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STABILITY OF A METHOD FOR
MULTIPLYING COMPLEX MATRICES WITH
THREE REAL MATRIX MULTIPLICATIONS*

NICHOLAS J. HIGHAMt

Abstract. By use of a simple identity, the product of two complex matrices can be formed
with three real matrix multiplications and five real matrix additions, instead of the four real matrix
multiplications and two real matrix additions required by the conventional approach. This alternative
method reduces the number of arithmetic operations, even for small dimensions, achieving a saving
of up to 25 percent. The numerical stability of the method is investigated. The method is found to
be less stable than conventional multiplication but stable enough to warrant practical use. Issues
involved in the choice of method for complex matrix multiplication are discussed, including the
relative efficiency of real and complex arithmetic and the backward stability of block algorithms.

Key words, matrix multiplication, complex matrix, Strassen’s method, Winograd’s identity,
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1. Introduction. How many real multiplications are required to multiply two
complex numbers? In view of the familiar identity

z (a + ib)(c + id) ac- bd + i(ad + bc),

the answer might appear to be four. However, it is possible to make do with three
multiplications, because

(1.1) z ac bd -{- i[(a -{- b)(c -{- d) ac- bd].
This formula was suggested by Peter Ungar in 1963, according to Knuth [14, p. 647].
That three multiplications (or divisions) are necessary for evaluating z was proved by
Winograd [17].

Ungar’s formula does not rely on commutativity, so it can be generalized to matrix
multiplication, as noted by Fam [10]. Let A A1 + iA2 and B B1 + iB2, where
Ay, By E lRnn, and define C C1 +iC2 AB. (We concentrate on square matrices,
although everything we say extends easily to rectangular matrices.) Then C can be
formed using three real matrix multiplications as

T1 A1B1, T2 A2B2,
(1.2) C1 T1 T2,

C2 (A1 + A2)(B1 + B2) T1 T2,

which we will refer to as the "3M method." This computation involves 3n3 scalar
multiplications and 3n3 + 2n2 scalar additions. Straightforward evaluation of the
conventional formula C AIB1 A2B2 +i(AIB2+A2B1) requires 4n3 multiplications
and 4n3- 2n2 additions. Thus, the 3M method requires strictly less arithmetic
operations than the conventional means of multiplying complex matrices for n k 3,
and it achieves a saving of about 25 percent for n k 30 (say). Similar savings occur
in the important special case where A or B is triangular.
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It is rare in matrix computations to be able to produce such a clear-cut com-
putational saving over a standard technique, and the 3M method therefore deserves
careful consideration for practical use.

Since an increase in speed is often accompanied by a loss of numerical stability, it
is important to investigate the behaviour of the 3M method in the presence of rounding
errors. Doubts about the stability are raised by the comment of Knuth [14, p. 647]
on a variation of (1.1) (see (2.7)): "Beware numerical instability." We investigate the
stability in 2 and show that the 3M method is stable in a certain sense, although it
does not match the stability properties of conventional multiplication.

In 3 we offer some guidance on the choice of method for multiplying complex
matrices.

This work was motivated by the knowledge that the 3M method is being used in
Fortran routines CGEIS and ZGFJS in IBM’s ESSL library. The 3M method is also
used by routines of the same name in Cray’s UNICOS library [5]. All these routines
form complex matrix products by using Strassen’s fast matrix multiplication method
[15] to evaluate the real matrix products in (1.2). Although the ESSL documentation
warns about potential instability of Strassen’s method [13, p. 344], it contains no
comment on the stability of the 3M method itself.

2. Numerical stability. A simple example reveals a fundamental weakness of
the 3M method. Consider the computation of the scalar

z x +iy-- (0 +i/0)2 02 1/02 + 2i.

Suppose we use floating point arithmetic with unit roundoff u. If y is computed the
usual way, as y 0(1/0) + (1/0)0, then no cancellation occurs and the computed
has high relative accuracy: I- Yl/lYl-- O(u). The 3M method computes

( 1)( 1)_02 1
y-- 0+ 0+ 02.

If 101 is large this formula expresses a number of order 1 as the difference of large
numbers. The computed will almost certainly be contaminated by rounding errors
of order u02, in which case the relative error is large: I-Yl/lYl O(uO2) However, if
we measure the error in relative to z, then it is acceptably small: I-Yl/Izl- O(u).

This example suggests that the 3M method may be stable in a weaker sense
than conventional multiplication. In the rest of this section we establish the stability
properties in a precise form, for general n.

For the error analysis we assume that the floating point arithmetic obeys the
model

fl(xopy) (xopy)(l+ 5), 151 < u,

fl(x +/- y) x(1 + a) 4- y(1 +

where the latter equation allows for possible lack of a guard digit in addition and
subtraction. Standard analysis (analogous to that in [11, p. 66], for example) shows
that if A,B E ]Rn’ and we compute C fl(AB) by conventional multiplication,
then

(2.1) IO- ABI <_ nuJAllB[ + O(u).
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Here, I" denotes the operation of replacing each matrix element by its absolute value,
and the matrix inequality is interpreted componentwise.

Now we consider the product C1 / iC2 (At + iA2)(B1-4-iB2) for n n complex
matrices, as in 1. Using (2.1) we find that the computed product from conventional
multiplication,

satisfies

fl(AiB A2B2 + i(AB2 + A2B)),

(2.2) Ix --Cll <_ (1 + 1)u(IAIIBI + IA2IIB2I) + O(u2),
(2.3) 12 -C21 <_ (n + 1)u(IAIIB21 + IA211Bll) + O(u2).

It is easy to verify that, apart from the factors n+ 1, these bounds reflect the sensitivity
of the product AB to perturbations in A and B of the form Aj Aj / AAy, where

For the 3M method C1 is computed in the conventional way, and so (2.2) holds.
It is straightforward but tedious to show that C2 satisfies

12 C21 < (n + 4)u[(IA11 + IA21)(IBI + IB21)
(9..4)

+IAI]Bll / IA211821] / O(u2).

Two notable features of the bound (2.4) are as follows. First, it is of a different
and weaker form than (2.3); in fact, it exceeds the sum of the bounds (2.2) and (2.3).
Second and more pleasing, it retains the property of (2.2) and (2.3) of being invariant
under diagonal scalings

C AB -- DAD2. DBD3 DICD3, Dj diagonal,

in the sense that the upper bound AC2 in (2.4) scales also according to DAC2D3.
(The "hidden" second-order terms in (2.2)-(2.4) are invariant under these diagonal
scalings.)

The disparity between (2.3) and (2.4) is, in part, a consequence of the differing
numerical cancellation properties of the two methods. It is easy to show that there
are always subtractions of like-signed numbers in the 3M method, whereas if A, A2,
B, and B2 have nonnegative elements (for example), then no numerical cancellation
takes place in conventional multiplication.

We can define a measure of stability with respect to which the 3M method matches
conventional multiplication by taking norms in (2.3) and (2.4). We obtain the weaker
bounds

(2.5) 112- 6211 <_ 2(n / 1)ullAIlllBIl / O(u2),
(2.6) I1 CII _< 4(n + 4)ulIAIIIIBII + O(u:).

Combining these with an analogous weakening of (2.2), we find that for both conven-
tional multiplication and the 3M method, the computed complex matrix C satisfies

cll c ullAIl llBIl + O(u2),

where cn O(n).



684 NICHOLAS J. HIGHAM

Our findings can be summarised as follows. The 3M method produces a computed
product C whose imaginary part may be contaminated by relative errors much larger
than those for conventional multiplication (or equivalently, much larger than can be
accounted for by small componentwise perturbations in the data A and B). However,
if the errors are measured relative to IIAIIIIBII, which is a natural quantity to
use for comparison when employing matrix norms, then they are just as small as for
conventional multiplication.

We conclude this section with several further comments.
(1) It does not seem possible to improve the stability of the 3M method by

"tinkering" with the basic formula. The symmetric formula

(2.7) z a(c + d) (a + b)d + i[a(c T d) + (b- a)c],
mentioned by Knuth [14, p. 647] as an alternative to (1.1), is "worse" in the sense
that either of the real and imaginary parts can be relatively inaccurate. Of course,
by adapting formula (1.1) we can arrange that only the real part be of questionable
accuracy.

(2) The 3M formula resembles Winograd’s identity for computing the inner prod-
uct of vectors x, y E ]Rn. The identity is [16], for even n,

n/2 n/2 n/2

+ +
i--1 i--1 i--1

Setting n 2, we have

(2.9) xTy (Xl "- y2)(X2 -" Yl) XlX2 YlY2"

For comparison, the 3M formula (1.1) uses the identity

(2.10) xTy (Xl -- X2)(Yl - Y2) XlY2 X2Yl

to compute the imaginary part of z. Although they look similar, formulas (2.9) and
(2.10) have quite different stability properties, because (2.9) exploits commutntivity
(y2x2 x2Y2 nd y2y yY2), while (2.10) does not. Thus only (2.10) permits
the generalisation where the xj and y are matrices. On the other hand, Winograd’s
identity can be used to trade half the multiplications for additions in a matrix product
AB (this being the main application of Winograd’s identity), but the analogue of
(2.10) for n-vectors cannot be employed in this fashion.

A further difference is that (2.9), and more generally (2.8), is numerically unstable
in the sense that the best available normwise error bound is of the form

(.1) I(x) 1 <- (1111o + I111o) + O(u),

which can be arbitrarily weaker than the bound

Is Z(x  ) c  ll ll ll ll +
which holds for conventional multiplication (and for (2.10)).

The instability of Winograd’s identity was first pointed out by Brent [4], who
proves a bound of the form (2.11). He shows that the instability can be overcome by
scaling x and y so that I]xlloo IlYllo before applying the identity.
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(3) To put the stability of the 3M method into perspective it is worth noting that
it is at least as stable as Strassen’s method. The best available bound for Strassen’s
method for forming C AB, where A, B E ]Rnn, is [12]

I1 CIl <_ f(n, no)ullAIlllBIl + O(u2),
where f(n, no) ’ nn(n/no)3"6 and where no _< n is the threshhold such that con-
ventional multiplication is used for matrices of dimension no or less. Thus Strassen’s
method satisfies a normwise bound only, and has a potentially much larger constant
in the bound than the 3M method.

(4) It is straightforward to show that if the 3M method is implemented using
Strassen’s method to form the real matrix products, then the computed complex C
satisfies

II CII _< 6(f(n, no) + 4)ullAllllBII + O(u2).
In other words, the 3M method combined with Strassen’s method has the same sta-
bility properties as Strassen’s method alone.

(5) We have done numerical experiments in MATLAB to confirm the theoretical
analysis. Our experience is that for "random" matrices the 3M method is quite
likely to produce a computed answer of similar quality to that from conventional
multiplication. (The same is true for Strassen’s method; see [12].) However, it is
easy to generate examples where instability occurs--for example, by generalizing the
example at the beginning of this section.

3. Practical considerations. What method should we use to multiply complex
matrices? If the best possible accuracy is required, or if execution time is not a
primary concern, then the multiplication should be done in the conventional manner.
When implementing conventional matrix multiplication in Fortran, we have the choice
of splitting the computation into its real and imaginary parts at the beginning, as is
necessary to apply the 3M method, or of using "complex arithmetic," which effectively
means resorting to real arithmetic only at the scalar level. These two approaches carry
out the same (real) arithmetic operations in different orders, and so satisfy the same
error bounds (2.2) and (2.3). The choice of which approach to use can therefore be
guided by considerations other than accuracy, such as the relative efficiency of real
and complex arithmetic implementations, which depends on various factors, including
memory reference time, the overhead of invoking complex arithmetic routines, and the
intrinsic costs of real and complex arithmetic. The relative efficiency can vary greatly
between machines and compilers. The LINPACK manual [8, p. 1.25, Appendix B]
reports the execution times of CGEF/t (complex LU factorization) and SGEF/t (real LU
factorization) for the LINPACK test sites (21 computing environments). For n 100,
the ratio "CGEFA/SEFA" varies between 1.64 and 8.98, with an average of 4.31.

If a faster multiplication is desired, the most promising possibilities involve the
3M method and Strassen’s method. Recent experience with Strassen’s method on real
matrices has shown that on certain machines it can produce useful speedups for n in
the hundreds [1], [2]. If the computing environment is such that complex arithmetic
is implemented very efficiently, it may be best to use Strassen’s method alone in
complex arithmetic. For example, in experiments in Algol-W on an IBM 360/67,
Brent [3] found that a complex matrix multiplication took less than three times as
long as a real matrix multiplication, for both the conventional method and Strassen’s
method. Thus it is probably not worth using the 3M method in this environment.



686 NICHOLAS J. HIGHAM

The evidence quoted above from the LINPACK manual suggests that in many
Fortran environments complex arithmetic will exceed real arithmetic in cost by a
factor of more than three. In such situations it is appropriate to use the 3M method
in conjunction with Strassen’s method, as is done in the ESSL library [13] and the
UNICOS library [5], and as is discussed at the end of 2.

A prominent source of Fortran 77 matrix multiplication routines is the level-3
basic linear algebra subprograms (BLAS3) [9]. The BLAS3 specifications define what
each routine must do but not how it must do it. Thus there is freedom of imple-
mentation, subject to the requirement of retaining numerical stability. One of the
main uses of the BLAS3 is as modules in block algorithms for solving linear equation
and eigenvalue problems, for example, in LAPACK [6]. Two important questions in
this context are whether the block algorithms remain backward stable when they are
built upon BLAS3 operations satisfying bounds of the form (2.12), and, if they do,
whether the backward error results are sufficiently strong for a given application. In
joint work with Demmel [7], we have shown that a wide class of block algorithms
satisfy a backward error bound of the form (2.12) if the BLAS3 themselves satisfy
(2.12). In combination with the work here, this provides motivation for preparing
complex BLAS3 routines based on the 3M method combined with Strassen’s method.

Acknowledgement. I thank Des Higham for his helpful comments on the manu-
script and Phuong Vu for pointing out reference [10].
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