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FAST POLAR DECOMPOSITION OF AN ARBITRARY MATRIX*

NICHOLAS J. HIGHAM" AND ROBERT S. SCHREIBER

Abstract. The polar decomposition of an m x n matrix A of full rank, where rn n, can be computed
using a quadratically convergent algorithm of Higham SIAMJ. Sci. Statist. Comput., 7 (1986), pp. 1160-1174].
The algorithm is based on a Newton iteration involving a matrix inverse. It is shown how, with the use of
a preliminary complete orthogonal decomposition, the algorithm can be extended to arbitrary A. The use
of the algorithm to compute the positive semidefinite square root of a Hermitian positive semidefinite matrix
is also described. A hybrid algorithm that adaptively switches from the matrix inversion based iteration to
a matrix multiplication based iteration due to Kovarik, and to Bj6rck and Bowie, is formulated. The decision
when to switch is made using a condition estimator. This "matrix multiplication rich" algorithm is shown
to be more efficient on machines for which matrix multiplication can be executed 1.5 times faster than
matrix inversion.
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1. Introduction. A polar decomposition of a matrix A Cmn is a factorization
A UH, where H Cnn is Hermitian positive semidefinite and U C is unitary;
here we define unitary to mean that U has orthonormal rows or columns according
as rn _-< n or m >_- n. The decomposition always exists, H is the unique Hermitian positive
semidefinite square root of A*A (i.e., H (A*A)I/2), and U is unique if and only if
A has full rank (these properties are proved in 2).

The polar decomposition is well known in the case rn-> n (see [8] and [11], for
example). We have followed Horn and Johnson [14] in extending the definition to
m-< n. The consistency of the definition can be seen in the result that for any m and
n the unitary polar factor U is a nearest unitary matrix to A in the Frobenius norm
(this is a straightforward extension of a result from [6]). Because of the role it plays
in solving this and other nearness problems, computation of the polar decomposition
is required in several applications 13 ]. A recent application, which motivated the work
here, is the computation of block reflectors (generalizations of Householder matrices)
[19]. Here, the polar decomposition of an arbitrary matrix must be computed, and it
is desirable to do this efficiently on vector and parallel computers.

The polar decomposition can be obtained directly from the singular value
decomposition (SVD). Higham [11] describes an alternative approach based on a
Newton iteration involving a matrix inverse. The iteration is defined for square,
nonsingular matrices only, but in 11 it is pointed out how a preliminary QR decompo-
sition enables the treatment of A C" with m >- n and rank (A) n. It is also shown
in [11] how the iteration can be used to compute the square root of a Hermitian
positive definite matrix. According to the traditional model of computational cost
based on operation counts, the iterative algorithm is generally of similar expense to
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the SVD approach, but is much more efficient when the matrix is nearly unitary. In
an attempt to improve the performance of the iterative algorithm on machines that
execute matrix multiplication at high efficiency, Schreiber and Parlett 19] propose the
use of an inner Schulz iteration to compute most of the matrix inverses; they show
that this leads to an increase in efficiency if matrix multiplication can be done at a
rate 6.8 times faster than matrix inversion. Gander [7] develops a family of iteration
methods for computing the polar decomposition of a rectangular matrix of full rank;
his family includes a variant of the Newton iteration of [11].

The purpose of this work is twofold. First, we extend the algorithm of [11] so
that it is applicable to arbitrary A. Our technique is to use an initial complete orthogonal
decomposition so as to extract an appropriate square, nonsingular matrix. We might
say that the complete orthogonal decomposition is to the polar decomposition what
Chan’s preliminary QR factorization is to the SVD! We also show how to use the
algorithm of [11] to compute the square root of a (singular) Hermitian positive
semidefinite matrix. Second, we introduce a modification of the Schulz inner iteration
idea of [19] that reduces the cutoff ratio of multiplication speed to inversion speed
from 6.8 to 2, or to 1.5 if advantage is taken of a symmetric matrix product.

2. Iterative polar decomposition of an arbitrary matrix. The basic algorithm of 11
is as follows. It converges quadratically for any square, nonsingular A. We use a
MATLAB-like algorithmic notation, and denote by A-* the conjugate transpose ofA-.

ALGORITHM 2.1. U, HI polar, square (A, ).
% Input arguments: square, nonsingular A; convergence tolerance .
% Output arguments: U, H.
Xo=A; k=-I
repeat

k=k+l
(11 II, IIx ’ I1 /(llx II, IIx ]l)) a/4

1/2( + x-;*/ r,,)
until Xk+, Xk II, -< II,
U X,+
H=1/2(U*A+A*U)
To adapt the algorithm to arbitrary A C we begin by computing a complete

orthogonal deomposition (COD)

0

where Pe C and Q e C are unitary, and R e C is nonsingular and upper
triangular (we exclude the trivial case A 0, for which R is empty). This decomposition
may be computed using a QR factorization with column pivoting followed by a further
Householder reduction step (see [9, p. 169] for the details). Now we apply Algorithm
2.1 to R, obtaining R UH, and we piece together" the polar factors of A. We have

A=P[ URHRo 00] Q,

p[ URo
=- UH,

m-r,n-r 0

Im_r,n_
"Q o
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where Im_r,n_ denotes the (m- r)x (n- r) identity matrix. Note that I,,-r,,-r could
be replaced by any unitary matrix ofthe same dimensions; this shows the nonuniqueness
of the unitary polar factor when r-rank (A)< min (m, n). Note also that even though
U*U# I when m < n, H U*UH for all m and n; thus A’A= HU*UH-H2, so
that H (A’A)/2.

In evaluating U and H advantage can be taken of the zero blocks in the products.
Denoting by Qa the first r columns of Q, we have

(2.1) H QIHRQ*.

For U we partition

P (P1, P2

and we distinguish the two cases:

(2.2a) m => n =:> U [PI, P]
0

0 [im_, 0]

in which, respectively, the last m-n columns of P and the last n-m rows of Q*
need not participate in the multiplication.

To summarise, we have the following algorithm.

ALGORITHM 2.2. U, H] polar (A, e, 6).
% A 0 is arbitrary.
[P, R, Q] =COD (A, e)
UR, HR] polar, square (R, 8)
Form U, H according to (2.1) and (2.2).

As the notation indicates, in floating-point arithmetic a tolerance e is required
for the complete orthogonal decomposition to determine a numerical rank (i.e., the
dimension of R). The natural approach is to set to zero all rows of the trapezoidal
QR factor of A that are negligible (in some measure) relative to e (see [9, p. 166]).
The choice of e is important, since a small change in e can produce a large change
in the computed U when A is rank-deficient. However, a redeeming feature is that
whatever the choice of e, and irrespective of how well the QR factorization reveals
rank, Algorithm 2.2 is stable, that is, the computed polar factors /], satisfy

UH A+ E,

where IIEII max {e, a}llAll; this follows from the empirical stability of Algorithm
2.1 (see [11]) together with the stability of the additional orthogonal transformations
in Algorithm 2.2.

The operation count of Algorithm 2.2 breaks down as follows, using the "flop"
notation [9, p. 32]. The complete orthogonal decomposition requires 2mnr- r(m + n)+
2r3/3 + r(n r) flops [9, pp. 165,170]. Algorithm 2.1 requires, typically, eight iterations
(assuming 8 10-16), and hence (7 +)r flops (taking into account the triangularity
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of R). And formation of H and U requires at most nr2+n2r/2 and mr2+
max {nm, mn} flops, respectively. By comparison, computing a polar decomposition
via the Golub-Reinsch SVD algorithm requires approximately 8mn+25n3/6 flops
when m _-> n. The Golub-Reinsch SVD algorithm does not take advantage of rank-
deficiency, although it could be modified to do so by using an initial complete
orthogonal decomposition as above.

Of course, operation counts are not always a reliable guide to the actual computa-
tional cost on modern vector and parallel computers. An alternative performance
indicator is the amount ofmatrix multiplication in an algorithm, since matrix multiplica-
tion can be performed very efficiently on many modern computers [1], [3], [18], [20].
As we will see in the next section, Algorithm 2.1 can be modified so that it is rich in
matrix multiplication. In the complete orthogonal decomposition in Algorithm 2.2 the
second Householder reduction step can be accomplished using the matrix multiplica-
tion rich WY representation of [3], [20]. In the initial QR factorization effective use
of the WY representation is precluded by the column pivoting. One alternative is to
use Bischof’s local pivoting and incremental condition estimation technique [2], which
does not hinder exploitation of the WY form. Another alternative is to compute a QR
factorization without pivoting, and then to apply Chan’s post-processing algorithm [5]
for obtaining a rank-revealing QR factorization.

Finally, we show how to use Algorithm 2.1 to compute the Hermitian positive
semidefinite square root of a Hermitian positive semidefinite A Cnn. First, we
compute a Cholesky decomposition with pivoting,

0

where Rl C is nonsingular and upper triangular. Then Householder transforma-
tions are used to zero R (as in the complete orthogonal decomposition):

U*IIrAIIu=[T*I][TI, 0], TllGC uppertriangular.
k 30

Next, Algorithm 2.1 applied to Tll yields Tll- UT-Hr, whence, with Q- II U,

=0 Q*=
0 0

Q* --x

Square roots of semidefinite matrices are required in some statistical applications [10].
An alternative to this polar decomposition approach is to make use ofan eigendecompo-
sition; the relative merits are similar to those discussed above for the SVD.

3. A hybrid iteration. To make Algorithm 2.1 rich in matrix multiplication rather
than matrix inversion, Schreiber and Parlett [19] use an inner Schulz iteration,

(3.1) Z+I=Z+(I-ZXk)Z, Zo= X,,

to compute X on all iterations after the first. This approach takes advantage of the
fact that since the Xk are converging quadratically, X{_I is an increasingly good
approximation to X{ 1. The Schulz iteration (3.1) is a Newton iteration and so also
converges quadratically. Schreiber and Parlett observe that for the matrices in their
application (which are often well conditioned) the typical number of inner iterations
required for convergence is 6, 5, 3, 2, 1, leading to 17 iterations in total, or 34 matrix
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multiplications. If the matrix inverses were computed directly, five inverses would be
needed. This suggests that the modified algorithm will be faster than Algorithm 2.1 if
matrix multiplication can be done at a rate 34/5 times faster than matrix inversion.

Further experimentation with the inner Schulz iteration led us to feel that it is
unnecessary to run the inner iteration to convergence, and we considered employing
just one Schulz iteration, with the starting matrix Zo Xk* (=X;’ since Xk converges
to a unitary matrix). Thus the basic iteration

(3.2) Xk+
’)/k

is replaced by (setting "Yk--1)

Xk+, 1/2(Xk + (Z*o + Z*o (I ZoXk)*))
(3.3)

Xk(I +1/2(I--X*k Xk)).

This is precisely the quadratically convergent iteration of Kovarik 15] and Bj6rck and
Bowie [4] for computing the unitary polar factor! Hence, just a single inner Schulz
iteration is enough to maintain quadratic convergence.

The convergence of (3.3) is described by the following relation, noted in [17]"

Rk+l =R+1/4R,

where R I--X*k Xk. (Using this relation, we can show that the asymptotic error
constant is - for (3.3) compared with 1/2 for (3.2) [11].) If IIRkll 1, then

2IIR+,II < IIRII=/IIRII=- IIRII < IIRII,
To maximise the number of matrix multiplications we therefore need to switch from
iteration (3.2) to iteration (3.3) as soon as the convergence condition

(3.4) IIx*x III--< 0 < 1

is satisfied; to ensure fast convergence 0 should not be too close to 1. As explained
below, typically (3.4) is satisfied for k 3 with 0=0.6 (and obviously for k =0 if
Xo A happens to be nearly unitary). Rather than expend a matrix multiplication
testing (3.4) we can use the matrix norm estimator CONEST from 12]. This computes
a lower bound for IIcII, by sampling several matrix-vector products Cx and C’x; thus
we can estimate IIX*k Xk 1111, without forming X*k Xk, in O(r2) flops (for r x r Xk).
A suitable way to use the estimate is to test whether it is less than A0, where A < 1. If
so, X*kXk--I is formed, in preparation for (3.3), and its norm is taken. If (3.4) is
satisfied then (3.3) is usedotherwise we revert to iteration (3.2). The optimum choice
of A depends on the desired bias between wasting a matrix multiplication in an abortive
switch of iteration, and not switching soon enough. The estimate from CONEST is
almost always correct to within a factor 3, so A ->_ is appropriate. In practice we have
found that the performance of the algorithm is fairly insensitive to the choices of 0
and A.

To summarise, our hybrid inversion/multiplication algorithm is as follows.

ALGORITHM 3.1. U, HI polar, mult (A, , A, 0).
% A must be a square, nonsingular matrix.
Xo A; k =-1; /x 1; switched=false
repeat
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k=k+l
if switched

R I-X*Xk;
evaluate (3.3)

else
I., CONEST I X’X
if >h0

evaluate (3.2)
else

R= I--X*kXk; / IIRIli
if t > 0, evaluate (3.2), else evaluate (3.3), sw+/-tched=true; end

end
end

until/ -<_
U X+
H=1/2(U*A+A*U)

Since iteration (3.3) requires two matrix multiplications, and iteration (3.2) requires
one inversion, Algorithm 3.1 will be more efficient than Algorithm 2.1 if matrix
multiplication can be done at twice the rate of matrix inversion; thus, compared with
using the full inner Schulz iteration, the "cutoff ratio" is 2 instead of 6.8. Moreover,
if advantage is taken of the symmetry of the second matrix product in (3.3) the cutoff
ratio is reduced to 1.5. The overall speedup depends on the ratio of inversions to
multiplications, which in turn depends on the conditioning of the matrix, as discussed
below.

All the algorithms mentioned here have been coded and tested in PC-MATLAB
[16], running on an IBM PC-AT. For this machine the unit roundoff u 2.22 10 -16.
We used 0 .6, A .75, 8 v/7 u, where r is the dimension ofthe matrix A in Algorithms
2.1 and 3.1, and e =max (m, n)]tlu in the complete orthogonal decomposition, where
T is the triangular factor from the QR factorization with complete pivoting.

The following comments summarise our numerical experience, based on a wide
variety of test matrices.

Algorithms 2.1 and 3.1 usually require the same number of iterations. Occasion-
ally Algorithm 3.1 requires one more iteration due to the larger error constant for
iteration (3.3).

In general, the typical number of iterations for Algorithm 3.1 is seven to nine,
within the switch of iteration on iteration three or four.

TABLE 3.1

k rF(Xk+,) IIx* Xk llll’ Iteration Yk

0 2.6265E7 1.1380E10 (3.2)
5.3197E2 2.6233E4 (3.2)

2 4.0886E0 8.0962E- 2 (3.3)
3 3.9959E0 4.4915E- 3 (3.3)
4 4.0000E0 1.3686E- 5 (3.3)
5 4.0000E0 1.2607E 10 (3.3)
6 4.0000E0 1.5765E 17 (3.3)

3.1546E-3
8.0931E 3

Norm estimate when (3.2) is used; exact quantity when (3.3) is used.
Norm estimate exact to five digits.
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For well-conditioned matrices (:2(A) <- 10, say), as are common in certain
applications (see 13]), Algorithm 3.1 tends to require at most seven iterations and the
switch is on iteration one, two, or three.

We present the results for one representative matrix in detail" MATLAB’s
"gallery(5)," which is the 5 x 5 nilpotent matrix

-9 11 -21 63 -252
70 -69 141 -421 1684

575 575 -1149 3451 -13801

3891 -3891 7782 -23345 93365

1.024 1024 2048 -6144 24572

Using Algorithm 3.1 within Algorithm 2.2, the numerical rank is diagnosed as 4, and
Algorithm 3.1 is presented with a triangular matrix having one singular value of order
105 and three of order 1. Table 3.1 summarises the iteration. The backward error
A- t)/ - 4.7ullall.
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the manuscript.
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