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BOUNDING THE ERROR IN GAUSSIAN ELIMINATION
FOR TRIDIAGONAL SYSTEMS*

NICHOLAS J. HIGHAM?

Abstract. If is the computed solution to a tridiagonal system Ax b obtained by Gaussian elimination,
what is the "best" bound available for the error x and how can it be computed efficiently? This question
is answered using backward error analysis, perturbation theory, and properties of the LU factorization of A.
For three practically important classes of tridiagonal matrix, those that are symmetric positive definite, totally
nonnegative, or M-matrices, it is shown that (A + E) b where the backward error matrix E is small com-
ponentwise relative to A. For these classes of matrices the appropriate forward error bound involves Skeel’s
condition number cond (A, x), which, it is shown, can be computed exactly in O(n) operations. For diagonally
dominant tridiagonal A the same type of backward error result holds, and the author obtains a useful upper
bound for cond (A, x) that can be computed in O(n) operations. Error bounds and their computation for
general tridiagonal matrices are discussed also.

Key words, tridiagonal matrix, forward error analysis, backward error analysis, condition number, com-
parison matrix, M-matrix, totally nonnegative, positive definite, diagonally dominant, LAPACK
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1. Introduction. A natural question to ask when solving a general n n linear
system Ax b by Gaussian elimination with partial pivoting (GEPP) is, "how accurate
is the computed solution, ?" The traditional answer begins with Wilkinson’s backward
error result 22, p. 108

1.1 (A +F) b, FII --< Onp(n)ullAllo,
where p(n) is a cubic polynomial, u is the unit roundoff, and o, is the growth factor,

(k)defined in terms of the quantities ai generated during the elimination by

maxi,j,k -(k)aij
Pn--

maxi,jlaijl

Applying standard perturbation theory to 1.1 ), one obtains the forward error bound

(1 2) IIx-.fll < r(A)o,p(n)u
(ro(A)o,p(n)u< 1)xl] (A)p.p(n)u

where the condition number r(A) IIA[][IA-111o. Since the term p(n)can usually
be replaced by its square root for practical purposes [22, p. 108 ], or more crudely can
be ignored, and since p, is usually of order 1, this leads to the rule of thumb that has
about -log0 u lOgl0 ro (A) correct decimal digits in its largest component.

In certain circumstances a bound potentially much smaller than (1.2) holds. This
can be shown using the following componentwise backward error result, for general
A[5]:

(1.3) (A+E)2=b, IEI <-c,,u[l It)l,
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where Cn 2n + O(u), and and are the computed LU factors of A (we assume,
without loss of generality, that there are no row interchanges). Here, the absolute value
operation 1. and the matrix inequality are interpreted componentwise. If I/11 t)l _-<
C’nlAI, then (1.3) may be written

(1.4) (A+E).=b, IEI <--cT, ulAI,

which represents the "ideal" situation where E is small componentwise relative to A.
Note, in particular, that e0. 0 if aij 0. The bound in (1.4) holds, at least, when A is
triangular (see, e.g., 17 ), and when A is totally nonnegative 5 ], assuming no pivoting
in both cases. (A is totally nonnegative if all its minors of any order are nonnegative.)
The bound also holds, under certain assumptions, if is the result ofGEPP followed by
one step of iterative refinement in single precision ], 20 ].

Perturbation results appropriate to 1.4) render the bound 19

5)
[Ix-.fll < cond (A,x)c’u

xll cond (A)cu
(cond (A)c, u < ),

where

and

cond (A,x)= IA-I IAI Ixl II

cond (A) cond (A, e),

The key difference between (1.5) and (1.2) is in the condition number terms:
cond(A,x) is no larger than K(A) and is often much smaller. In particular,
cond (A, x) is invariant under row scaling ofA, whereas K(A) is not.

This work focuses on the case where A is tridiagonal, and was partly motivated by
the question of what types of error bounds and condition number estimates should be
provided in the LAPACK routines for solving tridiagonal systems [3], [9]. (LAPACK
is to be a collection ofFortran 77 routines for solving linear equations, linear least squares
problems, and matrix eigenvalue problems [6 ].) The aim of the work is to determine
classes of tridiagonal systems for which the bounds (1.4) and (1.5) are valid and to
develop efficient methods for estimating or computing the condition numbers in (1.5)
and (1.2).

In 2 we present a specialized version of the backward error bound (1.3) for tri-
diagonal matrices. The result is known, but we give a short proof since the precise value
of the bound is important, and we were unable to find a suitable reference.

In 3 we show that (1.4) holds for Gaussian elimination without pivoting if the
tridiagonal matrix A is symmetric positive definite, totally nonnegative, or an M-matrix.
(Thus, for these types of matrices there is no advantage in doing iterative refinement in
single precision.) We show that in each case cond (A, x), and hence also the bound in
1.5 ), can be computed exactly in O(n) operations. Diagonally dominant matrices also

enjoy a relatively small componentwise backward error, and, as we show in 4, a good
upper bound for cond (A, x) can be obtained in O(n) operations.

We consider general tridiagonal matrices in 5; we explain which error bounds are
applicable and how the corresponding condition numbers may be estimated. In 6 some
further comments are made concerning practical use of the bounds and condition num-
bers, and some numerical results are presented to illustrate the value of using a com-
ponentwise backward error approach when possible.
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2. Gaussian elimination and its error analysis. Consider the real n n, nonsingular
tridiagonal matrix

(2.1) A=

dl el
d2 e2C2

Cn
.. ... e,,

and assume A has an LU factorization A LU, where

1
12 1

(2.2) L 13 1

Ul el
u2 ez

U-" ",,o ".,,

".. en-1
1 un

Gaussian elimination for computing L and U is described by the recurrence relations

li- ci/ bli-
(2.3) u =d;

ui= di- liei_

To investigate the effects of rounding error, we will employ the model

(2.4a) fl(xop y) =(xop y)(1 +6), 161 <=u,

(2.4b) fl(xop y)=(x op y)/(1 +e), I1 u,
where u is the unit roundoff and op { +, -, ,, / }. Note that (2.4b) is valid under the
same assumptions as (2.4a), although usually only (2.4a) is used in a rounding error
analysis. Judicious use of (2.4b) simplifies the analysis slightly.

Applying (2.4) to the relations (2.3) and using a hat to denote computed quantities,
we have

Hence

+ Oi):ti di- ei- 1( + 6i), IOil,lil u,

ICi--’li-1 <=ulti- l,

di- ei-, li . u(l.ei-, + Ii I).

In matrix terms these bounds may be written as

(2.5) A=(J+E, IEI--<ul111.
Ifthe LU factorization is used to solve a system Ax b by forward and back substitution,
then it is straightforward to show that the computed solution satisfies

(2.6) (+AL)((J+AU).f=b, Itl--<ulZl, IXUI-<(2u/u2)ll.

Combining (2.5) and (2.6) we have, overall,

(2.7) (A+F)=b, IFI--<f(u)l1101, f(u)=4u+3u2+u3.
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We have avoided using O(uz) notation in order to emphasize that there are no large
constants in the higher-order terms; in particular, f(u) is independent of n.

3. Componentwise backward error and computation of cond (A, x). The backward
error result (2.7) applies to arbitrary nonsingular tridiagonal A having an LUfactorization.
We are interested in determining classes of tridiagonal A for which the bound IF[ =<
f( u)l/SI t?l implies the "ideal bound"

(3.)

Certainly, (3.1) holds if

(3.)

for then, using (2.5),

so that

IFI <:g(u)lAI.

11211 1

1/211 21--IA-EI <= IAI + ul/211 1,

(3.3) I/_ZI 01 IAI.
l--it

Three classes of matrices for which (3.2) holds for the exact L and U are identified in
the following theorem. A nonsingular A e R x is an M-matrix if aij <- 0 for all 4: j and
A -1 >= 0. There are many equivalent conditions for A to be an M-matrix 2, Chap. 6];
for example, the condition A- >= 0 can be replaced by the condition that all the principal
minors ofA are positive.

THEOREM 3.1. Let A R be nonsingular and tridiagonal. Ifany ofthefollowing
conditions hold then A has an LUfactorization and LII UI LUI"

a A is symmetric positive definite;
b A is totally nonnegative, or equivalently, L >= 0 and U >= 0;
c A is an M-matrix, or equivalently, L and U have positive diagonal elements and

nonpositive off-diagonal elements;
d A is sign equivalent to a matrix B oftype (a)-(c); that is, A D1BDz, where

IOl IO=l I.
Proof. For (a), it is well known that a symmetric positive definite A has an LU

factorization in which U DL, where D is diagonal with positive diagonal elements.
Hence ILl IUI ILl IDI Itl ILDLr[ ILUI. In (b) and (c) the equivalences,
and the existence ofan LU factorization, follow from known results on totally nonnegative
matrices 4 and M-matrices 2 ]; ILI UI LUI is immediate from the sign properties
ofL and U. (d) is trivial. V]

THEOREM 3.2. Ifthe tridiagonal matrix A is oftype a)- d in Theorem 3.1, and
ifthe unit roundoffu is sufficiently small, then Gaussian elimination for solving Ax b
succeeds and the computed solution satisfies

4u + 3U2 +//3
(3.4) (A+F)2:b, IFI <-h(u)lAI, h(u)-

1--U

Proof. If u is sufficiently small, then for types (a)-(c) the diagonal elements of
will be positive, since /i --’ b/i > 0 as b/ 0. It is easy to see that/i > 0 for all ensures
that Z;ll t-?l I/;t-?l. The argument is similar for type (d). The result therefore follows
from (2.7) and (3.3). [3

Theorem 3.2 appears to be new in the case ofM-matrices. A result ofthe form (3.4)
(with a Cn term in the bound) is valid for any totally nonnegative matrix 5]. The sym-
metric positive definite case in Theorem 3.2 is also known [8].
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A corollary of Theorem 3.2 is that it is not necessary to pivot for the matrices
specified in the theorem (and, indeed, pivoting could vitiate the bound (3.4)). Note that
large multipliers may occur under the conditions of Theorem 3.2, but they do not affect
the stability. (Recall the well-known property 21, p. 412 that arbitrarily large multipliers
may occur in LU factorization of a general symmetric positive definite matrix, yet the
growth factor pn -< 1.) We stress this point because in [13 ], which deals with Gaussian
elimination oftridiagonal Toeplitz matrices, it is stated that "the stability ofthe elimination
process is controlled by the size ofthe multipliers mj." We also mention that the example
given by Harrod [14] of the M-matrix

A= e-2 2 0 (e-2)/2 0 0 e 0 =LU,
0 -1 3 0 -1/e 0 0 3

for which the multiplier /32 is unbounded as e --* 0, is an example where Gaussian
elimination performs very stably, as Theorem 3.2 shows.

We now turn our attention to computing cond (A, x). We show that if Zll UI
LUI then cond (A, x) can be computed in O(n) operations.

THEOREM 3.3. Ifthe nonsingular tridiagonal matrixA e Rn has the LUfactoriza-
tion A LU and ILl IUI IAI, then U-ll It-l IA-I.

Proof. Using the notation of (2.1) and (2.2), t UI AI LUI if and only
if for all

IIe-, +u,.I Ilil lei-1 l+ lull,

that is, if

(3.5) sign(liei-1)=tli 1.

Using the formulae

_1 -ep (j>- i),(3.6) U- )i u up

i-1

(3.7) (L-)ij (-lp+) (i>=j),
p=j

we have

U-1L-l )o U-1 )ik(L -1
k max (i,j)

H
k max (i,j) 1,1k p p

max(i,j)-l(__p)max(i,j)-lHH (--/p+ 1) En ml k-lH (eplp +1p p J k (i,j) b/k p max (i,j)

p b/p p =j b/max (i,j) k max (i,j) P (i,j)

Thus, in view of (3.5), it is clear that U-1L-1li (I U-1I L-1l)ij, as required.
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To see the significance of the property U-l] L-l[ ]A-1], note first that, as is
clear from (3.6) and (3.7),

IV-l[ M(U) -1, [L-l[ M(L) -1,

where for B 6 R" the comparison matrix M(B) is defined by

[bill, i=j,

(M(B))iJ=-[b0[, i4:j.

Thus, if [A-l[ [U-l[[L-l[ and y >_- 0 then

A-’[ y U-l L-’I y M(U)-I M(L)-I y.

By taking y [A[ Ix[ it follows that cond (A, x) can be computed in O(n) operations:

form y= ]A] [x[,

solve M(L)v y,
(3.8)

solve M(U)w v,

compute wll ! xl[

For the special case y e and A symmetric positive definite, (3.8) was used in 15, 6
to compute 11A -1 in O(n) operations.

Ofcourse, in practice we use the computed/2 and in place ofthe exact LU factors.
If cond (A) is not too large (cond (A)u < 1/2, say), then we are guaranteed a satisfactory
computed value of cond (A, x), that is, one having some correct digits.

4. Diagonally dominant matrices. A in (2.1) is diagonally dominant by rows if

[dil >-- [cil + [ei[ for all/ (c1--en=-0),

and diagonally dominant by columns ifA r is diagonally dominant by rows. Such A have
an LU factorization, but [L[ U[ 4 [A[ in general, and so we cannot apply the results
of the last section. However, as the next result shows, ILl[ U[ can be bounded by a
small multiple of ]AI. Combining this result with (2.7), we are able to conclude that
the componentwise backward error is small in solving a diagonally dominant tridiagonal
system Ax b.

THEOREM 4.1. Suppose A Rnx" is nonsingular, tridiagonal, and diagonally
dominant by rows or columns, and let A have the LU factorization A =LU. Then
ILl IUI --< 3IAI.

Proof. If J then L UI );j aijl, so it suffices to consider the diagonal
elements and show that (using the notation of (2.2))

Iliei- I+ luil--<31 d;I.

The rest of the proof is for the case where A is diagonally dominant by rows; the proof
for diagonal dominance by columns is similar.

First, we claim that levi --< lull for all i. The proof is by induction. For the
result is immediate, and if it is true for then from (2.3)

lui] >= Idil- IIl le- Idl lei-1



TRIDIAGONAL SYSTEMS 527

as required. Note that, similarly, uil <ldl /[cil. Finally,

liei- + ui[ ci
=’ei-1 + uil <= lcil / lUg[

Hi-

<=lcil /(I gel / c/I)

=<3ldil. []

Unfortunately, it is not generally true for diagonally dominant A that A-I
U-l L-I, so we cannot compute cond (A, x) using the O(n) operations technique

of the last section. However we can compute the upper bound in

IA-Iy=< IU-l IZ-ly (y--IAI Ixl)

in O(n) operations. Concentrating, for the moment, on diagonal dominance by rows, a
bound for how much of an overestimate this upper bound can be is provided by the
following result.

THEOREM 4.2. Suppose the nonsingular, row diagonally dominant, tridiagonal ma-
trix A Rnxn has the LUfactorization A LU. Then, ify >= O,

u-’ L-lyll<--(Zn 1)ll IA-’ yll.

Proof. We have L-l UA -, so

IU-l IL-Iy<= IU-I IUI IA-Iy IV-I IVI IA-]y,

where the bidiagonal matrix V= diag (uii)-Uhas l)ii and [vi,i+ lei/uil =< (see
the proof of Theorem 4.1 ). Thus

1 1 1 1 1

IU_IlIL_lly

_
1 1 1 "..

".. ".. 1 IA-IlY’
1 1

and the result follows on taking norms. []

Theorem 4.2 says that when A is row diagonally dominant our upper bound for
cond (A, x) is too big by a factor at most 2n 1. This is somewhat unsatisfactory since
n can be very large. For n 2 the bound in Theorem 4.2 is attained as a-- in
the example

y--e.

For general n we have not been able to construct any examples in which the bound in
Theorem 4.2 is attained (except by relaxing the row diagonal dominance assumption).
In a wide variety of numerical tests with both random and nonrandom matrices, the
upper bound has never exceeded the quantity it bounds by more than a small constant
factor (3, say). Moreover, the bound is exact if the row diagonally dominant A happens
to be symmetric so that it is positive definite), nonnegative (that is, A >= 0, which implies
it is totally nonnegative), or an M-matrixmall three cases are common in applications.
We therefore regard the upper bound as reliable in practice, and conjecture that the
factor 2n in Theorem 4.2 can be improved to a constant independent of n.

We mention that Neumaier 18 found that u- L- Y =< 2 A -11Y held
in a small number of tests with full random row diagonally dominant matrices and
random y > 0, and this inequality is confirmed by our own tests with random matrices.
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However, no theoretical bound on the overestimation factor is known in the case of
full A.

A weaker analogue ofTheorem 4.2 holds whenA is diagonally dominant by columns.
The inequality u-ll L-11y <= A-11 ILl L-IIy leads to, for y > 0,

III u-111L-11Y - (2n- )0111 A- y 0
max/ Yil
mini Yil

Despite the unbounded 0 term in this inequality, we have not observed or constructed
any examples where the upper bound is more than a small constant factor too big. Thus
we regard the upper bound as being of practical use also when A is diagonally dominant
by columns.

5. General tridiagonal matrices. We turn now to tridiagonal systems Ax b where
A does not fall into any of the classes considered in the previous two sections. Suppose
GEPP is used to solve the system. Suppose also that we wish to refer to backward and
forward error bounds of the forms 1.1 and (1.2) and to estimate or compute Koo(A).
Several algorithms for computing Koo(A) exactly in O(n) operations are presented in
15 ]. As explained in 15 ], these algorithms (except the algorithm for symmetric positive

definite A) have the property that the intermediate numbers can have a large dynamic
range (the more so, the more diagonally dominant A is), and the algorithms can break
down in floating-point arithmetic due to underflow or overflow. These numerical problems
can be overcome, but at a nontrivial increase in cost (see [15]). Our preferred approach
is to use the matrix norm estimator SONEST from [16 ]. This provides an estimate for
B]I (a lower bound) at the cost of computing a few matrix-vector products Bc and
BTd. Typically four or five products are required; the norm estimate is frequently exact
and is almost always correct to within a factor 3. In our application, B A -r, and so
we need to solve a few linear systems A Ty c and Az d, which can be done using the
LU factorization already computed. The SONEST approach has about the same com-
putational cost as the methods in [15].

Next, suppose that GEPP followed by iterative refinement is used to solve the tri-
diagonal system Ax b. Then, under suitable assumptions, a result of the form (3.4)
holds [1], [20], and so the appropriate condition number is cond (A, x). (See [1] for a
discussion of possible violation of the assumptions when x and b are sparse, and for
suggested cures.) The techniques of [15] could be adapted to compute cond (A, x) in
O(n) operations, with the same practical numerical difficulties described above. However,
as shown in [1], [7], SONEST can be used to estimate cond (A, x) (even for general
A), and this is the approach we recommend.

Finally, note that for GEPP one could use the elementwise backward error result
(2.7) (suitably modified to take account of pivoting), for which a forward error bound
involving the condition number IA- I/;I 011xl I1/II xl[oo can be derived. Again, this
condition number (which is row scaling independent) can be estimated using SONEST.

6. Practical considerations. We discuss several practical issues concerning the con-
dition numbers and algorithms described above.

For symmetric positive definite A the standard way to solve Ax b is by using a
Cholesky or LDL factorization, rather than an LU factorization. The LINPACK routine
SPTSL uses a nonstandard "LUB" factorization resulting from the BABE ("burn at both
ends") algorithm (see [10], [15 ]). The results of 3 are applicable to all of these fac-
torizations, with minor modifications. Note that the LDL factorization requires n fewer
divisions in the substitution stage than the Cholesky factorization.

A drawback to the computation or estimation ofcond (A, x) IA-I AI xl [Ioo/
xll is the need to keep a copy ofA in order to form the product A x[ once x has
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been computed. Ifn is large it may not be possible to store a copy ofA. One can circumvent
this problem for the matrices in Theorems 3.1 and 4.1, for which A[ L[I U[ and
IAI --< ILl IUI --< 31A], respectively, by using ILl IUI Ixl in place of

We give the computational costs ofthe error estimation techniques in two particular
cases, in terms of flops [12, p. 32 ]. For a general tridiagonal A e R. n, factoring PA
LU by GEPP and solving Ax= b by substitution costs (5 + 2p)n flops, where
p e 0, depends on the number of interchanges; estimating K(A) requires 2n flops to
compute A and, typically, 4 (3 + p) n or 5 3 + p) n flops to estimate A --lll using
SONEST. For a symmetric positive definite A e Rn n, factoring A LDL and solving
Ax b requires 5n flops, and computing cond (A, x) requires 6n flops. Thus these error
estimation techniques at least double the cost of solving a linear system.

Instead of computing cond (A, x) one could compute cond (A) cond (A, e) >-
cond (A, x). The same cond (A) value could be reused when solving systems with the
same A but different fight-hand sides. However, this approach reduces the sharpness of
the bounds, since cond (A)/cond (A, x) can be arbitrarily large.

Finally, we present a numerical experiment that gives an indication of the sharp-
ness of the various error bounds. We used a tridiagonal matrix given by Dorr 11 that
occurs in the solution of a singular perturbation problem by finite differences. With m
[(n + / 2/, h / (n + ), and e > 0, the matrix is defined by (see (2.1))

--e/h 2 < < rn
Ci--

-e/hZ+(1/2-ih)/h 2, m+ <=i<=n,

ei {-e/hZ-(1/2-ih)/h 2, <=i<=m,

-e/h 2, m+ =< <

and di -(ci + ei), <= <= n (note that C1 and en are introduced solely to define d and
d,). A is a nonsingular, row diagonally dominant M-matrix. For small values of the
parameter e the matrix is ill-conditioned.

We chose n 50 and e 0.009. We solved Ax b for six different fight-hand sides.
The computations were done in PC-MATLAB, with simulated single precision arithmetic
of unit roundoff u 2 -23 . 1.2 10 -7. For each system we computed in single
precision and x and the relative error x ll ! x[I in double precision. Since A is
an M-matrix, cond (A, x), cond (A), and K(A )were computed in O(n)flops according
to (3.8) (using y e to compute r(A)). The results are given in Table 6.1.

For our test problem, 1.5 takes the form (using (3.4))

(6.1)
x-lloo __< 10.9 cond (A,x)u.

TABLE 6.1
Numerical results, n 50.

cond(A) 1.33E6, Ko(A)= 1.85E6
P=en+en-l+ +en-4
q (1, a, a 2, 10-5), a 10-5/n-1)

rand vector with random elements from uniform [-1, 1] distribution

x p x el x q x e x rand

cond(A, x) 1.73E2 3.82E0 8.89E3 1.33E6 5.50E5 8.87E5

1.25E0 0.00E0 9.92E2 1.42E2 1.75E4 1.09E2
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In the traditional bound (1.2) there is a similar constant and cond (A, x) is replaced by
K(A). From Table 6.1 we see that in the first three cases cond (A, x) is significantly
smaller than cond (A) and K(A); this indicates the value of using a condition number
that depends on x. The bound (6.1) is of variable sharpness, but it is always smaller than
the traditional bound.

Acknowledgment. Des Higham helped to polish the presentation.
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