
Functions of Matrices

Higham, Nicholas J.

2006

MIMS EPrint: 2005.21

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

F.13 Functions of Matrices1

Matrix functions are used in many areas of linear algebra and arise in numerous applications in science

and engineering. The most common matrix function is the matrix inverse; it is not treated specifically

in this section, but is covered in §1.1 and §7.2. This section is concerned with general matrix functions

as well as specific cases such as matrix square roots, trigonometric functions, and the exponential and

logarithmic functions.

The specific functions just mentioned can all be defined via power series or as the solution of nonlinear

systems. For example, cos(A) = I − A2/2! + A4/4! − · · ·. However, a general theory exists from which a

number of properties possessed by all matrix functions can be deduced and which suggests computational

methods. This section treats general theory, then specific functions, and finally outlines computational

methods.

1 General Theory

Definitions:

A function of a matrix can be defined in several ways, of which the following three are the most

generally useful.

• Jordan canonical form definition. Let A ∈ C
n×n have the Jordan canonical form Z−1AZ = JA =

diag
(

J1(λ1), J2(λ2), . . . , Jp(λp)
)

, where Z is nonsingular,

Jk(λk) =















λk 1

λk
. . .

. . . 1

λk















∈ C
mk×mk , (1)

and m1 + m2 + · · · + mp = n. Then

f(A) := Zf(JA)Z−1 = Z diag(f(Jk(λk)))Z−1, (2)

1Nicholas J. Higham, School of Mathematics, The University of Manchester, Sackville Street, Manchester, M60 1QD,

UK (higham@ma.man.ac.uk, http://www.ma.man.ac.uk/~higham/). Chapter 11 of Handbook of Linear Algebra, edited by

Hogben, Brualdi, Greenbaum, and Mathias, CRC Press; to appear. Version dated June 20, 2006.

1

where

f(Jk(λk)) :=

















f(λk) f ′(λk) . . .
f (mk−1))(λk)

(mk − 1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

















. (3)

• Polynomial interpolation definition. Denote by λ1, . . . , λs the distinct eigenvalues of A and let ni

be the index of λi, that is, the order of the largest Jordan block in which λi appears. Then

f(A) := r(A), where r is the unique Hermite interpolating polynomial of degree less than
∑s

i=1 ni

that satisfies the interpolation conditions

r(j)(λi) = f (j)(λi), j = 0:ni − 1, i = 1: s. (4)

Note that in both these definitions the derivatives in (4) must exist in order for f(A) to be defined.

The function f is said to be defined on the spectrum of A if all the derivatives in (4) exist.

• Cauchy integral definition.

f(A) :=
1

2πi

∫

Γ

f(z)(zI − A)−1 dz, (5)

where f is analytic inside a closed contour Γ that encloses σ(A).

When the function f is multivalued and A has a repeated eigenvalue occurring in more than one Jordan

block (i.e., A is derogatory), the Jordan canonical form definition has more than one interpretation.

Usually, for each occurrence of an eigenvalue in different Jordan blocks the same branch is taken for f

and its derivatives. This gives a primary matrix function. If different branches are taken for the

same eigenvalue in two different Jordan blocks then a nonprimary matrix function is obtained. A

nonprimary matrix function is not expressible as a polynomial in the matrix, and if such a function

is obtained from the Jordan canonical form definition (2) then it depends on the matrix Z. In most

applications it is primary matrix functions that are of interest. For the rest of this section f(A) is

assumed to be a primary matrix function, unless otherwise stated.

Facts:

Proofs of the facts in this subsection can be found in one or more of [Hig], [HJ91] or [LT85], unless

otherwise stated.

2

1. The Jordan canonical form and polynomial interpolation definitions are equivalent. Both definitions

are equivalent to the Cauchy integral definition when f is analytic.

2. f(A) is a polynomial in A and the coefficients of the polynomial depend on A.

3. f(A) commutes with A.

4. f(AT) = f(A)T .

5. For any nonsingular X, f(XAX−1) = Xf(A)X−1.

6. If A is diagonalizable, with Z−1AZ = D = diag(d1, d2, . . . , dn), then f(A) = Zf(D)Z−1 =

Z diag(f(d1), f(d2), . . . , f(dn))Z−1.

7. f
(

diag(A1, A2, . . . , Am)
)

= diag(f(A1), f(A2), . . . , f(Am)).

8. Let f and g be functions defined on the spectrum of A. (a) If h(t) = f(t) + g(t) then h(A) =

f(A) + g(A). (b) If h(t) = f(t)g(t) then h(A) = f(A)g(A).

9. Let G(u1, . . . , ut) be a polynomial in u1, . . . , ut and let f1, . . . , ft be functions defined on the spec-

trum of A. If g(λ) = G(f1(λ), . . . , ft(λ)) takes zero values on the spectrum of A then g(A) =

G(f1(A), . . . , ft(A)) = 0. For example, sin2(A)+cos2(A) = I, (A1/p)p = A, and eiA = cos A+i sin A.

10. Suppose f has a Taylor series expansion

f(z) =

∞
∑

k=0

ak(z − α)k

(

ak =
f (k)(α)

k!

)

with radius of convergence r. If A ∈ C
n×n then f(A) is defined and is given by

f(A) =

∞
∑

k=0

ak(A − αI)k

if and only if each of the distinct eigenvalues λ1, . . . , λs of A satisfies one of the conditions

(a) |λi − α| < r,

(b) |λi −α| = r and the series for fni−1(λ), where ni is the index of λi, is convergent at the point

λ = λi, i = 1: s.

3

11. [Dav73], [Des63], [GVL96, Thm. 11.1.3]. Let T ∈ C
n×n be upper triangular and suppose that f is

defined on the spectrum of T . Then F = f(T) is upper triangular with fii = f(tii) and

fij =
∑

(s0,...,sk)∈Sij

ts0,s1
ts1,s2

. . . tsk−1,sk
f [λs0

, . . . , λsk
],

where λi = tii, Sij is the set of all strictly increasing sequences of integers that start at i and end

at j, and f [λs0
, . . . , λsk

] is the kth order divided difference of f at λs0
, . . . , λsk

.

Examples:

1. For λ1 6= λ2,

f

([

λ1 α

0 λ2

])

=

[

f(λ1) α
f(λ2) − f(λ1)

λ2 − λ1

0 f(λ2)

]

.

For λ1 = λ2 = λ,

f

([

λ α

0 λ

])

=

[

f(λ) αf ′(λ)

0 f(λ)

]

.

2. Compute eA for the matrix

A =









−7 −4 −3

10 6 4

6 3 3









.

We have A = XJAX−1, where JA = [0] ⊕
[

1
0

1
1

]

and

X =









1 −1 −1

−1 2 0

−1 0 3









.

Hence, using the Jordan canonical form definition, we have

eA = XeJ
AX−1 = X

(

[1] ⊕
[

e
0

e
e

])

X−1

=









1 −1 −1

−1 2 0

−1 0 3

















1 0 0

0 e e

0 0 e

















6 3 2

2 2 1

2 1 1









=









6 − 7e 3 − 4e 2 − 3e

−6 + 10e −3 + 6e −2 + 4e

−6 + 6e −3 + 3e −2 + 3e









.

4

3. Compute
√

A for the matrix in Example 2. To obtain the square root, we use the polynomial

interpolation definition. The eigenvalues of A are 0 and 1, with indices 1 and 2, respectively.

The unique polynomial r of degree at most 2 satisfying the interpolation conditions r(0) = f(0),

r(1) = f(1), r′(1) = f ′(1) is

r(t) = f(0)(t − 1)2 + t(2 − t)f(1) + t(t − 1)f ′(1).

With f(t) = t1/2, taking the positive square root, we have r(t) = t(2− t)+ t(t− 1)/2, and therefore

A1/2 = A(2I − A) + A(A − I)/2 =









−6 −3.5 −2.5

8 5 3

6 3 3









.

4. Consider the mk × mk Jordan block Jk(λk) in (1). The polynomial satisfying the interpolation

conditions (4) is

r(t) = f(λk) + (t − λk)f ′(λk) +
(t − λk)2

2!
f ′′(λk) + · · · + (t − λk)mk−1

(mk − 1)!
f (mk−1)(λk),

which of course is the first mk terms of the Taylor series of f about λk. Hence, from the polynomial

interpolation definition,

f(Jk(λk)) = r(Jk(λk))

= f(λk)I + (Jk(λk) − λkI)f ′(λk) +
(Jk(λk) − λkI)2

2!
f ′′(λk) + · · ·

+
(Jk(λk) − λkI)mk−1

(mk − 1)!
f (mk−1)(λk).

The matrix (Jk(λk) − λkI)j is zero except for 1s on the jth superdiagonal. This expression for

f(Jk(λk)) is therefore equal to that in (3), confirming the consistency of the first two definitions of

f(A).

2 Matrix Square Root

Definitions:

Let A ∈ C
n×n. Any X such that X2 = A is a square root of A.

Facts:

Proofs of the facts in this subsection can be found in one or more of [Hig], [HJ91] or [LT85], unless

otherwise stated.

5

1. If A ∈ C
n×n has no eigenvalues on R

−

0 (the closed negative real axis) then there is a unique square

root X of A each of whose eigenvalues is 0 or lies in the open right half-plane, and it is a primary

matrix function of A. This is the principal square root of A and is written X = A1/2. If A is

real then A1/2 is real. An integral representation is

A1/2 =
2

π
A

∫

∞

0

(t2I + A)−1 dt.

2. A positive (semi)definite matrix A ∈ C
n×n has a unique positive (semi)definite square root (see

also §2.3.3).

3. [CL74] A singular matrix A ∈ C
n×n may or may not have a square root. A necessary and sufficient

condition for A to have a square root is that in the “ascent sequence” of integers d1, d2, . . . defined

by

di = dim(ker(Ai)) − dim(ker(Ai−1))

no two terms are the same odd integer.

4. A ∈ R
n×n has a real square root if and only if A satisfies the condition in the previous fact and A

has an even number of Jordan blocks of each size for every negative eigenvalue.

5. The n×n identity matrix In has 2n diagonal square roots diag(±1). Only two of these are primary

matrix functions, namely I and −I. Nondiagonal but symmetric nonprimary square roots of In

include any Householder matrix I − 2vvT /(vT v) (v 6= 0) and the identity matrix with its columns

in reverse order. Nonsymmetric square roots of In are easily constructed in the form XDX−1,

where X is nonsingular but nonorthogonal and D = diag(±1) 6= ±I.

Examples:

1. The Jordan block
[

0
0

1
0

]

has no square root. The matrix








0 1 0

0 0 0

0 0 0









has ascent sequence 2, 1, 0, . . . and so does have a square root—for example, the matrix








0 0 1

0 0 0

0 1 0









.

6

3 Matrix Exponential

Definitions:

The exponential of A ∈ C
n×n, written eA or exp(A), is defined by

eA = I + A +
A2

2!
+ · · · + Ak

k!
+ · · · .

Facts:

Proofs of the facts in this subsection can be found in one or more of [Hig], [HJ91] or [LT85], unless

otherwise stated.

1. e(A+B)t = eAteBt holds for all t if and only if AB = BA.

2. The differential equation in n × n matrices

dY

dt
= AY, Y (0) = C, A, Y ∈ C

n×n,

has solution Y (t) = eAtC.

3. The differential equation in n × n matrices

dY

dt
= AY + Y B, Y (0) = C, A,B, Y ∈ C

n×n,

has solution Y (t) = eAtCeBt.

4. A ∈ C
n×n is unitary if and only if it can be written A = eiH , where H is Hermitian. In this

representation H can be taken to be positive definite.

5. A ∈ R
n×n is orthogonal with det(A) = 1 if and only if A = eS with S ∈ R

n×n skew-symmetric.

Examples:

1. Fact 5 is illustrated by the matrix

A =

[

0 α

−α 0

]

,

for which

eA =

[

cos α sin α

− sin α cos α

]

.

7

4 Matrix Logarithm

Definitions:

Let A ∈ C
n×n. Any X such that eX = A is a logarithm of A.

Facts:

Proofs of the facts in this subsection can be found in one or more of [Hig], [HJ91] or [LT85], unless

otherwise stated.

1. If A has no eigenvalues on R
− then there is a unique logarithm X of A all of whose eigenvalues

lie in the strip { z : −π < Im(z) < π }. This is the principal logarithm of A, and is written

X = log A. If A is real then log A is real.

2. If ρ(A) < 1,

log(I + A) = A − A2

2
+

A3

3
− A4

4
+ · · · .

3. A ∈ R
n×n has a real logarithm if and only if A is nonsingular and A has an even number of Jordan

blocks of each size for every negative eigenvalue.

4. exp(log A) = A holds when log is defined on the spectrum of A ∈ C
n×n. But log(exp(A)) = A does

not generally hold unless the spectrum of A is restricted.

5. If A ∈ C
n×n is nonsingular then det(A) = exp(tr(log A)), where log A is any logarithm of A.

Examples:

For the matrix

A =















1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1















we have

log(A) =















0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0















.

8

5 Matrix Sine and Cosine

Definitions:

The sine and cosine of A ∈ C
n×n are defined by

cos(A) = I − A2

2!
+ · · · + (−1)k

(2k)!
A2k + · · · ,

sin(A) = A − A3

3!
+ · · · + (−1)k

(2k + 1)!
A2k+1 + · · · .

Facts:

Proofs of the facts in this subsection can be found in one or more of [Hig], [HJ91] or [LT85], unless

otherwise stated.

1. cos(2A) = 2 cos2(A) − I.

2. sin(2A) = 2 sin(A) cos(A).

3. cos2(A) + sin2(A) = I.

4. The differential equation

d2y

dt2
+ Ay = 0, y(0) = y0, y′(0) = y′

0

has solution

y(t) = cos(
√

At)y0 +
(
√

A
)−1

sin(
√

At)y′

0,

where
√

A denotes any square root of A.

Examples:

1. For

A =

[

0 i α

i α 0

]

,

we have

eA =

[

cos α i sin α

i sin α cos α

]

.

9

2. For

A =















1 1 1 1

0 −1 −2 −3

0 0 1 3

0 0 0 −1















we have

cos(A) = cos(1)I, sin(A) =















sin(1) sin(1) sin(1) sin(1)

0 − sin(1) −2 sin(1) −3 sin(1)

0 0 sin(1) 3 sin(1)

0 0 0 − sin(1)















and sin2(A) = sin(1)2I, so cos(A)2 + sin(A)2 = I.

6 Matrix Sign Function

Definitions:

If A = ZJAZ−1 ∈ C
n×n is a Jordan canonical form arranged so that

JA =

[

J
(1)
A 0

0 J
(2)
A

]

,

where the eigenvalues of J
(1)
A ∈ C

p×p lie in the open left half-plane and those of J
(2)
A ∈ C

q×q lie in the

open right half-plane, with p + q = n, then

sign(A) = Z

[

−Ip 0

0 Iq

]

Z−1.

Alternative formulae are

sign(A) = A(A2)−1/2, (6)

sign(A) =
2

π
A

∫

∞

0

(t2I + A2)−1 dt.

If A has any pure imaginary eigenvalues then sign(A) is not defined.

Facts:

Proofs of the facts in this subsection can be found in one or more of [Hig], [HJ91] or [LT85], unless

otherwise stated.

Let S = sign(A) be defined. Then

10

1. S2 = I (S is involutory).

2. S is diagonalizable with eigenvalues ±1.

3. SA = AS.

4. If A is real then S is real.

5. If A is symmetric positive definite then sign(A) = I.

Examples:

1. For the matrix A in Example 2 of the previous subsection we have sign(A) = A, which follows from

(6) and the fact that A is involutory.

7 Computational Methods for General Functions

Many methods have been proposed for evaluating matrix functions. Three general approaches of wide

applicability are outlined here. They have in common that they do not require knowledge of Jordan

structure and are suitable for computer implementation. References for this subsection include [Hig],

[HJ91] or [LT85].

1. Polynomial and Rational Approximations

Polynomial approximations

pm(X) =
m
∑

k=0

bkXk, bk ∈ C, X ∈ C
n×n,

to matrix functions can be obtained by truncating or economizing a power series representation, or by

constructing a best approximation (in some norm) of a given degree. How to most efficiently evaluate a

polynomial at a matrix argument is a nontrivial question. Possibilities include Horner’s method, explicit

computation of the powers of the matrix, and a method of Paterson and Stockmeyer [GVL96, Sec. 11.2.4],

[PS73] that is a combination of these two methods that requires fewer matrix multiplications.

Rational approximations rmk(X) = pm(X)qk(X)−1 are also widely used, particularly those arising

from Padé approximation, which produces rationals matching as many terms of the Taylor series of

the function at the origin as possible. The evaluation of rationals at matrix arguments needs careful

11

consideration in order to find the best compromise between speed and accuracy. The main possibilities

are

• Evaluating the numerator and denominator polynomials and then solving a multiple right-hand

side linear system.

• Evaluating a continued fraction representation (in either top-down or bottom-up order).

• Evaluating a partial fraction representation.

Since polynomials and rationals are typically accurate over a limited range of matrices, practical

methods involve a reduction stage prior to evaluating the polynomial or rational.

2. Factorization Methods

Many methods are based on the property f(XAX−1) = Xf(A)X−1. If X can be found such that

B = XAX−1 has the property that f(B) is easily evaluated, then an obvious method results. When A

is diagonalizable, B can be taken to be diagonal, and evaluation of f(B) is trivial. In finite precision

arithmetic, though, this approach is reliable only if X is well conditioned, that is, if the condition number

κ(X) = ‖X‖‖X−1‖ is not too large. Ideally, X will be unitary, so that in the 2-norm κ2(X) = 1. For

Hermitian A, or more generally normal A, the spectral decomposition A = QDQ∗ with Q unitary and D

diagonal is always possible, and if this decomposition can be computed then the formula f(A) = Qf(D)Q∗

provides an excellent way of computing f(A).

For general A, if X is restricted to be unitary then the furthest that A can be reduced is to Schur

form: A = QTQ∗, where Q is unitary and T upper triangular. This decomposition is computed by the

QR algorithm. Computing a function of a triangular matrix is an interesting problem. While Fact 11

of Subsection 1 gives an explicit formula for F = f(T), the formula is not practically viable due to

its exponential cost in n. Much more efficient is a recurrence of Parlett [Par76]. This is derived by

starting with the observation that since F is representable as a polynomial in T , F is upper triangular,

with diagonal elements f(tii). The elements in the strict upper triangle are determined by solving the

equation FT = TF . Parlett’s recurrence is:

12

Algorithm 1. Parlett’s recurrence.

fii = f(tii), i = 1:n

for j = 2:n

for i = j − 1:−1: 1

fij = tij
fii − fjj

tii − tjj
+

(j−1
∑

k=i+1

fiktkj − tikfkj

)

/

(tii − tjj)

end

end

This recurrence can be evaluated in 2n3/3 operations. The recurrence breaks down when tii = tjj

for some i 6= j. In this case, T can be regarded as a block matrix T = (Tij), with square diagonal

blocks, possibly of different sizes. T can be reordered so that no two diagonal blocks have an eigenvalue

in common; reordering means applying a unitary similarity transformation to permute the diagonal

elements whilst preserving triangularity. Then a block form of the recurrence can be employed. This

requires the evaluation of the diagonal blocks Fii = f(Tii), where Tii will typically be of small dimension.

A general way to obtain Fii is via a Taylor series. The use of the block Parlett recurrence in combination

with a Schur decomposition represents the state of the art in evaluation of f(A) for general functions

[DH03].

3. Iteration Methods

Several matrix functions f can be computed by iteration:

Xk+1 = g(Xk), X0 = A, (7)

where, for reasons of computational cost, g is usually a polynomial or a rational function. Such an

iteration might converge for all A for which f is defined, or just for a subset of such A. A standard means

of deriving matrix iterations is to apply Newton’s method to an algebraic equation satisfied by f(A).

The iterations most used in practice are quadratically convergent, but iterations with higher orders of

convergence are known.

4. Contour Integration

The Cauchy integral definition (5) provides a way to compute or approximate f(A) via contour

integration. While not suitable as a practical method for all functions or all matrices, this approach can

13

be effective when numerical integration is done over a suitable contour using the repeated trapezium

rule, whose high accuracy properties for periodic functions integrated over a whole period are beneficial

[DH05], [TW05].

8 Computational Methods for Specific Functions

Some methods specialized to particular functions are now outlined. References for this subsection include

[Hig], [HJ91] or [LT85].

1. Matrix Exponential

A large number of methods have been proposed for the matrix exponential, many of them of pedagogic

interest only or of dubious numerical stability. Some of the more computationally useful methods are

surveyed in [MVL03]. Probably the best general-purpose method is the scaling and squaring method. In

this method an integral power of 2, σ = 2s say, is chosen so that A/σ has norm not too far from 1. The

exponential of the scaled matrix is approximated by an [m/m] Padé approximant, eA/2s ≈ rmm(A/2s),

and then s repeated squarings recover an approximation to eA: eA ≈ rmm(A/2s)2
s

. Symmetries in

the Padé approximant permit an efficient evaluation of rmm(A). The scaling and squaring method

was originally developed in [MVL78] and [War77], and it is the method employed by MATLAB’s expm

function. How best to choose σ and m is described in [Hig05].

2. Matrix Logarithm

The (principal) matrix logarithm can be computed using an inverse scaling and squaring method based

on the identity log A = 2k log A1/2k

, where A is assumed to have no eigenvalues on R
−. Square roots

are taken to make ‖A1/2k − I‖ small enough that an [m/m] Padé approximant approximates log A1/2k

sufficiently accurately, for some suitable m. Then log A is recovered by multiplying by 2k. To reduce

the cost of computing the square roots and evaluating the Padé approximant, a Schur decomposition can

be computed initially so that the method works with a triangular matrix. For details, see [CHKL01],

[Hig01], [KL89, App. A].

3. Matrix Cosine and Sine

A method analogous to the scaling and squaring method for the exponential is the standard method

for computing the matrix cosine. The idea is again to scale A to have norm not too far from 1 and

then compute a Padé approximant. The difference is that the scaling is undone by repeated use of the

14

double-angle formula cos(2A) = 2 cos2 A− I, rather than by repeated squaring. The sine function can be

obtained as sin(A) = cos(A − π
2 I). See [SB80], [HS03], [HH05].

4. Matrix Square Root

The most numerically reliable way to compute matrix square roots is via the Schur decomposition,

A = QTQ∗ [BH83]. Rather than use the Parlett recurrence, a square root U of the upper triangular

factor T can be computed by directly solving the equation U2 = T . The choices of sign in the diagonal

of U , uii =
√

tii, determine which square root is obtained. When A is real, the real Schur decomposition

can be used to compute real square roots entirely in real arithmetic [Hig87].

Various iterations exist for computing the principal square root when A has no eigenvalues on R
−.

The basic Newton iteration,

Xk+1 =
1

2
(Xk + X−1

k A), X0 = A, (8)

is quadratically convergent, but is numerically unstable unless A is extremely well conditioned and its

use is not recommended [Hig86]. Stable alternatives include the Denman–Beavers iteration [DB76]

Xk+1 =
1

2

(

Xk + Y −1
k

)

, X0 = A,

Yk+1 =
1

2

(

Yk + X−1
k

)

, Y0 = I,

for which limk→∞ Xk = A1/2 and limk→∞ Yk = A−1/2, and the Meini iteration [Mei04]

Yk+1 = −YkZ−1
k Yk, Y0 = I − A,

Zk+1 = Zk + 2Yk+1, Z0 = 2(I + A),

for which Yk → 0 and Zk → 4A1/2. Both of these iterations are mathematically equivalent to (8) and

hence are quadratically convergent.

An iteration not involving matrix inverses is the Schulz iteration

Yk+1 = 1
2Yk(3I − ZkYk), Y0 = A,

Zk+1 = 1
2 (3I − ZkYk)Zk, Z0 = I,

for which Yk → A1/2 and Zk → A−1/2 quadratically provided that ‖diag(A − I,A − I)‖ < 1, where the

norm is any consistent matrix norm [Hig97].

5. Matrix sign function

15

The standard method for computing the matrix sign function is the Newton iteration

Xk+1 =
1

2
(Xk + X−1

k), X0 = A,

which converges quadratically to sign(A), provided A has no pure imaginary eigenvalues. In practice, a

scaled iteration

Xk+1 =
1

2
(µkXk + µ−1

k X−1
k), X0 = A.

is used, where the scale parameters µk are chosen to reduce the number of iterations needed to enter the

regime where asymptotic quadratic convergence sets in. See [Bye87], [KL92].

The Newton–Schulz iteration

Xk+1 =
1

2
Xk(3I − X2

k), X0 = A,

involves no matrix inverses but convergence is guaranteed only for ‖I − A2‖ < 1.

A Padé family of iterations

Xk+1 = Xkpℓm(1 − X2
k)qℓm(1 − X2

k)−1, X0 = A,

is obtained in [KL91], where pℓm(ξ)/qℓm(ξ) is the [ℓ/m] Padé approximant to (1 − ξ)−1/2. The iteration

is globally convergent to sign(A) for ℓ = m − 1 and ℓ = m, and for ℓ ≥ m − 1 is convergent when

‖I − A2‖ < 1, with order of convergence ℓ + m + 1 in all cases.

References

[BH83] Åke Björck and Sven Hammarling. A Schur method for the square root of a matrix. Linear

Algebra Appl., 52/53:127–140, 1983.

[Bye87] Ralph Byers. Solving the algebraic Riccati equation with the matrix sign function. Linear

Algebra Appl., 85:267–279, 1987.

[CHKL01] Sheung Hun Cheng, Nicholas J. Higham, Charles S. Kenney, and Alan J. Laub. Approximating

the logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl., 22(4):1112–1125,

2001.

16

[CL74] G. W. Cross and P. Lancaster. Square roots of complex matrices. Linear and Multilinear

Algebra, 1:289–293, 1974.

[Dav73] Chandler Davis. Explicit functional calculus. Linear Algebra Appl., 6:193–199, 1973.

[DB76] Eugene D. Denman and Alex N. Beavers, Jr. The matrix sign function and computations in

systems. Appl. Math. Comput., 2:63–94, 1976.

[Des63] Jean Descloux. Bounds for the spectral norm of functions of matrices. Numer. Math., 15:185–

190, 1963.

[DH03] Philip I. Davies and Nicholas J. Higham. A Schur–Parlett algorithm for computing matrix

functions. SIAM J. Matrix Anal. Appl., 25(2):464–485, 2003.

[DH05] Philip I. Davies and Nicholas J. Higham. Computing f(A)b for matrix functions f . In Artan

Boriçi, Andreas Frommer, Báalint Joó, Anthony Kennedy, and Brian Pendleton, editors,

QCD and Numerical Analysis III, volume 47 of Lecture Notes in Computational Science and

Engineering, pages 15–24. Springer-Verlag, Berlin, 2005.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hopkins University

Press, Baltimore, MD, USA, third edition, 1996.

[HH05] Gareth I. Hargreaves and Nicholas J. Higham. Efficient algorithms for the matrix cosine and

sine. Numer. Algorithms, 40(4):383–400, 2005.

[Hig] Nicholas J. Higham. Functions of a Matrix: Theory and Computation. Book in preparation.

[Hig86] Nicholas J. Higham. Newton’s method for the matrix square root. Math. Comp., 46(174):537–

549, April 1986.

[Hig87] Nicholas J. Higham. Computing real square roots of a real matrix. Linear Algebra Appl.,

88/89:405–430, 1987.

[Hig97] Nicholas J. Higham. Stable iterations for the matrix square root. Numer. Algorithms,

15(2):227–242, 1997.

17

[Hig01] Nicholas J. Higham. Evaluating Padé approximants of the matrix logarithm. SIAM J. Matrix

Anal. Appl., 22(4):1126–1135, 2001.

[Hig05] Nicholas J. Higham. The scaling and squaring method for the matrix exponential revisited.

SIAM J. Matrix Anal. Appl., 26(4):1179–1193, 2005.

[HJ91] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University

Press, 1991.

[HS03] Nicholas J. Higham and Matthew I. Smith. Computing the matrix cosine. Numer. Algorithms,

34:13–26, 2003.

[KL89] Charles S. Kenney and Alan J. Laub. Condition estimates for matrix functions. SIAM J.

Matrix Anal. Appl., 10(2):191–209, 1989.

[KL91] Charles S. Kenney and Alan J. Laub. Rational iterative methods for the matrix sign function.

SIAM J. Matrix Anal. Appl., 12(2):273–291, 1991.

[KL92] Charles S. Kenney and Alan J. Laub. On scaling Newton’s method for polar decomposition

and the matrix sign function. SIAM J. Matrix Anal. Appl., 13(3):688–706, 1992.

[LT85] Peter Lancaster and Miron Tismenetsky. The Theory of Matrices. Academic Press, London,

second edition, 1985.

[Mei04] Beatrice Meini. The matrix square root from a new functional perspective: Theoretical results

and computational issues. SIAM J. Matrix Anal. Appl., 26(2):362–376, 2004.

[MVL78] Cleve B. Moler and Charles F. Van Loan. Nineteen dubious ways to compute the exponential

of a matrix. SIAM Rev., 20(4):801–836, 1978.

[MVL03] Cleve B. Moler and Charles F. Van Loan. Nineteen dubious ways to compute the exponential

of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003.

[Par76] B. N. Parlett. A recurrence among the elements of functions of triangular matrices. Linear

Algebra Appl., 14:117–121, 1976.

18

[PS73] Michael S. Paterson and Larry J. Stockmeyer. On the number of nonscalar multiplications

necessary to evaluate polynomials. SIAM J. Comput., 2(1):60–66, 1973.

[SB80] Steven M. Serbin and Sybil A. Blalock. An algorithm for computing the matrix cosine. SIAM

J. Sci. Statist. Comput., 1(2):198–204, 1980.

[TW05] L. N. Trefethen and J. A. C. Weideman. The fast trapezoid rule in scientific computing. Paper

in preparation, 2005.

[War77] Robert C. Ward. Numerical computation of the matrix exponential with accuracy estimate.

SIAM J. Numer. Anal., 14(4):600–610, 1977.

19

