symmetry of our model, in fact, we need to prove only that f0(∆)∩f1(∆) =
f0f

m
1 (∆). This in turn follows from Corollary 2.4:

f0(∆) ∩ f1(∆) = {(x, y, z) : x ≥ 1− ωm, y ≥ 1− ωm}
and

f0f
m
1 (∆) = {(x, y, z) : x ≥ 1− ωm, y ≥ (1− ωm)(ωm + · · ·+ ωmm) = 1− ωm}.
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The relation (4.2) is thus proved. Hence (4.1) can be rewritten as follows:

(4.4)
ν(Sωm) = ν(f0(Sωm) ∪ f1(Sωm)) ∪ f2(Sωm))

− ν(f0f
m
1 (Sωm))− ν(f0f

m
2 (Sωm))− ν(f1f

m
2 (Sωm)).

Finally, let ν = µ, the two-dimensional Lebesgue measure scaled in such a way that µ(∆) = 1. In
view of the fi being affine contractions with the same contraction ratio ωm and by (4.4),

µ(Sωm) = 3ω2mµ(Sωm)− 3ω2(m+1)m µ(Sωm),
whence,

(4.5) (1− 3ω2m + 3ω2(m+1)m )µ(Sωm) = 0.

It suffices to show that 1 − 3ω2m + 3ω
2(m+1)
m 6= 0. For m = 2, in view of ω22 = 1 − ω2, this follows

from 1− 3ω22 + 3ω62 = ω82 > 0; for m ≥ 3, we have 1− 3ω2m + 3ω
2(m+1)
m > 1− 3ω2m > 0, because

ωm ≤ ω3 < 0.544 < 1/
√
3.

Thus, by (4.5), µ(Sωm) = 0. ¤

Remark 4.2. The only fact specific to the multinacci numbers that we used in this proof is the rela-
tion (4.3). It is easy to show that, conversely, this relation implies λ = ωm for some m ≥ 2. We leave
the details to the reader.

We do not know whether the Lebesgue measure of Sλ is zero if λ < ω2 (this is what the numerics
might suggest), but a weaker result is almost immediate. It is a consequence of a more general result
proved by Falconer [8, Proposition 9.6], but for the sake of completeness we give its proof for this
particular case (NB: ω2 > 1/

√
3 > ω3):

Proposition 4.3. For any λ < 1/
√
3 the attractor Sλ has zero Lebesgue measure.

Proof. Since Sλ = f0(Sλ) ∪ f1(Sλ) ∪ f2(Sλ) it follows that

µ(Sλ) ≤ 3λ2µ(Sλ).
As Sλ is bounded, we know that µ(Sλ) <∞, so that either µ(Sλ) = 0 or 1 ≤ 3λ2 as required. ¤

Return to the case λ = ωm. As Sωm has zero Lebesgue measure, it is natural to ask what its
Hausdorff dimension is. LetHs denote the s-dimensional Hausdorff measure. As is well known,

(4.6) Hs(λB + x) = λsHs(B)

for any Borel set B, any vector x and any λ > 0. Let us compute Hs(Sωm). By (4.4) and (4.6) with
ν = Hs,

Hs(Sωm) = 3ωsmHs(Sωm)− 3ωs(m+1)m Hs(Sωm).
We see that unless

(4.7) 1− 3ωsm + 3ωs(m+1)m = 0,

the s-Hausdorff measure of the attractor is either 0 or +∞. Recall that the value of d which separates
0 from +∞ is called the Hausdorff dimension of a Borel set E (notation: dimH(E)). This argument
relies on the attractor having non-zero measure in the appropriate dimension, which we do not know,
so in fact only amounts to a heuristic argument suggesting
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Theorem 4.4. The Hausdorff dimension of the attractor Sωm equals its box-counting dimension and
is given by

dimH(Sωm) = dimB(Sωm) =
log τm
logωm

,

where τm is the smallest positive root of the polynomial 3zm+1 − 3z + 1.

The fact that the Hausdorff dimension coincides with the box-counting dimension for the attractor
of a finite self-similar IFS is universal [7]. A rigorous proof of the formula for dimH(Sωm) is given
in Section 5. It amounts to showing that the attractor essentially coincides with the attractor of a
countably infinite IFS which satisfies the OSC.

Remark 4.5. The case m = 2 (the golden ratio) is especially nice as here

τ2 =
2√
3
cos(7π/18).

Note also that there cannot be such a nice formula for m ≥ 3, because, as is easy to show, the Galois
group of the extension Q(τm) with m ≥ 3 is symmetric.

Remark 4.6. Let us also mention that the set of holes,∆\Sω2
, can be identified with the Cayley graph

of the semigroup
Γ := {0, 1, 2 | 100 = 011, 200 = 022, 211 = 122},

namely, fε0 . . . fεn−1
(H0) is identified with the equivalence class of the word ε0 . . . εn−1. The rela-

tions ij2 = ji2, i 6= j in Γ correspond to the relations fif2j = fjf
2
i , i 6= j.

Thus, ∆ \ Sω2
may be regarded as a generalization of the Fibonacci graph—the Cayley graph of

the semigroup {0, 1 | 100 = 011} introduced in [1] and studied in detail in [24].
Let un stand for the cardinality of level n of Γ (= the number of holes of the nth layer). As is easy

to see, u0 = 1, u1 = 3, u2 = 9 and

un+3 = 3un+2 − 3un,
whence the rate of growth of Γ, limn

n
√
un, is equal to τ−12 . This immediately yields another proof

that the box-counting dimension of Sω2
is equal to its Hausdorff dimension. The analogous results

hold for λ = ωm for any m ≥ 2. We leave the details to the reader.

m ωm dimH(Sωm)
2 0.61803 1.93063
3 0.54369 1.73219
4 0.51879 1.65411
5 0.50866 1.61900
6 0.50414 1.60201
7 0.50202 1.59356
8 0.50099 1.58930
9 0.50049 1.58715
. . . . . . . . .
∞ 1/2 log 3/ log 2

TABLE 4.1. Hausdorff dimension of Sωm .
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Remark 4.7. Recall that log 3/ log 2 is the Hausdorff dimension of the Sierpiński sieve. From Theo-
rem 4.4 it follows that dimH(Sωm)→ log 3/ log 2 as m→ +∞ (see also Table 4.1). Thus, although
the Hausdorff dimension does not have to be continuous, in our case it is continuous as m→∞.

Remark 4.8. Theorem 4.4 is proved by passing to an infinite IFS which does satisfy the Open Set
Condition. This idea has been exploited before by Mauldin and Urbański [19, 18] (we thank an
anonymous referee for pointing this out). In both cases, the attractor of the countable IFS is only an
approximation to the initial attractor: in [19, 18] the difference is a countable set while in the present
example it is uncountable but still of lower dimension than that of the countable IFS, as is shown in
Section 5.

A different referee pointed out that an alternative approach could be taken to calculating the di-
mension of the attractor following Ngai and Wang [20], by showing the IFS to be of finite type.
This approach was originally suggested by Lalley [16, 15] for one-dimensional IFSs; it consists in
constructing an incidence matrix which accounts for different types of neighbourhoods and comput-
ing its Perron-Frobenius eigenvalue. It is worth noting that they consider the following example:
φ1(x, y) = (ωx, ωy), φ2(x, y) = (ωx+ ω2, ωy), φ3(x, y) = (ω

2x, ω2y + ω) [20, Example 5.3 and
Figure 5.2]. In this example one could also compute the dimension of the attractor by using an infinite
IFS; moreover, unlike the golden gasket, the corresponding infinite IFS produces exactly the same
attractor as the finite one, which simplifies computations.

We believe the approach of [20] could be particularly useful for computing dimH(Sλ) when λ−1

is a general Pisot number. One advantage of the method we use is that the analysis also constructs the
set of uniqueness; that is, points that have a unique symbolic address (see Definition 5.3 and Figure 5
below).

5. PROOF OF THEOREM 4.4

We now give a rigorous proof of Theorem 4.4, using the fact that the attractor almost coincides
with the attractor for an infinite IFS which satisfies the open set condition, and relying on some results
about such systems [17]. We begin with an elementary lemma. Recall that the multinacci number ωm
is the unique root of tm+1 − 2t+ 1 lying in ( 12 ,

2
3).

Lemma 5.1. For each integer m ≥ 2, let τm ∈ (0, 1/2) be the smaller positive root of 3tm+1−3t+1,
and σm ∈ (0, 1) the smaller positive root of 2tm − 3t+ 1. Then

1
3 < τm < σm < ωm < 2

3 .

Consequently
log τm
logωm

>
log σm
logωm

> 1.

Furthermore, limm→∞ τm = limm→∞ σm =
1
3 .

Proof. Let pm = 3tm+1 − 3t + 1 and qm = 2tm − 3t + 1. Notice that the derivatives of pm and qm
are monotonic on the interval [0, 1], so that each have at most two roots on that interval. Note also that
pm(ωm) < 0 and qm(ωm) < 0. Since pm(1) = 1 and qm(1) = 0 and pm(13) > 0 and qm(13) > 0 it
follows that 13 < τm < ωm and 1

3 < σm < ωm.
Finally, pm(σm) = 3σm

(

3σm−1
2

)

− 3σm+1 = 1
2(3σm− 1)(3σm− 2) < 0, so that σm > τm. The

limits are clear from the definition. ¤

Definition 5.2. An alternative definition of Sλ is as follows (see, e.g., [4]): to any ε ∈ Σ∞ there
corresponds the unique point xε = limn→∞ fε0 . . . fεn(x0) ∈ Sλ. This limit does not depend on
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ω22

ω32

(a) 3 trapezia (shaded)

ωn2

ωn+12

(b) decomposition of a trapezium at
level n: 1 hole, 1 triangle and 2
(smaller) trapezia

FIGURE 4. Decomposing the golden gasket (λ = ω2)

the choice of x0; we call ε an address of xε. Note that a given x ∈ Sλ may have more than one
address—see Proposition 5.5 below.

Definition 5.3. Let Uλ denote the set of uniqueness, i.e.,

Uλ = {x ∈ ∆ | ∃!(ε0, ε1, . . . ) : x = xε} .
In other words, Uλ is the set of points in Sλ, each of which has a unique address. These sets seem to
have an interesting structure for general λ’s, and we plan to study them in subsequent work. Note that
in the one-dimensional case (fj(x) = λx+ (1− λ)j, j = 0, 1) such sets have been studied in detail
by P. Glendinning and the third author in [10].

In the course of the proof of this theorem, we also prove the following

Theorem 5.4. The set of uniqueness Uωm is a self-similar set of Hausdorff dimension

dimH(Uωm) =
log σm
logωm

,

where σm is defined in Lemma 5.1. In particular, σ2 = 1/2.

Proof of Theorems 4.4 and 5.4. The proof proceeds by showing that there is another IFS (an infi-
nite one) which does satisfy the OSC, and whose attractor Aωm satisfies Sωm = Aωm ∪ Uωm , with
dimH(Uωm) < dimH(Aωm). It then follows that dimH(Sωm) = dimH(Aωm), and the latter is given
by a simple formula.

The proof for m = 2 differs in the details from that for m > 2 so we treat the cases separately.
Note that within this section we assume the triangle ∆ has unit side.

The case m= 2. Refer to Figure 4 for the geometry of this case. Begin by removing from the
equilateral triangle ∆ the (open) central hole H0, the three (closed) triangles of side ω22 that are the
images of the three f 2j (j = 0, 1, 2), and three smaller triangles of side ω32 that are the images of
fif

2
j = fjf

2
i . This leaves three trapezia, whose union we denote T1. See Figure 4 (a). For this part of

the proof we write Fk = fif
2
j (where i, j, k are distinct).



GOLDEN GASKETS 17

Each of the three trapezia is decomposed into the following sets: a hole (together forming H1),
an equilateral triangle of side ω42 , and two smaller trapezia—smaller by a factor of ω2. The three
equilateral triangles at this level are the images of f1f0f22 = f1F1 (for the lower left trapezium), f2F2
(lower right) and f0F0 (upper trapezium). See Figure 4 (b). At the next level the equilateral triangles
are the images of fjfiFi with i 6= j, and at the following fkfjfiFi with k 6= j and j 6= i.

This decomposition of the trapezia is now continued ad infinitum. At the nth level there are 3 ·2n−1
holes forming Hn, the same number of equilateral triangles that are images of similarities by ωn2 and
twice as many trapezia. Note that at each stage, the holes consist of those points with no preimage,
the equilateral triangles of those points with two preimages and the trapezia of points with a unique
preimage.

LetAω2
be defined as the attractor corresponding to the equilateral triangles in the above construc-

tion; thus, it is the attractor for the infinite IFS with generators

(5.1)
{

f2j , Fj , fjFj , fjfiFi, fkfjfiFi, . . .
}

,

where the general term is of the form fj1fj2 . . . fjnFjn with adjacent jk different from each other.
Notice that this IFS satisfies the open set condition. In [17] a deep theory of conformal IFS (which
our linear one certainly is) has been developed. From this theory it follows that, similarly to the finite
IFSs, the Hausdorff dimension s of the attractor A (henceforward we drop the subscript ‘ω2’) equals
its similarity dimension given by ωs2 = τ , where in our case, τ is a solution of

1 = 3τ2 + 3τ3 + 3τ4
∞
∑

n=0

2nτn.

This equation has a unique positive solution and is equivalent to (3τ 3 − 3τ +1)(τ +1) = 0 provided
τ < 1/2 (the radius of convergence of the above power series). Thus, τ is the solution of

3τ3 − 3τ + 1 = 0,
with τ < 1/2, in agreement with the value of the dimension of S given in the theorem.

Since this IFS is contained in the original IFS (generated by the fi), so A ⊂ S .
Now let U ′ be the limit of the sequence of unions of trapezia defined by the above procedure: write

U (n) for the union of the 3 · 2n−1 trapezia obtained at the nth step, then U (n+1) ⊂ U (n) and

U ′ =
⋂

n>0

U (n).

By construction, U ′ is a connected self-similar Cantor set, with dimension

(5.2) dimH(U ′) = − log 2

logω2
.

This follows from the standard arguments, since #U (n) ³ 2n and diamU (n) ³ ωn2 .
We claim that

U ′ ∪
∞
⋃

n=1

2
⋃

k=0

f2nk (U ′) = U .

To see this, we turn to the addresses in the symbol space Σ. In view of the relation fif
2
j = fjf

2
i ,

each x ∈ S that has multiple addresses, must have εj−1 6= εj , εj = εj+1 for some j ≥ 1. By
our construction, this union is the set of x’s whose addresses can have equal symbols only at the
beginning. Thus, it is indeed the set of uniqueness.
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FIGURE 5. The set of uniqueness Uω2
superimposed on a grey Sω2

.

Since this is a countable union of sets of the same dimension, it follows that dimH U = dimH U ′

(see, e.g., [8]). We claim that

(5.3) S = A ∪ U
with the union being disjoint. The result (for ω2) then follows, since dimA > dimU .

To verify (5.3), we observe that from (5.1) it follows that x ∈ A if and only if x = xε for some
ε for which there are two consecutive indices which coincide and do not coincide with the previous
one, i.e., A ∩ U = ∅. Conversely, every point in S with more than one address lies in A. Thus, apart
from the three vertices of ∆, S \ A consists of the points with a unique address, and expression (5.2)
proves Theorem 5.4 for the case m = 2.

The case m≥ 3. The overall argument is similar to that for m = 2, except that the trapezia are
replaced by hexagons, and the recurrent structure is consequently different (more complicated).

We begin in the same way, by removing the central hole H0, and decomposing the remainder into
3 small triangles of side ωmm at the vertices—the images of fmj , 3 smaller triangles of side ωm+1m on
each side—images of fifmj , and 3 remaining hexagons (instead of trapezia).

These hexagons have sides of length ωmm, (1 − ωm − ωmm), ω
m+1
m , (2 − 3ωm), ωm+1m and (1 −

ωm−ωmm) (in cyclic order). We call hexagons similar to these, ω-hexagons, and this one in particular
an ω-hexagon of size ωm. Notice that these ω-hexagons have a single line of symmetry, and the size
refers to the length of the smaller of the two sides that meet this line of symmetry.
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ωk3

ωk+13 ωk+13

(a) m = 3

2 holes, 4 triangles and 4 ω-hexagons

ωk4

ωk+14
ωk+14

(b) m = 4

3 holes, 7 triangles and 6 ω-hexagons

FIGURE 6. Decomposing an ω-hexagon of size ωkm

Each ω-hexagon of size ωkm can be decomposed into: (m− 1) holes of various sizes down the line
of symmetry; (3m−5) equilateral triangles, 3 each of sizes ωk+2m , ωk+3m , . . . , ωk+m−1

m and one of size
ωk+mm ; this leaves 2(m − 1) ω-hexagons, 2 each of sizes ωk+1m , ωk+2m , . . . , ωk+m−1

m (see Figure 6 for
the cases m = 3 and 4).

In the same way as in the case m = 2, the equilateral triangles occurring in this decomposition
are the images of the original triangle ∆ under certain similarities arising in the IFS generated by
{f0, f1, f2}. This sub-IFS defines a countable IFS which satisfies the OSC, permitting us again to
compute the dimension of the corresponding attractor Aωm . We use generating functions to compute
this dimension.

Each hexagon of size ωkm decomposes into 2 hexagons of sizes ωk+1m , . . . , ωk+m−1
m . Thus, each

hexagon of size ωkm arises from decomposing hexagons of sizes ωk−m+1m . . . ωk−1m . Let hk be the
number of hexagons of size ωkm that appear in the procedure. Then, hk = 0 for k < m, hm = 3 and
for k > m,

hk = 2 (hk−m+1 + · · ·+ hk−1) .

Applying the usual generating function approach, let Q =
∑∞

k=1 hkt
k. Then

Q = 3tm + 2
∞
∑

k=m+1

m−1
∑

r=1

hk−rt
k

= 3tm + 2
m−1
∑

r=1

tr
∞
∑

k=m+1

hk−rt
k−r

= 3tm + 2Q
m−1
∑

r=1

tr.
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Finally, provided |t| < rm the radius of convergence of the power series,

Q =
3tm(1− t)

1− 3t+ 2tm .

Note from its definition in Lemma 5.1 that rm = σm. Now for the triangles: each ω-hexagon of
size ωkm gives rise to 3 triangles of sizes ωk+2m , . . . , ωk+m−1

m and one of size ωk+mm . Let there be pk
triangles of size ωkm. Then pk = 0 for k < m, pm = pm+1 = 3, and for k > m+ 1,

pk = hk−m + 3(hk−m+1 + · · ·+ hk−2).

Let P =
∑∞

k=0 pkt
k. Then

P = 3tm + 3tm+1 + tmQ+ 3
(

t2 + · · ·+ tm−1)Q

= 3tm
1− 2t+ tm+1

1− 3t+ 2tm ,

again provided |t| < σm.
The formula for the Hausdorff dimension of the infinite IFS is just s = log τm/ logωm, where by

[17, Corollary 3.17], τm is the supremum of all x such that
∑

k pkx
k < 1, i.e., the (unique) positive

root of
∑

k pkx
k = 1. In other words, it is the unique solution in (0, σm) of

3τm
1− 2τ + τm+1

1− 3τ + τm
= 1.

Rearranging this equation, one finds

(3τm+1 − 3τ + 1)C = 0,
where C is the polynomial C = 1 + t+ · · ·+ tm, none of whose roots are positive. It follows that

dimH(Aωm) = log τm/ logωm.

It remains to show that dimH(Aωm) = dimH(Sωm). The argument is similar to that for ω2: it suffices
to evaluate the growth of the number of hexagons, which follows from the generating functionQ found
above. Indeed, the growth of the coefficient is asymptotically hk ³ σ−km since σm is the smallest root
of the denominator of Q (the radius of convergence mentioned above). Thus, by Lemma 5.1,

dimH(Uωm) =
log σm
logωm

<
log τm
logωm

= dim(Aωm).

The argument showing that Uωm is indeed the set of uniqueness is analogous to the case m = 2, so
we omit it. Theorems 4.4 and 5.4 are now established. ¤

Thus, we have shown that “almost every” point of Sωm (in the sense of prevailing dimension) has
at least two different addresses. It is easy to prove a stronger claim:

Proposition 5.5. Define Cλ as the set of points in Sλ with less than a continuum addresses, i.e.,

Cλ :=
{

x ∈ Sλ : card{ε ∈ Σ∞ : x = xε} < 2ℵ0

}

.

Then

dimH(Cωm) = dimH(Uωm) < dimH(Sωm).
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Proof. Let x = xε; if there exist an infinite number of k’s such that εk = ik, εk+1 = · · · = εk+m = jk
with ik 6= jk, then, obviously, x has a continuum of addresses, because one can replace each ikjmk by
jki

m
k independently of the rest of the address.
Thus, x = xε ∈ Cωm only if the tail of ε is either j∞ for some j ∈ Σ (a countable set we discard)

or a sequence ε
′ such that xε

′ ∈ U ′
ωm . Hence Cωm contains a (countable) union of images of U ′

ωm ,
each having the same Hausdorff dimension, whence dimH(Cωm) = dimH(Uωm). ¤

We conjecture that the same claim is true for each λ ∈ (1/2, 1). For the one-dimensional model
this was shown by the third author [23]. Note that combinatorial questions of such a kind make sense
for λ ≥ 2/3 as well, since here the holes are unimportant.

6. THE CONVERSE AND A NUMBER-THEORETIC APPLICATION

The aim of this section is to show that Theorem 3.3 can be reversed, i.e., the choice of multinacci
numbers was not accidental. We are going to need some facts about λ-expansions of x = 1.

Note first that for every λ ∈ (1/2, 1) there always exists a sequence (ak)∞1 (called a λ-expansion)
that satisfies

1 =
∞
∑

k=1

akλ
k.

The reason why there is always some λ-expansion available is because one can always take the greedy
expansion of 1, namely, ak = [λ−1T k−1

λ (1)], where [·] stands for the integral part, and Tλ(x) =
x/λ− [x/λ] (see, e.g., [21]).

There is a convention in this theory that if the greedy expansion is of the form (a1, . . . , aN ,
0, 0, . . . ), then it is replaced by (a1, . . . , aN − 1)∞ (this clearly does not change the value). For
instance, the greedy expansion of 1 for λ = ω2 is 101010 . . . , and more generally, if λ = ωm, then
a = (1m−10)∞.

Remark 6.1. As is well known [21], if a = (ak)
∞
1 is the greedy λ-expansion of 1, then

∞
∑

k=n+1

akλ
k ≤ λn

for any n ≥ 0, and the equality holds only if a is purely periodic, and an+j ≡ aj for each j ≥ 1.

Lemma 6.2. Let a = (ak)
∞
1 be the greedy λ-expansion of 1. Unless λ is a multinacci number, there

is always an n such that an = 0, an+1 = 1 and
∑∞

k=n+1 akλ
k < λn.

Proof. It follows from Remark 6.1 that unless each 0 in a is followed by the string of L 1’s for some
L ≥ 1 (which is exactly multinacci), the condition in question is always satisfied. ¤

Theorem 6.3. If, for some λ ∈ (1/2, 2/3), the attractor Sλ is totally self-similar, then λ = ωm for
some m ≥ 2.

Proof. Assume λ is such that Sλ is totally self-similar. By definition of total self-similarity, fε(H0)∩
Sλ = ∅ for any ε, i.e., the claim of Proposition 3.1 must be true. Therefore, it would be impossible
that, say, f0(∆) had a “proper” intersection with fε(H0) for some ε (see Figure 7)—should this occur,
a part of ∂fε(∆) would have a hole, whence ∂∆ 6⊂ Sλ, which contradicts Proposition 2.10.

Let us make the necessary computations. Put, as above, P = (2λ − 1, 1 − λ, 1 − λ); then fε(P )

has the x-coordinate equal to (2λ− 1)λn + (1− λ)
∑n−1
0 akλ

k (just apply Lemma 2.3). Assume we
have a situation exactly like in Figure 7. As is easy to see, f0(∆) = {x ≥ 1 − λ}, this x-coordinate
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f0(∆)

fε(P )

FIGURE 7. The pattern that always occurs unless λ = ωm

must be less than 1 − λ, whereas the x-coordinate of the side that bounds fε(H0) must be less than
1− λ. Thus,

(6.1)
2λ− 1
1− λ

λn < 1−
n−1
∑

1

akλ
k < λn

(the sum begins at k = 1, because obviously ak must equal 0). Thus, we only need to show that if
λ ∈ (1/2, 2/3) and not multinacci, then there always exists a 0-1 word (a1 . . . an−1) such that (6.1)
holds.

Assume first that 1/2 < λ < ω2 and not a multinacci number. Let a be the greedy λ-expansion
of 1; then by Lemma 6.2, there exists n ≥ 1 such that an = 0, an+1 = 1, and 1 −∑n−1

0 akλ
k =

∑∞
n+1 akλ

k < λn.
Consider the left hand side inequality in (6.1). Since an+1 = 1, we have

∞
∑

n+1

akλ
k ≥ λn+1 >

2λ− 1
1− λ

λn,

as λ < ω2 is equivalent to λ2 + λ < 1, which implies λ > (2λ− 1)/(1− λ).
Assume now λ > ω2 (recall that there are no multinacci numbers here). Put n = 2 and a1 = 1.

Then (6.1) turns into
2λ− 1
1− λ

λ2 < 1− λ < λ2,

which holds for λ ∈ (ω2, λ∗), where λ∗ is as in Proposition 2.7, i.e., the root of 2x3−2x2+2x−1 = 0.
Thus, it suffices to consider λ ∈ [λ∗, 2/3). By Proposition 2.7, there are no holes in f0(∆)∩f1(∆)

at all, which means that Sλ cannot be totally self-similar. The theorem is proved. ¤

Remark 6.4. Figure 8 shows consequences of Sλ being not totally self-similar. We see that the whole
local structure gets destroyed.

Theorem 6.3 has a surprising number-theoretic application (recall the definition of `(θ) is given in
Theorem 3.2):

Corollary 6.5. Let θ ∈ (3/2, 2). Then either θ−1 is multinacci or

(6.2) `(θ) ≤ 2

2 + θ
<
1

θ
.

Proof. Assume λ = θ−1 6= ωm for any m ≥ 2. From Theorem 6.3 it follows that our method of
proving Proposition 3.1 simply would not work if λ was not a multinacci number. Recall that our
proof was based on Theorem 3.2 which must consequently be wrong if λ is not multinacci.
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FIGURE 8. The attractor for λ = 0.59. Observe that the holes up to the second
“layer” seem to be intact, but start to deteriorate starting with the third “layer”.

Moreover, with κ := θ`(θ) and by the same chain of arguments as in the proof of Proposition 3.1,
we come at the end to the inequality

2(1− κλ) ≥ κ

(in the original proof we had it with κ = 1) which is equivalent to `(θ) ≤ 2
2+θ . Thus, if this inequality

is not satisfied, then the system of inequalities (3.2) does not hold either, which leads to the conclusion
of Proposition 3.1 and consequently yields Theorem 3.3—a contradiction with Theorem 6.3. ¤

Remark 6.6. As is well known since the pioneering work [9], if θ is a Pisot number (an algebraic
integer > 1 whose Galois conjugates are all less than 1 in modulus), then `(θ) > 0 (note that the ω−1

m

are known to be Pisot). Furthermore, if θ is not an algebraic number satisfying an algebraic equation
with coefficients 0,±1, then by the pigeonhole principle, `(θ) = 0. There is a famous conjecture that
this is also true for all algebraic non-Pisot numbers.

Thus (modulo this conjecture), effectively, the result of Corollary 6.5 is of interest if and only if
θ is a Pisot number. The restriction θ > 3/2 then is not really important, because in fact, there are
only four Pisot numbers below 3/2, namely, the appropriate roots of x3 = x + 1 (the smallest Pisot
number), x4 = x3 + 1, x5 − x4 − x3 + x2 = 1 and x3 = x2 + 1.4 The respective values of `(θ) for
these four numbers are approximately as follows: 0.06, 0.009, 0.002, 0.15 (see [3]), i.e., significantly
less than the estimate (6.2).

Thus, we have proved

4In fact, there is just a finite number of Pisot numbers below 1+
√

5

2
, and they all are known [2].
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Proposition 6.7. For each Pisot number θ ∈ (1, 2) that does not satisfy xm = xm−1+ xm−1+ · · ·+
x+ 1 for some m ≥ 2,

`(θ) ≤ 2

2 + θ
.

For the history of the problem and the tables of `(θ) for some Pisot numbers θ see [3].

Remark 6.8. We are grateful to K. Hare who has indicated the paper [28] in which it is shown that
l(q) < 2/5 for q ∈ (1, 2) and q−1 not multinacci. This is stronger than (6.2) but the proof in [28] is
completely different, rather long and technical, so we think our result is worth mentioning.

7. HIGHER-DIMENSIONAL ANALOGUES

The family of IFSs we have been considering consists of three contractions in the plane, with
respective fixed points at the vertices of a regular 3-simplex in R2. In Rd it is natural to consider d+1
linear contractions with fixed points at the vertices of the d+ 1-simplex:

fj(x) = λx+ (1− λ)pj , (j = 0, . . . , d).

For example, when d = 3 the four maps are contractions towards the vertices of a regular tetrahedron
in R3.

Using the analogous barycentric coordinate system (xj is the distance to the j th (d−1)-dimensional
face of the simplex), the maps f0, . . . , fd are given by matrices analogous to those in Lemma 1.3. The
algebra of these maps is directly analogous to the family of three maps we have considered so far.
The proofs of the following results are left as exercises (most are extensions of corresponding results
earlier in the paper).

(1) If λ ∈ [ d
d+1 , 1), then Sλ = ∆, so there are no holes in the attractor.

(2) If λ ≤ 1/2 the IFS satisfies the Open Set Condition, and the attractor is self-similar with Hausdorff
dimension

dimH(Sλ) =
log(d+ 1)

− log λ .

(3) Since the (d + 1)-simplex contains the d-simplex at each of its faces, for any fixed λ we have
Sλ(d+ 1) ⊃ Sλ(d) and consequently,

dimH(Sλ(d+ 1)) ≥ dimH(Sλ(d)).

(4) If λ = ωm (the multinacci number), then the attractor is totally self-similar, and the dimension s
satisfies

s =
log τm,d

logωm

where τm,d is the largest root of 12d(d+ 1)t
m+1 − (d+ 1)t+ 1 = 0. See Table 7.1 for some values.

One can see from this that, for fixed m and large d, the Hausdorff dimension increases logarithmically
in d.

(5) If λ < (d + 1)−1/d, then—similarly to Proposition 4.3—Sλ has zero d-dimensional Lebesgue
measure, but we do not know what happens for λ ∈

(

(d+ 1)−1/d, d
d+1

)

.
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d ω2 ω3 ω4 ω5 ω6 . . . 1/2
2 1.93 1.73 1.65 1.62 1.60 . . . 1.583
3 2.61 2.23 2.10 2.05 2.02 . . . 1.999
4 3.13 2.61 2.45 2.38 2.35 . . . 2.322
5 3.54 2.92 2.72 2.65 2.62 . . . 2.585
6 3.89 3.18 2.96 2.88 2.84 . . . 2.807

TABLE 7.1. Hausdorff dimension of golden d-gaskets

8. FINAL REMARKS AND OPEN QUESTIONS

(1) The fact that the triangle is equilateral in our model is unimportant. Indeed, given any three non-
collinear points p

′
0,p

′
1,p

′
2 in the plane there is a (unique) affine map A that maps each p

′
j to the

corresponding pj we have been using. For given λ let S ′
λ be the attractor of the IFS defined by (1.1)

with the p
′
j in place of the pj . Then it is clear that Sλ = A(S ′

λ). For a given value of λ all the attractors
are therefore affinely equivalent, and in particular have the same Hausdorff dimension (when this is
defined).

(2) The sequence of golden gaskets Sωm provides confirmation of some observations regarding the
dimension of fractal sets generated by IFSs where the Open Set Condition fails. In particular, a
theorem of Falconer [6] states that given linear maps T1, . . . , Tk on Rn of norm less than 1/3, there
is a number δ such that the attractor F (a1, . . . , ak) of the IFS {T1 + a1, . . . , Tk + ak} has Hausdorff
dimension δ for a.e. (a1, . . . , ak) ∈ Rnk. In the case that the Tj are all the same similarity by a factor
of λ, the dimension is given by δ = δ(λ) = − log k/ log λ.

It has been pointed out [27] that the upper bound 1/3 can be replaced by 1/2, but that the theorem
fails if the upper bound is replaced by 1/2 + ε for any ε > 0 [25]. This can also be seen from the
golden gaskets Sωm : given ε > 0 there is an m such that 1/2 < ωm < 1/2 + ε, and the dimension of
the attractor dimH(Sωm) < δ(ωm).

(3) If one endows each of the maps fi with probability 1/3, this yields a probabilistic IFS. Its general
definition can be found, for example, in the survey [4]. Then Sλ becomes the support for the invariant
measure; the question is, what can be said about its Hausdorff dimension? In particular, we conjecture
that, similarly to the 1D case (see [1, 24]), it is strictly less than dimH(Sλ) for λ = ωm.

(4) The main problem remaining is to determine for which λ the attractor Sλ has positive Lebesgue
measure and for which zero Lebesgue measure. The numerics suggests the following

Conjecture. (1) For each λ ∈ (ω2, 2/3) the attractor Sλ has a nonempty interior (recall that we know
this for λ ∈ [λ∗, 2/3)—Proposition 2.7).
(2) For each λ ∈ (1/

√
3, ω2) it has an empty interior. Note that in a recent paper by T. Jordan [12]

it is shown that for a.e. λ ∈ (0.5853, λ∗) the attractor Sλ has Hausdorff dimension 2, and it is now
believed that for a.e. λ from an interval containing ω2 the Lebesgue measure of Sλ is positive.

(5) The same range of problems can be considered for any collection of similitudes fj(x) = λx +

(1 − λ)pj in Rd, where the pj are vertices of a (convex) polytope Π. For instance, are there any
totally self-similar attractors if Π is not a simplex and the OSC fails? This question seems to be worth
studying even for d = 2 with Π a regular n-gon with n ≥ 5.
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