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The Hooley-Huxley contour method for

problems in number fields I:

Arithmetic functions

M D Coleman

1. Introduction

Let K be a number field of degree n = r1 + 2r2. For an integral ideal q let Iq denote the group
of fractional ideals of K whose prime decomposition contains no prime factors of q. Let

Pq∞ = {(a) ∈ Iq : α ∈ K∗, α ≡ 1(mod q), α � 0}.

Denoting by χ a narrow ideal class character mod q, that is, a character on Iq/Pq∞, we can
follow Landau in defining the L-function

ζK(s, χ) =
∑

χ(a)Na−s (1)

for Re s > 1. The sum here is over integral ideals coprime to q. The series has a meromorphic
continuation to s ∈ C; the continuation is entire unless χ ≡ 1 on Iq when it has a simple pole
at s = 1 and no other singularity.

Define log ζK(s, χ) by the series ∑
m≥1

∑
p-q

χ(pm)
mNpms

for Re s > 1, where the inner sum is over prime ideals of K. Then by analytic continuation we
can define log ζK(s, χ) in any simply connected domain containing Re s > 1 and not containing
any zero or pole of ζK(s, χ). Given z ∈ C define (ζK(s, χ))z as exp (z log ζK(s, χ)). Now set

P (s) =
∏
q

∏
χ(mod q)

ζK(s, χ)zχ

(
ζ
(nχ)
K (s, χ)

)mχ

(log ζK(s, χ))rχ (2)

where zχ ∈ C, nχ ∈ N and mχ, rχ are non-negative integers that, for all but a finite number of
q and χ, satisfy zχ = 0, and mχ = rχ = 0.

Let b(a) ∈ C be such that F0(s) =
∑
a
b(a)Na−s is absolutely convergent in Re s ≥ 1

2 + δ for

any δ > 0. Putting

F (s) = P (s)F0(s) =
∑

a

a(a)
Nas

, (3)

say, for Re s > 1, we assume that, for all ε > 0, a(a) �ε (Na)ε. If we construct F (s) from
Dirichlet series in the manner of (3) the verification on a(a) will be straightforward. If, alterna-
tively, we start with F (s) and check that it has a decomposition of type (3) then the verification
will be easier if we note that the required bound on a(a) necessarily follows from b(a) �ε (Na)ε.



In this paper we study the distribution of the coefficients a(a) when the ideals a are restricted
geometrically. Following Hecke [7] let (λ1, ..., λn−1) be a basis for the torsion-free characters on
P(1)∞ that satisfy

λi(ε) = 1, 1 ≤ i ≤ n− 1,

for all units ε � 0 in OK . Fixing an extension of each λi to a character on I = I(1) then
λi(a), 1 ≤ i ≤ n−1 are defined for all ideals a and we can define ψ(a) = (ψi(a)) ∈ Rn−1/Zn−1 =
Tn−1 by λj(a) = e2πiψj(a). As in [3] set

S(x, ψ0, `) =
{
a ∈ I, x(1− `) ≤ Na ≤ x(1 + `), |ψj(a)− ψ0j |T < ` , 1 ≤ j ≤ n− 1

}
where ψ0 ∈ Tn−1, 0 ≤ ` < 1

2 and |α|T = β where − 1
2 < β < 1

2 and β ≡ α(mod 1). We are
interested in

A(x, ψ0, `) =
∑

a∈S(x,ψ0,`)

a(a).

When a(a) = Λ(a), von-Mangoldts’ function, this sum has been studied in [3] while, if a(a) is
the characteristic function for relative norms of prime ideals from some number field extension
of K, it has been studied in [4].
The main result of this paper is

Theorem 1 Let ε > 0 be given and x,X be sufficiently large. Define

Co = {s ∈ C; |s− 1| = co, s 6= 1− co}

traversed in the anti-clockwise direction. Here co is chosen so that F (s) has no singularities on
the boundary or in the interior of the circle, radius co, centre 1. Set

I(x, `) =
(2`)n−1

2πi

∫ x(1+`)

x(1−`)

∫
Co

ys−1F (s)ds dy.

Then
A(x, ψ, `)− I(x, `) �ε x`

n exp (−R(x)) (4)

for ` > x−5/12n+10ε, and∫
Tn−1

∫ 2X

X

|A(x, ψ, `)− I(x, `)|2 dxdψ �ε X
3`2n exp (−R(X)) (5)

for ` = `(X) > X−5/6n+20ε. Here R(x) = c(log x)1/3(log2 x)−1/3 where c is a constant that
need not be the same at each occurrence and log2 x = log log x.

The method of proof follows that given by Ramachandra [9] in the rational case. The results
of that paper have been extended (and the misprints corrected) in [12] and [10]. It may be
possible to follow the latter paper and, at the cost of stronger bounds on the coefficients a(a),
remove the dependency on ε of the implied constants in (4) and (5). But the interest of Theorem
1 lies in the range of ` and the ε′s that occur here come from our zero density results in Theorem
15.
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2. Applications

Let f : I → C, F : I → N ∪ {0} denote multiplicative and additive arithmetic functions
respectively. Given f and Fi, 1 ≤ i ≤ N , define, formally,

G(s, z) =
∑

a

f(a)zF(a)

Nas

where z = (z1, ..., zn) ∈ CN and zF(a) = z
F1(a)
1 · · · zFN (a)

N . We are interested in the examples
when G(s, z) can be expressed in the form (3) for all |z| ≤ 1 where |z| = max

1≤i≤N
|zi| and s in some

half-plane.
To this end let q ∈ I be given. let C(q) denote the ideal class group mod q and C+(q) the

narrow ideal class group mod q. Set h = |C(q)| and h+ = |C+(q)|. We will assume
(i) for p - q, f(p) and F (p) depend only on the class C ∈ C+

q containing p,

(ii) f(pr) � cr as r → ∞, for some constant c < q
1/2
o where qo is the smallest norm of the

prime ideals of K, and
(iii) given ε > 0, f(a) �ε (Na)ε for all a.

Then (i) implies

G(s, z) = Gq(s, z)
∏

C∈C+(q)

∏
p∈C

1 +
f(C)zF (C)

Nps
+
∑

p,r≥2

f(pr)zF (pr)

Nprs


with the obvious notation f(C) and F (C), and where Gq(s, z) is a finite Euler product over the
prime ideals dividing q. Because∑

p∈C

1
Nps

=
1
h+

∑
χ

χ(C)
∑

p

χ(p)
Nps

, Re s > 1,

where χ runs over the character group of C+(q), we write

G(s, z) = Gq(s, z)

(∏
χ

ζK(s, χ)zχ

)
F0(s, z) (6)

with
zχ =

1
h+

∑
C

χ(C)f(C)zF(C).

For F0(s, z) we apply the following rewriting of a result due to M. Delange [5].

Lemma 2 Assume that {Up(s, z)}p and {Vp(s, z)}p are sequences of complex valued function
defined on C × CN . Assume that on some domain B ⊆ C × CN there exist positive constants
Up, Vp for all p, satisfying

|Up(s, z)| ≤ Up, |Up(s, z)− Vp(s, z)| ≤ Vp

3



along with
∑

p

U2
p < +∞ and

∑
p

Vp < +∞.

Then the infinite product ∏
p

(1 + Up(s, z)) exp (−Vp(s, z))

is uniformly convergent on B and is bounded on B.

We apply this to

∏
p-q

1 +
∑
r≥1

f(pr)zF(pr)

Nprs

(∏
χ

ζK(s, χ)−zχ

)

=
∏
p-q

1 +
∑
r≥1

f(pr)zF(pr)

Nprs

 exp

−∑
m≥1

f(Cm,p)zF(Cm,p)

mNpms

 (7)

where Cm,p is the ideal class containing pm. Let σ1 > 1/2 be given. Taking

Up(s, z) =
∑
r≥1

f(pr)zF(pr)

Nprs

we have

|Up(s, z)| ≤
∑
r≥1

|f(pr)|
Nprσ1

(for | z | ≤ 1, Re s ≥ σ1)

=
|f(p)|
Npσ1

+Bp

say. Then ∑
p

|Up(s, z)|2 �
∑

p

1
Np2σ1

+
∑

p

B2
p.

But assumption (ii) implies Bp <∞. So, choosing 0 < τ < (σ1 − 1
2 )/2, there exists P0 such

that BpNp−τ ≤ 1 for all Np > P0. And then

∑
Np>P0

Bp
2 ≤

∑
Np>Po

BpNpτ ≤
∑

p,r≥2

|f(pr)|
Nprσ1

Npτ

which converges, again by (ii). Hence∑
p

|Up(s, z)|2 < +∞.
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Since f(C1,p) = f(C) = f(p) and similarly for F(C1,p) we have, with

Vp(s, z) =
∑
m≥1

f(Cm,p)zF(Cm,p)

mNpms
,

that

Up(s, z)− Vp(s, z) =
∞∑
r=2

f(pr)zF(pr)

Nprs
−

∞∑
m=2

f(Cm,p)zF(Cm,p)

mNpms

Then, again by (ii), we can deduce∑
p

|Up(s, z)− Vp(s, z)| < +∞

for | z | ≤ 1 and Re s ≥ σ1.
Therefore, by Lemma 2, the infinite product (7) and hence, by (6), F0(s, z) converges

uniformly for Res ≥ σ1, |z| ≤ 1. Further, each Up(s, z) is a holomorphic function of s for
Res > 1

2 , | z | ≤ 1 and so by uniform convergence, (7) and F0(s, z) are holomorphic for
Res > σ1, | z | ≤ 1.

So we have in (6) a decomposition of the form (3) and (2). Assumption (iii) implies we can
apply Theorem 1. In the following examples f and Fi will always satisfy the assumptions (i),
(ii), and (iii) above.

2.1. Example 1

Assume z = z ∈ C and f(p) = F (p) = 1 for all prime ideals. This case has been studied by
Grytczuk [6] and Wu [14]. Let

G0(s, z) = (s− 1)z
G(s, z)
s

sinπz
π

and
J (x, `, z) =

∫ c0

0

x−rk(`, r)G0(1− r, z)r−zdr

where c0 is as in Theorem 1 and

k(`, r) =
(1 + `)1−r − (1− `)1−r

2`
.

Then Theorem 1 gives

Theorem 3 Assume |z| ≤ 1, z 6= 1. Then∑
a∈S(x,ψ,`)

f(a)zF(a) = (2`)nxJ (x, `, z) +Oε (x`n exp (−R(x))) (8)

for 1
2 ≥ ` > x−5/12n+ε. Also∑

a∈S(x,ψ,`)

f(a) = (2`)nxM(f) +Oε (x`n exp (−R(x)))
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for 1
2 ≥ ` > x−5/12n+ε, where

M(f) = ρK
∏
p

(
1 +

∞∑
v=2

f(pv)− f(pv−1)
Npv

)

and ρK is the residue of ζK(s) at s = 1.

Proof of Theorem 3
Here we only indicate how J (x, `, z) arises. Deform the contour Co of Theorem 1 into the

contour Cδ, 0 < δ < co, of [1− co, 1− δ] with argument −π, the circle |s− 1| = δ, s 6= 1− δ and
[1 − δ, 1 − co] with argument π. When | z | ≤ 1, z 6= 1, the integral over the circular part of Cδ
tends to 0 as δ → 0. The two horizontal components tend to

1
2πi

(∫ 0

c0

(re−iπ)−zy−rH(1− r, z)(−dr)

+
∫ c0

0

(reiπ)−zy−rH(1− r, z)(−dr)
)

=
∫ c0

0

r−z sinπz y−r
H(1− r, z)

π
dr

where H(s, z) = (s− 1)zG(s, z) is regular at s = 1. Integrating over y gives the required result.
�

Theorem 1 of Wu [14] can be recovered, though with a weaker error term, by taking ` = 1/2
and summing over appropriate x.

When z = −1 there is no main term in (8). We then take either f = µ2, F = ω or
f ≡ 1, F = ω, where we are using the notation for well known arithmetic functions on Z for the
same functions on the integral ideals. Thus we obtain estimates for sums of the mobius function
µ, and Liouvilles function λ, respectively.

Corollary 4 ∑
a∈S(x,ψ,`)

µ(a) �ε x`
n exp (−R(x))

for ` > x−5/12n+ε, and

∫
Tn−1

∫ 2X

X

∣∣∣∣∣∣
∑

a∈S(x,ψ,`)

µ(a)

∣∣∣∣∣∣
2

dxdψ �ε X
3`2n exp (−R(X))

for ` = `(X) > X−5/6n+ε.

These results hold for λ replacing µ. In this way we generalize the results of Ramachandra
[9].
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2.2. Example 2

For k ∈ N∪{0} let

νk(x) =
∑

Na≤x
F (a)=k

f(a) and νk(x, ψ, `) =
∑

a∈S(x,ψ,`)
F (a)=k

f(a) .

At some stage in the analysis of these we must consider

1
2πi

∮
|z|=1−ε

z−k−1Fq(s, z)
∏
χ

ζK(s, χ)zχdz,

where Fq(s, z) = Gq(s, z)F0(s, z) in the notation of (6). On evaluating, this is a sum of terms

1
m!
F

(m)
q (s, 0)

∏
χ

cχ (log ζK(s, χ))aχ ζK(s, χ)αχ,0 (9)

for some cχ ∈ R. Here

αχ,0 =
1
h+

∑
F (C)=0

χ(C)f(C)

and aχ,m ∈ N∪{0} satisfy

“If expanded in powers of z,
∏
χ
z
aχ
χ zmwill have,

as one of its terms, a non-zero multiple of zk.”
(10)

Asymptotic expansions for summatory functions with Dirichlet series of the form (9) are
given by many authors, e.g. Scourfield [11] and Kaczorowski [8].

We examine a special case and assume
(A) For all C+(q), F (C) 6= 0 (so αχ,0 = 0 in (9))

and
(B) there exists C ∈ C+(q) : F (C) = 1 and β := 1

h+

∑
F (C)=1

f(C) satisfies 0 < β ≤ 1 (so

zχ0 = βz+ higher powers of z).
With these assumptions (10) is satisfied when m = 0, aχ0 = k and aχ = 0 for all χ 6= χ0. This
will, in fact, give the dominant contribution from all the terms of the form (9) that might arise.
To calculate this contribution we first note that an analogue of (8) holds for

∑
f(a)zF (a), a ∈

S(x, ψ, `), when |βz| ≤ 1, βz 6= 1. The only difference is that

G(β)
0 (s, z)r−βz = (s− 1)βz

G(s, z)
s

sinπβz
π

r−βz

replaces G0(s, z)r−z in the definition of J (x, `, z). Multiply both sides of this analogue by z−k−1,
integrate over |z| = 1− ε′ (which is < 1/β and so, allowable) and let ε′ → 0 to obtain

νk(x, ψ, `) = (2`)nx
∫ c0

0

x−rk(`, r)W (β)
k (r)dr +O (x`n exp (−R(x))) (11)
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for ` > x−5/12n+ε. Here W (β)
k (r) is the coefficient of zk in Taylors development of G(β)

0 (1 −
r, z)r−βz at z = 0. With the conditions on f and F of example 1, (so β = 1), Wk(r) has been
studied by Wu [14]. Here we indicate, without proof, changes to the results of [14]. So, as in
Lemma 6 of [14] we have

W
(β)
k (r) =

J∑
j=0

rjQj,k−1(−β log r) +Oβ

((
r

2co

)J+1

(−β log r)k−1

)
(12)

uniformly for 0 < r ≤ co, J ≥ 0, k ≥ 1 and where Qj,k−1(X) is a polynomial with real coefficients
of degree k − 1 at most. Because k(`, r) � 1, the error from (12) contributes the same to the
integral in (11) as does the corresponding term to νk(x) in Theorem 2 of [14], namely

�β
(β log2 x)k−1

(2co log x)J+2

(
(k − 1)!

J + 1
+ (J + 1)!

)
(13)

(see equation (4.8) of [14]). Writing

Qj,k−1(X) =
k−1∑
n=0

αj,k−n
n!

Xn

we have, from (4.5) of [4], αj,m �β (2co)−j . Note that co depends only on q, not β. The jth

term of the sum in (12) contributes

k−1∑
n=0

αj,k−n
n!

∫ c0

0

x−rk(`, r)rj(−β log r)ndr (14)

to the integral in (11). We complete this integral to ∞, bounding the tail as

�
∫ ∞

c0

x−rrj |log r|n dr

(since k(`, r) � 1, β < 1)

=
(∫ 1

c0

+
∫ ∞

1

)
x−rrj |log r|n dr.

In the first integral, r = 1/t gives

� x−c0
∫ 1/c0

1

(log t)n

tj+2
dt� x−c0(log 1/c0)n.

In the second integral, r = u log x gives

� (log x)−j−1

∫ ∞

log x

e−uuj(log u− log2 x)
ndu

� (log x)−j−1

(∫ (log2 x)(log x)

log x

e−uuj(log3 x)
ndu+

∫ ∞

(log2 x)(log x)

e−uuj(log u)ndu

) (15)
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Assume both j and k (and thus n) are ≤ 1
4 log 2c0. Then log(uj(log u)n) ≤ (log x)(2 log u) <

u/2 in the range of the second integral above, so (15) is

� (log x)−j−1
(
x−1(log x. log2 x)

j(log3 x)
n + x− log2 x

)
� x−1(log2 x)

j(log3 x).

Thus the error in (14) is

� 1
(2c0)j

k−1∑
n=0

1
n!
(
x−c0(log 1/c0)n + x−1(log2 x)

j(log3 x)
)

� 1
(2c0)j

(
x−c0(log 1/c0)k−1 + x−1(log2 x)

j(log3 x)
)

and hence, in the integral (11),

� J

(2c0)J
(
x−c0(log(1/c0))k−1 + x−1(log2 x)

J(log3 x)
k−1
)
. (16)

The completed integral, I say, in (14) can be written as

(2`)−1 ((1 + `)I(x(1 + `))− (1− `)I(x(1− `)))

where

I(y) =
∫ ∞

0

y−rrj(−β log r)ndr

=
βn

(log y)j+1

∫ ∞

0

e−uuj
n∑

m=0

(
n

m

)
(log2 y)

m(− log u)n−mdu

=
βn

(log y)j+1

n∑
m=0

(
n

m

)
(log2 y)

mΓ(n−m)(j + 1)(−1)n−m .

So it is important to calculate

(2`)−1

(
(1 + `) (log2 x(1 + `))m

(log x(1 + `))j+1
− (1− `) (log2 x(1− `))m

(log x(1− `))j+1

)

=
(log2 x)m

(log x)j+1
+
m(log2 x)m−1 − (j + 1)(log2 x)m

(log x)j+2
(17)

+O

(
(j2 +m2)`

(log2 x(1 + ξ))m

(log x(1 + ξ))j+2

)
for some |ξ| < `, on using a mean value result.
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The summation of the (j2 +m2) (log2 x(1 + ξ))m over m and n is

� (j2 + k2)
(2c0)j

k−1∑
m=0

(log2 x(1 + ξ))m βm

m!

 ∑
m≤n≤k−1

Γ(n−m)(j + 1)
(n−m)!


� j!(j2 + k2)

(2c0)j
β log x.

So the contribution of the error term of (17) to the integral of (14) is, on summing over 0 ≤
j ≤ J, dominated by (13) if ` < (log x)−J as we now assume. But further, if we demand
J(x) log2 x ∼ R(x) then both the error terms (13) and (16) will be dominated by exp(−R(x)),
as long as k � J(x).

Finally substituting the main terms from (17) into (14) and summing over j gives the main
terms for νk(x, ψ, `) in

Theorem 5 Put J(x) := (log x)1/3(log2 x)−4/3. Then for 1 ≤ k ≤ C1J(x), and C2 exp(−R(x)) >
` > x−5/12n+ε we have

νk(x, ψ, `) =
(2`)nx
log x

∑
0≤j≤C3J(x)

Pj,k−1(log2 x)
(log x)j

+O (x`n exp (−R(x))) ,

where Pj,k−1(X) is a polynomial of degree at most k − 1. The main term is

(2`)nxβk(log2 x)k−1

(k − 1)! log x

∏
p

1 +
∑
r≥1

F (pr)=0

f(pr)
Npr

 .

The result on the main term follows from

α0,1 = β
∏
p|q

1 +
∑
r≥1

F (pr)=0

f(pr)
Npr

∏
p-q

1 +
∑
r≥2

F (pr)=0

f(pr)
Npr


and F (p) = 0 for all p - q.

As a special case consider K = Q, C1 = {n : n ≡ 1(mod 4)} and C2 = {n : n ≡ 3(mod 4)}
with

f(pr) = 1 for all r ≥ 1 if p ∈ C1 or p = 2,

f(pr) =
{

1 if 2|r
0 if 2 - r if p ∈ C2.

So f(n) = 1 if and only if n is the sum of two squares (which we write as n = 2�). It is the
question of counting such n in small intervals that led originally to the Hooley-Huxley contour.
Let F (pr) = 1 for all primes p and r ≥ 1. Then following the above proof with J = 0 we obtain
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Corollary 6 For fixed k

|{x < n < x+ h, n = 2�, w(n) = k}| = h(log2 x)k−1

2k(k − 1)! log x
(1 + oε(1))

for x > h > x7/12+ε.
Further deductions from Theorem 1 with F (s) of the form (6) with z ∈ CN , N > 1, are given

in a paper in preparation.

2.3. Example 3

For a fixed α > 0 define
Bα(a) =

∑
p|a

Nα(p).

When K = Q(i), Zarzycki [15] has studied the local distribution of Bα(a). Though the Hooley-
Huxley method is used, it is only applied to the norm of the ideals a. There is a far weaker
restriction on the argument of the a.

To apply Theorem 1 note that∑
a

Bα(a)/Naα

Nas
= ζK(s+ α)

∑
p

1
Nps

= ζK(s+ α) (log ζK(s) +G(s))

for Re s > 1 where G(s) is a regular function for Re s > 1
2 . The integral over C0 in Theorem 1

has, in this case, the particularly simple form of

1
2πi

∫
C0

ys−1ζK(s+ α) log
1

s− 1
ds =

ζK(1 + α)
log y

+Oα

(
1

log2 y

)
for 0 < c0 < α/2, say. So the error here dominates the contribution to our results of the pole of
ζK(s+ α) at 1− α. Hence

Theorem 7 For α > 0 and 1
2 ≥ ` ≥ x−5/12n+ε we have

∑
a∈S(x,ψ,`)

Ba(a)
Naα

= (2`)n−1xζ(1 + α)
∫ x(1+`)

x(1−`)

dy

log y
+O

(
x`n

log2 x

)
.

To clear the denominator, we use∑
a∈S(x,ψ,`)

Bα(a) = xα (1 +O(`))
∑

a∈S(x,ψ,`)

Bα(a)
Naα

,

obtaining

Corollary 8 For α > 0, q ≥ 1 fixed and 1
2 ≥ ` ≥ x−5/12n+ε

11



we have ∑
a∈S(x,ψ,`)

Bα(a) = (2`)nx
(
ζK(1 + α)

log x
+Oα

(
1

log2 x

))
.

When K = Q(i) Zarzycki has, in [16], given another application of the Hooley-Huxley
method. This time both the norm and argument of the ideals are equally constrained as in our
Theorem 1. Unfortunately, [16] lacks references to necessary results such as zero-free regions
for Hecke L-functions which we hope the present paper furnishes. Also, the quality of the final
results in [16] depend on zero density results such as (30) and there are too few details in the
equivalent result, Lemma 2 of [16], to verify the quoted result. Further, the application in [16]
to prime ideals in sectors can be dealt with by more classical methods, as in [3]. .

3. Sums over Gaussian Integers

One of the motivating situations for the present work is when the arithmetic functions are
defined on the Gaussian integers. Then, the natural region of localization might be considered
to be a disc D(ω, r) = {z ∈ C : |z − ω| < r}, rather than S(x, ψ, `). Of course, a sum over
α ∈ D(ω, r) can be decomposed into a union of sums over α : (α) ∈ S(y, ψ, `) for various (y, ψ),
along with α near the boundary of D(ω, r). With ` sufficiently small compared to r these points
near the boundary can be shown to be relatively few in number. On the remaining points we
can apply results of the form of the previous section. The restrictions of these results, namely
that ` cannot be too small lead, in turn, to similar restrictions on the radius r. To simplify the
application of this idea we will, below, replace the union of sums by an integral.

In Q(i), a principal ideal domain, the basis for the group of groessencharaktere consists
simply of λ((α)) = (α/|α|)4 and so ψ((α)) is the fractional part of 2(argα)/π. Our arithmetic
functions will be assumed to be functions of ideals only. To simplify matters we will only take
generators of ideals that lie in the first quadrant. Because of this we modify the definition of
D(ω, r) to read

D(ω, r) = {z ∈ C : 0 ≤ arg z < π/2 and there exists

a unit ε of Z[i] such that |εz − ω| < r} .
And we note that (α) ∈ S(x, ψ, `) then implies

∣∣|α|2 − y
∣∣ < `y and |2(argα)/π − ψ| < `. For

α ∈ Z[i] from the first quadrant and ` fixed we introduce a weight function

w(α) =
∫∫

(α)∈S(y,ψ,`)

dy

y
dψ = (2`) log

(
1 + `

1− `

)
= c`

say, independent of α. Then, for our arithmetic function f,∑
α∈D(ω,r)

f(α) = c−1
`

∑
α∈D(ω,r)

f(α)
∫∫

(α)∈S(y,ψ,`)

dy

y
dψ

= c−1
`

∫∫
D1(ω,r)

∑
(α)∈S(y,ψ,`)

α∈D(ω,r)

f(α)
dy

y
dψ (18)

12



where
D1(ω, r) = {(y, ψ) : there exists α ∈ D(ω, r) with (α) ∈ S(y, ψ, `)} .

The main contribution to this integral will come from the region

D2(ω, r) = {(y, ψ) : If a ∈ S(y, ψ, `)} then a = (α) with α ∈ D(ω, r)} .

The final result will be given as an integral over

D0(ω, r) =
{

(y, ψ) : y1/2ei
π
2 ψ ∈ D(ω, r)

}
.

Lemma 9 There exists a constant c > 0 such that

(i) D1(ω, r) ⊆ D0(ω, r + c|ω|`),

(ii) D0(ω, r − c|ω|`) ⊆ D2(ω, r).

Proof
(i) (y, ψ) ∈ D1(ω, r) implies that there exists α ∈ Z[i] from the first quadrant with

∣∣|α|2 − y
∣∣ <

`y and |2(argα)/π − ψ| < ` and a unit ε such that |εα− ω| < r. But then∣∣∣εy1/2ei(π/2)ψ − ω
∣∣∣ =

∣∣∣εy1/2ei(π/2)ψ − ε|α|ei(π/2)ψ + ε|α|ei(π/2)ψ − εα+ εα− ω
∣∣∣

≤
∣∣∣y1/2ei(π/2)ψ − |α|ei(π/2)ψ

∣∣∣+ |α|
∣∣∣ei(π/2)ψ − ei argα

∣∣∣+ |εα− ω|

≤ |y1/2 − |α||+ |α| |πψ/2− argα|+ r(
using

∣∣eiζ1 − eiζ2
∣∣ ≤ |ζ1 − ζ2|

)
≤ y1/2`+ |α|π

2
`+ r ≤ c|ω|`+ r

for some c, as required.
(ii) Assume (y, ψ) ∈ D0(ω, r − c|ω|`), with c as above. So there exists a unit ε such that∣∣∣εy1/2ei(π/2)ψ − ω

∣∣∣ ≤ r − c|ω|`.

Assume a ∈ S(x, ψ, `) has been chosen and a = (α) with α from the first quadrant. So, with the
unit above,

|εα− ω| ≤
∣∣∣α− y1/2ei(π/2)ψ

∣∣∣+ r − c|ω|`

≤ c|ω|`+ r − c|ω|`

by the argument in part (i). Thus α ∈ D(ω, r) and hence (y, ψ) ∈ D2(ω, r). �

We can now state our main result as
Proposition 10 Let f be an arithmetic function defined on the ideals of Q(i). For ω ∈ C
assume that ` = `(ω) satisfies `(ω) → 0 and |ω|`(ω) →∞ as |ω| → ∞. Then for 0 < r < |ω|,∑

α∈D(ω,r)

f(α) = (2`)−2

∫∫
D0(ω,r)

∑
(α)∈S(y,ψ,`)

f(α)
dy

y
dψ + E, (19)
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where, in all cases,
E � r|ω|` max

α∈D(ω,r)
|f(α)| .

If we know further that f is of constant sign and∑
(α)∈S(y,ψ,`)

f(α) � y`2(log y)a

for some a ∈ Z, then E � r|ω|`(log |ω|)a.

Proof Continuing from (18)∑
α∈D(ω,r)

f(α) = c−1
`

∫∫
D2(ω,r)

∑
(α)∈S(y,ψ,`)

f(α)
dy

y
dψ + E1,

= c−1
`

∫∫
D0(ω,r)

∑
(α)∈S(y,ψ,`)

f(α)
dy

y
dψ + E1 + E2.

Here
E1 = c−1

`

∫∫
D1\D2

∑
(α)∈S(y,ψ,`)

α∈D(ω,r)

f(α)
dy

y
dψ.

Letting M = maxα∈D(ω,r) |f(α)| we see that the inner sum here is ≤M |S(y, ψ, `)| . It is implicit

in the proof of Lemma 1 in [4] that S(y, ψ, `) �
(
y1/2`+ 1

)2
which is � y`2 by our assumptions

on `. So
E1 �M

∫∫
D1\D2

dydψ �M

∫∫
D0(ω,r+c|ω|`)
\D0(ω,r−c|ω|`)

dydψ

by Lemma 9. On changing the variable to t = y1/2 this double integral is seen to be the area
(expressed in polar coordinates) of D0(ω, r + c|ω|`)\D0(ω, r − c|ω|`) which is � r|ω|`. Hence
E1 �Mr|ω|`.
Assuming that the additional properties described in the proposition hold for our f we enlarge
E1 by dropping the α ∈ D(ω, r) condition. And then we have

E1 �
∫∫

D1\D2

(log y)adydψ � (log |ω|)a
∫∫

D1\D2

dydψ � (log |ω|)ar|ω|`.

Finally,

c−1
` =

1
(2`)2

(1 +O(`))

while the double integral in (19) is �M`2r2 in general and � `2r2(log |ω|)a with the stronger
assumptions. Hence c−1

` can be replaced by (2`)−2 with errors � M`3r2 or � `3r2(log |ω|)a
which, because r < |ω|, ` < 1, are less than the errors appearing in the statement of the
proposition. �
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The following results for Q(i) are now immediate from §2
Corollary 11 Given ω ∈ C with |ω| > 1, the following hold for |ω| > r > |ω|7/12+ε.

(i) For an arithmetic function f : Q(i) → C satisfying the conditions of Theorem 3,∑
α∈D(ω,r)

f(α) = 4r2M(f) +Oε
(
r2 exp (−R(|ω|))

)
.

(ii) For the Mobius function µ we have∑
α∈D(ω,r)

µ(α) � r2 exp (−R(|ω|)) .

(iii) For fixed k ≥ 1

|{α ∈ D(ω, r), ω(α) = k}| = 4r2
(
log2 |ω|2

)k−1

(k − 1)! log(|ω|2)
(1 + o(1)) .

When k = 1 this last result, (iii), shows that D(ω, r) contains the expected proportion
of Gaussian primes as long as r > |ω|7/12+ε. We might remark that assuming the Riemann
Hypothesis for all Hecke L-functions on Q(i) then

Ψ(x, ψ, `) = (2`)2x+O
(
x2/3`2/3 log4/3 x

)
where Ψ(x, ψ, `) =

∑
Λ(a), a ∈ S(x, ψ, `). (See [3].) It is then a straightforward deduction from

Proposition 10 that, subject to the extended Riemann Hypothesis, Ψ(ω, r) = 4r2 (1 + o(1))
(with the obvious notation) as long as r

(
|ω|1/2 log |ω|

)−1 →∞ as |ω| → ∞.

4. Introduction of smooth weights

As in [3] we introduce smooth weights as follows. Given ∆ ≤ `, Vinogradov [13, lemma 12]
constructs a continuous function f satisfying

f(y) = 1 for |y| ≤ `−∆,
0 ≤ f(y) ≤ 1 for `−∆ < |y| ≤ `,

f(y) = 0 for ` ≤ |y| ≤ 1
2 ,

and defined for all y by periodicity. Importantly, f can be replaced by a Fourier series
∑
ame

2πimy

where

am �
{
a0 = 2`+ ∆
1/|m| , m 6= 0.

From [1] we have a continuous function g satisfying

15



g(y) = 1 for x (1− (`−∆)) ≤ y ≤ x (1 + (`−∆)) ,
0 ≤ g(y) ≤ 1 for x(1− `) ≤ y ≤ x (1− (`−∆))

or x (1 + (`−∆)) ≤ y ≤ x(1 + `),
g(y) = 0 for y ≤ x(1− `) or y ≥ x(1 + `).

Importantly, the mellin transform, ĝ(s), satisfies ĝ(1) = 2`x (1 +O(∆)) and ĝ(σ+ it) � `xσ for
all t. Then, in place of A(x, ψ, `) we examine∑

a

a(a)g(Na)
n−1∏
j=1

f(ψj(a)− ψj) =
∑

a

a(a)θx,χ(a)

say, denoted by A(θx,χ). To recover results for A(x, ψ, `) we will “strip the weights” using

Lemma 12 For ψ ∈ Tn−1, 0 < ` < 1
2 and 0 ≤ ∆ ≤ `,

|S(x, ψ, `)\S(x, ψ, `−∆)| � x`n−1∆.

Proof For a ∈ S(x, ψ, `)\S(x, ψ, `−∆) then

either (a) x(1− `) < Na < x (1− (`−∆))
or (b) x (1 + (`−∆)) < Na < x(1 + `)
or (c) there exists 1 ≤ j ≤ n− 1 such that
either −` < |ψj(a)− ψj |T < −`+ ∆
or `−∆ < |ψj(a)− ψj |T < ` .

(20)

If x(1 − `) < Na < x (1− (`−∆)) then necessarily x̃(1 − ∆) < Na < x̃(1 + ∆) with
x̃ = x(1− `)/(1−∆). Splitting each of the n− 1 conditions |ψj(a)− ψj |T < ` into � (`/∆ + 1)
conditions of the form |ψj(a)− ψij |T < ∆, the ideals satisfying the first condition of (20) lie in
at least one of � (`/∆ + 1)n−1 sets of the form S(x̃, ψ̃,∆).

Similarly, the same result holds for all the other possibilities in (20).
As noted in the proof of Proposition 10 S(x̃, ψ̃,∆) � (x1/n∆ + 1)n. Hence

|S(x, ψ, `)\S(x, ψ, `−∆)| �
(
`

∆
+ 1
)n−1

(x1/n∆ + 1)n � x`n−1∆

as required. �
Thus, since a(a) � (Na)ε, we have A(x, ψ, `) − A(θx,χ) � x1+ε`n−1∆ which is sufficiently

small if we choose ∆ = `x−2ε.
Rewriting in terms of the Fourier series and Mellin transform,

A(θx,χ) =
1

2πi

∑
m

ame
−2πim.ψ0

∫ c+i∞

c−i∞
ĝ(s)

∑
a

a(a)λm(a)
Nas

ds (21)

where m ∈ Zn−1, c > 1 and am =
n−1∏
j=1

amj
, with amj

the coefficient of the Fourier series.

When m = 0 the inner sum here is F (s) which has a factorization given by (3) and (2). Because
λm is totally multiplicative the inner sum in (21) F (s, λm) say, has a similar factorization with
the ζK (s, χ) in (2) replaced by
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L (s, χλm) =
∑

(a,q)=1

χ (a)λm (a)
Nas

,

Res >1; the Hecke L-functions with Grossencharakteres. See [7] for properties of these L-
functions. Here we just note that L (s, χλm) has an analytic continuation to the whole plane
with the single exception of a pole at s=1 when χ = χ0 and m = 0. So the main contribution
to (21) can only come from m = 0. We now state our weighted form of Theorem 1.

Theorem 1′ Let g and f be as above, with the associated θ = θx,χ. Let ε > 0 be given. Then,
with the notation of Theorem 1,

A (θ)− a0
2πi

∫
C0

ĝx (s)F (s) ds� x`n exp (−R (x)) (22)

for ` > x−5/12n+10ε. If ` = `(X) , ∆ = ∆ (X) are functions only of X, then

∫
Tn−1

∫ 2X

X

∣∣∣∣A (θx,ψ)− a0
2πi

∫
C0

ĝx (s)F (s) ds
∣∣∣∣2 dxdψ �ε X

3`2n exp (−R (X)) , (23)

for ` (X) > X−5/6n+20ε.

Theorem 1′ implies Theorem 1

A (x, ψ, `)− I (x, `)
� |A (x, ψ, `)−A (θ)|+ x`n exp (−R (x))

+

∣∣∣∣∣ a02πi

∫
C0

ĝx (s)F (s) ds− (2`)n−1

2πi

∫ x(1+`)

x(1−`)

∫
C0

ys−1F (s) dsdy

∣∣∣∣∣
by (22). The first term on the right has been estimated previously. For the third term we note
that a0 = (2`)n−1 +O

(
∆`n−2

)
and

ĝx (s) =
∫ ∞

−∞
gx (y) ys−1dy

to obtain the bound

� ∆`n−2

∫ x(1+(`−∆))

x(1−(`−∆))

|F (y)| dy + `n−1

(∫ x(1−(`−∆))

x(1−`)
+
∫ x(1+`)

x(1+(`−∆))

)
|F (y)| dy (24)

where

F(y) =
∫
C0

ys−1F (s) ds.
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Deform C0 into Cδ of the proof of Theorem 3, with δ = 1/ log x. Observe that

F (s) = (s− 1)−z
(

log
(

1
s− 1

))n
η (s)

for some z ∈ C, n ∈ N ∪ {0} and function η (s) regular and bounded in some disc about s=1
containing C0. Then it is easy to show that

F (y) � (log x)Rez−1 (log2 x)
n
.

Hence (24) is
� ∆`n−1x (log x)Re z−1 (log2 x)

n � x1−ε/2`n

by our choice of ∆. Hence (4) follows.
Similarly (5) follows from (23). �

5. Proof of Theorem 1′

5.1. The Hooley-Huxley Contour

The important results from [13] and [1] are that the sums and integrals in (21) can be truncated
at W =

[
∆−1 log3 1/`

]
with a negligible error as long as x is sufficiently large. So we need only

examine

1
2πi

∑
||m||<W

ame
−2πim.ψ0

∫ c+iW

c−iW
ĝ (s)F (s, λm) ds. (25)

Let ρmχ = βmχ + iγmχ denote a zero of the L-function L (s, χλm) . Define

Z (W ) =
{
ρmχ :

0 < βmχ < 1, |γmχ| < W and ρmχ is a zero of
one of the L-functions implicit in (25).

}
and Zm(W ) those zeros ρm′χ in Z(W ) with m′ = m.
We can now move the line of integration in (25) to the left of Re s = 1 except, when m = 0, for
a loop about s = 1. The new contour has to stay within a region free of zero of the L-functions
in (25). Such a region is given in

Theorem 12 [2]. There exists c > 0 such that if ρmχ ∈ Z(W ) then

βmχ ≤ 1− c (logW )−2/3 (log2W )−1/3
. (26)

This follows from the order result.

Theorem 13 There exists constants c1 and c2, depending only on K,such that
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L (σ + it, χλm) �q V
c1(1−σ)3/2

log2/3 V (27)

for 2 > σ > 1− c2 (and |t| > 2 when χ = χ0,m = 0) where V 2 = e+ t2 +
∑n−1
i=1 m

2
i .

The idea of the Hooley-Huxley contour is that the density of zeros with large real part is low.
So it should be possible to deform the contour of integration around these few zero and go into
the region (26) frequently.
Let R(σ1, σ2, T1, T2) denote the rectangle with the corners

σ1 + iT1, σ1 + iT2, σ2 + iT1 and σ2 + iT2.

Let Rr, r ∈ Z, be the rectangle

R

(
1
2
, 1 +

1
logW

, (100r + 50) (logW )2 , (100r − 50) (logW )2
)

where
∣∣∣(100r ± 50) (logW )2

∣∣∣ ≤W+100 (logW )2 . Let r0 be the largest integer satisfying this last
inequality. For each ||m|| < W and |r| < r0, pick a zero ρm,r ∈ Zm (W ) lying in Rr−1∪Rr∪Rr+1

with the greatest real part βm,r. To exclude the possibility that no such zero exists we follow
[12] in giving to the points 1

2 + im , m ∈ Z, the same treatment as is given to the zeros in Z(W ).
On Rr fix a new right hand side Vm,r : σ = βm,r. Connecting the Vm,r by horizontal lines gives
the edge of the regions Rm say, into which we can deform the contour in (25) except, as before,
for a loop about s = 1 when m = 0. The resulting line of integration should lie close to the edge
of the region so that ĝ (s) in (25) is small. But then the F (s, λm) might well be large due to
singularities on the edge of the region. We control this latter effect by

Lemma 14. Consider a fixed ||m|| < W and U = 0, ±100 (logW )2 , ±200 (logW )2 , . . . with
U + 50 (logW )2 ≤ W + 100 (logW )2 . Let a constant 0 ≤ 2a ≤ 1 be given. Suppose that σ is
the largest real part of all zeros of Zm (W ) in

R

(
1
2
, 2, U + 150 (logW )2 , U − 150 (logW )2

)
.

Then for
s ∈ R

(
σ + d (1− σ) , 2, U + 55 (logW )2 , U − 55 (logW )2

)
,

with the disc |s− 1| � (log2W )−2 excluded when χ = χ0 , m = 0, we have

logL (s, χλm) � (logW )(1−d)/(1−2a) (log2W )(d−2a)/(1−2a) + (log2W )4 (28)

uniformly for 2a ≤ d ≤ 1. (The (log2W )4 occurs only when χ = χ0 , m = 0.)
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Proof. This follows the proof of Lemma 5 of [9]. First consider χ = χ0 , m = 0 and let σ0 be
the largest real part of the zero of ζK(s) in

R

(
1
2
, 2, 150 (logW )2 , −150 (logW )2

)
.

Here, σ0 is far smaller than if we had looked at all the zeros in Z (W ) , and, in fact, (1− σ0)
−1 �

log2W. We can then follow the first part of the proof in [9] to conclude

log ζK(s) � (log2W )4

for s ∈ R
(
σ0 + 2a (1− σ0) , 2, 55 (logW )2 ,−55 (logW )2

)
with the disc |s − 1| � (log2W )−2

excluded. This explains the second term in (28).
For all other cases, that is (χ,m) 6= (χ0,0) for all U, or (χ,m) = (χ0,0) for all U 6= 0, we

apply the maximum modulus principal to the function

φ (w) = e(w−s)
2
Zw−s logL (w,χλm)

where
w ∈ R

(
σ + 2a (1− σ) , 2, U + 60 (logW )2 , U − 60 (logW )2

)
and

s ∈ R
(
σ + d (1− σ) , 2, U + 55 (logW )2 , U − 55 (logW )2

)
.

For this we need

L (1 + it, χλm) � log logW

2 < |t| 6 W which follows by the same proof of Lemma 6 in [9]. We also need a bound on
L (σ + 2a (1− σ) , χλm) . From the foot of p. 322 of [9] this is

� logW + (1− σ)−1 log2W

� logW + (logW )2/3 (log2W )4/3 by Theorem 12,

� logW.

The choice of Z(1−2a)(1−σ) = logW gives the first term in (28). �

As discussed, we require zero density results, that is, bounds for

NK (σ,W ) =
∑

ρm,χ∈Z(W )

1≥βm,χ≥σ

1.

Theorem 15. There exist constants D and E such that
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NK (σ,W ) �WD(1−σ)3/2
(logW )E (29)

in the range of validity of (26).
Given ε > 0 there exists F = F (ε) such that

NK (σ,W ) �W (12n/5+ε)(1−σ) (logW )F (30)

uniformly for 1
2 ≤ σ ≤ 1.

Proof Here (29) is part of lemma 1 of [3] while (30) is the first part of Theorem 5 of [4]. �

We construct the Hooley-Huxley contour by moving the vertical lines, Vm,r, by the rule

Vm,r → V
′

m,r = {s′ = σ′ + it|σ′ = σ + d (1− σ) , σ + it ∈ Vm,r}

for various 0 < d < 1. Follow [9] in letting 0 < θ < 1 be chosen later. If s ∈ Vm,r has Re s < θ
choose d = 3a, where a is a small constant depending on ε. If s ∈ Vm,r has Re s > θ choose
d = b near to 1 to be chosen later. Connect the new vertical lines V

′

m,r by horizontal lines.
Along with the detour about s = 1 when m = 0, this describes the Hooley-Huxley contours,
Hm say.

5.2. Completion of the proof.

The line of integration in (25) is, for each ‖m‖ < W, moved back to Hm (with the hori-
zontal lines Ims = ±W ) along with a loop, L say about s = 1 when m = 0. Note that
s ∈ V0,0 implies σ < 1 − c (log2W )−2/3 (log3W )−1/3

. So L might have radius as small as
c (ε) (log2W )−2/3 (log3W )−1/3 = r, say. Thus the error in replacing this loop by the circle C0

of Theorem 1′ is

E =
1

2πi
a0

∫
L±
ĝ (s)F (s) ds =

1
2πi

a0

∫ ∞

−∞
g (y)

∫
L±
ys−1F (s) ds

with s ∈ L± if, and only if, s = 1 + ρe±iπ, ρ ∈ [r, c0] . The inner integral here is

�
∫ c0

r

y−ρρ−Re z

(
log

1
ρ

)n
dρ

which on evaluating has, apart from a number of log terms, a factor of exp (−r log y) �
exp (− (log y)α) for any α < 1. Hence

E � x`n exp (− (log x)α) .

We now have all the required information to bound the remaining integrals over Hm\L as in [9].
To clarify the argument in [9] we present the proof in outline. So (22) will follow if we show∑

‖m‖<W

∫
Hm\L

∣∣ys−1F (s, λm)
∣∣ |ds| � exp (−R (y)) (31)
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for all y for which g (y) 6= 0, (i.e. y � x).

Now, if s′ ∈ V ′
m,r then either Re s′ < θ+ 3a (1− θ) or Re s′ > θ+ b (1− θ) . In the first region

|F (s′, λm)| � exp
(
(logW )ψ

)
(32)

for any (1− 3a) / (1− 2a) < ψ < 1 , by (28). This holds not only on V ′
m,r but also on any

connecting horizontal lines to the right of V ′
m,r. In the second region

|F (s′, λm)| � exp
(
(logW )ψ

′)
, (33)

for any 1 > ψ′ > (1− b) / (1− 2a) , again not only on V ′
m,r but also on connecting lines to the

right. In Hm there are horizontal lines between the two regions above. For s′ on these horizontal
lines with Re s′ < θ + b(1 − θ) we have only the weak bound (32). But if Re s′ > θ + b(1 − θ)
we are looking at points sufficiently far from the V ′

m,r where the horizontal lines originated to
enable us to use Lemma 14 to deduce the strong bound (33). These horizontal lines either go
to, or from, a V ′

m,r with Re s′ > θ + b(1 − θ) which arose from a zero ρm,χ with βm,χ > θ.
So the number of such lines, when summed over all ‖m‖ < W, is � NK (θ,W ) . Hence the
contribution to (31) from the horizontal lines between the regions Re s′ < θ + 3a(1 − θ) and
Re s′ > θ + b(1− θ) is

� NK (θ,W ) exp
(
(logW )ψ

)∫ θ+b(1−θ)

θ+3a(1−θ)
yσ

′−1dσ′

� exp
(
2 (logW )ψ

)(WD(1−θ)1/2(1−b)−1

y

)(1−θ)(1−b) .

The two remaining regions are split into vertical strips of width 1/ logW. As in [9] we obtain
the bounds

max
σ′>θ+3a(1−θ)

Nk (σ,W ) exp
(
(logW )ψ

)
(logW )A xσ

′−1

� exp
(
(logW )ψ + F (ε) log2W

)(W ( 12n
5 +ε)(1−3a)−1

y

)(1−3a)(1−θ)

by (30) and

max
σ′>θ+b(1−θ)

NK (σ,W ) exp
(
(log2W )ψ

′)
(logW )A xσ

′−1

� exp
(
2 (logW )ψ

′)(WD(1−θ)1/2(1−b)−1

y

)(1−b)c/(log W )2/3(log2 W )1/3

on using the zero-free region (26). The condition ` > x−5/12n+10ε is sufficient, along with the
definition of W to ensure that

W (12n/5+ε)(1−3a)−1
< x1−δ
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for some δ = δ (ε) > 0 if a = a (ε) is chosen sufficiently small. Then choose b so that we can
take ψ′ < 1/3 in (33). Finally choose θ such that

D (1− θ)1/2 (1− b)−1
< 1.

Then all three bounds above are � exp (−R (y)) as required.

For the proof of (23) the smooth weights f and g are defined as before but with ` = `(X) a
function of X, not x. In particular g (y) = h (y/x) where h is an approximation to the interval
(1− `, 1 + `) . Thus ĝ (s) = xsĥ (s) with ĥ (s) depending only on X. Hence the left hand side
of (23) equals

∫
Tn−1

∫ 2X

X

∣∣∣∣∣∣ 1
2πi

∑
‖m‖<W

ame
−2πim.ψ0

∫
Hm\L

xsĥ (s)F (s, λm) ds

∣∣∣∣∣∣
2

dxdψ0

=
1

4π2

∑
‖m‖<W

|am|2
∫ 2X

X

∣∣∣∣∣
∫
Hm\L

xsĥ (s)F (s, λm) ds

∣∣∣∣∣
2

dx

� a 2
0

∑
‖m‖<W

∫ 2X

X

∣∣∣∣∫
Rm

xsĥ (s)F (s, λm) ds
∣∣∣∣2 dx

(where Rm represents the parts of Hm lying in the regions R described above, i.e. between
θ + 3a (1− θ) and θ + b (1− θ) or vertical strips of width 1/ logW.)

� (logW )2 `2(n−1) max
R

∑
‖m‖<W

∫ 2X

X

∣∣∣∣∫
Rm

xsĥ (s)F (s, λm) ds
∣∣∣∣2 dx

� (logW )2 `2(n−1) max
R

∑
‖m‖<W

∫
Rm

∫
Rm

(
2s1+s2+1 − 1
s1 + s2 + 1

)
Xs1+s2−1

×ĥ (s1) ĥ (s2)F (s1, λm)F (s2, λm)ds1ds2

� (logW )2X3`2n max
R

∑
‖m‖<W

∫
Rm

∫
Rm

∣∣∣∣2s1+s2+1 − 1
s1 + s2 + 1

∣∣∣∣Xσ1+σ2−2

×
(
|F (s1, λm)|2 + |F (s2, λm)|2

)
|ds1ds2|

since ĥ (s) � ` (X) . The previous method of proof then gives

� X3`2n exp (−R (X))

for ` (X) >
(
X2
)−5/12n+10ε

, as required. �
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