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ITERATIVE SOLUTION OF A NONSYMMETRIC ALGEBRAIC

RICCATI EQUATION∗

CHUN-HUA GUO† AND NICHOLAS J. HIGHAM‡

Abstract. We study the nonsymmetric algebraic Riccati equation whose four coefficient matri-
ces are the blocks of a nonsingular M -matrix or an irreducible singular M -matrix M . The solution
of practical interest is the minimal nonnegative solution. We show that Newton’s method with zero
initial guess can be used to find this solution without any further assumptions. We also present
a qualitative perturbation analysis for the minimal solution, which is instructive in designing algo-
rithms for finding more accurate approximations. For the most practically important case, in which
M is an irreducible singular M -matrix with zero row sums, the minimal solution is either stochastic
or substochastic and the Riccati equation can be transformed into a unilateral matrix equation by a
procedure of Ramaswami. The minimal solution of the Riccati equation can then be found by com-
puting the minimal nonnegative solution of the unilateral equation using the Latouche–Ramaswami
algorithm. When the minimal solution of the Riccati equation is stochastic, we show that the
Latouche–Ramaswami algorithm, combined with a shift technique suggested by He, Mini, and Rhee,
is breakdown-free and is able to find the minimal solution more efficiently and more accurately than
the algorithm without a shift. When the minimal solution of the Riccati equation is substochastic,
we show how the substochastic minimal solution can be found by computing the stochastic minimal
solution of a related Riccati equation of the same type.

Key words. nonsymmetric algebraic Riccati equation, M -matrix, minimal nonnegative solution,
perturbation analysis, Newton’s method, Latouche–Ramaswami algorithm, shifts
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1. Introduction. We consider the nonsymmetric algebraic Riccati equation (or
NARE)

R(X) = XCX − XD − AX + B = 0,(1.1)

where A,B,C,D are real matrices of sizes m × m,m × n, n × m,n × n, respectively,
and we assume throughout that

M =

[
D −C
−B A

]
(1.2)

is a nonsingular M -matrix or an irreducible singular M -matrix. Some relevant def-
initions are as follows. For any matrices A,B ∈ R

m×n, we write A ≥ B(A > B) if
aij ≥ bij(aij > bij) for all i, j. A real square matrix A is called a Z-matrix if all its
off-diagonal elements are nonpositive. It is clear that any Z-matrix A can be written
as sI −B with B ≥ 0. A Z-matrix A is called an M -matrix if s ≥ ρ(B), where ρ(·) is
the spectral radius; it is a singular M -matrix if s = ρ(B) and a nonsingular M -matrix
if s > ρ(B).

The NARE (1.1) has applications in transport theory and Markov models [20,
27, 28]. The solution of practical interest is the minimal nonnegative solution. The
equation has attracted much attention recently [1, 4, 10, 11, 14, 16, 17, 18, 21, 24, 26].
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For application to Markov models, the case of primary interest is the one where
M is an irreducible singular M -matrix with zero row sums. When M is an irreducible
singular M -matrix, we have M = ρ(N)I −N for some irreducible nonnegative matrix
N . Thus, by applying the Perron–Frobenius theorem to N , there are positive vectors
u1, v1 ∈ R

n and u2, v2 ∈ R
m such that

M(vT
1 vT

2 )T = 0, (uT
1 uT

2 )M = 0,(1.3)

and the vectors (vT
1 vT

2 ) and (uT
1 uT

2 ) are each unique up to a scalar multiple.
Since M is a nonsingular M -matrix or an irreducible singular M -matrix, we have

B,C ≥ 0, and A and D are nonsingular M -matrices (see [10], for example). Therefore,
the matrix I ⊗A + DT ⊗ I is also a nonsingular M -matrix, where ⊗ is the Kronecker
product. Some properties of the NARE (1.1) are summarized below. See [10], [11]
and [13] for more details.

Theorem 1.1. Assume that M is a nonsingular M -matrix or an irreducible

singular M -matrix. Then the NARE (1.1) has a minimal nonnegative solution S. If

M is irreducible, then S > 0 and A − SC and D − CS are irreducible M -matrices.

If M is a nonsingular M -matrix, then A − SC and D − CS are nonsingular M -

matrices. If M is a nonsingular M -matrix or an irreducible singular M -matrix with

uT
1 v1 6= uT

2 v2, then

MS = I ⊗ (A − SC) + (D − CS)T ⊗ I

is a nonsingular M -matrix. If M is an irreducible singular M -matrix with uT
1 v1 =

uT
2 v2, then MS is an irreducible singular M -matrix.

We will also need the dual equation of (1.1):

Y BY − Y A − DY + C = 0.(1.4)

This equation has the same type as (1.1): the matrix

[
A −B
−C D

]

is a nonsingular M -matrix or an irreducible singular M -matrix if and only if the matrix
M has the same property. The minimal nonnegative solution of (1.4) is denoted by Ŝ.

A number of numerical methods have been studied for finding the minimal solu-
tion S, some of which require additional assumptions on the NARE (1.1). In particu-
lar, a class of basic fixed-point iterations has been studied in [10] and [16]. The Schur
method has been studied in [10] and a modified Schur method is given in [14]. These
methods are applicable without further assumptions on (1.1). Newton’s method has
also been studied in [10] and [16], where convergence of the Newton sequence {Xk},
with X0 = 0, to the minimal solution S has been established under the additional
assumption that

B,C 6= 0, (I ⊗ A + DT ⊗ I)−1vecB > 0.(1.5)

Here, the vec operator stacks the columns of a matrix into one long vector. When M
is irreducible, we have B,C 6= 0. However, the condition (I ⊗A+DT ⊗ I)−1vecB > 0
is not guaranteed by the irreducibility of M , as is shown in [10]. The question then
arises as to whether (1.5) is necessary for the convergence of the Newton iteration.
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Our first contribution in this paper is a proof of convergence without this additional
condition.

When M is an irreducible singular M -matrix and uT
1 v1 = uT

2 v2, the matrix MS

is a singular M -matrix. In this case, Newton’s method has a singular Jacobian at
the solution, and thus we cannot expect to find an accurate solution by the Newton
iteration in finite precision arithmetic. A modified Schur method has been proposed
in [14] to find a more accurate solution when uT

1 v1 ≈ uT
2 v2. Another approach is

to transform the bilateral equation (1.1) into a unilateral equation and use meth-
ods based on cyclic reduction, including the Latouche–Ramaswami algorithm [23], in
combination with a shift technique proposed in [19].

The design of numerical methods for finding the minimal solution with higher
accuracy is related to the perturbation behavior of the minimal solution. The minimal
solution S is a function of M in (1.2). If the matrix M is perturbed to M̃ , which is
always assumed to be again a nonsingular M -matrix or an irreducible singular M -
matrix, and S̃ is the new minimal solution, we would like to know the relation between
‖S̃ − S‖ and ‖M̃ − M‖, where ‖ · ‖ is any matrix norm. Our second contribution is
to prove the following.

• If M is a nonsingular M -matrix or an irreducible singular M -matrix with
uT

1 v1 6= uT
2 v2, then there exist constants γ > 0 and ǫ > 0 such that ‖S̃−S‖ ≤

γ‖M̃ − M‖ for all M̃ with ‖M̃ − M‖ < ǫ.
• If M is an irreducible singular M -matrix with uT

1 v1 = uT
2 v2, then there exist

constants γ > 0 and ǫ > 0 such that
(a) ‖S̃ − S‖ ≤ γ‖M̃ − M‖1/2 for all M̃ with ‖M̃ − M‖ < ǫ.

(b) ‖S̃ − S‖ ≤ γ‖M̃ − M‖ for all singular M̃ with ‖M̃ − M‖ < ǫ.
This result tells us that, to achieve high accuracy for S when M is an irreducible
singular M -matrix with uT

1 v1 ≈ uT
2 v2, it is necessary to use the singularity of M

in the design of algorithms. Otherwise, we can only expect to achieve an accuracy

of O(ǫ
1/2
m ), where ǫm is the machine epsilon. The modified Schur method in [14]

and the methods using a shift technique in [4] and [14] all use the singularity of
M . However, the use of the shift technique creates a new problem: it is not clear
whether the resulting algorithm may break down, although quadratic convergence
is guaranteed if no breakdown occurs. Our third contribution is to show that the
(simplified) Latouche–Ramaswami algorithm with a shift technique, presented in [14],
is breakdown-free.

2. Convergence of Newton’s method. The Riccati function R is a mapping
from R

m×n into itself. The Fréchet derivative of R at a matrix X is a linear map
R′

X : R
m×n → R

m×n given by

R′
X(Z) = −

(
(A − XC)Z + Z(D − CX)

)
.(2.1)

The Newton method for the solution of (1.1) is

Xi+1 = Xi − (R′
Xi

)−1R(Xi), i = 0, 1, . . . ,(2.2)

where the maps R′
Xi

all need to be nonsingular. In view of (2.1), the iteration (2.2)
is equivalent to

(A − XiC)Xi+1 + Xi+1(D − CXi) = B − XiCXi, i = 0, 1, . . . .(2.3)

We will need the following well known result (see [2], for example).
Theorem 2.1. For a Z-matrix A, the following are equivalent:
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(a) A is a nonsingular M -matrix.

(b) A−1 ≥ 0.
(c) Av > 0 for some vector v > 0.
(d) All eigenvalues of A have positive real parts.

The equivalence of (a) and (c) in Theorem 2.1 implies the next result.
Lemma 2.2. Let A be a nonsingular M -matrix. If B ≥ A is a Z-matrix, then B

is also a nonsingular M -matrix.

We can now give a proof of convergence of the Newton iteration that does not
require the assumption (1.5) made in [10].

Theorem 2.3. Let S be the minimal nonnegative solution of (1.1). Then for the

Newton iteration (2.3) with X0 = 0, the sequence {Xi} is well defined, Xk ≤ Xk+1 ≤ S
for all k ≥ 0, and limi→∞ Xi = S.

Proof. Throughout the proof, we use the notation

MX = I ⊗ (A − XC) + (D − CX)T ⊗ I

for a given matrix X (this notation is consistent with the notation MS already used
in Theorem 1.1). Since S is a solution of (1.1),

SCS − SD − AS + B = 0.(2.4)

For the Newton iteration (2.3) with X0 = 0, we have AX1 + X1D = B, which is
equivalent to

(I ⊗ A + DT ⊗ I)vecX1 = vecB.(2.5)

Since I ⊗ A + DT ⊗ I is a nonsingular M -matrix, Theorem 2.1 (b) and (2.5) imply
vecX1 ≥ 0, i.e., X1 ≥ 0.

We first assume that M is a nonsingular M -matrix, and will prove by induction
that

Xk ≤ Xk+1, Xk ≤ S, MXk
is a nonsingular M -matrix(2.6)

for k ≥ 0. It is clear that (2.6) is true for k = 0. We now assume that (2.6) is true
for k = i ≥ 0. By (2.3) and (2.4) we have

(A − XiC)(Xi+1 − S) + (Xi+1 − S)(D − CXi)(2.7)

= B − XiCXi − AS + XiCS − SD + SCXi

= −(S − Xi)C(S − Xi).

Since Xi ≤ S and MXi
is a nonsingular M -matrix, it follows from Theorem 2.1 (b)

and (2.7) that Xi+1 ≤ S. Since MS is a nonsingular M -matrix by Theorem 1.1, it
follows from Lemma 2.2 that MXi+1

is a nonsingular M -matrix. By (2.3),

(A − Xi+1C)Xi+1 + Xi+1(D − CXi+1)(2.8)

=
(
A − XiC − (Xi+1 − Xi)C

)
Xi+1 + Xi+1

(
D − CXi − C(Xi+1 − Xi)

)

= B − XiCXi − (Xi+1 − Xi)CXi+1 − (Xi + Xi+1 − Xi)C(Xi+1 − Xi)

= B − Xi+1CXi+1 − (Xi+1 − Xi)C(Xi+1 − Xi).

By (2.8) and (2.3),

(A − Xi+1C)(Xi+1 − Xi+2) + (Xi+1 − Xi+2)(D − CXi+1)

= −(Xi+1 − Xi)C(Xi+1 − Xi) ≤ 0.
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Therefore, Xi+1 ≤ Xi+2. We have thus proved that (2.6) is true for k = i + 1. Hence
(2.6) is true for all k ≥ 0 by induction.

We now assume that M is an irreducible singular M -matrix. Then S > 0 by
Theorem 1.1. Thus, the statement

Xk ≤ Xk+1, Xk < S, MXk
is a nonsingular M -matrix(2.9)

is true for k = 0. Assume that (2.9) is true for k = i ≥ 0. Then, by (2.7) we get
Xi+1 < S. It follows from (2.8) and (2.4) that

(A − Xi+1C)(Xi+1 − S) + (Xi+1 − S)(D − CXi+1)

= −(Xi+1 − Xi)C(Xi+1 − Xi) − (Xi+1 − S)C(Xi+1 − S) < 0.

Therefore, MXi+1
vec(S − Xi+1) > 0. Thus MXi+1

is a nonsingular M -matrix by
Theorem 2.1 (c). It follows as before that Xi+1 ≤ Xi+2. So (2.9) is true for k = i+1,
and hence for all k ≥ 0 by induction.

Therefore, in both cases, the Newton sequence Xk is well defined, monotonically
increasing, and bounded above by S. Let limk→∞ Xk = X∗. Then X∗ is a nonnegative
solution of (1.1) by (2.3). Since X∗ ≤ S and S is minimal, we have X∗ = S.

3. Perturbation analysis for the minimal solution. In this section we are
interested in a qualitative description of the perturbation of the minimal nonnegative
solution S of (1.1) as a function of M . The perturbation analysis of the minimal
solution will be carried out through the perturbation analysis of a proper invariant
subspace of the matrix

L =

[
D −C
B −A

]
=

[
I 0
0 −I

]
M.(3.1)

Let all eigenvalues of L be arranged in descending order of their real parts, and
be denoted by λ1, . . . , λn, λn+1, . . . , λn+m. Then (see [10])

σ(D − CS) = {λ1, . . . , λn}

and

σ(A − SC) = σ(A − BŜ) = {−λn+1, . . . ,−λn+m},(3.2)

where Ŝ is the minimal nonnegative solution of the dual equation (1.4). If M is
a nonsingular M -matrix, then λ1, . . . , λn ∈ C

+ (the open right half plane) and
λn+1, . . . , λn+m ∈ C

− (the open left half plane). If M is an irreducible singular
M -matrix, then λ1, . . . , λn−1 ∈ C

+, λn+2, . . . , λn+m ∈ C
−. Moreover,

• if uT
1 v1 > uT

2 v2, then λn = 0 and λn+1 < 0 are simple eigenvalues;
• if uT

1 v1 < uT
2 v2, then λn > 0 and λn+1 = 0 are simple eigenvalues;

• if uT
1 v1 = uT

2 v2, then λn = λn+1 = 0 is a double eigenvalue with only one
linearly independent eigenvector.

Therefore, in all cases, there is a unique invariant subspace of L corresponding to the
eigenvalues λ1, . . . , λn. Let the invariant subspace be Im [UT

1 UT
2 ]T , where U1 ∈ C

n×n,
U2 ∈ C

m×n and Im U denotes the image (or range) of the matrix U . Then U1 is
nonsingular and S = U2U

−1
1 (see [10]).

When M is an irreducible M -matrix, the matrices D − CS and A − SC are also
irreducible M -matrices by Theorem 1.1. Since A−SC and (D−CS)T can be written
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in the form sI −N , where N ≥ 0 is irreducible, it follows from the Perron–Frobenius
theorem that there exist unique positive vectors a and b with unit 1-norm such that

(A − SC)a = −λn+1a, bT (D − CS) = λnbT .(3.3)

Since M is irreducible, we have C 6= 0 and thus bT Ca > 0. We will need the following
result [7] in the perturbation analysis below.

Theorem 3.1. Assume that M is an irreducible nonsingular M -matrix or an

irreducible singular M -matrix with uT
1 v1 6= uT

2 v2. Then there exists a second positive

solution S+ of (1.1) given by

S+ = S + δabT ,(3.4)

where the vectors a, b are specified in (3.3) and δ = (λn − λn+1)/bT Ca. Moreover,

σ(D − CS+) = {λ1, . . . , λn−1, λn+1}.(3.5)

Let M and N be any invariant subspaces of L. For any fixed norm ‖ · ‖ (for
definiteness we use the spectral norm), let θ(M,N ) be the gap between M and N ,
defined by

θ(M,N ) = ‖PM − PN ‖,

where PM and PN are the orthogonal projectors on M and N , respectively, with
orthogonality defined by the standard scalar product on C

m+n. See [8] or [22] for
properties of the gap metric.

We first consider the case where M is a nonsingular M -matrix or an irreducible
singular M -matrix with uT

1 v1 6= uT
2 v2. In this case, since the eigenvalues λ1, . . . , λn are

disjoint from the eigenvalues λn+1, . . . , λn+m, the invariant subspace corresponding
to the eigenvalues λ1, . . . , λn,

M = Im

[
U1

U2

]
= Im

[
I
S

]
,

is known to be Lipschitz stable [8], i.e., there exist constants γ1, ǫ > 0 such that every
matrix K satisfying ‖K − L‖ < ǫ has an invariant subspace N for which θ(M,N ) ≤
γ1‖K −L‖. In particular, every L̃ = diag(I,−I)M̃ with ‖L̃−L‖ < ǫ has an invariant

subspace N for which θ(M,N ) ≤ γ1‖L̃−L‖. Let N = Im[V T
1 V T

2 ]T . Then for ǫ small

enough, V1 is nonsingular and we let T = V2V
−1
1 . Then for ‖M̃ −M‖ = ‖L̃−L‖ < ǫ

θ

(
Im

[
I
S

]
, Im

[
I
T

])
≤ γ1‖M̃ − M‖.

Note that there is a constant γ2 > 0 such that [8]

γ−1
2 ‖T − S‖ ≤ θ

(
Im

[
I
S

]
, Im

[
I
T

])
≤ γ2‖T − S‖.

Thus

‖T − S‖ ≤ γ1γ2‖M̃ − M‖.
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For ǫ small enough, we know that the eigenvalues of D̃− C̃T are individually close to
the eigenvalues of D−CS, and hence they are the n eigenvalues of L̃ with the largest
real parts. It follows that T = S̃, the minimal nonnegative solution of (1.1) with M

replaced by M̃ .
We have thus proved the following result.
Theorem 3.2. If M is a nonsingular M -matrix or an irreducible singular M -

matrix with uT
1 v1 6= uT

2 v2, then there exist constants γ > 0 and ǫ > 0 such that

‖S̃ − S‖ ≤ γ‖M̃ − M‖ for all M̃ with ‖M̃ − M‖ < ǫ.
We now consider the case where M is an irreducible singular M -matrix with

uT
1 v1 = uT

2 v2. Let q1, q2, . . . , qn−1 be the eigenvectors and generalized eigenvectors
corresponding to the eigenvalues λ1, . . . , λn−1 and let v be the eigenvector correspond-
ing to the zero eigenvalue. Now,

Im

[
I
S

]
= Im[q1 q2 . . . qn−1] +̇ Im[v].

As in the previous case, there exist constants γ1, ǫ > 0 such that for any M̃ with
‖M̃ − M‖ < ǫ, L̃ has an invariant subspace N1 for which

θ(Im[q1 q2 . . . qn−1],N1) ≤ γ1‖M̃ − M‖.

We assume that ǫ is small enough such that the eigenvalues of L̃ corresponding to N1

are the n− 1 eigenvalues of L̃ with the largest real parts. Note that when M̃ is close
enough to M , M̃ is also irreducible. We consider two cases: (a) M̃ is nonsingular and

(b) M̃ is singular.

For case (a), L̃ has an eigenvalue λ̃n > 0 that is a perturbation of the zero

eigenvalue (with index two) of L. The eigenvector ṽ corresponding to λ̃n is such that

θ(Im[v], Im[ṽ]) ≤ γ2‖M̃ − M‖1/2

for some γ2 > 0 (see section 16.5 of [8] or section 5 of [9]). Now, there are constants
γ3, γ4 > 0 such that [8]

θ(Im[q1 q2 . . . qn−1] +̇ Im[v],N1 +̇ Im[ṽ])

≤ γ3[θ(Im[q1 q2 . . . qn−1],N1) + θ(Im[v], Im[ṽ])]

≤ γ4‖M̃ − M‖1/2.

It then follows as before that ‖S̃ − S‖ ≤ γ‖M̃ − M‖1/2 for some γ > 0.

For case (b), let ṽ be the eigenvector corresponding to the zero eigenvalue of L̃.

Then v and ṽ are also eigenvectors of M and M̃ corresponding to its simple zero
eigenvalue. It is known that

θ(Im[v], Im[ṽ])] ≤ γ2‖M̃ − M‖

for some γ2 > 0. If 0 = λ̃n ≥ λ̃n+1 then as before ‖S̃ − S‖ ≤ γ‖M̃ − M‖ for some

γ > 0. If 0 = λ̃n+1 < λ̃n then we use Theorem 3.1 with M replaced by M̃ (so

accordingly we have S̃, S̃+, ã, b̃, etc.) to get

‖S̃+ − S‖ ≤ γ3‖M̃ − M‖
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for some γ3 > 0. Note that ‖S̃+ − S̃‖ ≤ ‖δ̃ãb̃T ‖ ≤ γ4|λ̃n| for some γ4 > 0. The

eigenvalues of Ã − S̃+C̃ are −λ̃n,−λ̃n+2, . . . ,−λ̃n+m. The simple eigenvalue −λ̃n of

Ã − S̃+C̃ is a perturbation of the simple eigenvalue −λn+1 = 0 of A − SC. Thus

|λ̃n| ≤ γ5‖(Ã − S̃+C̃) − (A − SC)‖ ≤ γ6‖M̃ − M‖ for some γ5, γ6 > 0. Therefore

‖S̃ − S‖ ≤ ‖S̃+ − S‖ + ‖S̃+ − S̃‖ ≤ γ‖M̃ − M‖ for some γ > 0.
In summary, we have shown the following.
Theorem 3.3. If M is an irreducible singular M -matrix with uT

1 v1 = uT
2 v2, then

there exist constants γ > 0 and ǫ > 0 such that

(a) ‖S̃ − S‖ ≤ γ‖M̃ − M‖1/2 for all M̃ with ‖M̃ − M‖ < ǫ.

(b) ‖S̃ − S‖ ≤ γ‖M̃ − M‖ for all singular M̃ with ‖M̃ − M‖ < ǫ.
We illustrate the results in Theorem 3.3 with a simple example. Consider the

matrix

M =

[
1 −1
−1 1

]

and its three different perturbations

M1 =

[
1 + ǫ −1
−1 1

]
, M2 =

[
1 −(1 + ǫ)
−1 1 + ǫ

]
, M3 =

[
1 −1

−(1 + ǫ) 1

]
,

where 0 < ǫ < 1. Note that M satisfies the condition in Theorem 3.3, and that
S = 1 for the corresponding NARE (1.1). M1 is a nonsingular M -matrix and the
corresponding minimal solution is S1 = 1

2 (2 + ǫ −
√

4ǫ + ǫ2) ∼ 1 − ǫ1/2, which is
the situation in Theorem 3.3 (a). M2 is an irreducible singular M -matrix and the
corresponding minimal solution is S2 = 1/(1 + ǫ) ∼ 1 − ǫ, which is the situation in
Theorem 3.3 (b). M3 is not an M -matrix and the corresponding NARE does not have
real solutions.

The continuity of the minimal solution shown in Theorem 3.3 can be used to prove
the next result, where the statements are stronger than those given in [10, Thm. 4.8].
The result will be needed in Section 4.

Theorem 3.4. Let M be an irreducible singular M -matrix.

(a) If uT
1 v1 = uT

2 v2, then Sv1 = v2 and Ŝv2 = v1.

(b) If uT
1 v1 > uT

2 v2, then Sv1 = v2 and Ŝv2 < v1.

(c) If uT
1 v1 < uT

2 v2, then Sv1 < v2 and Ŝv2 = v1.

Proof. We only need to prove the result for S since the result for Ŝ follows
immediately by duality. So we need to show Sv1 = v2 when uT

1 v1 ≥ uT
2 v2 and

Sv1 < v2 when uT
1 v1 < uT

2 v2. In fact,

(A−SC)(v2−Sv1) = Av2−SCv2 +(SCS−AS)v1 = Bv1−SDv1 +(SD−B)v1 = 0.

If uT
1 v1 > uT

2 v2, then A − SC is nonsingular and so Sv1 = v2. If uT
1 v1 < uT

2 v2,
then A − SC is an irreducible singular M -matrix and v2 − Sv1 ≥ 0 is an eigenvector
corresponding to the zero eigenvalue (It is already proved in [10] that Sv1 ≤ v2 and
Sv1 6= v2). By the Perron–Frobenius theorem, v2 − Sv1 > 0 and so Sv1 < v2. If
uT

1 v1 = uT
2 v2, then for

M(α) =

[
D −C

−αB αA

]

with α > 1, we have

u1(α) = u1, u2(α) = α−1u2, v1(α) = v1, v2(α) = v2.
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So we have u1(α)T v1(α) > u2(α)T v2(α). It follows that S(α)v1(α) = v2(α). However,
limα→1+ S(α) = S by Theorem 3.3 and so Sv1 = v2.

4. Applicability of the shifted Latouche–Ramaswami algorithm. In this
section we assume that M is an irreducible singular M -matrix. For the NARE (1.1)
arising in the study of Markov models, we have Me = 0, where e is the vector of ones.
In that case, we may take v1 = e ∈ R

n and v2 = e ∈ R
m in (1.3).

If M is a general irreducible singular M -matrix, we can transform (1.1) into a
new equation for which v1 = e and v2 = e. More precisely, (1.1) can be rewritten as

W (V −1
1 CV2)W − W (V −1

1 DV1) − (V −1
2 AV2)W + V −1

2 BV1 = 0(4.1)

with V1 = diag(v1), V2 = diag(v2) and W = V −1
2 XV1. Note that the minimal

nonnegative solution of (4.1) is S = V −1
2 SV1 and that

[
V −1

1 DV1 −V −1
1 CV2

−V −1
2 BV1 V −1

2 AV2

] [
e
e

]
=

[
0
0

]
.(4.2)

It is clear that the leftmost matrix in (4.2) is still an irreducible singular M -matrix.
From now on, we assume that M is an irreducible singular M -matrix with Me = 0.

Ramaswami [26] made the interesting observation that the matrix equation (1.1)
is closely related to a quadratic matrix equation arising in quasi-birth-death processes.
To see this connection, let

a∗ = max
1≤i≤m

aii, d∗ = max
1≤i≤n

dii, θ∗ = max (a∗, d∗).(4.3)

Choose a number θ ≥ θ∗ and let P = I − 1
θM . Then P is nonnegative with Pe = e,

i.e., P is a stochastic matrix. Let

P =

[
P11 P12

P21 P22

]
,

where the partitioning is conformable with that for the matrix M . Thus

P11 = I − 1

θ
D, P12 =

1

θ
C, P21 =

1

θ
B, P22 = I − 1

θ
A.(4.4)

Ramaswami [26] constructed three nonnegative matrices from P :

A0 =

[
P11 0
1
2P21 0

]
, A1 =

[
0 P12

0 1
2P22

]
, A2 =

[
0 0
0 1

2I

]
.(4.5)

Associated with the matrices A0, A1, A2 are the matrix equation

G = A0 + A1G + A2G
2,(4.6)

and its dual equation

F = A2 + A1F + A0F
2.(4.7)

We let G and F be the minimal nonnegative solutions of (4.6) and (4.7), respectively.
The next two results are known (see [26, Thm. 4.1] and [14]).
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Proposition 4.1. The minimal nonnegative solution of (4.6) is

G =

[
P11 + P12S 0

S 0

]
,

where S is the minimal nonnegative solution of (1.1).
Proposition 4.2. The minimal nonnegative solution of (4.7) is

F =

[
0 Ŝ

0 (2I − P22 − P21Ŝ)−1

]
,

where Ŝ is the minimal nonnegative solution of (1.4).

Since (2I −P22−P21Ŝ)−1 = ((I + 1
θ (A−BŜ))−1 is a nonnegative matrix, ρ(F ) =

ρ((2I −P22 −P21Ŝ)−1) is the largest positive eigenvalue of (I + 1
θ (A−BŜ))−1, which

is 1/(1 − 1
θλn+1). Similarly, ρ(G) = ρ(P11 + P12S) = ρ(I − 1

θ (D − CS)) = 1 − 1
θλn.

The solution G can be computed by the Latouche–Ramaswami (LR) algorithm
[23], which is essentially the cyclic reduction algorithm combined with block-diagonal
scaling (see [12]).

Algorithm 4.3. Set

L(0) = (I − A1)
−1A0,

H(0) = (I − A1)
−1A2,

G(0) = L(0),

T (0) = H(0).

For k = 0, 1, . . ., compute

U (k) = H(k)L(k) + L(k)H(k),

L(k+1) = (I − U (k))−1(L(k))2,

H(k+1) = (I − U (k))−1(H(k))2,

G(k+1) = G(k) + T (k)L(k+1),

T (k+1) = T (k)H(k+1).

It is shown in [23] that the matrices H(k) and L(k) are well defined and nonnegative
and that the sequence {G(k)} converges quadratically to the matrix G, except for a
critical case which corresponds to the case uT

1 e = uT
2 e in the NARE (1.1). In the

latter case, the convergence is expected to be linear with rate 1/2 (see [12] and [14]).
When m = n, the LR algorithm needs about 400

3 n3 flops each iteration. Using the
special structure of the matrices A0, A1, A2, we can simplify the LR algorithm and
the simplified algorithm requires about 124

3 n3 flops each iteration [14]. The simplified
LR algorithm is less expensive than Newton’s method, which requires roughly 60n3

flops each iteration when m = n. However, there are examples [1] for which the
(simplified) LR algorithm requires many more iterations than Newton’s method, even
though they both have quadratic convergence.

The matrix G(k) from Algorithm 4.3 has the form

G(k) =

[
G

(k)
1 0

G
(k)
2 0

]
,
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and the solution S is approximated by the matrices Sk = G
(k)
2 . It is shown in [14]

that

lim sup
k→∞

2k+1
√
‖Sk − S‖ ≤ ρ(F )ρ(G),(4.8)

so Sk converges to S quadratically when ρ(F )ρ(G) < 1 and the convergence will be
fast if ρ(F )ρ(G) is not close to 1.

Since

ρ(F ) = 1/
(
1 − 1

θ
λn+1

)
, ρ(G) = 1 − 1

θ
λn

are nondecreasing functions of θ for θ ≥ θ∗, we should take θ = θ∗ in (4.4) to have
faster convergence for the (simplified) LR algorithm.

Note that when uT
1 e = uT

2 e, Se = e and Ŝe = e by Theorem 3.4. So Fe = Ge = e,
ρ(F ) = ρ(G) = 1 and the convergence is expected to be linear with rate 1/2. To have
faster convergence when uT

1 e ≥ uT
2 e, we need to use a shift technique [19] for the

(simplified) Latouche–Ramaswami algorithm. The case uT
1 e < uT

2 e for the NARE
will be reduced to the case uT

1 e > uT
2 e for a new NARE of the same type.

4.1. Case uT
1 e ≥ uT

2 e. In this subsection we assume uT
1 e ≥ uT

2 e. In this case
Se = e and so G is stochastic. It is shown in [14] that the only eigenvalue of G on the
unit circle is the simple eigenvalue 1.

The shift technique introduced in [19] is H = G− evT , where v > 0 and vT e = 1.
For our purposes here, we only require that v ≥ 0 and vT e = 1. Then the eigenvalues
of H are those of G except that the eigenvalue 1 of G is replaced by 0, and H is a
solution of the new equation

H = B0 + B1H + B2H
2,(4.9)

where

B0 = A0(I − evT ), B1 = A1 + A2ev
T , B2 = A2.(4.10)

It is shown in [14] that there is a matrix K with ρ(K) = ρ(F ) such that

K = B2 + B1K + B0K
2.(4.11)

To find the solution H of (4.9), we can apply Algorithm 4.3 with the triple
(A0, A1, A2) replaced by the triple (B0, B1, B2). To avoid confusion, we will put a
“hat” on each sequence generated. We take

v =

[
p
0

]
,(4.12)

where p ∈ R
n is positive and pT e = 1. In this way we can get a simplified LR

algorithm as before, with no increase in computational work for each iteration. Note

that S is now approximated by Ŝk = Ĝ
(k)
2 + epT .

It is shown in [14] that, when Algorithm 4.3 is applied with (A0, A1, A2) replaced
by (B0, B1, B2), the matrix I − B1 in the initialization step is always invertible.

Assuming that I − Û (k) is invertible for each k ≥ 0, it is shown in [14] that

lim sup
k→∞

2k+1

√
‖Ŝ(k) − S‖ ≤ ρ(K)ρ(H) = ρ(F )ρ(H) < 1.(4.13)
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Since ρ(H) < ρ(G), the shift technique has improved the speed of convergence. In

particular, Ŝ(k) converges to S quadratically whenever uT
1 e ≥ uT

2 e. It is also shown in

[14] that I − Û (k) converges to I quadratically, assuming that I − Û (k) is nonsingular
for all k ≥ 0.

The problem as to whether the matrices I − Û (k) could be singular for small k
was unsolved in [14]. We will now solve this problem.

We proceed as in [6] but depart from [6] at some point. Let

Tk =




I − A1 −A2

−A0 I − A1
. . .

. . .
. . . −A2

−A0 I − A1




and

T̂k =




I − B1 −B2

−B0 I − B1
. . .

. . .
. . . −B2

−B0 I − B1




be block k × k Toeplitz matrices. Since the LR algorithm is well defined if and only
if the cyclic reduction (CR) algorithm is well defined [5], it follows from Theorem 13

of [3] that the matrices T2j−1 are nonsingular for all j ≥ 1 and that I − Û (k) are

nonsingular for all k ≥ 0 if T̂2j−1 are nonsingular for all j ≥ 2. The relation between

Tk and T̂k (for k ≥ 3) has been obtained in [6] as

T̂k = Tk




I
V I
...

. . .
. . .

V . . . V I


 +




0
...
0

−A2




[
V V . . . V

]
,(4.14)

where V = evT . Note that this relation can be obtained directly from (4.10). Let
Qk and Pk be the (k, 1) block and (k, k) block of T−1

k , respectively. From (4.14), it

is shown in [6] that T̂k is nonsingular if and only if vT PkA2e 6= 1. From the proof of
Theorem 9 in [6] we also know that

vT QkA0e + vT PkA2e = 1.(4.15)

In the case where v is taken to be positive and uT
1 e > uT

2 e, it has been shown in [6]
that vT PkA2e 6= 1, using among other things the canonical factorizations of matrix
polynomials and the so-called “asymptotic applicability” of the SCR (CR with a shift
technique). So, the argument in [6] is very involved and it does not cover the case
uT

1 e = uT
2 e. Suppose SCR were to break down for the case uT

1 e = uT
2 e. Then near-

breakdown would happen to SCR with uT
1 e > uT

2 e, but uT
1 e ≈ uT

2 e. Moreover, as
we mentioned earlier, we need to take the vector v in the form (4.12) to avoid an
increase in computational work when using the shift technique. Fortunately, we can
prove the applicability of the LR algorithm, with a shift given by (4.12), for all cases
with uT

1 e ≥ uT
2 e and θ > θ∗. Moreover, the proof is very simple.
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In fact, what we need to prove is vT QkA0e > 0, which implies vT PkA2e 6= 1 by
(4.15). Note that

T−1
k ≥




I
−A0 I

. . .
. . .

−A0 I




−1

=




I
A0 I
...

. . .
. . .

Ak−1
0 · · · A0 I


 .(4.16)

So Qk ≥ Ak−1
0 and hence vT QkA0e ≥ vT Ak

0e. For A0 given by (4.5), we have

Ak
0 =

[
P k

11 0
1
2P21P

k−1
11 0

]
.

Therefore, vT QkA0e ≥ pT P k
11e, by (4.12). Recall that the nonnegative matrix P11 is

given by P11 = I − 1
θD. If the diagonal elements dii of D are not all equal or a∗ and

d∗ defined in (4.3) satisfy d∗ < a∗, then P11 has at least one nonzero diagonal element
and hence pT P k

11e > 0 for all k ≥ 1 and for all θ ≥ θ∗. If the elements dii are all equal
and d∗ ≥ a∗, then pT P k

11e > 0 for all k ≥ 1 and all θ > θ∗ = d∗.
Theorem 4.4. Algorithm 4.3 can be applied with no breakdown when the shift

technique is used, i.e., when the matrices A0, A1, A2 in (4.5) are replaced by the ma-

trices B0, B1, B2 defined in (4.10), for all θ ≥ θ∗ if the diagonal elements dii of D
are not all equal or d∗ < a∗, and for all θ > θ∗ if the elements dii are all equal and

d∗ ≥ a∗.

When the elements dii of D are all equal, it is possible for P11 to be nilpotent if
we take θ = θ∗. One simple example is

M =




1 −1 0 0
0 1 −1 0
0 0 1 −1
−1 0 0 1


 .(4.17)

For this example with θ = 1, pT P k
11e = 0 for k ≥ 2. However, it is very likely that we

still have vT QkA0e > 0 since the lower bound in (4.16) is not tight.
For the LR algorithm without a shift, the number ρ(F )ρ(G) in (4.8) in minimized

for θ = θ∗. So θ = θ∗ is optimal in this sense and should be recommended. For the LR
algorithm with a shift, however, the optimal θ should minimize ρ(F )ρ(H) in (4.13).

When uT
1 e = uT

2 e, we have λn+1 = 0 and ρ(F ) = 1 for any θ. When uT
1 e > uT

2 e
but uT

1 e ≈ uT
2 e, we have λn+1 ≈ 0 and hence the effect of θ on ρ(F ) is very limited.

So one should try to minimize ρ(H). Note that ρ(H) = max1≤i≤n−1 |1− 1
θ λi|. For the

matrix M given by (4.17), the corresponding matrix L has eigenvalues
√

2, 0, 0,−
√

2.
So ρ(F ) = 1 and ρ(H) is minimized for θ =

√
2 and the minimum is 0. This example

shows that θ = θ∗ is not necessarily optimal when the shift technique is used. We
can also give a necessary and sufficient condition for θ∗ to be optimal. Let D =
{z ∈ C : |z − 1| < 1}. Then λi/θ∗ ∈ D for i = 1, . . . , n − 1 since ρ(H) < 1. Let
D1 = {z ∈ C : |z − 1/2| ≤ 1/2}, D2 = D \D1, I1 = {1 ≤ i ≤ n− 1 : λi/θ∗ ∈ D1}, and
I2 = {1 ≤ i ≤ n − 1 : λi/θ∗ ∈ D2}. Then we have the following result.

Proposition 4.5. For θ ∈ [θ∗,∞), ρ(H) attains its minimum at θ = θ∗ if and

only if

max
i∈I1

|1 − λi/θ∗| ≥ max
i∈I2

|1 − λi/θ∗|,
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where the maximum over an empty set is defined to be zero.

Proof. Note that for any point (other than 0) on the circle |z − 1/2| = 1/2, the
boundary of D1, the line passing through z and 0 is perpendicular to the line passing
through z and 1. If maxi∈I1

|1−λi/θ∗| ≥ maxi∈I2
|1−λi/θ∗|, then for any θ > θ∗ and

i ∈ I1, which is nonempty, |1− λi/θ| > |1− λi/θ∗| and thus ρ(H) is minimized at θ∗.
On the other hand, if maxi∈I1

|1 − λi/θ∗| < maxi∈I2
|1 − λi/θ∗|, we can take θ > θ∗

such that

max
i∈I1

|1 − λi/θ| < max
i∈I2

|1 − λi/θ| < max
i∈I2

|1 − λi/θ∗|

(The first inequality holds when θ−θ∗ is small enough and the second inequality holds
when θ− θ∗ is small enough so that λi/θ ∈ D2 for i ∈ I2). Thus ρ(H) does not attain
its minimum at θ∗.

In practice, we would not compute the eigenvalues λ1, . . . , λn−1 when we use the
LR algorithm. However, the above result shows that θ = θ∗ is often not optimal when
the shift technique is used. Therefore, when the diagonal elements dii of D are all
equal and d∗ ≥ a∗, we can simply take θ > θ∗ = d∗ (say θ = 1.1θ∗) to ensure the
applicability of the LR algorithm with a shift.

4.2. Case uT
1 e < uT

2 e. We now assume uT
1 e < uT

2 e. Then Se < e by Theorem
3.4. We will reduce this case to the case uT

1 e > uT
2 e for a new NARE of the same

type, and the substochastic minimal solution S of the original NARE will be obtained
from the stochastic minimal solution of the new NARE. This reduction process is in
essence similar to the one given in [25]. The difference is that the reduction here is
given directly on the Riccati equation, rather than on the unilateral matrix equation
obtained through the Ramaswami construction.

As in [15, Lem. 5.1] we note that the minimal nonnegative solution S of the NARE
(1.1) is such that S = ZT , where Z is the minimal nonnegative solution of the new
NARE

ZCT Z − ZAT − DT Z + BT = 0.(4.18)

As at the beginning of section 4, the equation (4.18) can be rewritten as

W (U−1
2 CT U1)W − W (U−1

2 AT U2) − (U−1
1 DT U1)W + U−1

1 BT U2 = 0,(4.19)

with U1 = diag(u1), U2 = diag(u2) and W = U−1
1 ZU2. Now the irreducible singular

M -matrix corresponding to (4.19) is

M̂ =

[
U−1

2 AT U2 −U−1
2 CT U1

−U−1
1 BT U2 U−1

1 DT U1

]
.

It is easy to see that (uT
2 uT

1 )M̂ = 0 and M̂e = 0. Since uT
2 e > uT

1 e, the new NARE
(4.19) has a stochastic minimal solution W and it can be computed as in section
4.1. The substochastic minimal solution S of the original NARE is obtained through
S = U−1

2 WT U1.
For the above procedure, we need to compute the vector (uT

1 uT
2 )T accurately since

it determines the coefficient matrices of the NARE (4.19). This can be done by using
the LU factorization of the irreducible singular M -matrix MT , and the computational
work is very minor compared with that required by each iteration for the simplified LR
algorithm. So the shift technique is worthwhile as long as we can save one iteration.
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Moreover, as our perturbation analysis in section 3 suggests, the minimal solution
computed by the LR algorithm without a shift is much more vulnerable to rounding
errors when uT

1 e ≈ uT
2 e.

We use one example to illustrate the usefulness of the above procedure. Consider
the NARE (1.1) with m = n = 100 and

A =




3 −1
. . .

. . .

3 −1
−1 1.9


 , B =




1 1
. . .

. . .

1 1
0.9


 ,

C =




1
1 1

. . .
. . .

1 1


 , D =




2 −1

3
. . .

. . . −1
−1 3




.

It is easily verified that Me = 0 and uT
1 e < uT

2 e. We apply the (simplified) LR algo-
rithm with a shift to the NARE (4.19) (so the matrices A,B,C,D in (4.4) are replaced
accordingly), with θ = 3 in (4.4) and p = m−1e in (4.12). After 6 iterations we find

an approximation W̃ to W with ‖R(W̃ )‖∞ = 4.4 × 10−11. We then use W̃ to get an

approximation S̃ to S with ‖R(S̃)‖∞ = 6.1 × 10−11. A very accurate approximation
to S (with residual 2.3 × 10−14) can be obtained by performing 7 iterations instead
and we take it as the “exact” solution S. We now apply the (simplified) LR algorithm
without a shift to the NARE (1.1), with θ = 3 in (4.4). We find after 13 iterations an

approximation S̃′ to S, with ‖R(S̃′)‖∞ = 6.0× 10−10. However, the accuracy in this

case is much lower than the residual suggests. Indeed, we find ‖S̃−S‖∞ = 1.4×10−10

but ‖S̃′ − S‖∞ = 4.2 × 10−7. So the (simplified) LR algorithm with a shift is more
efficient and more accurate.

5. Conclusions. In this further study of a class of NAREs, we have been able
to relax the condition for the convergence of Newton’s method to the minimal so-
lution. The qualitative perturbation analysis for the minimal solution, while of in-
dependent interest, is instructive in designing algorithms for finding more accurate
approximations. For the NAREs arising in Markov models, we have shown that the
Latouche–Ramaswami algorithm, combined with a shift technique, is breakdown-free
in all cases and therefore is guaranteed to find the minimal solution more efficiently
and more accurately.
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