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1. EIGENVALUES

Eigenvalues, latent roots, proper values, characteristic values—four synonyms
for a set of numbers that provide much useful information about a matrix or op-
erator. A huge amount of research has been directed at the theory of eigenvalues
(localization, perturbation, canonical forms, ...), at applications (ubiquitous), and
at numerical computation. I would like to begin with a very selective description
of some historical aspects of these topics, before moving on to pseudoeigenvalues,
the subject of the book under review.

Back in the 1930s, Frazer, Duncan, and Collar of the Aerodynamics Depart-
ment of the National Physical Laboratory (NPL), England, were developing matrix
methods for analyzing flutter (unwanted vibrations) in aircraft. This was the be-
ginning of what became known as matrix structural analysis [9], and led to the
authors’ book Elementary Matrices and Some Applications to Dynamics and Dif-
ferential Equations, published in 1938 [10], which was “the first to employ matrices
as an engineering tool” [2]. Olga Taussky worked in Frazer’s group at NPL dur-
ing the Second World War, analyzing 6 x 6 quadratic eigenvalue problems (QEPS)
(A\2A5 + AA; + Ag)z = 0 arising in flutter analysis of supersonic aircraft [25].
Subsequently Peter Lancaster, working at the English Electric Company in the
1950s solved QEPs of dimension 2 to 20 [12]. Taussky (at Caltech) and Lancaster
(at the University of Calgary) both went on to make fundamental contributions
to matrix theory, and in particular to matrix eigenvalue problems [24], [17]. So
aerodynamics provided the impetus for some significant work on the theory and
computation of matrix eigenvalues. In those early days efficient and reliable nu-
merical methods for solving eigenproblems were not available. Today they are, but
aerodynamics and other areas of engineering continue to provide challenges con-
cerning eigenvalues. The trend towards extreme designs, such as high speed trains
[15], micro-electromechanical (MEMS) systems, and “superjumbo” jets such as the
Airbus 380, make the analysis and computation of resonant frequencies of these
structures difficult [21], [26]. Extreme designs often lead to eigenproblems with
poor conditioning, while the physics of the systems leads to algebraic structure
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that numerical methods should preserve if they are to provide physically meaning-
ful results.

Turning to the question of numerical methods for computing eigenvalues, we
can get a picture of the state of the art in the 1950s by looking at the influential
lecture notes Modern Computing Methods [16]. Its chapter Latent Roots describes
the power method with deflation for nonsymmetric eigenvalue problems Ax = Az
and the Jacobi method for symmetric problems. Nowadays the power method is
regarded as the most crude and basic tool in our arsenal of numerical methods,
though it proves very effective for computing Google’s PageRank [18], [22]. The
key breakthrough that led to modern methods was the idea of factorizing a matrix
A = BC, setting A «— CB = B~'AB, and repeating this process. With a suitable
choice of B and C at each step, these similarity transformations force almost all
A to converge to upper triangular form, revealing the eigenvalues on the diagonal.
Rutishauser’s LR algorithm (1958) was the first such method, followed in the early
1960s by the QR algorithm of Francis and Kublanovskaya. Here, A is factorized
into the product of an orthogonal matrix (@) and an upper triangular matrix (R).
With appropriate refinements developed by Francis, such as an initial reduction
to Hessenberg form and the use of shifts to accelerate convergence, together with
more recent refinements that exploit modern machine architectures [1], [4], the QR
algorithm is the state of the art for computing the complete eigensystem of a dense
matrix. Nominated as one of the “10 algorithms with the greatest influence on the
development and practice of science and engineering in the 20th century” [8], the
QR algorithm has been the standard method for solving the eigenvalue problem for
over 40 years. As Parlett points out [23], the QR algorithm’s eminence stems from
the fact that it is a “genuinely new contribution to the field of numerical analysis
and not just a refinement of ideas given by Newton, Gauss, Hadamard, or Schur”.

Returning to the flutter computations, what method would be used nowadays in
place of the crude techniques available over 50 years ago to Taussky and Lancaster?
The answer is again the QR algorithm, or rather a generalization of it called the
QZ algorithm that applies to the more general problem (AX + YY)z = 0 associated
with the pencil AX + Y. The quadratic problem (A2As + AA; + Ag)x = 0, where
the A; are n x n, is reduced to linear form, typically

A\x L A2 0 A1 A() A\x o
w e ([ 9 )P0
and then the QZ algorithm is applied to the 2nx2n pencil. The pencil in (1) is called
a companion linearization, and it is just one of infinitely many ways of linearizing
the quadratic problem. Investigation of alternative linearizations, and their ability
to preserve structural properties of the QEP, is an active area of research [13], [19],
[20].

To give a feel for computational cost, on a typical PC all the eigenvalues of a
500 x 500 nonsymmetric matrix can be computed in about 1 second, while the
eigenvalues of a 500 x 500 QEP require about 30 seconds. Computing eigenvectors
as well increases these times by about a factor 3.

2. PSEUDOEIGENVALUES

The book under review gives food for thought for anyone who computes eigen-
values or uses them to make qualitative predictions. Its message is that if a matrix



BOOK REVIEW FOR BULLETIN OF THE AMS 3

or operator is highly nonnormal then its eigenvalues can be a poor guide to its be-
havior, no matter what the underlying eigenvalue theorems may say. High nonnor-
mality of a matrix is characterized by the property that any matrix of eigenvectors
V has large condition number: ||[V|| ||V 71| > 1. This message is easy to illustrate
in the context of specific eigenvalues of specific matrices. A companion matrix has
the form

—Aanpn—1 —0ap—2 ... “e —ap
1 0 0
C= 0 1 0 | eC™ .
: 0 0
0 | 0

(Note the connection with (1), in which —X 'Y is a block companion matrix.)
The matrix C has the characteristic polynomial

det(C' = M) = (=1)"(\" + ap_ 1 A\ 4+ -+ ap).

Therefore with any degree n monic scalar polynomial is associated an n X n matrix,
the companion matrix, whose eigenvalues are the roots of the polynomial. This con-
nection provides one way of computing roots of polynomials: apply an eigensolver
to the companion matrix. A companion matrix is nonnormal (unless its first row
is the last row of the identity matrix) and so can have interesting pseudospectra.
Figure 1 displays the boundaries of several pseudospectral contours of the balanced
companion matrix C for the polynomial

p2o(z) = (z—=1)(z —2)...(z — 20).

(Here, C = D~1OD, with diagonal D chosen to roughly equalize row and column
norms.) The e-pseudospectrum of A € C™"*™ is defined, for a given € > 0, to be the
set!

0.(A) ={z: zis an eigenvalue of A 4+ E for some E € C"*™ with ||E|| < €},
and it can also be represented, in terms of the resolvent (21 — A)~!, as
o A) = {z: (zI = A7 > ).

Here, || - || can be any matrix norm, but the usual choice, and the ones used in
our examples, is the matrix 2-norm ||A]ls = max{|Az|2 : ||z||2 = 1}, where
llz||2 = (z*2)*/2. Any z in o is called an e-pseudoeigenvalue. The curves in Figure 1
are the boundaries of 06(5’) for a range of € and the dots on the real axis are the
eigenvalues (the numbers 1,...,20). The fact that the contour corresponding to
€ = 10713 surrounds the eigenvalues from 9 to 19 shows that these eigenvalues are
extremely sensitive to perturbations: a perturbation of norm 10~% can move them
a distance O(1). In fact, pag is a notorious polynomial discussed by Wilkinson [27,
pp. 41-43], [28]. Although it looks innocuous when expressed in factored form, its
roots are extremely sensitive to perturbations in the coefficients of the expansion
poo(2) = 229 — 210212 + .- + 20!. The pseudospectra of C' display this sensitivity
very clearly. The reader may have noticed a problem with this explanation: the
definition of pseudospectra allows arbitrary perturbations to 6’, even in the zero

IThose familiar with pseudospectra may be surprised to see “<” rather than the more usual
“<” in the definitions. The authors decided to use strict inequality in the book because it proves
more convenient for infinite dimensional operators.



4 NICHOLAS J. HIGHAM

-10¢ I
-5 10 15 20

FIGURE 1. Boundaries of pseudospectra o.(C') of 20 x 20 balanced
companion matrix for ¢ = 1071* (innermost curve), 10713, ...,
107! (outermost curve).

entries, so the perturbed matrices are not companion matrices of perturbations of
p2o- As explained in Chapter 55, pseudospectra of a balanced companion matrix
usually predict quite well the sensitivity of the roots of the underlying polynomial,
but a complete understanding of this phenomenon is lacking. However, the notion
of pseudospectrum is readily generalized to matrix polynomials p(A) = Y 7"  A'A;
[14], and so pseudospectra theory can be applied directly to our scalar polynomial
P20-

Another example, from [11], shows in a different context how high nonnormal-
ity can lurk behind an easy-looking problem and produce surprising behaviour.
Consider the linear system Ax = b of order 100

1.5 2.5
1 1.5 2.5

1 1.5 2.5

Being lower bidiagonal, this system is trivial to solve by substitution, from first
element to last, and in fact the solution is given explicitly by z; = 1 — (=2/3)%,
i = 1: 20. We apply the successive overrelaxation (SOR) method in exact arith-
metic with parameter w = 1.5, starting with an approximation to the exact solution
correct to 16 significant decimal digits. Being a stationary iterative method, the
SOR method produces a sequence of approximations x, ~ x with errors e, = x—xy
satisfying e;, = GFep, for a certain matrix G. In this example, the spectral ra-
dius p(G) = 1/2, so we might expect the iteration to converge rapidly, with
the errors roughly halving on each step. However, as Figure 2 shows, the er-
rors || — Zklloo/||Z||co (Where ||2z||s = max; |z;|) initially grow rapidly, until they



BOOK REVIEW FOR BULLETIN OF THE AMS 5
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F1GURE 2. Convergence of SOR iteration.

reach 10'2, only then starting to decrease to zero. (We stress that the compu-
tations underlying Figure 2 are essentially exact: rounding errors play no role.)
Figure 3—computed in under a second on a PC—provides an explanation: even
the 1071% pseudospectrum of G lies partly outside the unit disk. Hence, although
G has spectral radius 1/2, tiny perturbations of it have spectral radius exceeding
1. Pseudospectral theory therefore guarantees that ||A*|| is very large for some k.
Indeed supj,~ ||A*|| > e 1(pc(A) —1) for all € > 0, where the pseudospectral radius
pe(A) = max{|z] : z € 6.(A)} (Theorem 16.4 of the book). With ¢ = 1071° we
see that sup,~g ||A¥|| 2 1.5 x 101°. The key point is that Figure 3 instantly reveals
that G is highly nonnormal and warns that G' may not behave in a way that can
be described by the eigenvalues alone.

3. TREFETHEN AND EMBREE’S BOOK

The book under review is the first to cover pseudospectra in detail and it provides
a definitive treatment of the subject. Chapter 6 describes the history and reveals
that pseudospectra have been invented at least five times, including for the first
time in 1967 by Varah and for the fourth time by Trefethen in 1990. Trefethen has
done the most to develop and popularize the subject and has written prolifically on
it. Embree has worked on pseudospectra since obtaining his PhD in 1999. Until the
appearance of this book no complete survey had been available. As explained in
the preface, Trefethen had started to write the book in 1990 and the long gestation
period is due to the rapid developments in the subject and the desire to produce a
complete and unifying treatment.

The book comprises 60 chapters, each written as a self-contained essay. The nec-
essary definitions and basic results are introduced as and when needed, so although
it is a research monograph, the book makes relatively few assumptions about the
reader’s mathematical knowledge and is very easy to dip into. The writing is su-
perb: eloquent, precise, and enjoyable to read. Ample reference is made to the
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FIGURE 3. Pseudospectra of SOR iteration matrix G for e = 1071°
(innermost curve), ..., 1072 (outermost curve) along with the unit
circle. All eigenvalues of the matrix are —1/2.

literature via the 851 references. The many figures are works of art; only those who
have tried to produce figures to book quality will appreciate the effort involved. In
terms of the typesetting, it would be hard to find a better example of the use of
ETEX and the computer modern fonts.

The subject matter is broad. Among the problems and applications in which
pseudospectra are studied and applied are random matrices, card shuffling, fluid
mechanics, (twisted) Toeplitz matrices, stiff ordinary differential equations, popu-
lation ecology, and lasers.

This review can give only a taste of pseudospectra, and the danger is that the
two examples given above—or indeed any selective examples—fail to give a true
impression of the depth and breadth of the subject and of the book. Let me
therefore answer some questions that my two examples may suggest.

What do pseudospectra tell us that condition numbers don’t? An eigenvalue con-
dition number measures the worst-case change in an eigenvalue under sufficiently
small perturbations of the matrix. The e-pseudospectrum shows all possible eigen-
values under perturbations of size €, no matter how large ¢ may be, and so gives a
global perspective on the effects of perturbations.

Pseudospectra are based on complex, unstructured perturbations measured in an
absolute way. Why not consider structured and/or relative perturbations, especially
real perturbations when A is real? This is a common question, and one that is
answered in many places in the book, not least in Chapter 50, “Structured Pseu-
dospectra”. In a nutshell the answer is that the unstructured absolute perturbation
is remarkably successful at explaining matrix behaviour even for structured matri-
ces.

Are pseudospectra difficult and expensive to compute? The computational as-
pects are one of the successes of pseudospectra, and clever algorithms are available
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that compute (or approximate) pseudospectra of dense (or very large and sparse)
matrices. Moreover, a MATLAB function eigtool developed by Wright [29] makes
producing plots such as Figures 1 and 3 (which were done with eigtool) extremely
easy.

Pseudospectra produce qualititative information, but can they produce quantita-
tive predictions? It is true that in the early days of pseudospectra most results
were more qualitative. However, the book amply demonstrates that the answer to
the question is “yes”, thanks to work in the last ten years or so: Chapters 14-19
give all sorts of quantitative bounds for transient behaviour of differential equations
and difference equations in terms of pseudospectra.

Although the theory of pseudospectra originates in numerical analysis, it is start-
ing to permeate other areas of mathematics. In particular, in spectral theory impor-
tant results involving pseudospectra have been obtained by Davies, Simon, Dencker,
Sjostrand, Zworski and others; see [5], [6], [7], [30], [31], and the references therein.
Pseudospectra also have much to say about the behaviour of Toeplitz matrices and
operators, as the recent monograph of Bottcher and Grudsky [3] explains.

Finally, I return to aircraft flutter, which is still an issue in aerodynamic design
and testing. Chapter 15 describes a problem arising in flutter computations for a
Boeing 767, which had earlier been considered by Burke, Lewis, and Overton. Given
matrices A (55 x 55) B (55 x 2) and C (2 x 55) the problem is to choose a 2 x 2
matrix K (representing feedback control) so that A’ = A+ BKC is stable, that is,
its eigenvalues all lie in the left half-plane. Burke, Lewis, and Overton found such a
set of parameters using optimization techniques. However, plots of [|e4?|| and [|e4"||
show that e has huge transient growth just as dangerous as that of e??, even
though et — oo as t — oo while eAt 0. Importantly, pseudospectra explain
this behaviour very well, in particular by providing lower bounds that accurately
track the transients.

In 2006 we have excellent mathematical and computational tools to localize,
bound, approximate, and compute eigenvalues of matrices and operators. Trefethen
and Embree’s book shows convincingly that pseudospectra enable us to look beyond
these n numbers to understand better the behaviour of the underlying systems.
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