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Abstract

In this paper we present a random graph model to explain the network
structure of boards of directors. We investigate the conditions under which
corporate boards can be said to be a “small-world”. Our empirical results
show that the random graph model is remarkably good at explaining board
structure and connectedness in the United States, the United Kingdom
and Germany. Although there are small-world traits such as “clustering”
and “short-paths” in the corporate world, they are no more pronounced
than would be expected by chance in a statistically similar, but randomly
assembled corporate universe. Finally, our results show the existence of
positive degree correlation: directors who sit on many boards do so in the
company of other directors who sit on many boards. This result helps
explain the distribution of board interlocks.

1 Introduction

The board of directors is central to corporate governance — it is the prime deci-
sion making body in the public corporation ((Hermalin & Weisbach (2003)). An
important feature of such boards is that they are often connected to each other
by means of a shared director. As Fama & Jensen (1983) remark: “Most outside
directors of open corporations are either managers of other corporations or im-
portant decision agents in other organizations”. Such network connectivity has
important economic consequences. For instance, boards that are “interlocked”
in this fashion facilitate the diffusion of executive compensation practices — Hal-
lock (1997). In addition, such networks promote the adoption of anti-takeover
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ester University for comments and discussions during the preparation of this paper. We are
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School for financial support.



mechanisms such as poison pills as well as the spread of golden parachutes —
Davis & Greve (1997).

This paper contributes to the corporate governance literature in the following
ways. First, we present a random graph model of the board of directors. The
model illustrates the conditions under which one can identify a “small-world ”.
The idea of a small-world is a potentially ambiguous so to fix ideas we follow the
conventions introduced by Newman, Strogatz & Watts (2001). A small-world
is characterized by two properties. First, there is high network transitivity or
clustering. This is the propensity for vertex pairs (e.g. boards) to be connected
if they share a mutual neighbor. Second, path lengths or distances between
vertices (e.g. boards) are relatively short. This means that any two vertices
can be reached in a small number of steps. However, the presence (or not) of a
small-world depends critically on the standards to which the computed statistics
(e.g. the clustering coefficient) are compared. In short, when one hears that a
particular social world is small, one should ask; “Small compared to what?” We
address this issue.

Our second contribution is to test the random graph model using board
data from three separate economies: the United States, the United Kingdom
and Germany. These countries have very different corporate governance ar-
rangements and so provide a rich array to evaluate the predictions arising from
the random graph model. Corporate boards in the United States are unitary in
structure meaning that insiders (executives) and outsiders (monitors) are mem-
bers of the same board. Typically insiders represent a tiny fraction of the total
board and the posts of chairperson and chief executive officer are usually held
by the same person — Core, Holthausen & Larcker (1999). Boards in the United
Kingdom are also unitary in structure comprising executive (inside) and non-
executive (outside) members. However, the fraction of insiders on the board is
generally larger compared with the United States and the leadership roles of
CEO and chairperson are typically held by different people — Conyon & Mur-
phy (2000). German companies are governed by a two-tier board structure. The
first tier is the supervisory board and is made up of shareholder and employee
representatives as well as other stakeholders such as bank representatives. The
supervisory board provides the decision control function in German companies.
The second tier is the management board which is equivalent to the executive
directors in the United Kingdom or the United States. The chairperson of the
management board is not a member of the supervisory board — Franks & Mayer
(2001).1 We test whether the random graph model we develop in Section 2 ad-
equately describes the social network of corporate boards in these three diverse
economies.

Our paper differs from previous studies in a number of respects. Most previ-
ous research on the network structure of boards has focused on the phenomenon
of the interlocking director rather than on small-world structures per se. Dooley

IHermalin & Weisbach (2003) survey the economics of the board of directors. Recent
board studies using UK data include Dahya, McConnell & Travlos (2002), Young (2000), and
Peasnell, Pope & Young (2003). For Germany see Franks & Mayer (2001) and Conyon &
Schwalbach (2000).



(1969) finds that interlocking boards are common place in US firms in 1935 and
1965. Similarly, Hallock (1997) presents evidence, based on a sample of 602
US companies in 1992, that 20 percent are any-employee interlocked (defined
as a current or retired employee from firm A sits on the board of firm B and a
current or retired employee from firm B who sits on the board of firm A) and
8 percent of firms are CEO interlocked. Hallock (1997) also demonstrates a
positive correlation between CEO pay and the presence of an interlocked board.
Booth & Deli (1996) report the average number of off-board directorships held
by CEOs in over 400 US companies in 1989, is 1.87. The median and maximum
values are 2 and 8 respectively. They also show that the number of outside
directorships held by the CEO is negatively correlated with firm growth op-
portunities measured by Tobin’s Q (because the opportunity cost of spending
time at another firm is high). Studies of this type illustrate the importance of
interlocking directors in the US but do not explicitly focus on the small-world
structure of the corporate board network.

Davis, Yoo & Baker (2003) compare the small world characteristics (cluster-
ing and path length measures) to those one would expect from a family of ran-
dom graphs originally introduced in Erdés & Rényi (1959) and Erdés & Rényi
(1960). But, as we will illustrate in Section 2 below, the structure of corporate
boards imposes constraints on the sorts of social network to which they can give
rise. For example, the finiteness of the working year means that even the most
energetic of directors can serve on, at most, a few dozen boards. More gener-
ally, the distributions of degree in the network of corporate directorship—the
distributions of the number of directors on a board and the number of boards
on which a typical director serves—influence strongly the expected values of
small-world measures.?

The rest of this paper is organized as follows: Section 2 outlines a random
graph model of the network of corporate boards; Section 3 describes the data
and provides empirical results and finally, in Section 4 we offer some concluding
remarks.

2 A random graph model of corporate board
networks

In this section we define terms and review briefly some important features of
graph theory as applied to social networks. We also introduce several families
of random graphs designed to share properties with empirically observed social
networks. Finally, we introduce the analytic machinery of probability generating

2A small set of papers exist on small-world applications to other corporate governance
issues. Kogut & Walker (2001) study the small world of ownership in Germany between 1993
and 1997. The focus of their paper is on ties between firms brought about by a common
owner rather than a shared director. Similarly, Baum, Shiplov & Rowley (2003) examine the
small-world of Canadian investment banks and their membership of underwriting syndicates
rather than shared directors. These studies also share a common feature that they compare
small-world characteristics to Erdés & Rényi (1959) type random graphs. As noted we outline
an alternative standard.



functions, a circle of techniques that will enable us to decide whether the world
of corporate directors appears “smaller” than one would expect.

2.1 Basic terminology

Figure 1: Two simple graphs. The one on the left is complete while the one on
the right has two connected components.

A network (or graph) is a set of items termed vertices (or nodes) with con-
nections between them called edges. At this level of abstraction graphs can
be used to represent a vast range of phenomena (from networks of marriage
alliances in Renaissance Florence to interactions in gene regulatory networks
to connections between computers in the internet or between the pages of the
World Wide Web). We restrict our attention to networks derived from the world
of corporate boards of directors and adopt the following conventions: our nodes
will be of two types, either boards or the directors who sit on them. Edges
will represent, among other things, membership of a board. We will denote the
number of vertices in a graph by N and the number of edges by M. Two vertices
will be said to be adjacent if they are connected by an edge so, for example, the
nodes numbered 1 and 2 in Figure 1 are adjacent, while those numbered 3 and
5 are not.

The concept of degree will prove especially important. It is the number
of edges connected to a vertex, so all the vertices in the left part of Figure 1
have degree 5. We will use the symbol k; for the degree of the j-th vertex
and z for the average degree of all the vertices in a graph. Next we define
the connected component associated with a vertex: it is that part of the graph
consisting of the vertex itself and all those others that can be reached by paths
running along the edges of the graph. In Figure 1 the graph at left has a single
connected component while the one at right, the one with colored, numbered
vertices, has two connected components: one associated with vertices 1, 2, 3
and 5 and another associated with vertices 4, 6, 7, 8 and 9.

A geodesic path (or just geodesic) between two vertices is a shortest path (in
the sense of traversing the fewest edges) that connects them. Note that there
may be more than one geodesic path between a pair of vertices, as in the right



part of Figure 1 where both the paths 4-6-8 and 4-7-8 connect vertices 4 and
8 and both paths involve two edges. The distance between two vertices is the
number of edges in a geodesic path connecting them. The notion of distance
here is intrinsic to the graph and does not depend on any particular plot or
image of the graph. The distance between two nodes is undefined if they lie in
different connected components.

A graph is said to be simple if it has, at most, one edge between each pair
of vertices and no edges connecting a vertex to itself. And, finally, a simple
graph is called complete if it has an edge between every pair of vertices (such as
the one at left in Figure 1). A much more extensive discussion of graphs, their
representation, manipulation and application to the social sciences appears in
Wasserman & Faust (1994).

2.2 Graphs of boards and directors

Data about boards of directors present an immediate problem: how should one
draw a graph to represent it? The issue is that one could treat the “board”as
the basic unit of analysis and form a graph whose vertices represent boards
and whose edges represent shared directors. But alternatively, one could focus
on the “board”and make a (generally much larger) graph whose vertices rep-
resent directors and whose edges represent shared board memberships. There
is no obvious way to choose between these two representations and so most
authors simply analyze both. Indeed, we will do the same, reporting results
for a “board graph” and a “director graph” according to whether the vertices
represent boards or directors.

But the ambiguity about representation arises naturally from the structure
of the data: there really are two sorts of social entities here, the directors and
the boards, and the network’s edges represent membership of the former in the
latter. The most natural representation of such a network, sometimes called an
affiliation network®, a graph with two sorts of vertices—one each for boards and
directors—that has edges connecting directors with the boards on which they
sit. The result is an example of a bipartite graph: one whose vertices can be
divided into two distinct sets and whose edges only make connections between
the two sets. See Figure 2 for an example.

The board and director graphs mentioned above now appear as “projections”
of the bipartite graph onto one of its two sets of vertices. There is a small
potential ambiguity in passing from the bipartite graph to these projections.
Suppose that a pair of boards share two or more directors: when preparing
the board-vertex projection should one draw multiple edges between these two
boards? In practice this issue affects only a tiny fraction? of the edges and so

3 Alternative vocabulary abounds: affiliation networks have also been called membership
networks or hypernetworks and are examples of two-mode networks. See Chapter 8 of Wasser-
man & Faust (1994) for an extensive discussion of such networks and their representation.

4In the board-vertex projection of the network of UK directorships discussed in Section 3
around 92.4% of the connections between boards involved only a single shared director and
99.5% of interlocked boards shared 3 or fewer directors.



22805 23935

Figure 2: Bipartite graph representing the neighborhood of Adobe Inc.

we ignore it, drawing only a single edge for each interlock and so producing
projections that are simple graphs.

The bipartite representation of the social network of boards of directors turns
out to be important. We will analyze the two projections separately, but when
addressing whether there is a small-world or not, the bipartite structure of the
underlying affiliation network will bear strongly on the related question “Small
compared to what?”

Figure 2 shows a small part of the social network of corporate governance
connected to the board of Adobe Systems Inc., a software house whose board has
eight members. The top part of the figure is a bipartite graph that includes data
for Adobe and those boards with which it is interlocked (that is, those boards
with whom Adobe shares a director): the three elliptical nodes at the very top
of the figure represent boards and are labelled with ticker symbols. In addition
to the one for Adobe (ticker symbol ADBE, a member of the NASDAQ) these
are nodes for Synopsis Inc. (SNPS; a member of the NASDAQ) and Knight
Ridder Inc. (KRI, a member of the NYSE). The rest of the nodes in the graph
are shown as small filled circles and are labelled with numbers. They represent
directors and the numbers are IDs assigned by the The Corporate Library. To
be concrete, director (vertex) 29136 is both a member of ADBE and KRI while
director 13201 is a member of both ADBE and SNPS.

The lower part of the figure shows the two projections of the bipartite graph.
The one appearing in the lower left part of the figure has the boards as its
vertices and edges connecting boards that share a director. The graph at lower



right has directors for vertices and includes an edge between two directors if
they sit on the same board. This second projection is striking: it consists of
three complete graphs—one for each board—linked together by the two directors
(out of a total population of 25) responsible for the interlocks. As we will see
below, the fact that the director graph consists of many complete graphs linked
together by comparatively rare shared directors will mean that the network
of directors appears “highly clustered” in the sense used in the small-world
literature. But this high degree of clustering arises automatically because of
the way one constructs the board projection: deciding whether the clustering
we actually observe is in any sense unezpectedly large will be one of our main
concerns.

2.3 Characterizing the small-world

In ordinary speech one says “It’s a small world” when, for example, a stranger
met in an airport turns out to know one of your grade school teacher’s kids.
The surprise in such encounters has two aspects: it’s odd enough to find that a
short chain of acquaintance can reach such a long way (you to teacher to kid to
far-flung stranger), but seems odder still when one reflects that one’s circle of
acquaintance is strongly “clustered” or “transitive”. That is, there is a strong
tendency for one’s acquaintances to be acquainted with each other.

Social networks represented as graphs permit one to quantify the two com-
ponents of the small-world surprise. In this paper we adopt the conventions of
Newman (2003) and consider two main kinds of numerical measures: a char-
acteristic length L and a measure of clustering C. These are defined so that
a small-world is characterized by relatively high degree of clustering and by
a short characteristic path length. Whether the world of corporate directors
really is small depends on the standards used to define “relatively high” and
“short” in the previous sentence. As discussed above, the projection onto the
directors in Figure 2 is very highly clustered: all the directors belong to medium-
sized boards and, within these, are connected to every other director. But this
apparently high clustering is just a consequence of the bipartite structure of
the corporate social network: below we will introduce analytic machinery that
permits one to account for such structural biases.

All of the graphs we study arise as projections of bipartite graphs repre-
senting affiliation networks. They may, however, have more than one connected
component and usually do. Typically one component is much larger (in the
sense of containing a vast majority of the vertices) than all the others. The
existence of such a “giant-component” is a much-studied phenomenon in the
theory of random graphs (see, for example, Bollobds (2001) or Alon & Spencer
(2000)). For the moment we need only observe that the small-world statistics,
one of which involves distances between pairs of vertices, only make sense when
measured on a connected component. For the rest of this paper we will restrict
our attention to the largest connected component and write “graph” when we
mean “largest connected component of the graph”.



2.3.1 Typical distances

Half of the small-world phenomenon is that randomly-chosen pairs of vertices
turn out to be unexpectedly close to each other. A graph with N vertices
contains N (N — 1)/2 unordered pairs of vertices. If one imagines the vertices
to be numbered 1, 2, ..., N and defines d; ; to be the distance between vertex
1 and j then the simplest way to characterize a typical distance is to take the
average )

L= N Z di ;. (1)

1<J

The most computationally efficient approaches to calculating distances rely on
Dijkstra’s Single-Source-Shortest-Path algorithm (see e.g. Cormen, Leiserson &
Rivest (2001)), which yields all the distances from a single node to the rest of
the vertices. One employs it for each vertex in turn to get a complete list of the
d; ;. This can be a very computationally expensive business for large graphs,
but the networks studied here are sufficiently modest (the projections whose
nodes are directors have around 11,000 vertices) that we report exact values for
L.

In the network whose nodes are directors L provides a measure of the typical
number links in the shortest chain connecting directors: a rumor or a novel idea
has to pass through, on average, L intermediaries to get from any one director
to any other.

2.3.2 Clustering

There are two commonly used measures of clustering, which is the tendency for
a node’s neighbors to be neighbors in their own right: both are designed to lie
between 0 and 1. A clustering coefficient of 1 means that the graph includes
an edge between every pair of vertices (that is, it is a complete graph) while
a clustering coefficient of 0 means that the graph does not contain any triples
of vertices that are linked into a triangle The first of the clustering measures,
used for example by Watts and Strogatz in Watts (1999), begins by defining a
clustering coefficient for each vertex. Use C; to denote the ratio

o (number of edges between neighbors that actually exist)
j =

(number of edges that could exist)
(number of edges between neighbors of vertex j)

- kj(k; —1)/2 @)

where k; is the degree of the j-th vertex. For example, in the graph at the
right of Figure 1 node 4 has degree k4 = 2 and so there could be only a single
edge between its neighbors (vertices 6 and 7). In fact this edge isn’t present,
so Cy = 0. By contrast node 6—which has degree kg = 3and so could have 3 x
(3—1)/2 = 3 edges between its neighbors—has only one such edge (connecting
vertices 8 and 9) and so has Cs = 1/3.



Once all the C; terms are calculated it is natural to define a clustering
coefficient for the entire graph by averaging:

1 N
Cws = pe (3)

j=1

Here the subscript WS is included to distinguish the Watts-Strogatz cluster-
ing coefficient from an alternative described below. The larger of the two
connected components at the right of Figure 1 has 5 vertices with Cy = 1,
Cs = Cs = 1/3 and C4 = C7 = 0 so it has overall clustering Cys = (1/5) X
[14(1/3)+(1/3)+0+0]=1/3.

The other measure used to characterize clustering is a property of the graph
as a whole. It is defined by:

c 3 x (number of triangles in the graph)
A=

(number of connected triples) 4)
where a triangle is a set of three vertices 7, k, [ in which each vertex is connected
to both the other two. A connected triple is a set of three vertices j, k, [ in which
J is connected to k and k is connected to I (though ! need not be connected
to j). Referring again to the larger of the two connected components at the
right of Figure 1, there is only a single triangle (6-8-9), but eight connected
triples (6-4-7, 4-6-8, 4-6-9, 8-6-9, 4-7-8, 6-8-9, 7-8-9 and 6-9-8) so the clustering
coefficient is Can = 3 x 1/8 = 3/8. As this example demonstrates, the two
clustering coefficients are not generally equivalent.

Both clustering coefficients measure the extent to which being a neighbor is
a transitive property and, indeed, C'a is sometimes referred to as the transitive
closure of the graph. To see why, reconsider the definition above: if the vertices
j, k,l form a connected triple then j is connected to k, k is connected to [ and, if
“is-connected-to” were a strictly transitive relationship one could conclude that
j is connected to [. The clustering coefficient Cx is precisely the proportion of
triples for which the transitive conclusion actually holds. The factor of 3 in the
numerator is necessary to ensure that 0 < Ca <1 as each triangle gives rise to
3 connected triples.

2.3.3 Degree distributions and families of random graphs

The degree of the j-th vertex, k;, counts, equivalently, either the number of j’s
neighbors or the number of edges connected to j. When summarizing a social
network one might report the mean or median degree and, as many interesting
social networks are far too large to visualize, such summary statistics are often
the only means to get a sense of what the graph is like in the large. But they
are a bit coarse for the kind of analysis we want to do here: a better tool is
the degree distribution. As a summary statistic it lists the degrees that occur
in the graph and the frequencies with which they appear. Thus the degree
distribution for the two-component graph at right in Figure 1 is summarized in
Table 1. But one can also interpret the frequencies in the degree distribution as
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Figure 3: Generating process for graphs

probabilities. When viewed in this light an individual graph appears as a single
representative of a larger family of graphs, all of whose nodes have degrees drawn
from a common distribution. This approach proves extremely fruitful: it will
provide the standards to which we compare real social networks when trying to
decide whether the world they represent is “small”.

Suppose, for example, that one wanted to construct an ensemble of graphs
based on the degree distribution in Table 1. One would begin by fixing the
number of nodes N. One would then choose a degree for each node from the
degree distribution. At this stage in the construction it is helpful to imagine
the j-th node as a ball with k; spikes sticking out (see Figure 3). The spikes
represent half-edges and one assembles a finished graph by joining half-edges at
random. The graph construction algorithm sketched here can fail in the sense
that one may finish up with a single unmatched half-edge, but this problem is
easily repaired. In the first stage of the algorithm, when choosing the degrees
for the nodes, one imposes the constraint that the sum of the degrees of all the
nodes must be an even number. If that proves not to be the case, one simply
starts afresh, choosing more batches of degrees until the constraint is satisfied.

Our real interest is to generate random corporate networks, but this requires
only a small extension of the procedure sketched above. One starts with sepa-
rate degree distributions for the directors and the boards. One then fixes both
a total number of boards and a total number of directors and chooses degrees
for each. The half-edges now have natural interpretations: those for the boards
are unfilled seats while those for the directors are unfulfilled desires for director-
ships. The problem of avoiding unmatched half-edges is here rather more severe.
One needs to ensure that there are exactly as many seats on boards as there

10



are directors wanting to fill them. But the problem admits a solution similar
to the one sketched above: one chooses, say, the degrees for the boards first,
then repeatedly generates degrees for the directors until the desired match-up
is achieved.

Armed with this algorithm, one could generate many thousands or millions of
imaginary corporate worlds that shared a degree distribution with the real object
of study. Further, one could measure small-world statistics for each of these
imaginary corporate worlds and so obtain typical values (means, say) for the
characteristic length L and clustering coefficients Cyyg and Ca. And if the real
corporate world had a larger Ca than typically expected, but a smaller L one
might reasonably conclude that it was unexpectedly small. This is the approach
we take, but we compute expected values for the small-world statistics without
generating and analyzing all those random graphs: the necessary theoretical
tool, the machinery of probability generating functions, is described next, but
before concluding our discussion of random graphs one other family deserves
mention, that introduced by the mathematicians Erdds and Rényi.

In their original work they imagined fixing the number of nodes N and then
deciding, at random, independently and with fixed probability p, whether each
of the graph’s N(N — 1)/2 possible edges exist. In such a graph each node
can have as many (N — 1) edges—one connecting it to each of the remaining
nodes—and in expectation a fraction p of these will exist, so such a graph has
mean degree z = p(IN — 1). More generally, the degree distribution is binomial:

N-1 e
pk:( L )pk(l—p)N o

for k € {0,1,...,N — 1} and zero otherwise. Here pj is the probability of
finding a node of degree k. Erdés and Rényi were primarily interested in how
the qualitative properties of such graphs changed as they held the mean degree
z constant, but allowed the number of nodes to tend to infinity. In this limit
the degrees of the nodes have a Poisson distribution

ke—z

Pe =" (5)

As a shorthand we will refer to graphs with Poisson degree distributions as Pois-
son random graphs. The properties of such graphs have been studied extensively,
both because of their great mathematical interest (see e.g. Bollobds (2001)) and
as models of social networks: early work by Watts and Strogatz, Watts (1999),
as well as that of Davis et al. (2003), compare small-world statistics from ac-
tual social networks to those expected for random graphs with Poisson degree
distribution.

2.3.4 Generating functions

This section draws heavily on the pioneering work of Newman, Strogatz and
Watts in Newman et al. (2001) and Newman, Watts & Strogatz (2002) on the

11



Degree | Frequency
1 3/9
2 3/9
3 3/9

Table 1: Degree distribution for the graph at right in Figure 2.

applications of random graphs with arbitrary degree distributions. See also
Wilf (1990) for an expanded discussion of generating functions. The degree
distribution associates a probability p with each possible value of the degree k,
where k is any non-negative integer. Such distributions permit one to construct a
probability generating function, G(z), which is a function of one variable defined
by the infinite sum

o0
G(z) =) prat. (6)
k=0
and it is a general property of generating functions that G(1) = 1. For generat-
ing functions arising from degree distributions the mean degree is given by

= (k) =Y k= G'(1) ™)
k=0

Here the angle brackets are the expectation operator. Formulae for higher mo-
ments of the distribution, as well for the generating functions for sums of inde-
pendent samples from distribution are also simply related to G(x). Generating
functions arising from empirical degree distributions are, of necessity, finite poly-
nomials as any real data set has a node of highest degree and thus a maximal
nonzero pi. For example, the distribution listed in Table 1 gives rise to the

generating function ) ) )
2 3
G(x) = 33@—1—33@ +3ac .

A bipartite graph of the corporate world has two empirical degree distribu-
tions and so gives rise to two generating functions. One, which we shall call
fo(x), generates the degree distribution for the directors. That is, it generates
the distribution of the number of boards on which a director sits. For concrete-
ness, say that the frequency with which one finds a director serving on j boards

is pj.. Then fo(x) is given by
folz) =2 pja (8)
J

We shall refer to the other empirical distribution, the one for the degree of
boards (that is, the number of directors per board) as go(x). So if the empirical
frequency for boards made up of k directors is g then go(z) is

go(x) =Y qra® 9)

12



Our real objects of interest are the two projections of the bipartite graph:
one whose nodes are boards and whose edges represent shared directors (the
graph showing board interlocks) and another whose nodes are directors and
whose edges connect directors that sit on one (or more) board in common. The
charm of the generating function approach is that it permits one to start with
the empirical generating functions fo(x) and go(z) and derive expressions for
the generating functions for the degree distributions in the projections. We
will refer to these derived distributions as the theoretical degree distributions to
emphasize that they are not measured directly from the data. Instead, they
describe the distribution of degrees one would find in random corporate worlds
constructed by applying the methods of the previous section to the empirical
degree distributions. These theoretical degree distributions are the device by
which we obtain expected values of the small-world statistics without having to
generate and analyze random graphs.

Suppose now that we are investigating a corporate world in which N directors
sit on M boards. Suppose further that the mean number of seats on a board
is v and that the mean number of directorships held is pu. The bipartite graph
representing this community has one edge for each seat on a board and so

vM = (number of seats on boards) = uN.

We will refer to the generating function for theoretical degree distribution of the
projection onto directors as Go(z). Newman et al. (2001) show that it is given

by
g0(x) 1,
Gato) = 1o (251) = 1o (Sbt) (10)
where g¢{(1) = v is the mean board size. As the empirical generating func-
tions fo(z) and go(z) are finite polynomials, Go(x) is too. By examining its
coefficients one can obtain predictions for the frequencies with which vertices
of various degrees will appear in the projection: that is, one can obtain the
probabilities that define the theoretical degree distribution.

But one can predict other things as well; the expected degree of a vertex in
the projection (that is, the expected total number of codirectors for a randomly
selected director) is

2= Gy(1) (11)
and the expected mean path length in the projection is
In(N/Gj(1
<L>:1+ n( /GO( ))

. 12
w (42 (59)) (12)
oM ) L)

Note that the quantity in the denominator involves ratios of the first and second

derivatives of the empirical generating functions. Additionally, one can predict
the value of one of the two clustering coefficients:

PRELYL)

N Gy (1)

. (13)
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The corresponding expressions for the projection whose vertices are boards may
be obtained similarly and are

70
z = Fj(1
In(M/F(1))
(L) =1+ — N
(56 (%))
(€o) = 3720 (14)

In our empirical work below we use equations 10,12, and 13 for the projection
whose vertices are directors and equations 14 for the projection whose vertices
are boards. We then calculate the actual path lengths and clustering coeflicients
from the data on the US, Britain and Germany. We compare these to the
afore mentioned random graph measures, constructed on the observed degree
distribution. Our approach differs from such prior small-world research in the
social science literature as that of Kogut & Walker (2001), Davis et al. (2003),
Baum et al. (2003) and Schilling & Phelps (2004). These researchers compare
actual small-world measures to those arising from an unstructured (i.e. Poisson)
random graph. However, the degree distribution of their networks is likely to
be measurably different from a Poisson distribution. In consequence, such an
approach can lead to the possibility of concluding that the world is “small” when
in fact it is not much different from what one would expect by chance, given the
degree structure—the distributions of board size and number of directorships
held—observed in the social network of corporate governance.

3 Results
3.1 Data

To investigate the social network of corporate boards we use data from the
United States, the United Kingdom and Germany. Since these economies have
considerably different corporate governance structures they provide an inter-
esting test of the robustness of the random graph model developed in Section
2.

Basic data for each economy is presented in Table 2. The United States
data are kindly supplied by the Corporate Library. The data set are a snap
shot (i.e. a cross section) of publicly traded firms at February 2003. Table
2 illustrates that there are 13,330 unique directors occupying 17,277 separate
director seats at 1,733 firms.® This data set is larger than that used by previ-

5As directors can be members of more than one board there are fewer unique directors
than board positions.

14



ous US small-world studies of boards of directors e.g. Davis et al. (2003). The
average size of a US board is about 10 members and each director, on average,
has 1.63 directorships (including the directorship at his or her main company).
An individual occupying only one board position is a one-board director. Anal-
ogously, a person with two directorships is a two-board director. In the USA
the overwhelming majority of directors (about 80%) have only one directorship.
About 13% hold precisely two positions, implying that a very small fraction of
directors (7%) hold more than two director posts.

The United Kingdom data are supplied by Hemmington Scott. The data are
a snap shot of the population of publicly traded firms at March 2002. The data
has 11,541 directors sitting on 2236 boards. This represents 14,552 director
seats. The average board size is 6.51.5 Approximately, 84% of directors are
one-board directors and 10% are two-board directors. In the USA and the UK
around 95% of board members hold either one or two board positions: only a
distinct minority board members hold any more than this.

The German data are supplied by Bureau van Dijk electronic publishing.
Specifically, Germany was selected from the AMADEUS database.” The data
are a snap shot of publicly traded firms whose fiscal year ended in either 2001 or
2002. The German boards of directors in our analysis consist of the combined
lists of both management and supervisory boards. For Germany we selected
companies with 300 or more employees and whose board consisted of at least four
members. Both publicly quoted firms (Aktiengesellschaft, or AG) and private
limited liability firms (Gesellschaft mit beschrinkter Haftung, or GmbH) are
therefore included in the selection criteria. The sample consists of 2,354 firms
with 12,747 unique directors who occupy 14,904 director seats. The average
board size is 6.33. The average number of directorships per person is 1.45.%

3.2 The small-world of corporate boards

Our empirical results are presented in Table 3. For each projection (board and
director) we report the number of vertices, the degree, the path lengths, and the
clustering coefficients. We present the expected values arising from the theory
contained in Section 2 and actual values from the data.

The principal finding arising from Table 3 is the remarkable alignment be-
tween the theoretical predictions and actual data. The random graph model of
Section 2, based on the known degree distributions of the bipartite representa-
tion, predicts almost perfectly the actual data. This conclusion is valid for the

6Prior UK research suggests boards are a bit larger than this, but our data includes even
the smallest of boards—a population typically excluded from previous studies. In our data
board size is an increasing function of firm size measured by market capitalization.

"The acronym AMADEUS stands for: Analyse MAjor Databases from EUropean Sources

8Note the number of vertices in the largest connected component, expressed as a percentage
of available vertices, is much smaller in Germany compared to the Anglo-American data. For
example, the largest component for US boards is approximately 85% (i.e. 1,473 boards from
1,733) but for Germany it is only 25% (i.e. 582 boards from 2,354). This may occur if the
worlds of the AG and the GmbH don’t overlap much.
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Table 2: Boards of Directors in the United States, United Kingdom and Ger-
many.

USA UK Germany

Director seats 17,277 14,552 14,904
Number of unique directors 13,330 11,541 12,747
Number of firms 1,733 2,236 2,354
Average board size 9.97 6.51 6.33
Average number of directorships 1.63 1.84 1.45
One-board director (percent) 80.37% 84.25%  88.33%
Two-board director (percent) 13.02% 10.08% 8.92%
Connected component - firms 1473 1732 582
Connected component - directors 11,057 8,850 4,185

United States, the United Kingdom and Germany despite their quite different
corporate governance structures.

First consider the expected degree distribution. For the United States the
director projection indicates that a given director is expected to be connected
to about 13 directors — and indeed this is what arises in the data (i.e. about
13.46). Also, a given board is expected to be connected to about eight other
boards — and again the actually observed data gives rise to a figure of about
seven boards. This close correspondence between theory and actual data is also
observed for the United Kingdom and Germany.

The small worlds discussed in Section 2 are characterized by relatively short
path lengths and high clustering. Table 3 provides evidence on this. For the
United States the expected path length in the director projection is about 4.2
(i.e. the expected number of steps it takes for a director to reach any other
director is about four). The actual value is only slightly larger at about 5.1.
Looking at the board projection for the United States we reach a similar conclu-
sion — theoretical and actual path lengths are broadly similar. If one considers
the corresponding path lengths for the United Kingdom we also observe much
agreement between the theoretical expectation and the actual data counterpart.
Overall, we conclude that the observed path lengths for corporate boards in the
United States, the United Kingdom and Germany are no different from what
we would expect from a random graph with a known degree distribution. In
this sense the world of corporate directors is certainly “small” but no smaller
than one would expect theoretically.

However, we should stress that the short-path length outcome is still quite a
remarkable finding. For any of the economies considered here the mean geodesic
is a very small fraction of the number of vertices in the large connected compo-
nent. For instance, the mean geodesic (i.e., shortest distance) for the US board
projection is 4.327 whereas the number of vertices is 1473 — or about 0.3% of the
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Table 3: The Small World of Corporate Directors in the United States, the United Kingdom and Germany.

Degree Length Clustering
Vertices FExpected Actual FExpected Actual FExpected Actual — Actual
Network N <Z> ZActual <L> LActual <CA> CActual CWS

LT

United States
Director projection 11057 13.616 13.460 4.228 5.188 0.560 0.556 0.871

Board projection 1473 8.050 7.275 3.510 4.327 0.163 0.167 0.225
United Kingdom

Director projection 8,850 9.069 8.981 4.795 6.462 0.546 0.612 0.889
Board projection 1732 6.073 5.709 4.116 5.579 0.327 0.376 0.376
Germany

Director projection 4,185 15.103 14.546 3.504 6.398 0.622 0.719 0.926

Board projection 582 7.337 4.553 2.947 6.108 0.318 0.577 0.413




vertices in the largest connected component. Such short path lengths can act as
important and powerful routes for the spread of business practices, information
or rumor.?

The results for the clustering coefficients contained in Table 3 also show
remarkable agreement between theoretical and actual values. For the United
States the actual clustering coefficient for the board projection is 0.167 which
can be compared to the theoretically expected value of 0.163. Again, the amount
of clustering is not much different from what would be expected to occur in a
random graph, with known degree distributions. Accordingly, the world of US
boards and directors is no more “clubby” than would be expected by chance.
Table 3 shows that there is tendency for British directors to be slightly more
“clubby” than would be expected than by chance (0.612 versus 0.546) and for
German Boards to be more clustered than would be expected by chance (0.577
versus 0.318). For each economy, we also present the Watts-Strogatz clustering
measure but from our theoretical analysis we have no way of knowing if this
diverges significantly from what would be expected. It is reported since it has
been used in the prior literature.

We conclude this subsection by re-stating our main finding: the aggregate
network of corporate boards and directors is actually no smaller than would be
expected by chance from a random graph model based on the observed distri-
butions of board and director degree. That is, it is not much smaller than one
would expect once one has taken into account the very broadest features—the
distributions of sizes of board size and of working habits (number of director-
ships held)—of the world of corporate governance.'?

3.3 Degree correlation

The generating function approach also allows us to compute the entire theoret-
ical degree distribution: not simply the average degree z recorded in Table 3.
We can thus plot both the theoretical degree distribution and the one we ac-
tually observe and see whether they too are in agreement: Figure 4 contains
the results. The circles connected by dashes are observed frequencies while the
solid line is the prediction from the generating function. The other dashed (no-
circles) curve is the prediction derived from a Poisson distribution that has the
same mean degree z as the data.

Focusing on the director results we see, once again, there is remarkable—
near perfect—coincidence between the theoretical distribution and the actual
data. The random graph model based on empirical degree distributions is a
good predictor of the real world social network of directors. In contrast, the

9For a Poisson random graph the mean geodesic can be expressed as | = log(N)/ log(z). So,
in the case of the US board projection this is approximately | = log(1473)/ log(8.98) = 3.324.
The Poisson random graph, like the random graph with a constrained degree distribution,
predicts a short mean geodesic relative to the number of vertices.

10The qualitative conclusions reached here are unchanged when we investigated alternative
data sets. For instance, we studied the 100 largest firms ranked by market capitalization in
the United States and the United Kingdom; Executive and Non-executive directors separately
in the United Kingdom; and the set of publicly quoted (AG) firms only in Germany.
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Figure 4: Board and director interlocks in the United States, United Kingdom
and Germany. The left-hand side of the Figure are the degree distributions
arising in the director projection. The right-hand side are those arising in the

board projection.
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Figure 5: Quantile and OLS regressions for the Colleague connectivity model.
Colleague connectivity is the average number of boards one’s colleagues sit on.
Director interlock is the number of boards you sit on. The x-axis is a quan-
tile scale; the y-axis is the estimated coefficient from a regression of colleague
connectivity on director interlock

Poisson random graph distribution (dashed line) with the same mean as the
data clearly does not give rise to the actual data.

The board interlock data, however, are much more interesting and reveal-
ing. Once again, the Poisson random graph distribution does not fit the data
at all well. But, the predictions from the random graph model do not explain
perfectly the entire distribution of real-world board interlocks either. Our ran-
dom graph model under-predicts the frequency of firms with relatively low and
relatively high numbers of interlocking boards. Also, the theory over-predicts
the frequency of firms with moderate numbers of interlocks. This result, first
noted by Newman et al. (2001) for a small US data set, is here verified for com-
prehensive surveys of the United States, the United Kingdom and for Germany.
One should consider a random graph with appropriately constrained degree dis-
tributions as the baseline model about which our expectations regarding boards
of directors network structure should be evaluated Newman et al. (2001). So,
the next question to ask is: why does this anomaly arises?

One plausible explanation is that a director who sits on few boards has
colleagues who also sit on few boards. Analogously, a director who sits on many
boards has colleagues who are also members of many boards. In short, big-
hitters associate with big-hitters and low-hitters associate with other low-hitters.
Sociologists refer to this idea homophily—the tendency for like to associate with
like (McPherson, Smith-Lovin & Cook (2001)). The homophily effect gives rise
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to positive degree correlation. As McPherson et al. (2001) remark “Similarity
breeds connection.”

We tested for positive degree correlation (homophily) in the data using
quantile and ordinary least squares regression methods (see Koenker & Hallock
(2001) and Koenker & Bassett (1978)). The results are contained in Figure 5.
We define the outcome variable as the average number of directorships held by
a director’s colleagues at the director’s own board. For short-hand we will refer
to this variable as colleague connectivity. We define a covariate as the number
of boards a director sits on. As short-hand we refer to this as director interlock.
We then performed a regression of colleague connectivity on director interlock
with the expectation of a positive sign.

For the coefficient on the director interlock covariate we plot the 19 separate
quantile regression estimates from 0.05 to 0.95 rising in equal steps of 0.05. This
is the solid line plot in Figure 5. These point estimates are interpreted as the
impact of a one unit change in the number of director interlocks on the colleague
connectivity variable. In Figure 5 the horizontal axis is the quantile scale and
the vertical axis is the covariate effect on colleague connectivity. The dot-dash
lines are the 95% confidence intervals for the quantile estimates. The horizontal
dashed line is the ordinary least squares estimate.

The evidence contained in Figure 5 broadly supports the idea of positive
degree correlation, or homophily. For the United States, the United Kingdom
and Germany the OLS estimate is positive and significant. Directors who sit
on many boards apparently do so in the company of others who also sit on
many boards. However, this ordinary least square estimate conceals important
information about the effect of director interlocks. In the United States, at the
5th percentile of the conditional distribution, the effect of a director interlock
on one’s colleagues propensity to have many directorships is about 0.1. This
estimate increases in magnitude towards the center of the distribution before
falling back. Similar, effects are observed for the United Kingdom and Germany.
Note that the quantile estimates are all positive: we conclude that there is
positive degree correlation (homophily) in these data sets.

4 Concluding remarks

In this paper we have presented a random graph model to explain the social
network structure of boards of directors. Our paper is informed by developments
in graph theory and the structure of complex networks — Newman (2003). We
have investigated the conditions under which the social network of corporate
directors can be described as a “small-world” and the related question of how
“small” we expect that world to be. We have shown how a random graph
with a known degree distribution gives rise to an expected level of clustering
determined by the structure of the actual network. We also illustrated that
the theoretical degree distribution can be determined using generating function
machinery.

Our empirical results show that the random graph model is remarkably
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good at explaining board structure and connectedness in the United States,
the United Kingdom and Germany. Although there are small-world traits such
as “clustering” and “short-paths” in the corporate world, they are no more
pronounced than would be expected by chance in our random graph model.
This is not to suggest that boards of directors really are assembled at random,
only to say that when the social network of corporate governance is viewed
in the large—and especially when it is viewed through the lens of small-world
statistics—it reveals no more systematic structure, no stronger tendency toward
“smallness”, than one should expect find by chance.

Alternatively one could say that small-world measures, at least when applied
to the entirety of a country’s corporate world, are rather less informative—in the
sense that they reveal less structure—than one might have hoped. An important
exception appears in the detailed comparison of real and predicted distributions
of board interlocks. There we find good evidence for positive degree correlation:
directors who sit on many boards appear to do so in the company of others who
also sit on many boards. This result may help to explain the distribution of
boards interlocks, but one would need to do further analysis to establish this.

The three data sets discussed here are among the most comprehensive yet
studied from the small-world viewpoint of directors, but nonetheless they leave
many of the most interesting questions tantalizingly beyond reach. For example,
all our data sets are snapshots of their respective corporate networks: it would
be very interesting to collect similar data over a period of years (ideally lasting
many times longer than a typical director’s term of service) in order to look at
the dynamics of connections within the corporate world. Further, the analysis
in this paper is purely cartographic: we have mapped out structural features of
the corporate world, but have yet to exploit this understanding as, for example,
an aid to studying or modelling the flow of information or business practice.
This exercise we leave for future research.
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