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Abstract. We show how to incorporate exact line searches into Newton’s method for solving
the quadratic matrix equation AX2 + BX + C = 0, where A, B and C are square matrices. The
line searches are relatively inexpensive and improve the global convergence properties of Newton’s
method in theory and in practice. We also derive a condition number for the problem and show how
to compute the backward error of an approximate solution.
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1. Introduction. Nonlinear matrix equations occur in a variety of applications.
An important class of examples, arising in control theory, is algebraic Riccati equa-
tions, such as XBX +XA+ A∗X + C = 0, where A, B, and C are given coefficient
matrices. Theory of Riccati equations and numerical methods for their solution are
well developed [1], [4], [31]. Our interest here is in the quadratic matrix equation

Q(X) = AX2 +BX + C = 0, A,B,C ∈ C
n×n.(1.1)

Although some Riccati equations are quadratic matrix equations, and vice versa,
the two classes of equations require different techniques for analysis and solution in
general.

Motivation for studying the quadratic matrix equation comes from the quadratic
eigenvalue problem

Q(λ)x = λ2Ax+ λBx+ Cx = 0, A,B,C ∈ C
n×n,(1.2)

which arises in the analysis of structural systems and vibration problems [30], [36],
[37]. The standard approach is to reduce (1.2) to a generalized eigenproblem (GEP)
Gx = λHx of twice the dimension, 2n. However, as is well known [7], [10], [30], if we
can find a solution X of the associated quadratic matrix equation (1.1) then we can
write

λ2A+ λB + C = −(B +AX + λA)(X − λI)(1.3)

and so the eigenvalues of (1.2) are those of X together with those of the GEP (B +
AX)x = −λAx, both of which are n × n problems. Bridges and Morris [5] employ
this approach in the solution of differential eigenproblems.

A solution X of (1.1) is called a solvent [10]. More precisely, X is called a right
solvent to distinguish it from a left solvent, which is a solution of X2A+XB+C = 0.
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Transposing the latter equation yields one of the form (1.1), so we concentrate on
(1.1) here.

A dominant (minimal) solvent X is one for which every eigenvalue is greater (less
than) in modulus than all the eigenvalues of the quotient B + AX + λA in (1.3). In
earlier work, Dennis, Traub, and Weber gave two linearly convergent algorithms for
computing a dominant solvent of an arbitrary degree matrix polynomial [11]. One
of these is a generalization of Bernoulli’s method for scalar polynomials and is also
described by Gohberg, Lancaster, and Rodman [20, sec. 4.2]. These algorithms have
the drawbacks that it is difficult to check in advance whether a dominant solvent exists
and the convergence can be extremely slow (see [27] for more details). Davis [7], [8]
applied Newton’s method to the quadratic matrix equation, giving supporting theory
and implementation details. Kratz and Stickel [29] investigated Newton’s method for
the general matrix polynomial.

This work has two main contributions. First, following an idea of Benner and
Byers [2] (and, much earlier, of Man [33]) in the context of the algebraic Riccati equa-
tion, we incorporate exact line searches into Newton’s method for the quadratic matrix
equation in order to improve the global convergence properties. We show experimen-
tally that exact line searches improve the reliability of Newton’s method, leading to
more frequent convergence and, often, faster convergence. Our second contribution is
to derive the true condition number for the quadratic matrix equation, thus obtaining
a sharper perturbation bound than Davis [7], and to obtain the backward error of an
approximate solution.

Solving even the scalar quadratic equation reliably in floating point arithmetic is
a difficult problem, as pointed out by Forsythe [15], principally due to the difficulty of
handling underflow and overflow. We do not consider here the effects of underflow and
overflow, but rather concentrate on the difficulties present with exact computation.

2. Theory. Before considering numerical solution of the quadratic matrix equa-
tion we examine the existence and enumeration of solvents. The fundamental theorem
of algebra does not hold for matrix polynomials, as is shown by the special case of
the matrix square root problem X2 = A, which does not always have a solution when
A is singular [28, sec. 6.4].

The quadratic matrix equation can be solved explicitly when A = I, B commutes
with C, and B2−4C has a square root. We can complete the square in the usual way
to obtain the solution

X = − 1
2B + 1

2 (B
2 − 4C)1/2,

where A1/2 denotes any square root that is a polynomial in A. This case pertains,
for example, when A and B are scalar multiples of the identity and B2 − 4AC is
nonsingular, after scaling though by A−1. However, no generalization of the formula
for the solution of a scalar quadratic is available for general A, B, and C.

Various sufficient conditions for the existence of a solvent are given by Eisen-
feld [12] and Lancaster and Rokne [32]. In the former paper the results are obtained
using the contraction mapping principle and in the latter paper using the Newton–
Kantorovich theorem. Roughly speaking, all these results require that B or B−1 be
small in norm compared with A and C, so they are of limited practical applicability.

The existence of dominant and minimal solvents is guaranteed for problems com-
ing from overdamped quadratic eigenvalue problems (1.2): those for which A, B, and
C are all symmetric positive definite and (xTBx)2 > 4(xTAx)(xTCx) for all nonzero
x; see Lancaster [30, sec. 7.6].
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General information about existence of solvents comes from the connection be-
tween the quadratic matrix equation and the quadratic eigenvalue problem (1.2).
Note, first, that if A is nonsingular then det(Q(λ)) = det(A) det(λ2I + A−1Bλ +
A−1C), so det(Q(λ)) has degree exactly 2n and hence Q(λ) has 2n eigenvalues, all of
which are finite. If A is singular then det(Q(λ)) has degree less than 2n and hence
Q(λ) has either less than 2n finite eigenvalues or infinitely many if det(Q(λ)) ≡ 0.

The next result gives information on the number of solvents of Q(X); it general-
izes [10, Cor. 4.1].

Theorem 2.1. Suppose Q(λ) has p distinct eigenvalues {λi}pi=1, with n ≤ p ≤ 2n,
and that the corresponding set of p eigenvectors {vi}pi=1 satisfies the Haar condition
(that is, every subset of n of them is linearly independent). Then there are at least(
p
n

)
different solvents of Q(X), and exactly this many if p = 2n, which are given by

X = W diag(µi)W
−1, W = [w1, . . . , wn ] ,(2.1)

where the eigenpairs (µi, wi)
n
i=1 are chosen from among the eigenpairs (λi, vi)

p
i=1

of Q.
Proof. There are clearly

(
p
n

)
choices ofX in (2.1). Since µ2

iAwi+µiBwi+Cwi = 0,
we have AW diag(µi)

2 + BW diag(µi) + CW = 0 and thence, on postmultiplying by
W−1, Q(X) = 0. That the

(
p
n

)
solvents are different follows from the fact that no two

have the same eigenvalues. Now suppose that p = 2n. From (1.3), every eigenpair of
X is also an eigenpair of Q, and it follows that X is diagonalizable and of the form
(2.1).

When p = n in Theorem 2.1 the distinctness of the eigenvalues is not needed in
the proof, and we obtain a sufficient condition for the existence of a solvent.

Corollary 2.2. If Q(λ) has n linearly independent eigenvectors v1, . . . , vn then
Q(X) has a solvent.

An example helps to clarify the theory. Consider the quadratic [10]

Q(X) = X2 +

[−1 −6
2 −9

]
X +

[
0 12
−2 14

]
.

Q(λ) has four distinct eigenvalues, with eigenpairs (λi, vi) given by

i 1 2 3 4
λi 1 2 3 4

vi
[
1
0

] [
0
1

] [
1
1

] [
1
1

]
To apply Theorem 2.1 we can take p no bigger than 3, in view of the Haar condition. If
we take eigenvalues 1, 2, 3, then the theorem gives three solvents, having eigenvalues
1 and 2, 1 and 3, and 2 and 3. But the eigenvectors corresponding to eigenvalues
1, 2, 4 also satisfy the Haar condition and this gives us another two solvents, having
eigenvalues 1 and 4, and 2 and 4. Note that there is no dominant solvent, which
would have to have eigenvalues 3 and 4. The complete set of solvents is[

1 0
0 2

]
,

[
1 2
0 3

]
,

[
3 0
1 2

]
,

[
1 3
0 4

]
,

[
4 0
2 2

]
.

We were able to find all these solvents using the solve command of Matlab’s Sym-
bolic Math Toolbox [34], but symbolic solution is clearly impractical for large n.

For a characterization of solvents via the generalized Schur decomposition of an
associated matrix pencil, see [27].



306 NICHOLAS J. HIGHAM AND HYUN-MIN KIM

3. Newton’s method. Newton’s method for solving the quadratic matrix equa-
tion (1.1) is readily obtained from the expansion

Q(X + E) = Q(X) +
(
AEX + (AX +B)E

)
+AE2

= Q(X) +DX(E) +AE2,(3.1)

where DX(E) : C
n×n → C

n×n is the Fréchet derivative of Q at X in the direction E.
Newton’s method drops the second order term, defines E as the solution of Q(X) +
DX(E) = 0, and replaces X by X+E. Each step of Newton’s method involves finding
the solution E of

AEX + (AX +B)E = −Q(X),(3.2)

which is a special case of the generalized Sylvester equation “AXB + CXD = E.”
We would like to know when the Fréchet derivative DX is nonsingular, both at

a solvent and at an iterate X, so that (3.2) has a solution. From a result of Chu [6]
on the generalized Sylvester equation it follows that DX is nonsingular if and only if
the pair (−A,AX + B) is regular (that is, det(−A − λ(AX + B)) is not identically
zero in λ) and the eigenvalues of the pair are distinct from the eigenvalues of X. If
A is nonsingular, the regularity condition holds. When X is a solvent, we see from
(1.3) that the second condition is equivalent to the eigenvalues of X being distinct
from the remaining n eigenvalues of Q(λ). We can therefore identify some sufficient
conditions for nonsingularity of DX at a solvent.

Lemma 3.1. If A is nonsingular then DX is nonsingular at
1. a dominant or minimal solvent X,
2. all solvents X if the eigenvalues of Q(λ) are distinct.
For efficiency, Q(X) should be calculated by nested multiplication as (AX+B)X+

C, which requires two matrix multiplications instead of the three if X2 is explicitly
formed and provides the coefficient matrix AX +B in (3.2) as a byproduct.

To solve (3.2) we can adapt methods for solving the generalized Sylvester equation
described by Golub, Nash, and Van Loan [21] and Epton [13] (see also Chu [6] and
Gardiner et al. [17], [18]). First we consider a Schur algorithm.

Compute the generalized Schur decomposition of A and AX+B [22, Thm. 7.7.1],

W ∗AZ = T, W ∗(AX +B)Z = S,(3.3)

where W and Z are unitary and T and S are upper triangular, and the Schur decom-
position of X, U∗XU = R, where U is unitary and R is upper triangular. Then, pre-
and postmultiplying (3.2) by W ∗ and U , respectively, transforms the system to

TY R+ SY = F, F = −W ∗Q(X)U, Y = Z∗EU.(3.4)

Equating kth columns and rearranging leads to

(S + rkkT )yk = fk −
k−1∑
i=1

rikTyi, Y = [y1, y2, . . . , yn].(3.5)

By solving these upper triangular systems in the order k = 1:n, Y can be computed
a column at a time. The cost of this algorithm is as follows, where a flop denotes
a floating point operation. The generalized Schur decomposition requires 66n3 flops
[22, sec. 7.7.6] and the Schur decomposition 25n3 flops [22, sec. 7.5.6]. Forming F
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and transforming from Y to E in (3.4) costs 8n3 flops, and solving (3.5) requires 3n3

flops. The total is therefore 102n3 flops.
The Schur algorithm is used by Davis [7]. However, as noted by Golub, Nash, and

Van Loan [21], Epton [13], and Gardiner et al. [17], one of the Schur decompositions
can be replaced by a Hessenberg-triangular decomposition with a potentially sub-
stantial computational saving. Suppose we replace (3.3) by the Hessenberg-triangular
decomposition [22, sec. 7.7.4]

W ∗AZ = T, W ∗(AX +B)Z = H,

where the only difference from (3.3) is thatH is upper Hessenberg (this decomposition
is a preliminary step to computing (3.3) by the QZ algorithm). The analogue of (3.5)
is

(H + rkkT )yk = fk −
k−1∑
i=1

rikTyi,(3.6)

which is an upper Hessenberg system. The Hessenberg-triangular decomposition re-
quires 15n3 flops [22, sec. 7.7.6] and the systems (3.6) can be solved in 4n3 flops.
Hence the total cost of the Hessenberg–Schur algorithm is 52n3 flops, which is a 51
percent saving compared with the Schur algorithm.

Versions of the Schur and Hessenberg–Schur algorithms that employ real Schur
decompositions and so use only real arithmetic can be developed; see [17] for details.

Standard convergence results for Newton’s method apply [9, Thm. 5.2.1], as de-
tailed in [29, Thm. 1]. In particular, if Newton’s method is started sufficiently close
to a solvent for which the Fréchet derivative is nonsingular, the iteration converges
and at a quadratic rate. The Kantorovich theorem can also be applied to provide
sufficient conditions for existence of a solvent and convergence of Newton’s method
to that solvent [9, Thm. 5.3.1].

4. Incorporating line searches. In the solution of unconstrained optimization
problems by Newton or quasi-Newton methods it is common to use the Newton direc-
tion as a search direction and to define the next iterate by (approximately or exactly)
minimizing the objective function along this direction [35, Chap. 3]; the minimization
is called a line search. Line searches can also be used on nonlinear equation problems,
given a suitable function for the line search to minimize. Benner and Byers [2] (see
also [3]) investigate the use of exact line searches in Newton’s method for solving
the algebraic Riccati equation. (Man [33] had earlier used exact line searches in a
quasi-Newton method for the same problem, but did not give any details.) Here, we
apply exact line searches with Newton’s method for the quadratic matrix equation.

The motivation for line searches is that, far from a solution, the linear model of
Q(X) on which Newton’s method is based may be inaccurate, and so the Newton step
E may not be a good one. Line searches are expected to give better global convergence
(that is, convergence from arbitrary starting points). An example adapted from [2]
illustrates the point. Consider the quadratic matrix equation

X2 −
[
1 0
0 δ1/2

]
= 0, 0 < δ 	 1,

which has solutions X = diag(±1,±δ1/4). With X0 = diag(1, δ), Newton’s method
gives E = diag(0, (δ−1/2 − δ)/2), so that X1 = X0 + E is a much worse approximate
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solvent than X0. However, it is clear that X0 + tE is a solvent for suitable choice of
the scalar t.

In our Newton method with line searches we take a multiple of the Newton step
that minimizes the merit function

p(t) = ‖Q(X + tE)‖2
F ,(4.1)

where the Frobenius norm ‖A‖F = (trace(A∗A))1/2. Other choices of merit function
could be tried (for example, based on other norms of Q), but this one is convenient
to work with and has some theoretical backing, as explained below. Recalling that
Newton’s method defines E by Q(X) +DX(E) = 0, from (3.1) we have, for this E,

Q(X + tE) = Q(X) + tDX(E) + t2AE2

= (1− t)Q(X) + t2AE2.(4.2)

Thus

p(t) = (1− t)2‖Q(X)‖2
F + t4‖AE2‖2

F

+ (1− t)t2 trace
(
Q(X)∗AE2(AE2)∗Q(X)

)
≡ α(1− t)2 + γt4 + β(1− t)t2

= γt4 − βt3 + (α+ β)t2 − 2αt+ α.(4.3)

If γ = ‖AE2‖F = 0 then p(t) = α(1 − t)2, which attains its global minimum at
t = 1, yielding the standard Newton step. If α = 0 then X is a solvent. We can
therefore assume that γ > 0 and α > 0.

We have a quartic polynomial p of which we wish to find the global minimum. A
quartic has at most two minima, of which one is the global minimum. We have

p′(t) = 2α(t− 1) + β(2t− 3t2) + 4γt3.

Hence

p′(0) = −2α < 0,(4.4)

and

p′(2) = 2(α− 4β + 16γ)

= 2 trace
(
Q(X)∗Q(X)− 4(Q(X)∗AE2 + (AE2)∗Q(X)) + 16(AE2)∗AE2

)
= 2 trace

(
(Q(X)− 4AE2)∗(Q(X)− 4AE2)

)
≥ 0.

Since p′(0) < 0 and p′(2) ≥ 0, p′ has a real zero in the interval (0, 2], and this zero
corresponds to a minimum or a point of inflection of p. Since t = 1 corresponds to a
pure Newton step, it is therefore reasonable to restrict our attention to the interval
[0, 2], although there is no guarantee that there is a minimum of p in this interval
when we are far from a solution. Thus we define t by

p(t) = min
x∈[0,2]

p(x).(4.5)

There are two cases to consider.
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(1) If p′ has one real zero and a (nonreal) complex conjugate pair of roots then
the real zero, which must lie in (0, 2], is the desired global minimum.

(2) If p′ has three real zeros then at most two are minima of p. If the global
minimum lies outside (0, 2] then t = 2 needs to be checked, as it may yield a smaller
value of p than the zero of p′ in (0, 2].

Knowing these cases, it is easy to implement the choice of t in (4.5), since the
zeros of the cubic p′ and the values of p at these zeros are easily computed.

The question arises of whether the exact line searches interfere with the quadratic
convergence of Newton’s method, necessitating the explicit setting of t = 1 once
convergence is approached. The answer is no, under a mild assumption, as we now
show. Assume that Xj is within a region where quadratic convergence to X occurs,

and let Xj+1 = Xj + Ej and X̃j+1 = Xj + tEj be the standard Newton update and
the update with exact line search, respectively. Defining ∆j = X −Xj , we have

‖∆j+1‖ = O
(‖∆j‖2

)
.

The definition of t ensures that, using (4.2),

‖(1− t)Q(Xj) + t2AE2
j ‖ = ‖Q(Xj + tEj)‖ ≤ ‖Q(Xj + Ej)‖

= ‖Q(Xj+1)‖ = ‖Q(X −∆j+1)‖
= ‖Q(X)‖+O(‖∆j+1‖)
= O

(‖∆j‖2
)
.(4.6)

Now Ej = −∆j+1 +∆j , so ‖Ej‖ = O(‖∆j‖) and, by (3.1),

Q(Xj) = Q(X −∆j) = −DX(∆j) +O(‖∆j‖2).

Hence, as long as the Fréchet derivative is nonsingular atX, (4.6) implies that |1−t| =
O(‖∆j‖). Thus

X − X̃j+1 = X −Xj+1 +Xj+1 − X̃j+1 = O
(‖∆j‖2

)
+ (1− t)Ej = O

(‖∆j‖2
)
,

as required.
The global convergence properties of Newton’s method with exact line searches

can be obtained from standard theory. We are effectively solving a nonlinear system
f(x) = 0 by Newton’s method, where f : R

n2 → R
n2

, doing line searches on the
function F (x) = f(x)T f(x), as advocated by Dennis and Schnabel [9, sec. 6.5] and
Fletcher [14, sec. 6.2]. The global convergence results of [9, sec. 6.3], [14, sec. 2.5]
apply provided that certain restrictions known as the Armijo–Goldstein conditions
are imposed on the line search. In our notation these conditions may be written as

p(t) ≤ p(0) + c1tp
′(0),(4.7a)

p′(t) ≥ c2p
′(0),(4.7b)

where c1 and c2 are parameters with 0 < c1 < c2 < 1. The first condition ensures that
the reduction in p is at least as big as that predicted by a first order model, while the
second ensures that the step is not too small, by requiring that the derivative at t be
at least some fraction of the derivative at 0. It is easy to see using (4.4) that (4.7a)
is equivalent to

‖Q(X + tE)‖2
F ≤ (1− 2c1t)‖Q(X)‖2

F ,



310 NICHOLAS J. HIGHAM AND HYUN-MIN KIM

which requires a sufficient decrease in the merit function. The use of exact line searches
does not necessarily imply that the conditions (4.7) are satisfied. However, (4.7b)
certainly holds in the usual case when the optimal t is a zero of p′(t), since p′(0) < 0.
Both conditions have been checked and found to be satisfied in all our numerical tests
(with c1 = 1/4, c2 = 1/2), so we have not considered any modifications to the exact
line search.

The line search requires three matrix multiplications to compute the coefficients
of p in (4.3) (Q(X) is already available), the remaining computations being scalar
ones. The total cost of the line search is 5n3 flops, which is negligible compared with
the cost of computing the Newton direction E (at least 56n3 flops).

5. Conditioning. We now derive a condition number for a solvent of the quadratic
matrix equation (1.1). The analyses in this section and the next have close connec-
tions with analyses for Sylvester and algebraic Riccati equations in [19], [23], [25],
[26].

Consider the perturbed equation

(A+∆A)(X +∆X)2 + (B +∆B)(X +∆X) + C +∆C = 0.(5.1)

We will measure the perturbations normwise by

ε = ‖ [α−1∆A, β−1∆B, γ−1∆C ] ‖F ,
where α, β, and γ are nonnegative parameters. A zero value of α, say, simply forces
the corresponding perturbation ∆A to be zero. Expanding (5.1) we obtain

AX∆X +A∆XX +B∆X = −∆AX2 −∆BX −∆C +O(ε2).(5.2)

We now use the vec operator, which stacks the columns of a matrix into one long vec-
tor, and the Kronecker product A⊗B = (aijB), and we use the property vec(AXB) =
(BT ⊗A) vec(X) [28, Chap. 4]. Applying the vec operator to (5.2) we obtain

P vec(∆X) = −((X2)T ⊗ In) vec(∆A)− (XT ⊗ In) vec(∆B)− vec(∆C) +O(ε2)

= − [α(X2)T ⊗ In, βXT ⊗ In, γIn2 ]


 vec(∆A)/α
vec(∆B)/β
vec(∆C)/γ


+O(ε2),

where

P = In ⊗AX +XT ⊗A+ In ⊗B.

Multiplying by P−1, taking 2-norms, and using ‖ vec(X)‖2 = ‖X‖F , we obtain the
bound

‖∆X‖F
‖X‖F ≤ Ψ(X)ε+O(ε2),(5.3)

where

Ψ(X) = ‖P−1 [α(X2)T ⊗ In, βXT ⊗ In, γIn2 ] ‖2/‖X‖F .
This is a sharp bound, to first order in ε, so Ψ(X) is the condition number of X. Note
that P is nonsingular, and hence Ψ(X) finite, precisely when the Fréchet derivative
DX in (3.1) is nonsingular.



SOLVING A QUADRATIC MATRIX EQUATION 311

An upper bound for Ψ(X) involving ‖P−1‖2 can of course be obtained by bound-
ing the norm of the product by the product of the norms, but this bound can be
arbitrarily weaker than (5.3). A perturbation bound for (1.1) that contains a factor
‖D−1

X ‖F is derived by Davis [7], and it is easy to show that ‖P−1‖2 = ‖D−1
X ‖F .

For the special case of the matrix square root we have A = I, B = 0, α = β = 0,
and the condition number Ψ simplifies to

Ψ(X) =
‖P−1‖2γ

‖X‖F , P = In ⊗X +XT ⊗ In,

which is the matrix square root condition number identified in [25].
We give an illustrative example from [20, Ex. 4.4], with

A = I2, B =

[
0 0
1 0

]
, C =

[−1 0
−1 0

]
.

The eigenvalues of Q(λ) are −1, 0, 0, 1 and there are three solvents:

X1 =

[
1 −1
0 −1

]
, X2 =

[
1 0
0 0

]
, X3 =

[−1 0
−2 0

]
.

The solvent X1 is dominant and so Theorem 3.1 implies it has a finite condition
number; in fact Ψ(X1) = 3.64. The other two solvents are both easily seen to have
singular P and hence infinite condition numbers.

6. Backward error. We define the backward error of an approximate solution
Y to (1.1) by

η(Y ) = min
{
ε : (A+∆A)Y 2 + (B +∆B)Y + C +∆C = 0,

‖ [α−1∆A, β−1∆B, γ−1∆C ] ‖F ≤ ε
}
.(6.1)

Defining

R = AY 2 +BY + C,

the constraint equation in (6.1) can be written as

−R = ∆AY 2 +∆BY +∆C

= [α−1∆A, β−1∆B, γ−1∆C ]


αY 2

βY
γIn


 .(6.2)

Taking Frobenius norms leads to the lower bound for the backward error

η(Y ) ≥ ‖R‖F
(α2‖Y 2‖2

F + β2‖Y ‖2
F + nγ2)1/2

.

Applying the vec operator to (6.2) gives

[α(Y 2)T ⊗ In, βY T ⊗ In, γIn2 ]


 vec(∆A)/α,
vec(∆B)/β,
vec(∆C)/γ


 = − vec(R),(6.3)
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which we write as

Hz = r, H ∈ R
n2×3n2

.

We assume that H is of full rank, which guarantees that (6.3) has a solution, that is,
that the backward error is finite. The backward error is the minimum 2-norm solution
to this underdetermined system:

η(Y ) = ‖H+r‖2,

where a superscript “+” denotes the pseudoinverse. To obtain an upper bound for
η(Y ) we use

η(Y ) ≤ ‖H+‖2‖r‖2 =
‖r‖2

σmin(H)
,

where σmin denotes the smallest singular value, which is nonzero by assumption. Now

σmin(H)2 = λmin(HH∗)
= λmin(α

2(Y 2)TY 2 ⊗ In + β2Y TY ⊗ In + γ2In2)

= λmin(α
2(Y 2)∗Y 2 ⊗ In + β2Y ∗Y ⊗ In + γ2In2)

≥ α2σmin(Y
2)2 + β2σmin(Y )

2 + γ2.

Thus

η(Y ) ≤ ‖R‖F
(α2σmin(Y 2)2 + β2σmin(Y )2 + γ2)1/2

.

We conclude from this analysis that a small relative residual does not necessarily
imply a small backward error for the quadratic matrix equation. The same is true for
the Sylvester equation [26] and, more generally, the algebraic Riccati equation [19].

7. Numerical experiments. Davis [7], [8] demonstrated the usefulness of New-
ton’s method for solving the quadratic matrix equation. Our purpose in this section
is to show experimentally the benefits of exact line searches in Newton’s method. Our
experiments were done in Matlab, which has unit roundoff u = 2−53 ≈ 1.1× 10−16.

First, we give a few details about our Newton implementation. The default start-
ing matrix is, as in [7],

X0 =

(‖B‖F +
√‖B‖2

F + 4‖A‖F ‖C‖F
2‖A‖F

)
I,

which is designed to have norm roughly of the same order of magnitude as a solvent.
We terminate the iteration when the residual Q(Xk) is of the same order of magni-
tude as the rounding error in computing it, namely, when the relative residual ρ(Xk)
satisfies

ρ(Xk) =
‖fl(Q(Xk))‖F

‖A‖F ‖Xk‖2
F + ‖B‖F ‖Xk‖F + ‖C‖F ≤ nu.(7.1)

OurMatlab code has an option to choose whether to use line searches. When line
searches are being used, they are turned off (t is set to 1) once ρ(Xk) ≤ 10−7; this is
not necessary in theory (see section 4), but is done to save work and as a precaution to
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avoid rounding errors destroying the quadratic convergence. In evaluating backward
errors and condition numbers we took α = ‖A‖F , β = ‖B‖F , γ = ‖C‖F .

The potential benefits of exact line searches are easily demonstrated. Consider
the quadratic matrix equation with

A = I2, B =

[−1 −1
1 −1

]
, C =

[
0 1
−1 0

]
.(7.2)

As noted in [8] there are real solvents I2 and
[

0
−1

1
0

]
and an infinite number of complex

solvents. Applying Newton’s method with and without line searches for the defaultX0

and X0 = 10jI, j = 1, 5, 10, gave the results in Table 7.1, which show the substantial
reduction in iterations that exact line searches can bring. In each case the computed
solvent X̂ was within roundoff of I2, with condition number Ψ(X̂) = 1.4 and backward

error η(X̂) ≈ u.
Our next example is the quadratic matrix equation with

A = B = I2, C =

[ −8 −12
−18 −26

]
,(7.3)

again from [8], which has four solvents, all real and well conditioned. With the default
starting matrix, convergence was obtained in 6 iterations with line searches and 10
without line searches, to the same matrix. We chose starting matrices

X0 =

[
1 x
y 1

]
, −1000 ≤ x, y ≤ 1000,

with an equally spaced grid of 100 points (x, y). Table 7.2 shows how many times
a solvent was produced within 30, 50, and 100 iterations, respectively. Convergence
was obtained to all four solvents, depending on the starting matrix, and a different
solvent was sometimes obtained with exact line searches than without. Exact line
searches result in more frequent convergence, though in 10 of the cases convergence
was obtained without line searches but not with them, and in another 22 cases where
both gave convergence faster convergence was obtained without line searches. Thus
exact line searches do not lead to uniformly better convergence than when no line
searches are used. An interesting phenomenon is that in 48 cases when line searches
were not used the test (7.1) was satisfied within 100 iterations, but with ‖X‖F � u−1,
so that X was far from a solvent (these cases were counted as failure to converge for
the statistics). This behavior did not happen with line searches: the line searches
force ‖Q(Xk)‖F to be a decreasing sequence, which tends to keep Xk from becoming
large if there is no large solvent.

Our final example is based on a quadratic eigenvalue problem (1.2) from [16,
sec. 10.11], with numerical values modified as in [30, sec. 5.3], modelling oscillations
in an airplane wing:

A =


 17.6 1.28 2.89
1.28 0.824 0.413
2.89 0.413 0.725


 , B =


 7.66 2.45 2.1
0.23 1.04 0.223
0.6 0.756 0.658


 ,

C =


 121 18.9 15.9

0 2.7 0.145
11.9 3.64 15.5


 .

(7.4)
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Table 7.1
Number of iterations for convergence for problem (7.2).

X0 Without line searches With exact line searches
Default 6 5

10I 9 6
105I 22 6
1010I 39 7

Table 7.2
Number of times convergence obtained for problem (7.3) with 100 different starting matrices.

No. iterations allowed Without line searches With exact line searches
30 46 54
50 52 73
100 53 88

The 6 eigenvalues are distinct and come in 3 complex conjugate pairs; since any
solvent must have 3 eigenvalues chosen from the 6, it follows that there are no real
solvents. Starting Newton’s method with X0 = iI we obtained the results displayed
in Figure 7.1. Convergence was obtained to the same solvent with and without line
searches, with condition number Ψ(X̂) = 50 and backward error η(X̂) ≈ u. The
eigenvalues of the computed solvent are

-8.8483e-001+ 8.4415e+000i,

9.4722e-002+ 2.5229e+000i,

-9.1800e-001+ 1.7606e+000i,

and these and their conjugates are the eigenvalues of the quadratic eigenvalue problem.
Finally, we note that in all our tests the global minimum of the merit function p

in (4.1) was in (0, 2] and never to the right of 2.
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Fig. 7.1. Convergence for problem (7.4).
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8. Concluding remarks. Newton’s method is a useful tool in our stock of
methods for solving quadratic matrix equations. In its favor is its applicability to
the whole class of problems and its quadratic convergence, the latter making it a
useful way to refine approximate solvents obtained with other methods. On the other
hand each iteration is relatively expensive. The exact line searches introduced here
frequently reduce the number of iterations and make standard global convergence
results from optimization applicable.

A number of open problems remain, including guaranteeing convergence for par-
ticular starting matrices, determining to which solvent Newton’s method will converge,
and improving the convergence to solvents at which the Fréchet derivative is singu-
lar. These questions have been answered for certain types of Riccati equations, by
exploiting their structure [2], [24], but the lack of structure in the quadratic matrix
equation has so far precluded any useful results.

Acknowledgments. We thank Françoise Tisseur and the referees for their help-
ful suggestions.
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