
Approximating the logarithm of a matrix to
specified accuracy

Cheng, Sheung Hun and Higham,
Nicholas J and Kenney, Charles S and Laub, Alan J

2001

MIMS EPrint: 2006.142

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

APPROXIMATING THE LOGARITHM OF A MATRIX TO
SPECIFIED ACCURACY∗

SHEUNG HUN CHENG† , NICHOLAS J. HIGHAM‡ , CHARLES S. KENNEY§ , AND

ALAN J. LAUB¶

SIAM J. MATRIX ANAL. APPL. c© 2001 Society for Industrial and Applied Mathematics
Vol. 22, No. 4, pp. 1112–1125

Abstract. The standard inverse scaling and squaring algorithm for computing the matrix
logarithm begins by transforming the matrix to Schur triangular form in order to facilitate subsequent
matrix square root and Padé approximation computations. A transformation-free form of this method
that exploits incomplete Denman–Beavers square root iterations and aims for a specified accuracy
(ignoring roundoff) is presented. The error introduced by using approximate square roots is accounted
for by a novel splitting lemma for logarithms of matrix products. The number of square root stages
and the degree of the final Padé approximation are chosen to minimize the computational work.
This new method is attractive for high-performance computation since it uses only the basic building
blocks of matrix multiplication, LU factorization and matrix inversion.

Key words. matrix logarithm, Padé approximation, inverse scaling and squaring method,
matrix square root, Denman–Beavers iteration

AMS subject classification. 65F30

PII. S0895479899364015

1. Introduction. Logarithms of matrices arise in various contexts. For example,
for a physical system governed by a linear differential equation of the form

dy

dt
= Xy,

we may be interested in determining the matrix X from observations of the state
vector y(t) [1], [20]. If y(0) = y0 then y(t) = eXty0, where the exponential of a matrix
is defined by

eX =

∞∑
k=0

Xk

k!
.

By observing y at t = 1 for initial states consisting of the columns of the identity
matrix, we obtain the matrix A = eX . Under certain conditions on A and X, we
can then solve for X as X = logA. This raises the question of how to compute a
logarithm of a matrix.

When A is near the identity matrix several methods can be used to approximate
logA directly, that is, without any nontrivial transformation of A. For example,

∗Received by the editors November 16, 1999; accepted for publication (in revised form) by A.
Edelman August 23, 2000; published electronically March 13, 2001.

http://www.siam.org/journals/simax/22-4/36401.html
†Centre for Novel Computing, Department of Computer Science, University of Manchester,

Manchester, M13 9PL, England (scheng@cs.man.ac.uk, http://www.cs.man.ac.uk/˜scheng/). The
work of this author was supported by Engineering and Physical Sciences Research Council grant
GR/L94314.

‡Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/˜higham/). The work of this author was sup-
ported by Engineering and Physical Sciences Research Council grant GR/L94314.

§ECE Department, University of California, Santa Barbara, CA 93106-9560 (kenney@seidel.
ece.ucsb.edu).

¶College of Engineering, University of California, Davis, CA 95616-5294 (laub@ucdavis.edu). The
work of this author was supported by NSF grant ECS-9633326.

1112

APPROXIMATING THE LOGARITHM OF A MATRIX 1113

we can truncate the Taylor series log(I − W) = −W − W 2/2 − W 3/3 − · · ·, where
W = I−A. Alternatively, we can use Padé approximations of log(I−W); see [16] and
section 5 below. Unfortunately, if A is not near the identity then these methods either
do not converge or converge so slowly that they are not of practical use. The standard
way of dealing with this problem is to use the square root operator repeatedly to bring
A near the identity:

logA = 2k logA1/2k

.(1.1)

(Definitions of the logarithm and square root functions for matrices are given in

the next section.) As k increases, A1/2k → I, so for sufficiently large k we can

apply a direct method to A1/2k

. This procedure for the logarithm was introduced
by Kenney and Laub [15] and is referred to as inverse scaling and squaring, since it
reverses the usual scaling and squaring method of evaluating the matrix exponential:

eX =
(
eX/2

k)2k

[19], [21].
Two related questions arise with the inverse scaling and squaring method. First,

potentially the most expensive part of the method is the computation of the square
roots. For cases where only modest accuracy is required in the logarithm it is natural
to ask whether the cost of this part of the computation can be reduced by comput-
ing approximate square roots. The second question concerns the effect of errors in
computing the square roots on the accuracy of the computed logarithm. In [15] the
square roots are computed using the Schur method [4], [9], [12], which has essentially
optimal accuracy and stability properties, but the effects of rounding errors are not
analyzed.

In partial answer to these questions we develop an extension of the inverse scaling
and squaring method with two key properties.

1. It aims for a specified accuracy in the computed logarithm, requiring less
work when more modest accuracy is requested. When full accuracy (that
of the underlying arithmetic) is requested, our method becomes a new and
attractive implementation of the original inverse scaling and squaring method.

2. It can be implemented using only the basic building blocks of matrix mul-
tiplication, LU factorization, and matrix inversion. The method is therefore
attractive for high-performance computation.

In view of these two properties our method may also be of interest for computing the
logarithm in variable precision computing environments, such as in symbolic manipu-
lation packages. Our bounds for the various truncation errors are developed for exact
arithmetic. In floating point arithmetic, rounding errors also influence the accuracy.
We do not rigorously bound the effect of rounding errors, but rather estimate it in
terms of the conditioning of the problem.

Our new method is based on a splitting lemma for the logarithm (Lemma 2.1
below), which says that if A = BC and B and C commute then, under certain
conditions,

logA = logB + logC.

In the special case B = C = A1/2 we recover the basis of (1.1): logA = 2 logA1/2.
We apply the splitting lemma to the Denman–Beavers (DB) iteration for the matrix
square root [5]:

Yk+1 =
(
Yk + Z−1

k

)
/2, Y0 = A,

Zk+1 =
(
Zk + Y −1

k

)
/2, Z0 = I.

1114 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

The DB iteration converges quadratically with Yk → A1/2 and Zk → A−1/2. The
splitting lemma can be used to show that

logA = 2 log Yk − log YkZk.

The matrix product YkZk converges to the identity and so its logarithm converges
to zero. Our approach is to iterate until log YkZk is sufficiently small, then apply
the process recursively on Yk, monitoring the error build-up as we proceed. We thus
apply an incomplete square root cascade that brings A close enough to the identity
so that the logarithm can be approximated directly.

To increase the efficiency of our method we develop in section 3 a product form of
the DB iteration that trades one of the matrix inversions for a matrix multiplication
and automatically generates the products YkZk. We also incorporate scaling to reduce
the overall number of iterations. The product form iteration turns out to be closely
related to the standard Newton iteration for the matrix sign function, as explained
in section 4. In section 5 we develop the implementation details for the incomplete
square root cascade. Our method uses a Padé approximation, explained in section 6,
whose order is chosen in section 7 together with the number of square root stages in
order to minimize the computational work. Numerical experiments are described in
section 8 and conclusions are given in section 9.

2. Splitting lemma. We begin by defining the matrix logarithm and square
root functions. Let A be a real or complex matrix of order n with no eigenvalues on
R

− (the closed negative real axis). Then there exists a unique matrix X such that [15]

1. eX = A;
2. the eigenvalues of X lie in the strip { z : −π < Im(z) < π };

We refer to X as the (principal) logarithm of A and write X = logA. Similarly, there
is a unique matrix S such that [9], [15]

1. S2 = A;
2. the eigenvalues of S lie in the open halfplane: 0 < Re(z).

We refer to S as the (principal) square root of A and write S = A1/2.

If A is real then its principal logarithm and principal square root are also real.

For our first result, we need to define the open halfplane associated with z = ρeiθ,
which is the set of complex numbers w = ζeiφ such that −π/2 < φ− θ < π/2.

Lemma 2.1 (splitting lemma). Suppose that A = BC has no eigenvalues on R
−

and

1. BC = CB;
2. every eigenvalue of B lies in the open halfplane of the corresponding eigen-

value of A1/2 (or, equivalently, the same condition holds for C).

Then logA = logB + logC.

Proof. First we show that the logarithms of B and C are well defined. Since A =
BC = CB it follows that A commutes with B and C. Thus there is a correspondence
between the eigenvalues a, b, and c of A,B, and C: a = bc. Express these eigenvalues
in polar form as

a = αeiθ, b = βeiφ, c = γeiψ.

Since A has no eigenvalues on R
−,

−π < θ < π.(2.1)

APPROXIMATING THE LOGARITHM OF A MATRIX 1115

The eigenvalues of B lie in the open halfplanes of the corresponding eigenvalues of
A1/2, that is,

−π

2
< φ− θ

2
<

π

2
.(2.2)

The relation a = bc gives θ = φ+ψ, from which we have ψ−θ/2 = θ/2−φ. It follows
from (2.2) that the eigenvalues of C lie in the open halfplanes of the corresponding
eigenvalues of A1/2. Thus, in view of (2.1), B and C have no eigenvalues on R

− and
their logarithms are well defined.

Next, we show that elogB+logC = A. The matrices logB and logC commute
since B and C do. Using the well-known result that the exponential of the sum of
commuting matrices is the product of the exponentials [14, Thm. 6.2.38], we have

elogB+logC = elogBelogC = BC = A.

It remains to show that the eigenvalues of logB + logC have imaginary parts in
(−π, π). This follows since, in view of the commutativity of B and C, the eigenvalues
of logB + logC are log b + log c = log a.

Note that for A = BC the commutativity condition BC = CB is not enough
to guarantee that logA = logB + logC, as the following scalar example shows. Let
a = e−2εi and b = c = e(π−ε)i for ε small and positive. Then a = bc but

log a = −2εi �= (π − ε)i + (π − ε)i = log b + log c.

The reason for this behavior is that b and c are equal to a nonprincipal square root
of a, and hence are not in the halfplane of a1/2.

3. DB square root iteration. The DB iteration [5] for the square root of a
matrix A with no eigenvalues on R

− is

Yk+1 =
(
Yk + Z−1

k

)
/2, Y0 = A,

Zk+1 =
(
Zk + Y −1

k

)
/2, Z0 = I.

(3.1)

The iteration has the properties [8] (and see Theorem 4.1, below)

lim
k→∞

Yk = A1/2, lim
k→∞

Zk = A−1/2

and, for all k,

Yk = AZk,

YkZk = ZkYk,

Yk+1 = (Yk + AY −1
k)/2.(3.2)

The next lemma is the basis for our use of the DB iteration for computing the loga-
rithm.

Lemma 3.1. The DB iterates satisfy the splitting relations

logA = log Yk − logZk

= 2 log Yk − log YkZk

= −2 logZk + log YkZk.

1116 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

Proof. Since A = YkZ
−1
k , Yk and Zk commute and logZ−1

k = − logZk, the
first equality follows from Lemma 2.1 if we can show that the eigenvalues of Yk are
in the halfplane of the corresponding eigenvalues of A1/2. By (3.2), the individual
eigenvalues of Yk follow the scalar iteration

yk+1 = (yk + ay−1
k)/2, y0 = a,

where a is an eigenvalue of A. This is just the scalar Newton iteration for the square
root of a and it has the property that the iterates yk remain in the halfplane of a1/2

(see, e.g., [8]). Similar arguments show that log YkZk = log Yk + logZk, which yields
the remaining two equalities.

To see how to use Lemma 3.1, note that since Yk → A1/2 and Zk → A−1/2,
YkZk → I and log YkZk → 0. Suppose we terminate the DB iteration after k itera-
tions; we can write

logA = 2 log Yk − E1,

where we wish E1 = log YkZk to be suitably small. Define Y (1) = Yk, Z(1) = Zk. We
now apply the DB iteration to Y (1), again for a finite number of iterations. Continuing
this process leads after s steps to

logA = 2s log Y (s) − E1 − 2E2 − · · · − 2s−1Es, Ei = log Y (i)Z(i),(3.3)

where Y (i) and Z(i) are the final iterates from the DB iteration applied to Y (i−1).
Our aim is that log Y (s) be easy to compute and the Ei terms be small enough to be
ignored. Note that we could apply the DB iteration to the Z(i) instead of the Y (i);
all the following analysis is easily adapted for this choice.

We need to bound the error terms Ei = log Y (i)Z(i) without computing a matrix
logarithm. One way to do this is as follows. Using the Taylor expansion of log(1 + x)
it is easy to show that if ‖I − Y Z‖ < 1 then

‖ log Y Z‖ ≤ | log(1 − ‖I − Y Z‖)|.(3.4)

Here, and throughout, the norm is any subordinate matrix norm. The terms YkZk
are not formed during the DB iteration. However, a little manipulation shows that
Yk+1Zk+1 − I = (Yk+1 − Yk)(Zk+1 − Zk) and hence

‖Yk+1Zk+1 − I‖ ≤ ‖Yk+1 − Yk‖‖Zk+1 − Zk‖.(3.5)

Thus, if this upper bound does not exceed 1, we have a bound for ‖Ei‖ that can
be computed at no extra cost and can be used to decide when the Ei terms can be
neglected. However, both the bounds (3.4) and (3.5), and hence the bound for ‖Ei‖,
can be weak. Fortunately, there is a better approach: we can reformulate the DB
iteration in terms of Yk (or Zk) and the required product Mk = YkZk, as the next
lemma shows.

Lemma 3.2 (product form of DB iteration). Let Yk and Zk be the DB iterates
for A and define Mk = YkZk. Then

Mk+1 =
1

2

(
I +

Mk + M−1
k

2

)
, M0 = A,

Yk+1 = Yk(I + M−1
k)/2, Y0 = A,(3.6)

Zk+1 = Zk(I + M−1
k)/2, Z0 = I.

APPROXIMATING THE LOGARITHM OF A MATRIX 1117

In a high-performance computing environment, iterating with Mk and Yk from
(3.6), at the cost of one inversion and one multiplication per iteration, is preferable to
iterating with Yk and Zk from (3.1), at the cost of two inversions per iteration, since
matrix multiplication is faster than matrix inversion.

In practice, it is vital to scale matrix iterations to produce reasonably fast over-
all convergence. Higham [11] derives a scaling for the DB iteration based on θ =
det(Yk) det(Zk): it requires Yk and Zk to be multiplied by |θ−1/(2n)| at the start of
the (k + 1)st iteration, where A is of order n. For the product form of the iteration,
since det(Yk) det(Zk) = det(Mk) and we invert and hence factorize Mk, θ is available
at no extra cost.

Matrix iterations such as the DB iteration can suffer from numerical instability.
Although an iteration may be globally convergent for the specified starting matrices,
rounding errors can introduce perturbations that grow unboundedly, this phenomenon
usually being associated with loss of commutativity of the iterates. We define an
iteration Xk+1 = f(Xk) to be stable in a neighborhood of a solution X = f(X) if the
error matrices Ek = X −Xk satisfy

Ek+1 = L(Ek) + O(‖Ek‖2),

where L is a linear operator that has bounded powers, that is, there exists a constant
c such that for all p > 0 and arbitrary E of unit norm, ‖Lp(E)‖ ≤ c. The DB iteration
is stable [8], [11]; the iteration (3.2), which is a standard Newton iteration for A1/2,
is unstable unless the eigenvalues λi of A satisfy [8] maxi,j

∣∣1 − (λi/λj)
1/2

∣∣ ≤ 2.
It is easy to show that the product form of the DB iteration is stable. Define

the error terms Gk = Yk − A1/2, Hk = Zk − A−1/2, and Jk = Mk − I. Simple
manipulations show that, to first order in Gk, Hk, and Jk,

 Gk+1

Hk+1

Jk+1


 =


 I 0 −A1/2/2

0 I −A−1/2/2
0 0 0




 Gk

Hk

Jk


 ≡ C


Gk
Hk

Jk


 .

The coefficient matrix C is idempotent (C2 = C) and hence has bounded powers.
Thus the iteration is stable.

Before explaining the use of the modified DB iteration, we develop more insight
into its properties by relating it to a well-known iteration for the matrix sign function.

4. Relation to matrix sign function iteration. For a matrix N with no
eigenvalues on the imaginary axis the sign function is defined by [10], [18]

signN = N
(
N2

)−1/2
.

The standard approach to compute signN is to use the Newton iteration

Nk+1 =
(
Nk + N−1

k

)
/2, N0 = N.

This iteration converges quadratically to S = signN , with error evolving in the Cayley
metric according to [17]

(Nk+1 − S)(Nk+1 + S)−1 =
(
(Nk − S)(Nk + S)−1

)2
.

The following theorem shows that the DB iterates are scaled versions of the Newton
iterates for signA1/2.

1118 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

Theorem 4.1. Let A have no eigenvalues on R
−. Let Nk be the Newton iterates

for signA1/2 (= I) and Yk, Zk, and Mk = YkZk be the DB iterates for A in (3.1) and
(3.6). Then

Yk = A1/2Nk, Zk = A−1/2Nk, Mk = N2
k .

Proof. A straightforward induction, making use of the fact that Nk commutes
with A1/2.

Theorem 4.1 implies that the DB iterates Yk, Zk, and Mk converge quadratically
to A1/2, A−1/2, and I, respectively, with errors evolving in the Cayley metric according
to

(Yk+1 −A1/2)(Yk+1 + A1/2)−1 = ((Yk −A1/2)(Yk + A1/2)−1)2,

(Zk+1 −A−1/2)(Zk+1 + A−1/2)−1 = ((Zk −A−1/2)(Zk + A−1/2)−1)2,

(Nk+1 − I)(Nk+1 + I)−1 = ((Nk − I)(Nk + I)−1)2,

where Nk = M
1/2
k .

From [18] we know that k steps of the Newton iteration for the sign function
generate the kth diagonal Padé approximation to the sign function, which is given
by rk = pk/qk, where pk and qk are the even and odd parts, respectively, of the

polynomial (1 + x)2
k

. Using Theorem 4.1 we can therefore obtain explicit rational
expressions for the DB iterates. For example, Yk = p̃k(A)q̃−1

k (A), where

p̃k(A) =

(
2k

0

)
+

(
2k

2

)
A +

(
2k

4

)
A2 + · · · +

(
2k

2k

)
A2k−1

,

q̃k(A) =

(
2k

1

)
I +

(
2k

3

)
A +

(
2k

5

)
A2 + · · · +

(
2k

2k − 1

)
A2k−1−1.

5. Incomplete square root cascade. We return now to the use of the product
form of the DB iteration to compute the logarithm. The following algorithm describes
how we use the DB iteration, but omits convergence tests.

Algorithm 5.1. This algorithm runs an incomplete square root cascade on the
matrix A of order n, using the product form of the DB iteration with scaling. The DB
iteration is invoked s times, with ki iterations on the ith invocation.

for i = 1: s
if i = 1
M0 = A, Y0 = A

else
M0 = Y (i−1), Y0 = Y (i−1)

end
for k = 0: ki − 1

γk = |(det(Mk))−1/(2n)|

Mk+1 =
1

2

(
I +

γ2
kMk + γ−2

k M−1
k

2

)
Yk+1 = 1

2γkYk(I + γ−2
k M−1

k)
end
M (i) = Mki , Y

(i) = Yki
end

APPROXIMATING THE LOGARITHM OF A MATRIX 1119

With the notation of Algorithm 5.1, we can rewrite (3.3) as

logA = 2s log Y (s) − logM (1) − 2 logM (2) − · · · − 2s−1 logM (s).(5.1)

Rather than simply discard the terms logM (i) = logMk, we can approximate them
using

logMk ≈ Mk − I.(5.2)

The error in this approximation satisfies

‖ logMk − (Mk − I)‖ ≈ ‖(Mk − I)2‖/2.(5.3)

For comparison, the error resulting from continuing for one more iteration and then
discarding logMk+1 is

‖ logMk+1‖ ≈ ‖Mk+1 − I‖.(5.4)

It can be shown that

Mk+1 − I =
1

4
(Mk − I)2M−1

k ,

and hence the error term in (5.4) is approximately half that in (5.3) close to con-
vergence (recall that Mk → I). The product form of the DB iteration thus has an
advantage over the original iteration; because it generates Mk explicitly it allows us
to use the approximation (5.2) and thus to obtain similar accuracy in the logarithm
with one less iteration.

Define the approximation L(s) to logA by

L(s) = 2s log Y (s) − (
M (1) − I

)− 2
(
M (2) − I

)− · · · − 2s−1
(
M (s) − I

)
.(5.5)

Then, subtracting (5.5) from (5.1) gives

logA = L(s) − Ẽ1 − 2Ẽ2 − · · · − 2s−1Ẽs,(5.6)

where

Ẽi = logM (i) − (
M (i) − I

)
.

Theorem 5.2. Let δ > 0. In the ith product DB square root stage of Algo-
rithm 5.1 let ki be large enough so that∣∣∣ ‖W (i)‖ + log(1 − ‖W (i)‖)

∣∣∣ ≤ δ/4i−1,(5.7)

where W (i) = I −M (i). Then

‖ logA− L(s)‖ ≤ 2δ

(
1 − 1

2s

)
.(5.8)

Proof. Using the bound

‖Ẽi‖ = ‖W (i) + log(I −W (i))‖ ≤ |‖W (i)‖ + log(1 − ‖W (i)‖)| ≤ δ/4i−1

in (5.6) and summing a geometric series yields the result.

1120 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

To obtain a logarithm approximation, the final step is to approximate log Y (s),
by L̃, say. Then our approximation to logA is

X̃ = 2sL̃−
s∑

k=1

2k−1
(
M (k) − I

)
.(5.9)

Assuming we choose the ki as in Theorem 5.2, then (5.8) leads to

‖X̃ − logA‖ ≤ 2s‖L̃− log Y (s)‖ + 2δ

(
1 − 1

2s

)
.(5.10)

It is natural to require that the error due to our approximation of logY (s) satisfy the
same bound as the error introduced by the incomplete square roots; thus we require

‖L̃− log Y (s)‖ ≤ 21−sδ
(

1 − 1

2s

)
.(5.11)

Then we have the overall error bound

‖X̃ − logA‖ ≤ 4δ

(
1 − 1

2s

)
< 4δ.(5.12)

Two questions arise: How shall we select s and how can we find L̃ such that
(5.11) is satisfied? These questions are treated in the next two sections. We close
this section by noting that (5.10) shows that the error in approximating log Y (s) is
magnified by a factor 2s. This is a fundamental limitation of the inverse scaling and
squaring approach that is also identified in [7].

6. Padé approximants. If A is near the identity matrix then rational approx-
imation of logA is practical. Diagonal Padé approximants preserve some important
properties of the logarithm and offer rapid convergence as the degree of the approxi-
mant increases [16]. For a given scalar function

f(x) =
∞∑
n=0

anx
n,

we say that the rational function rkm = pkm/qkm is a [k/m] Padé approximant of f
if pkm is a polynomial in x of degree at most k, qkm is a polynomial in x of degree
at most m, and f(x) − rkm(x) = O

(
xk+m+1

)
. In addition, we usually require that

pkm and qkm are relatively prime (have no common zeros) and that qkm has been
normalized so that qkm(0) = 1. These conditions ensure that if a [k/m] approximant
exists then it is unique; see [2] and [3]. Following Kenney and Laub [16] we restrict
our attention to the diagonal (k = m) Padé approximants of f(x) = log(1 − x), the
first three of which are (here, for convenience we have not normalized qmm)

r11(x) =
−2x

2 − x
, r22(x) =

−6x + 3x2

6 − 6x + x2
, r33(x) =

−60x + 60x2 − 11x3

60 − 90x + 36x2 − 3x3
.

Kenney and Laub [16] show that the error in the Padé approximant evaluated
at a matrix argument X is bounded by the error in the scalar approximation with
x = ‖X‖, provided that ‖X‖ < 1:

‖rmm(X) − log(I −X)‖ ≤ |rmm(‖X‖) − log(1 − ‖X‖)|.(6.1)

This bound can be evaluated at negligible cost given rmm.

APPROXIMATING THE LOGARITHM OF A MATRIX 1121

7. Inverse scaling and squaring with specified accuracy. The availability
of the error bound (6.1) for the Padé approximation makes possible a strategy for
choosing s (the number of incomplete DB square root stages) and the order m of
the final Padé approximation in order to achieve the desired accuracy with minimal
work. For Padé approximation to be applicable s must be large enough so that
‖I − Y (s)‖ < 1. Once this point is reached, we can compare the work required to
produce an acceptable Padé approximation at the current square root stage with
the work required to carry out another square root stage and then evaluate a Padé
approximation.

In view of (5.11) and (6.1), a suitable order mk of the Padé approximation at the
kth square root stage is the smallest m for which

|rmm(‖X‖) − log(1 − ‖X‖)| ≤ 21−kδ
(

1 − 1

2k

)
, X = I − Y (k),(7.1)

where rmm is the Padé approximant of order m as described in section 6. With this
choice of m, and with the number of DB iterations ki chosen as in Theorem 5.2, we
have the bound (5.12), that is,

‖X̃ − logA‖ < 4δ,(7.2)

where X̃ is given by (5.9) with L̃ = rmm(I − Y (k)). Note that this bound does
not incorporate the effects of rounding errors. We comment below on the effects of
roundoff.

Having determined mk, we can consider whether to iterate further or not, by
examining the cost of evaluating the Padé approximation. Several methods of evalu-
ation are described and compared with respect to cost, storage, and accuracy in [13].
The best overall method is based on the partial fraction expansion

rmm(x) =

m∑
j=1

α
(m)
j x

1 + β
(m)
j x

,(7.3)

where the α
(m)
j are the weights and the β

(m)
j the nodes of the m-point Gauss–Legendre

quadrature rule on [0, 1]. Evaluating rmm at the matrix argument X with m = mk

requires the solution of mk linear systems each having n right-hand sides, which we
will regard as equivalent to mk matrix inversions.

To estimate the cost of proceeding for a further square root stage we need to know
the number of iterations in that stage and the degree mk+1 of the Padé approximation

at the end of the stage. Since A1/2k → I as k increases, the square roots become easier
to compute with increasing k, but this is compensated for by the more stringent
accuracy demanded by the condition (5.7). In practice, the number of square root
iterations frequently stays the same or decreases by 1 from one stage to the next. For
our calculations we assume that the number of square root iterations on the (k+ 1)st
stage is the same as that on the kth stage, which we denote by itk. The estimated cost
of the next square root stage is therefore itk matrix multiplications and itk matrix
inversions.

To estimate mk+1 we note that(
I −A1/2k+1

)(
I + A1/2k+1

)
= I −A1/2k

.(7.4)

1122 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

Since A1/2k → I we have

‖I −A1/2k+1‖ ≈ 1

2
‖I −A1/2k‖.(7.5)

We therefore use the approximation ‖I−Y (k+1)‖ ≈ ‖I−Y (k)‖/2 in (7.1) to determine
mk+1.

Denoting by α the ratio “cost of matrix inversion divided by cost of matrix mul-
tiplication,” we terminate the square root iterations if

mk ≤ mk+1 + (1 + α)itk.(7.6)

For our tests we have taken α = 1 (as suggested by the operation counts), but on
many computers a value of α bigger than 1 and possibly depending on n would be
more appropriate.

It is worth stressing that if any of the assumptions underlying our choice of s and
m are not satisfied then the efficiency of the computation may be less than optimal
but the error bound (7.2) still holds.

We summarize our overall algorithm as follows.
Algorithm 7.1. Given a matrix A with no eigenvalues on R

−, and a tolerance
δ > 0, this algorithm approximates X = logA to within absolute accuracy 4δ (ignoring
roundoff).

1. Run Algorithm 5.1 with the ki chosen as in Theorem 5.2, choosing s, the
number of DB iteration stages, as the first k for which ‖I−Y (k)‖ ≤ 0.99, and
(7.6) is satisfied with mk ≤ 16.

2. Use (7.3) to evaluate X, the [ms/ms] Padé approximation rms,ms(B) to
log(I −B), where B = I − Y (s).

3. X = 2sX −∑s
k=1 2k−1

(
M (k) − I

)
.

Now we return to the effects of roundoff. We do not attempt here a full rounding
error analysis of Algorithm 7.1, as experience shows that it is difficult to obtain useful
error bounds for iterations for the matrix square root and sign function. However,
several observations can be made. First, it is shown in [13] that with the parameters
0.99 and 16 in step 1 of Algorithm 7.1 the Padé approximation is evaluated to high
accuracy, because the matrices that are inverted are very well conditioned. Second,
for tolerances δ sufficiently larger than u the rounding errors can be subsumed in the
truncation errors. Finally, even if the computed X̂ has perfect backward stability,
that is,

X̂ = log(A + ∆A), ‖∆A‖ ≤ u‖A‖,(7.7)

where u is the unit roundoff, then the best forward error bound is [6], [15]

‖X̂ −X‖
‖X‖ ≤ ‖G′(A)‖ ‖A‖‖X‖u + O(u2),

where G′(A) is the Fréchet derivative of G(A) = logA = X at A. The term

condG(A) = ‖G′(A)‖ ‖A‖‖X‖
is a condition number for the logarithm function and it is notably absent in (7.2).
Since no numerical algorithm can be expected to do better than achieve (7.7), we

must accept that the computed X̂ will at best satisfy the modified version of (7.2)

‖X̂ − logA‖1 ≤ condG(A)‖X‖u + 4δ.(7.8)

Methods for estimating condG(A) are developed in [15].

APPROXIMATING THE LOGARITHM OF A MATRIX 1123

8. Numerical experiments. We have implemented Algorithm 7.1 in MAT-
LAB, for which the unit roundoff u = 2−53 ≈ 1.1 × 10−16. The various tests in
Algorithm 7.1 use the 1-norm. We describe results for three matrices A ∈ R

16×16.

Matrix 1: κ2(A) = 108, condG(A) ≈ 108. A is a random symmetric positive
definite matrix with eigenvalues exponentially distributed between 10−8

and 1, formed using MATLAB’s gallery(’randsvd’,...).
Matrix 2: κ2(A) = 1.2 × 106, condG(A) ≈ 5 × 109. A = QTQT ,

where Q is a random orthogonal matrix and T , obtained using
gallery(’rschur’,...), is in real Schur form with eigenvalues αj +
iβj , αj = −j2/10, βj = −j, j = 1:n/2 and (2j, 2j+1) elements µ (thus
µ controls the nonnormality of the matrix). We took µ = 25.

Matrix 3: κ2(A) = 13, condG(A) ≈ 1. A = QTQT is the same as matrix 2, but
with µ = 0.

For the tests we needed the exact logarithm, which we approximated by X∗ com-
puted using our own implementation of the inverse scaling and squaring method. Our
code computes a Schur decomposition, computes square roots by the Schur method

[4], [9], [12], and uses the [8/8] Padé approximation once ‖A1/2k − I‖1 ≤ 0.25. (Then
the Padé approximation has error safely less than u [16, sect. 3].)

For each matrix we applied Algorithm 7.1 with tolerance δ = ε‖X∗‖F /4, with ε
ranging from 10−16 to 10−1. The results are shown in Figure 8.1. In each plot ε is
on the x-axis. The plots in the first row show the total number

∑s
i=1 ki of inner DB

iterations (using the notation of Algorithm 5.1), and those in the second row show
the total number of matrix multiplications for the complete logarithm computation
(counting a matrix inversion as a multiplication). In the third row is plotted an

approximation ‖X̂ −X∗‖F /‖X∗‖F to the relative error.

The number of square roots computed by the inverse scaling and squaring method
for Matrices 1–3 was 7, 20, and 5, respectively. The corresponding operation counts
are about 32n3–40n3 flops. The number of incomplete square root stages used by Al-
gorithm 7.1 for Matrices 1–3 was in the ranges 5–7, 18–20, and 4–5, respectively. From
the second row of Figure 8.1 we can see that the operation count for Algorithm 7.1
varies between about 20n3 and 150n3 flops, and only for very relaxed tolerances does
Algorithm 7.1 better the flop count of the inverse scaling and squaring method. How-
ever, these operation counts do not reflect the fact that Algorithm 7.1 is built from
high-level computational kernels that can be implemented very efficiently.

The results reported are for the Y form of the DB iteration, as specified in Algo-
rithm 5.1. The corresponding Z form performs similarly.

We make the following comments on the results.

1. The number of inner iterations and the number of matrix multiplications
both vary with the tolerance δ by factors up to 3.2, confirming that incomplete
square root iterations with careful choice of the degree of Padé approximation
can produce substantial savings in work.

2. Ideally, the relative error would be approximately equal to ε. For Matrix 1 this
is the case down to ε = 10−8, at which point the relative error levels off due
to ill-conditioning: the condG term in (7.8) starts to dominate. For Matrix
2 the relative errors are approximately constant at about 10−6. Given that
condG(A) ≈ 5× 109 this is the level of relative error we would expect for the
smallest δ. Why the relative error increases only slightly with increasing δ is
unclear, but may be related to the large number of (incomplete) square roots
required and the consequent rapid decrease in the convergence tolerance. For

1124 S. H. CHENG, N. J. HIGHAM, C. S. KENNEY, AND A. J. LAUB

10
−16

10
−8

10
−1

10

20

30

40
Matrix 1

In
ne

r
ite

ra
tio

ns

10
−16

10
−8

10
−1

20

40

60

80

M
at

rix
 m

ul
tip

lic
at

io
ns

10
−16

10
−8

10
−1

10
−16

10
−8

10
−1

R
el

at
iv

e
er

ro
r

ε

10
−16

10
−8

10
−1

30

40

50

60

70
Matrix 2

10
−16

10
−8

10
−1

50

100

150

10
−16

10
−8

10
−1

10
−16

10
−8

10
−1

ε

10
−16

10
−8

10
−1

5

10

15

20

25
Matrix 3

10
−16

10
−8

10
−1

0

20

40

60

10
−16

10
−8

10
−1

10
−16

10
−8

10
−1

ε

Fig. 8.1. Results for Matrices 1–3.

Matrix 3 the relative errors are somewhat less than ε, again for reasons that
are not clear.

3. We also implemented the inverse scaling and squaring method using the DB
iteration (3.1) with scaling, with the standard convergence test of the form
‖Yk+1 − Yk‖/‖Yk+1‖ ≤ θ and using the [8/8] Padé approximation. With θ =
nu the number of inner iterations was 85, 506 (due to convergence problems,
even with this relaxed tolerance), and 35 for Matrices 1–3, compared with
31, 68, and 25 for Algorithm 7.1 with δ = 10−16‖X‖F /4; the accuracy of the
computed logarithms was similar in both cases. The improved efficiency of
Algorithm 7.1 is due to the better convergence test (based on ‖Mk − I‖) and
the use of the free approximation (5.2).

9. Conclusion. This work makes three main contributions. First, we have ob-
tained a splitting result, Lemma 2.1, which gives conditions under which the logarithm
of a matrix product is the sum of the logarithms. Second, we have derived a product
form (3.6) of the DB iteration for the matrix square root; it trades a matrix inversion
for a matrix multiplication and, unlike the original iteration, has a natural stopping
test (based on ‖Mk − I‖). We used the lemma and the iteration to derive a new
version of the inverse scaling and squaring method for computing the matrix loga-
rithm. The key features of our method are that it adapts itself to a specified accuracy
(modulo the effects of roundoff) by carrying out incomplete square root computations
and choosing a suitable Padé approximation, and that the computational kernels are
matrix multiplication, LU factorization, and matrix inversion, making the method
attractive for high-performance computation.

APPROXIMATING THE LOGARITHM OF A MATRIX 1125

Acknowledgments. We thank the referees for their helpful comments.

REFERENCES

[1] R. C. Allen and S. A. Pruess, An analysis of an inverse problem in ordinary differential
equations, SIAM J. Sci. Statist. Comput., 2 (1981), pp. 176–185.

[2] G. A. Baker, Jr., Essentials of Padé Approximants, Academic Press, New York, 1975.
[3] G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, Encyclopedia Math. Appl.,

2nd ed., Cambridge University Press, Cambridge, England, 1996.
[4] Å. Björck and S. Hammarling, A Schur method for the square root of a matrix, Linear

Algebra Appl., 52/53 (1983), pp. 127–140.
[5] E. D. Denman and A. N. Beavers, Jr., The matrix sign function and computations in sys-

tems, Appl. Math. Comput., 2 (1976), pp. 63–94.
[6] L. Dieci, B. Morini, and A. Papini, Computational techniques for real logarithms of matrices,

SIAM J. Matrix Anal. Appl., 17 (1996), pp. 570–593.
[7] L. Dieci and A. Papini, Conditioning and Padé approximation of the logarithm of a matrix,

SIAM J. Matrix Anal. Appl., 21 (2000), pp. 913–930.
[8] N. J. Higham, Newton’s method for the matrix square root, Math. Comp., 46 (1986), pp.

537–549.
[9] N. J. Higham, Computing real square roots of a real matrix, Linear Algebra Appl., 88/89

(1987), pp. 405–430.
[10] N. J. Higham, The matrix sign decomposition and its relation to the polar decomposition,

Linear Algebra Appl., 212/213 (1994), pp. 3–20.
[11] N. J. Higham, Stable iterations for the matrix square root, Numer. Algorithms, 15 (1997), pp.

227–242.
[12] N. J. Higham, A New sqrtm for MATLAB, Numerical Analysis Report 336, Manchester Centre

for Computational Mathematics, Manchester, England, January 1999.
[13] N. J. Higham, Evaluating Padé approximants of the matrix logarithm, SIAM J. Matrix Anal.

Appl., 22 (2001), pp. 1126–1135.
[14] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press,

Cambridge, England, 1991.
[15] C. Kenney and A. J. Laub, Condition estimates for matrix functions, SIAM J. Matrix Anal.

Appl., 10 (1989), pp. 191–209.
[16] C. Kenney and A. J. Laub, Padé error estimates for the logarithm of a matrix, Internat. J.

Control, 50 (1989), pp. 707–730.
[17] C. Kenney and A. J. Laub, Rational iterative methods for the matrix sign function, SIAM J.

Matrix Anal. Appl., 12 (1991), pp. 273–291.
[18] C. S. Kenney and A. J. Laub, The matrix sign function, IEEE Trans. Automat. Control, 40

(1995), pp. 1330–1348.
[19] C. B. Moler and C. F. Van Loan, Nineteen dubious ways to compute the exponential of a

matrix, SIAM Rev., 20 (1978), pp. 801–836.
[20] B. Singer and S. Spilerman, The representation of social processes by Markov models, Amer.

J. Sociology, 82 (1976), pp. 1–54.
[21] R. C. Ward, Numerical computation of the matrix exponential with accuracy estimate, SIAM

J. Numer. Anal., 14 (1977), pp. 600–610.

