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OPTIMIZATION BY DIRECT SEARCH IN
MATRIX COMPUTATIONS*

NICHOLAS J. HIGHAMt

Abstract. A direct search method attempts to maximize a function f l R using function
values only. Many questions about the stability and accuracy of algorithms in matrix computations
can be expressed in terms of the maximum value of some easily computable function f. For a variety
of algorithms it is shown that direct search is capable of revealing instability or poor performance,
even when such failure is difficult to discover using theoretical analysis or numerical tests with
random or nonrandom data. Informative numerical examples generated by direct search provide
the impetus for further analysis and improvement of an algorithm. The direct search methods used
are the method of alternating directions and the multi-directional search method of Dennis and
Torczon. The problems examined include the reliability of matrix condition number estimators and
the stability of Strassen’s fast matrix inversion method.
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I. Introduction. Is Algorithm X numerically stable? How large can the growth
factor be for Gaussian elimination with pivoting strategy P? By how much can con-
dition estimator C underestimate the condition number of a matrix? These types
of questions are fundamental in the analysis of algorithms in matrix computations.
Usually, one attempts to answer such questions by a combination of theoretical anal-
ysis and numerical experiments with random and nonrandom data. In this work we
show that a third approach can be a valuable supplement to the first two: phrase the
question as an optimization problem and apply a direct search method.

A direct search method for the problem

(I.i) max f(x), f" ]Rn - ]R
zER

is a numerical method that attempts to locate a maximizing point using function
values only, and which does not attempt to estimate derivatives of f. Such methods
are usually based on heuristics that do not involve assumptions about the function f.
Various direct search methods have been developed; for surveys, see [43], [52], and [53].
Most of these methods were developed in the 1960s, in the early days of numerical
optimization. For problems in which f is smooth, direct search methods have largely
been supplanted by more sophisticated optimization methods that use derivatives
(such as quasi-Newton methods and conjugate gradient methods), but they continue
to find use in applications where f is not differentiable, or even not continuous. These
applications range from chemical analysis [46], where direct search methods have found
considerable use, to the determination of drug doses in the treatment of cancer [4];
in both applications the evaluation of f is affected by experimental errors. Lack
of smoothness of f, and the difficulty of obtaining derivatives when they exist, are
characteristic of the optimization problems we consider here.
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Our aims and techniques can be illustrated using the example of Gaussian elimi-
nation (GE). Wilkinson’s classic backward error analysis [60] shows that the stability
of the process for A E tnn is determined by the size of the growth factor

where the a are the intermediate elements generated during the elimination. For
a given pivoting strategy we would therefore like to know how big pn(A) can be. To
obtain an optimization problem of the form (1.1) we let x vec(A) E tn, where
vec(A) comprises the columns of A strung out into one long vector, and we define
f(x) pn(A). Then we wish to determine

max y(x) =-- max pn(A).
x.Rn: A6.In

Suppose, first, that no pivoting is done. Then f is defined and continuous at all
points where the elimination does not break down, and it is differentiable except at
points where there is a tie for the maximum in the numerator or denominator of the
expression defining pn(A). We took n 4 and applied the direct search maximizer
MDS (described in 3) to f(x), starting with the identity matrix A h. After 11
iterations and 433 function evaluations, the maximizer converged,1 having located the
matrix2

-0.2760 -0.2760 -0.27601-3.3848 0.7240 -0.3492 -0.2760
-0.2760 -0.2760 1.4311 -0.2760
-0.2760 -0.2760 -0.2760 0.7240

for which p4(B) 1.23 x 105. (The large growth is a consequence of the submatrix
B(I: 3, 1: 3) being ill conditioned; B itself is well conditioned.) Thus the optimizer
readily shows that p,(A) can be very large for GE without pivoting.

Next, consider GE with partial pivoting. Here, at the kth stage of the elimination,
rows are interchanged so that -(k)

"kk [>-- ]akk)l, i= k" n. Now f is defined everywhere
but is usually discontinuous when there is a tie in the choice of pivot element, because
then an arbitrarily small change in A can alter the pivot sequence. We applied the
maximizer MDS to f, this time starting with the orthogonal matrix A t4a with
a,j (2/v/2n 1)sin(2ijr/(2n + 1)) [34], for which pa(A) 2.32. After 29 iterations
and 1169 function evaluations the maximizer converged to a matrix B with Pa(B)
5.86. We used this matrix to start the maximizer AD (described in 3); it took five
iterations and 403 function evaluations to converge to the matrix

0.7510 0.5241 0.7510
0.7317 0.1889 0.0227 -0.7510
0.7298 -0.3756 0.1150 0.7511
-0.6993 -0.7444 0.6647 -0.7500

In the optimizations of this section we used the convergence tests described in 3 with tol 10-3.
All numbers quoted are rounded to the number of significant figures shown.
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for which Pa (C) 7.939. Note that this matrix is not of the form

ii 11-11 1.4
-1 11 1
-1 -1 1

identified by Wilkinson [60] as yielding the maximum possible growth pn 2n-1 for
partial pivoting. The whole set of matrices A E ]R’ for which p,.,(A) 2-1 is
described in [34], and C is one of these matrices, modulo the convergence tolerance.

These examples, and others presented below, illustrate the following attractions
of using direct search methods to aid the understanding of algorithms in matrix com-
putations.

(1) The simplest possible formulation of optimization problem is often sufficient
to yield useful results. Derivatives are not needed, and direct search methods tend to
be insensitive to lack of smoothness in the objective function f. Unboundedness of
f is a favourable property--direct search methods usually quickly locate large values
of f.

(2) Good progress can often be made from simple starting values, such as an
identity matrix. However, prior knowledge of the problem may provide a good starting
value that can be substantially improved (as in the partial pivoting example).

(3) Usually it is the global maximum of f in (1.1) that is desired (although it is
often sufficient to know that f can exceed a specified value). When a direct search
method converges it will, in general, at best have located a local maximum--and in
practice the maximizer may simply have stagnated, particularly if a slack convergence
tolerance is used. However, further progress can often be made by restarting the
same (or a different) maximizer, as in the partial pivoting example. This is because
for methods that employ a simplex (such as the MDS method), the behaviour of the
method starting at x0 is determined not just by x0 but also by the n + 1 vectors in
the initial simplex constructed at x0.

(4) The numerical information revealed by direct search provides a starting point
for further theoretical analysis. For example, the GE experiments above strongly sug-
gest the (well-known) results that p,(A) is unbounded without pivoting and bounded
by 2n- for partial pivoting, and inspection of the numerical data suggests the meth-
ods of proof.

When applied to smooth problems the main disadvantages of direct search meth-
ods are that they have at best a linear rate of convergence and they are unable
to determine the nature of the point at which they terminate (since derivatives are
not calculated). These disadvantages are less significant for the problems we con-
sider, where it is not necessary to locate a maximum to high accuracy and objective
functions are usually nonsmooth. (Note that these disadvantages are not necessarily
shared by methods that implicitly or explicitly estimate derivatives using function
values, such as methods based on conjugate directions [43], [44]; however, these are
not normally regarded as direct search methods.)

The rest of this paper is organized as follows. In 2 we summarize related work and
explain what is new about our approach. In 3 we describe the alternating directions
(AD) method and the multidirectional search (MDS) method that we have used in
this work. All our experiments were done using the interactive package MATLAB
[40]. We used 80286 and 80386 PC-compatible machines that are of similar overall
speed to a Sun 3/50 workstation. Most of the optimization runs that we describe
took less than an hour of computing time.
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In 4 we show how direct search methods can provide insight into the performance
of matrix condition number estimators, for which the construction of "counterexam-
pies" is usually difficult. In 5 we describe some other, miscellaneous problems in
matrix computations that can be successfully explored using direct search. Finally,
in 6, we offer some conclusions.

2. Related work. This work was inspired by two papers published in the 1970s
by Miller [37], [38] and by recent work of Rowan [47]. Miller’s papers describe a way of
using a computer to search for numerical instability in algebraic processes, and so to
an extent they are concerned with "automatic rounding error analysis." In [37] Miller
defines a quantity a(d) that bounds, to first order, the sensitivity of an algorithm
to perturbations in the data d and in the intermediate quantities that the algorithm
generates. He then defines the forward stability measure p(d) a(d)/(d), where
(d) is a condition number for the problem under consideration. The algorithms to
be analyzed are required to contain no loops or conditional branches and are presented
to Miller’s Fortran software in a special numeric encoding. The software automatically
computes the partial derivatives needed to evaluate p(d), and attempts to maximize p
using the method of alternating directions. Miller gives several examples illustrating
the scope of his software; he shows, for example, that it can identify the instability of
the Gram-Schmidt method for orthogonalizing a set of vectors.

In [38] Miller and Spooner extend the work in [37] in several ways. The algorithm
to be analyzed is expressed in a Fortran-like language that allows for-loops but not
logical tests. The definition of p is generalized, and a method of computing it is
developed that involves solving a generalized eigenvalue problem. The book [39] gives
a thorough development of the work of [38] and provides further examples of the
use of the software. The potential of Miller and Spooner’s software for exposing
numerical instability is clearly demonstrated in [37], [38], and [39], yet the software
has apparently not been widely used. We suspect this is largely due to the inability
of the software to analyze algorithms expressed in Fortran, or any other standard
language.

A different approach to algorithm analysis is taken in [35], [36]. Here errors are
measured in a relative rather than an absolute sense, and the stability is analyzed at
fixed data instead of attempting to maximize instability over all data; however, the
analysis is still linearized.

Statistical modelling of rounding errors in an algorithm has been developed by
Chatelin and Brunet, and by Vignes. Their techniques involve randomly perturbing
the result of every floating point operation and using statistics to measure the effect
on the output of the algorithm; see [9], [10], and the references therein. In [8] Fortran
preprocessor tools are developed for implementing the statistical approach described
in [9] and the local relative error approach of [36].

We take an approach different from those described above. We note that for many
algorithms one can define an easily computable function f that gives an a posteriori
measure of the degree of success or the stability of the algorithm. Our approach is
to try to maximize f over the space of problem data using direct search and any
available implementation of the algorithm. This approach has several advantages.

Any algorithm for which a suitable f can be defined and computed can be
tested. There are no constraints on the algorithm or the choice of f.

When f measures numerical stability the interpretation of the results is straight-
forward, since f reflects the actual rounding errors sustained, instead of being a bound
from a linearized or statistical model of rounding error propagation.
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Existing software implementing the algorithm can be utilized.
In a recent Ph.D. thesis Rowan [47] develops another way to search for numerical

instability. For an algorithm with data d he maximizes S(d) e(d)/a(d) using a new
direct search maximizer called the subplex method (which is based on the Nelder-
Mead simplex method [41]). Here, e(d) Yacc is an approximation to the forward
error in the computed solution , where Yacc is a more accurate estimate of the true
solution than , and the condition number a(d) is estimated using finite difference
approximations. The quantity S(d) is a lower bound on the backward error of the
algorithm at d. Fortran software given in [47] implements this "functional stability
analysis." The software takes as input two user-supplied Fortran subprograms; one
implements the algorithm to be tested in single precision, and the other provides a
more accurate solution, typically by executing the same algorithm in double precision.
The examples in [47] show that Rowan’s software is capable of detecting numerical
instability in a wide variety of numerical algorithms. Rowan also gives two specific
examples of the approach we are advocating here: he uses the subplex method to find
a matrix for which the LINPACK condition estimator performs poorly (see 4), and
to find unit upper triangular matrices R with Irijl _< 1 that maximize al(R).

3. Two direct search methods. We have experimented with two direct search
methods. The first is the alternating directions (AD) method. Given a starting value x
it attempts to solve the problem (1.1) by repeatedly maximizing over each coordinate
direction in turn:

repeat
% One iteration comprises a loop over all components of x.
for/-- l:n

find ( such that f(x + oei) is maximized (line search)
set x

end
until converged

AD is one of the simplest of all optimization methods and its fundamental weak-
ness, that it ignores any interactions between the variables, is well known. Despite
the poor reputation of AD we have found that it can perform well on the types
of problems considered here. In our implementation of AD the line search is done
using a crude scheme that begins by evaluating f(x + he) with h 10-ax (or
h 10-4 max(llxllo 1) if x 0); if f(x + hei) <_ f(x) then the sign of h is reversed.
Then if f(x + he) > f(x), h is doubled at most 25 times until no further increase
in f is obtained. Our convergence test checks for a sufficient relative increase in f
between one iteration and the next: convergence is declared when

fk fk--I <-- to1 lY - I,

where fk is the highest function value at the end of the kth iteration. The AD method
has the very modest storage requirement of just a single n-vector.

The second method is the multidirectional search method (MDS) of Dennis and
Worczon [55], [56]. This method employs a simplex, which is defined by n + 1 vectors
(v} in ]Rn. One iteration in the case n 2 is represented pictorially in Fig. 3.1,
and may be explained as follows.

The initial simplex is {v0, Vl, v2} and it is assumed that f(vo) max f(v). The
purpose of an iteration is to produce a new simplex at one of whose vertices f exceeds
f(vo). In the first step the vertices vl and v2 are reflected about v0 along the lines
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v2

Vl

VO
C2

?’1
e2

FIG. 3.1. The possible steps in one iteration of the MDS method when n 2.

joining them to v0, yielding rl and r2 and the reflected simplex {vo, rl,r2}. If this
reflection step is successful, that is, if max f(r) > f(vo), then the edges from v0 to r
are doubled in length to give an expanded simplex {v0, el, e2}. The original simplex is
then replaced by {v0, el, e2} if maxi f(e) > maxi f(ri), and otherwise by {v0, r, r2}.
If the reflection step is unsuccessful then the edges v0 v of the original simplex are
shrunk to half their length to give the contracted simplex {v0, c, c2}. This becomes
the new simplex if maxi f(c) > max f(vi), in which case the current iteration is
complete; otherwise the algorithm jumps back to the reflection step, now working
with the contracted simplex. For further details of the MDS method, see [15], [55],
and [56].

The MDS method requires at least 2n independent function evaluations per itera-
tion, which makes it very suitable for parallel implementation. Generalizations of the
MDS method that are even more suitable for parallel computation are described in
[15]. The MDS method requires O(n2) elements of storage for the simplices, but this
can be reduced to O(n) (at the cost of extra bookkeeping) if an appropriate choice of
initial simplex is made [15].

Unusually for a direct search method, the MDS method possesses some conver-
gence theory. Torczon [56] shows that if the level set of f at v0 is compact and f
is continuously differentiable on this level set then a subsequence of the points v0

k

(where k denotes the iteration index) converges to a stationary point of f. Moreover,
she gives an extension of this result that requires only continuity of f and guarantees
convergence to either a stationary point of f or a point where f is not continuously
differentiable. No such convergence results are known for the Nelder-Mead direct
search method [16], [41], which also employs a simplex but which is fundamentally
different from the MDS method. Our limited experiments with the Nelder-Mead
method indicate that while it can sometimes outperform the MDS method, the MDS
method is generally superior for our purposes.

Our implementation of the MDS method provides two possible starting simplices,
both of which include the starting point x0: a regular one (all sides of equal length)
and a right-angled one based on the coordinate axes, both as described in [55]. The
scaling is such that each edge of the regular simplex, or each edge of the right-angled
simplex that is joined to x0, has length max(llx0]loo 1). Also as in [55], the main
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termination test halts the computation when the relative size of the simplex is no
larger than a tolerance tol, that is, when

1
max Ilvi roll1 <_ tol.(3.2) max(l, I1 olll) 1<,<

Unless otherwise stated, we used tol 10-3 in (3.1) and (3.2) in all our experiments.
It is interesting to note that the MDS method and our particular implementation

of the AD method do not exploit the numerical values of f: their only use of f is to
compare two function values to see which is the larger!

Our MATLAB implementations of the AD and MDS methods can be obtained
from netlib [18] by sending electronic mail to netlib(C)ornl.gov comprising the mes-
sage send dsmax from matlab/optimization.

4. Condition estimators. Condition estimation is the problem of computing
an inexpensive but "reliable" estimate of (A) --IIAIIIIA-111, for some matrix norm,
given a factorization of the nonsingular matrix A. (Other condition numbers of A
are also of interest, but we will concentrate on this standard condition number.) The
best known condition estimator is the one used in LINPACK [17]; it makes use of an
LU factorization of A and works with the 1-norm. Its development is described in
[12].3 Several years after [12] was published several counterexamples to the LINPACK
condition estimator were discovered by Cline and Rew [13]; by a counterexample we
mean a parametrized matrix for which the quotient "condition estimate divided by
true condition number" can be made arbitrarily small (or large, depending on whether
the estimator produces a lower bound or an upper bound) by varying a parameter.
Despite the existence of these counterexamples the LINPACK estimator has been
widely used and is regarded as being almost certain to produce an estimate correct
to within a factor ten in practice [27].

Another 1-norm condition estimation algorithm was developed by Higham [29],
[30], building on an algorithm of Hager [25]. This estimator is in the NAG library and
is being used throughout LAPACK [2]. The general algorithm estimates lIB Ill given
a means for forming matrix-vector products Bx and BTy. By taking B A- and
using an LU factorization of A we obtain an estimator with the same functionality
as the LINPACK estimator. Counterexamples to the general algorithm are identified
in [29].

A 2-norm condition estimator was developed by Cline, Corm, and Van Loan
[11, Algorithm 1]; see also [58]. The algorithm builds on the ideas underlying the
LINPACK estimator and estimates ffmin(R) [IR-1IIT or Crmax(R IIRII2 for a
triangular matrix R. Here, O’min and amax denote the smallest and largest singular
values, respectively. Full matrices can be treated if a factorization A QR is available
(Q orthogonal, R upper triangular), since R and A have the same singular values.
The estimator performs extremely well in numerical tests [11], [27], often producing
an estimate having some correct digits. No counterexamples to the estimator were
known until Bischof [5] obtained counterexamples as a by-product of the analysis of
a different, bvt related, method.

We have experimented with MATLAB implementations of the three condition es-
timators discussed above. RCOND is the LINPACK estimator as built into MATLAB.
SONEST implements the algorithm of [29] as applied to estimating 1 (A). SIGMAN

3 It is not widely known that a precursor to the LINPACK condition estimator is presented in
[24]. thank G. W. Stewart for pointing this out to me.
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is an implementation of the algorithm of [11] for estimating qmin(R), where R is upper
triangular.

For RCOND we define x vec(A), A E ]Rn’, and

al(A)f(x)- est(A)’
where est(A) _< al(A) is the condition estimate computed by RCOND. The same
definition is used for SONEST, which also computes a lower bound. We note that
since the algorithms underlying RCOND and SONEST contain tests and branches,
for certain A an arbitrarily small change in A can completely change the condition
estimate; hence for both algorithms f has points of discontinuity.

Since SIGMAN was designed for upper triangular matrices R ]Rnn we take in
this case x vec(R), where vec is the vec operator modified to skip over elements in
the lower triangle of its argument, and we define

est(R)f(x)-- ffmin(R)’

where est(R) >_ amin(R) is the estimate.
We applied the MDS maximizer to RCOND starting at A Ia. After 30 iterations

and 1009 function evaluations the maximizer had located the matrix

for which

0.1380 -2.52 106 0.138010.1380 1.1380 -1.34 x 107 0.1380
0.1380 0.1380 1.1380 0.1380
0.1380 0.1380 1.59 x 107 1.1380

I(A) 9.88 1014, est(A) 2 17 101 al(A)
est(A)

4.56 x 10a.

(For comparison, with the same starting matrix the AD maximizer yielded f 18.2
after six iterations and 950 function evaluations.) This matrix A is badly scaled, and
its validity as a counterexample could be questioned on the grounds that for linear
equations the condition number al(A) is not necessarily an appropriate measure of
problem sensitivity when A is badly scaled (see, for example, [22, 3.5.2]). This
objection can be overcome by maximizing f subject to a constraint that ensures A
is reasonably well scaled. A simple, but effective, constraint is al(A) <_ , where 0 is
a suitable tolerance. To incorporate this constraint we use a crude penalty function
approach in which f is redefined so that f(x) -103 whenever the constraint is
violated. Applying the MDS maximizer with starting matrix A diag(1,- 1, 1,- 1),
0 10, and tol 10-9 in (3.2), we obtained after 124 iterations and 4625 function
evaluations the well-scaled matrix

0.4559 0.1434 0.1461
1.1989 -0.8617 0.1359 0.1383
0.1375 2.2531 2.2017 0.1383
0.1404 -2.6932 0.1383 -0.8617J

for which

’I(A) 7.47 x 103, al(A)est(A) 5.37,
est(A)

1.39 103.
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We note that the parametrized counterexamples in [13] all become badly scaled when
the parameter is chosen to make the condition estimate poor. The only previously
known well-scaled counterexample to the LINPACK condition estimator is an n n
lower triangular matrix L in [13] for which gl (L)/est(L) 2n-1.

For $ONEST, the two maximizers make extremely slow progress starting with
A 14. A better starting value for both maximizers is the 4 x 4 version of the n x n
matrix with aj cos((/- 1)(j- 1)r/(n- 1)) [34]. After 11 iterations and 1001
function evaluations the AD maximizer had determined a (well-scaled) matrix A for
which

2.94 x 105 est(A)- 4.81,
sl(A)

6.11 x 104
est(A)

Applying MDS to SIGMAN, starting with R Ia, we obtained after 65 iterations
and 1511 function evaluations a matrix R such that

Crmin(R 3.25 10-1, est(R) 2.00 101, est(R)
O’min(R)

6.16 10I.

Using this matrix to start the AD maximizer led after two iterations and a further 93
function evaluations to R such that

amin() "--3.25 10-1 est()- 4.31 x 101, est(R)
O’min (R)

1.33 102.

These results are surprising. With little effort on our part in the choice of start-
ing matrix the maximizers have discovered examples where each of the condition
estimators fails to achieve its objective of producing an estimate correct to within an
order of magnitude. Such numerical examples have apparently never been observed
in practical computation, or in tests with random matrices such as those in [27]. The
value of direct search maximization in this context is clear: it can readily demon-
strate the fallibility of a condition estimatorua task that can be extremely difficult
to accomplish using theoretical analysis or tests with random matrices. Moreover, the
numerical examples obtained from direct search may provide a starting point for the
construction of parametrized theoretical ones, or for the improvement of a condition
estimation algorithm.

An area of current research in condition estimation is the derivation of algorithms
appropriate in applications such as signal processing where a matrix undergoes re-
peated low rank updates. Several algorithms have been developed [42], [50], but
counterexamples to them are not known. Direct search on the appropriate ratio f
could provide further insight into these methods.

We note that the direct search approach provides an alternative to the usual way
of assessing the quality of condition estimators, which is to examine the quality of
the estimates produced for random matrices [27]. One could instead measure the
difficulty that an optimizer has in "defeating" a condition estimatoruperhaps over a
large number of trials with random starting matrices.

As well as measuring the quality of a single algorithm, direct search can be used
to compare two competing algorithms, in order to investigate whether one algorithm
performs uniformly better than the other. We applied the MDS maximizer to the
function

estS(A)f(x)- estR(A)’



326 NICHOLAS J. HIGHAM

where estS(A) and estR(A) are the condition estimates from SONEST and RCOND,
respectively. If f(x) > 1 then SONEST has produced a larger lower bound for al(A)
than RCOND. Starting with A I4, the MDS maximizer converged after 22 iterations
to a matrix A for which estS(A) al (A) and f(x) 150.1. With f defined as f(x)
estR(A)/estS(A), and starting with a random matrix B e ]4x4, the MDS maximizer
converged after 40 iterations to a matrix with f(x) 63.90. This experiment shows
that neither estimator is uniformly superior to the other. This conclusion would be
onerous to reach by theoretical analysis of the algorithms.

Finally, we use direct search to investigate an open question raised in [27]. If
AH QR is a QR factorization with column pivoting of A E lRn, then [27,
Tam. 6.2]

1 2n-1
(4.1)

irnn
<_ IIR-111,2 _<

irnn I.
Moreover, there is much experimental evidence to show that 1/Irnn is rarely more
than ten times smaller than lIR ll . The question raised in [27] is whether for R from
the QR factorization with column pivoting the estimate est(R) <_ a (R) produced by
the LINPACK estimator has the desirable property that

(4.2) est(R) >_

that is, whether the LINPACK estimator always performs at least as well as the trivial
lower bound from (4.1). We applied the MDS maximizer to f(x)
where A E lRx, x vec(A), and AH QR. Starting with A Ia, the maximizer
achieved f(x) 520.4 after 67 iterations and 2929 function evaluations. Thus (4.2)
is not satisfied--not even to within a reasonable constant factor. However, we have
not been able to generate any matrix A for which SIGMAN produces an estimate
est(R) > Irnnl (with AH QR), so it is an open question as to whether est(R)
always holds for SIGMAN.

5. Other topics. In this section we describe five further topics in matrix com-
putations in which direct search yields interesting results. The first four examples are
all concerned with the instability of an algorithm in the presence of rounding errors;
here, unlike in the applications considered so far, the objective function depends in
an essential way on rounding errors. In our MATLAB computing environment the
unit roundoff u 1.11 x 10-16.

5.1. Fast matrix inversion. First, we discuss an example for which there is no
existing error analysis, and for which direct search reveals numerical instability. In
[51] Strassen gives a method for multiplying two n n matrices in O(nlg2 ) operations
(log2 7 2.801); he also gives a method for inverting an n n matrix with the same
asymptotic cost. The inversion method is based on the following formulae, where

A= JAil A12] tn AjE][:tmmA21 A22
n 2m,

and C

PI A P2 A21P1,

P3 P1A12, Pa A21P3
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P5--P4-A22, P6--P5-I,

C: [P1- P3P6P2 P3P6]P6P2 -P

(These formulae are easily derived via a block LU factorization of A.) The matrix
multiplications are done by Strassen’s method and the inversions determining P1 and
P6 are done by recursive invocations of the method itself. The inversion method is
clearly unstable for general A, because the method breaks down if All is singular.
Indeed Strassen’s inversion method has been implemented on a Cray-2 in [3] and
tested for n _< 2048, and it is observed empirically in [3] that the method has poor
numerical stability. Here we use direct search to investigate the numerical stability.

With x vec(A) E ]PL2 define the stability measure

(5.1) f(x) min([[AC IIIoo IICA II[oo }

where C is the inverse of A computed using Strassen’s inversion method. This def-
inition of f is appropriate because, as shown in [19], for most conventional matrix
inversion methods either the left residual CA- I or the right residual AC- I is
guaranteed to have norm of order ullV[ll[A[I. To treat Strassen’s inversion method as
favourably as possible we use just one level of recursion; thus P1 and P6 are computed
using Gaussian elimination with partial pivoting, but the multiplications are done with
Strassen’s method. We applied the MDS maximizer, with tol 10-9 in (3.2), starting
with the 4 4 Vandermonde matrix whose (i,j) element is ((j- 1)/3)-1. After 34
iterations the maximizer had converged with f 0.838, which represents complete
instability. The corresponding matrix A is well conditioned, with g2(A) 82.4. For
comparison, the value of f when A is inverted using Strassen’s method with conven-
tional multiplication is f 6.90 10-2; this confirms that the instability is not due
to the use of fast multiplication techniques--it is inherent in the inversion formulae.

If A is a symmetric positive definite matrix then its leading principal submatrices
are no more ill conditioned than the matrix itself, so one might expect Strassen’s
inversion method to be stable for such matrices. To investigate this possibility we
carried out the same maximization as before except we enforced positive definiteness
as follows: when the maximizer generates a vector x vec(S), A in (5.1) is defined
as A BTB. Starting with a 4 4 random matrix A with 2(A) 6.71 107
the maximization yielded the value f 3.32 10-s after 15 iterations, and the
corresponding value of f when conventional multiplication is used is f 6.61 10-11

(the "maximizing" matrix A has condition number a2(A) 3.58 109).
The conclusion from these experiments is that Strassen’s inversion method cannot

be guaranteed to produce a small left or right residual even when A is symmetric
positive definite and conventional multiplication is used. Hence the method must be
regarded as being fundamentally unstable. (The analyses in [14, 2.3] and [19, 2.2]
can be used to obtain further insight into this instability.)

5.2. Fast Vandermonde system solvers. In 1970 Bjhrck and Pereyra [7] pub-
lished two algorithms for solving the Vandermonde systems Vx b and VTa f
in 2O(n operations, where Y ((-1) e lRn. These algorithms have been used
in various applications [1], [48], [57] and generalized in several ways [6], [28], [31],
[54], and their numerical stability has been investigated [26], [31], [59]. In [7] it was
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pointed out that the algorithms sometimes produce surprisingly accurate results, and
an explanation for this was given in [26]. However, analysis in [31] predicts that the
algorithms can be moderately unstable, and an example of instability is given in [31],
together with suggested remedies. The example of [31] appears to be rare since no
instances of instability of the BjSrck-Pereyra algorithms were reported in the first
twenty years following their publication. It is therefore interesting to see whether
instability can be located by direct search.

Consider the dual system VTa f and define the relative residual

min{e (V + Av)T" f q- Af,

IlZXVIIo _< llVIIo, IlzXfllo _< llfllo},

where x [oz,...,oz,,fx,...,fn]T IR2 and is the computed solution from the
BjSrck-Pereyra dual algorithm. The equality above says that the relative residual is
equal to the normwise backward error and is well known (see [45]). It is desirable
to constrain the points ci to be distinct and in increasing order (since this ordering
is standard and usually helps the numerical stability [31]). To do so we redefine g
so that g(x) -10300 if the ordering conditions are not satisfied. We applied direct
search to g with n 25, starting with the points ci equally spaced on [-1, 1] and with

fi 1. Using a combination of MDS and AD maximizer invocations we obtained the
value g(x) 2.57 10-3, after a total of approximately 2100 function evaluations.

Thus, given "innocuous" starting values, the maximizers find moderate instability
of size three orders of magnitude. The vector produced by the maximization does not
represent a pathological problem: the points ci are approximately equally spaced
between -0.996 and 0.588, the vector f has positive elements lying between 0.309
and 2.42, and the Vandermonde matrix V satisfies a2(V) 2.27 10. The n 25
problem specified in [31, eq. (6.2)] yields g(x) 2.03 10-2, so the value of g
located by direct search is not a global maximum, but it is sufficiently large to reveal
instability. We also tried using the problem just mentioned as a starting point for
direct search. The AD maximizer increased g to 6.79 10-2 in two iterations, but
was unable to increase g further.

5.3. Matrix inverse. Numerical analysts universally deprecate the idea of solv-
ing a linear system Ax b by forming x A- b. The reasons are that Gaussian
elimination with partial pivoting (GEPP) is generally less expensive and more numer-
ically stable than use of a computed matrix inverse. The difference in computational
expense is easily explained and demonstrated (classically, the difference is a factor of
3). The difference in numerical stability is more subtle, and is rarely discussed in the
literature, although an excellent analysis is given in [21, 4.7.2]. The instability of the
inversion approach is easily demonstrated using direct search. For the linear system
Ay b where A IR let

lib-y(x)-
IIAIIollffllo + Ilbllo’

where A- is computed via GEPP, ff is the computed version of y A- b, and
x IR+ contains the elements of A and b. We applied the MDS maximizer, with
tol 10-9 in (3.2), taking as initial data the Hilbert matrix of order 4 and the vector
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of all ones. After 27 iterations and 1741 function evaluations the maximizer converged
with f(x) 2.91 10-9. In contrast, with y computed from GEPP, and using the
same starting values, the maximizer was unable to drive f above the unit roundoff
level 1.11 10-16.

For the matrix inversion method the final A and b found by the maximizer satisfy

a2(A) 1.05 x I0, {{A{{:{ly{{: 40.2, {{bl{2 2.50;

thus b is a right-hand side for which y does not reflect the ill condition of A. As
explained in [21], it is for such A and b that the instability of matrix inversion as a
means of solving Ax b is most pronounced.

5.4. Complex matrix multiplication. It is well known that two complex num-
bers can be multiplied using only three real multiplications. An analogous result
holds for matrices. Let A A1 + iA2, B BI + iB2, where Ai, Bi E IR . If
C C + iC2 AB, then

C AB1 A2B2,
C2 (A1 + A2)(B1 + B2) ASx A2B2,

and these expressions can be evaluated using three real matrix multiplications and
five real matrix additions. This yields a saving in arithmetic operations of about 25
percent compared to the usual way of forming C, which involves four real matrix
multiplications. However, this alternative method is known to be less stable than
conventional multiplication in the sense that the computed imaginary part of the
product can be relatively inaccurate [33]. Let

f(x) 1{C2 ..-
where x [vec(A1)T vec(A2)T vec(B1)T vec(B2)T]T e ]R4n2 and 2 and 2 are the
computed imaginary parts from conventional multiplication and the formula (5.2b),
respectively. A large value for f(x) implies that C2 is inaccurate, since we know from
standard error analysis that C2 will always be as accurate as can be expected. To
test how readily direct search can expose the instability of (5.2a) we applied the MDS
maximizer to f with the starting data A E + i(E, B E + i(E, where E lRxn

is the matrix of l’s. With n 4, tol 10-6 in (3.2), and ( 1, the maximizer
converged after 12 iterations with f(x) 3.40 10-16. With the same n and tol, and
( 5, the maximizer converged with f(x) 9.99 10-ll after 24 iterations. Thus,
with a little experimentation in the choice of starting value, the instability is easily
revealed.

5.5. QR factorization. If A QR e lI%x’ is a QR factorization then amin(A)
amin(R) <_ mini Iriil. If column pivoting is used in the QR factorization then this in-
equality differs from equality by at most a factor 2n-l, as shown by (4.1). But in gen-
eral the inequality can be arbitrarily weak, as is well known. This is easily confirmed
by direct search. Let f(z) mini {riil/amin(A), where x vec(A) and A QR.
We applied the MDS maximizer followed by the AD maximizer, with tol 10-3 and
starting with A Ia, and we obtained f(x) 6.58 x l0T after approximately 930
function evaluations. In fact, the maximizers make rapid progress in increasing f
for every starting value we have tried. This is perhaps not surprising, since Foster
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[20] gives bounds on the probability that f exceeds f for a class of random matrices,
and the probabilities are significant even for large/. For the QR factorization with
column pivoting, starting with A 14, the same maximization produced f(x) 2.57,
which is well short of the global maximum 2n-1 8.

6. Conclusions. Our experience in using direct search methods has convinced
us that they are a useful supplement to the traditional means of analyzing algorithms
in matrix computations, such as rounding error analysis and numerical testing with
random data. Indeed, tests with random data tend to reveal the average-case be-
haviour of an algorithm, but the worst-case is also of interest. An underlying theme
of this work is that direct search can be vastly more effective than Monte Carlo testing
at revealing worst-case behaviour (this is particularly true for the condition estimators
of 3).

As we have shown, direct search is sometimes capable of exposing failure of al-
gorithms even when given a trivial starting value such as an identity matrix. An
informed choice of starting value coming from partial understanding of the algorithm
increases the chance of a revealing optimization. Unsuccessful optimizations can also
provide useful information. As Miller and Spooner explain [38, p. 370], "Failure of
the maximizer to find large values of w (say) can be interpreted as providing evi-
dence for stability equivalent to a large amount of practical experience with low-order
matrices."

To make use of direct search one has to be able to express the question of interest
as an unconstrained optimization problem. As we have shown, this can often be done
by employing an appropriate residual or overestimation ratio. If numerical stability
is of interest and a suitable objective function cannot be defined then the approach
of Rowan [47] is attractive, since it automatically constructs stability estimates given
only the ability to execute the algorithm at two different precisions.

Direct search optimization is potentially useful in other areas of numerical anal-
ysis besides matrix computations. An experiment in which direct search is used to
reveal the fallibility of an adaptive quadrature routine is described in [47]; direct
search is used to investigate the accuracy of floating point summation in [32]; and
direct search has been used to help tune heuristic parameters in Fortran codes for the
numerical solution of ordinary differential equations [49]. We hope that in addition to
encouraging researchers in numerical analysis to experiment with direct search opti-
mization, this work will encourage optimization researchers to devote more attention
to the rather neglected area of direct search. The multidirectional search method of
Dennis and Torczon performed extremely well in our experiments, and alternating di-
rections performed much better than the textbooks might lead one to expect. Parallel
direct search methods, such as those in [15], seem particularly attractive for tackling
difficult problems such as maximizing the growth factor for Gaussian elimination with
complete pivoting [23].

Acknowledgments. I thank Des Higham and Nick Trefethen for their many
helpful comments on this work.
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