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Localised Bombieri-Vinogradov theorems in
imaginary quadratic fields

by
Mark Coleman and Andrew Swallow (Manchester)

1 Introduction

Let K be an imaginary quadratic field with ring of integersOK. For y ∈ �, define〈y〉 to be
such that〈y〉 ≡ y mod 1 and−1/2 ≤ 〈y〉 < 1/2. Given 0< ` ≤ 1/2 and 0≤ Θ < 1 define

(1.1) S (x,Θ, `) =
{
α ∈ OK :

∣∣∣|α|2 − x
∣∣∣ < x`,−` <

〈
(argα)/2π − Θ

〉
< `

}
.

If 2` < 1/ω, whereω is the number of units inK, this set contains only unassociated integers.
The main result of this paper is a Bombieri-Vinogradov type result for the prime integers in
S. In previous papers, such as [4], the distribution of prime ideals within variants of (1.1)
have been studied. To define such a variant we need first letγ be a Groessencharacter on
the ideals ofK (see Hecke [9, 10] for an explicit construction in a general number field or
Knapowski [19] for within a quadratic field). This character, of infinite order, has the property
thatγ((α)) = (α/|α|)ω for all α ∈ OK. For idealsa, define 0≤ ϑ(a) < 1 byγ(a) = e2πiϑ(a). Thus
we can define

S1(x,Θ, `) = {a : |Na − x| ≤ `x,−` ≤ 〈ϑ(a) − Θ〉 ≤ `} .

Note that fora = (α), whereα ∈ OK, we have〈ϑ(a) −Θ〉 = 〈(ωargα)/2π −Θ〉. If we usedS1

in place ofS, the integers found would be localised only up to multiplication by units.
Recall (from Landau [20]) thata ≡ b modq means there exist integersα, β ∈ OK with

((αβ), q) = 1, (α)a = (β)b andq|(α − β). We useh(q) to denote the number of distinct congru-
ence classes of ideals modq, andφ(q) to denote the number of congruence classes of integers,
coprime toq. LetΛ be von-Mangoldt’s function on the ideals ofK in which case, for integers
α, we have

Λ(α) =

{
log Nπ if (α) = (π)k for some primeπ,
0 otherwise.

Theorem 1. For all A > 0 and y≤ 1/2ω there exist positive ci(A),1 ≤ i ≤ 4, such that

(1.2)
∑

Nq≤Q

max
(β,q)=1

max
x≤z

0≤Θ<1

max
`≤y

∣∣∣∣∣∣∣∣∣∣∣
∑

α≡β modq
α∈S(x,Θ,`)

Λ(α) −
1
φ(q)

∑
α∈S(x,Θ,`)

Λ(α)

∣∣∣∣∣∣∣∣∣∣∣ �
y2z

logA z
,
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provided y2z≥ z7/12 logc1(A) z and

Q ≤

y2z1/2 log−c2(A) z, if y2z≥ z3/5 logc3(A) z,

y2z9/20 log−c4(A) z, otherwise.

The regionsS(x,Θ, `) arise from the methods used but, in�(i) for example, they may be
replaced by quite general geometric regions. LetR be a subset of the unit disc in� whose
boundary∂R is Lipschitz parametrizable (see p128 of Lang [21]). Forv,w ∈ � define

Rw,v = w+ vR = {u ∈ � : ∃s ∈ R,u = w+ vs} ,

often refered to as homogeneously expanding domains. Note that there existsγ = γ(R) such
that if |v| ≤ γ|w| thenRw,v contains only unassociated integers.

Theorem 2. Let A> 0 be given. Then, in K= �(i), we have

(1.3)
∑

Nq≤Q

max
(β,q)=1

max
1<|w|2≤X

max
|ν|≤h|w|

∣∣∣∣∣∣∣∣∣∣∣
∑
α∈Rw,ν
α≡β modq

Λ(α) −
1
φ(q)

∑
α∈Rw,ν

Λ(α)

∣∣∣∣∣∣∣∣∣∣∣ �
h2X

logA X
,

provided h≤ γ, h2X ≥ X7/12 logc1(A) X and,

Q ≤

h2X1/2 log−c2(A) X when h2X≥ X3/5 logc3(A)X,

h2X9/20 log−c4(A) X otherwise.

For the record, by the methods of Section 11 where we deal with the conditionα ∈ Rw,ν,
we can prove a version of the Siegel-Walfisz Theorem for homogeneously expanding domains.
Let |R| denote the area ofR. Then, for allA andC > 0 there existsc = c(A,C) such that for
(β, q) = 1 and Nq < logC

|w| we have

(1.4)
∑
α∈Rw,v
α≡β modq

Λ(α) =
4|v|2|R|
πφ(q)

(
1+O

(
1

logA
|w|

))

as|w| → ∞ for |w|γ > |v| ≥ |w|7/12 logc
|w|.

Amongst many applications these Bombieri-Vinogradov type results can be used to esti-
mate errors arising from the use of sieve methods. We leave such uses to future papers though
here we might mention that a direct application of Selberg’s sieve in�(i), (see Rieger, [28],
or [5]), along with (1.3) gives upper bounds for|{π ∈ Rw,ν : π + α prime}|, for all α ∈ �[i]. In
[6] we were interested in the size of discs around each primeπ containing no other prime. To
this end we definedρ(π) = min{|π − π′| : π′ , π} and showed that, forΦ a positive function
satisfyingΦ(x) → ∞ asx → ∞, we haveρ(π) < Φ(π) log1/2

|π| for almost allπ. In fact, this
bound holds for almost allπ in Rw,ν, for all w andν. In the opposite direction, summing over
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α the sieve bounds obtained earlier, the methods of [6] now show thatρ(π) � log1/2
|π| for a

positive proportion of the primes inRw,ν, for all |w|γ ≥ |v| ≥ |w|7/12 logc
|w|.

Bombieri-Vinogradov type results have been given in number fields by Huxley [14] and
Wilson [30] for ideals, Hinz [11] for integers and Johnson [17] for ideal numbers.

Results for rational primes in short intervals have been given by Jutila [18], Huxley &
Iwaniec [16], Ricci [27], Perelli, Pintz and Salerno [24, 25], Zhan [32], and Timofeev [29].

Our hybrid result is of the same quality as Timofeev’s. His work [29] not only has stronger
results and applies to more general functions than earlier papers but it also has aspects that
enable the present generalisation. For instance, it makes no use of either the Pólya-Vinogradov
Theorem or approximate functional equation for appropriateL-functions, both seen in [24].
The complication of detail of the proof in the present paper over [29] comes from the need
(see Section 10) to introduce smooth functions.

Much of this paper forms a large part of the second author’s Ph.D. thesis.

2 Weight functions

A result of Bombieri, Friedlander & Iwaniec [1] (Corollary to Lemma 9) can be used to derive
the following.

Lemma 3. For all 0 < ` ≤ 1, 0 < ∆ ≤ 1/2 and x0 ∈ �, there exists a continuous function
u(x) = u(x, x0, `,∆) : �→ [0,1], differentiable to all orders, such that,

u(x) =

1, |x− x0| ≤ `(1− ∆),

0, |x− x0| ≥ `(1+ ∆).

Furthermore, we have u( j)(x) � (c j)2 j(`∆)− j for all x ∈ � and j≥ 1, and
∫ ∞
−∞

u(x)dx = 2`.

Defineg`,∆ (y) = u (y,1, `,∆) for all y ∈ �, and f`,∆ (y) = u (y,0, `,∆) for −1/2 ≤ y ≤ 1/2
and extended to all� by periodicity. Forz ∈ � define

νx,Θ,`,∆ (z) = f`,∆
(
(argz)/2π − Θ

)
g`,∆

(
|z|2 /x

)
.

Note that, forz= α, whereα ∈ OK, this isnot a function of the ideal(α). For any functionF
on the integers ofOK and (β, q) = 1 define, on the integersα coporime toq,

Fβ,q (α) =


(
1− 1

φ(q)

)
F (α) if α ≡ β modq,

− 1
φ(q) F (α) otherwise.

along withFβ,q (α) = 0 when (α, q) , 1. For our main result, Theorem 4, we introduce an
additional averaging, useful in applications within Sieve Theory. So, ifh is a function of
ideals, then define a truncated convolution by

HL(α) =
∑
Na≤L
ab=(α)

h(a)Λ(b) = (hL ∗ Λ) (α),
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say, on the integers ofOK. We combine these definitions to giveHL,β,q, seen in

Theorem 4. Let h be a function on the ideals of K that satisfies

(2.1)
∑
Na≤x

h(a)2

Na
� logκ x,

for someκ ≥ 0. For all A, B > 0 and y≤ 1/2ω we have

(2.2)
∑

Nq≤Q

max
(β,q)=1

max
zL−B≤x≤z

0≤Θ<1

max
yL−B<`≤y

∣∣∣∣∣∣∑
α

vx,Θ,`,∆(α)HL,β,q (α)

∣∣∣∣∣∣ � y2z
LA
,

provided∆y is sufficiently small and we have one of
(a) Q ≤ y2z1/2∆2Lc1, L ≤ z(y∆)12/5L−c2 and y2z≥ z9/14∆−2Lc3,

(b) Q ≤ y2z1/2∆2Lc4, L ≤ z(y∆)18/5L−c5 and z9/14∆−2Lc3 ≥ y2z≥ z3/5∆−2Lc6,

(c) Q ≤ y2z9/20∆2Lc7, L ≤ z(y∆)108/25L−c8 and z3/5∆−2Lc6 ≥ y2z≥ z7/12+ε∆−2.

(d) Q ≤ y2z9/20∆2Lc7, L ≤ LC and y2z≥ z7/12Lc(C)∆−2 for any C> 0.

In particular from case(b), when y2z= z7/12+ε∆−2 we have Q≤ z1/30−ε and L≤ z1/10−ε.

Here, as through out this paper,L = logz.
In the rational case Timofeev has given a Bombieri-Vinogradov type theorem with a very

general convolution, though not one with as long a summation of an unknown function such
ash. Theorem 4 both generalizes and extends a result due to Wu [31], though we cannot base
our arguments, as he does, on [24].

From case (d) we will derive

Theorem 5. For all A > 0 and y≤ 1/2ω we have

(2.3)
∑

Nq≤Q

max
(β,q)=1

max
x≤z

0≤Θ<1

max
0<`≤y

∣∣∣∣∣∣∑
α

vx,Θ,`,∆(α)Λβ,q (α)

∣∣∣∣∣∣ � y2z
LA
,

provided that y2z≥ z7/12∆−2Lc1(A), ∆ is sufficiently small, and

(2.4) Q ≤

y2z1/2∆2L−c2(A), if y2z≥ z3/5∆−2Lc3(A),

y2z9/20∆2L−c4(A), otherwise.

Though we do, in Section 11, give a method for stripping the weights and deriving The-
orem 2, in most applications we engineer the problem to include weights before applying
Theorem 5.
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3 Reduction to character sums

The conditionα ≡ β within HL,β,q is dealt with using characters ˆχ modq. We use the same
notation for the primitive character, modn wheren|q, inducingχ̂. Dropping subscripts onv
we have, by orthogonality of characters, that for (β, q) = 1,

(3.1)
∑
α

v(α)HL,β,q (α) =
1
φ (q)

∑
χ̂ modn
primitive
n|q,n,(1)

χ̂ (β)
∑

(α,q)=1

v(α)HL (α) χ̂(α).

From the definition off as f (y) = u(y,0, `,∆) for −1/2 ≤ y ≤ 1/2, it is differentiable to all
orders, periodic with period 1, and integrable over a unit interval. Thus it has a Fourier series

(3.2) f (θ) =
∞∑

m=−∞

ame(mθ) with am =

∫ 1/2

−1/2
f (θ)e(−mθ)dθ

for all m ∈ �, wheree(α) = e2πiα for all α ∈ �. The coefficients satisfya0 = 2`, am� ` for all
m ∈ � and

(3.3) am� |m|
−100 for |m| ≥

c1

∆`
log3

(
1
∆`

)
.

and∆` sufficiently small. The latter result follows from integration by parts. This final bound
onam shows that the series in (3.2) can be truncated with an arbitrarily small error.

Let BL(Q, z, y) denote the left hand side of (2.2). Because we have` ≥ yL−B in BL(Q, z, y)
we need never take the point of truncation larger than

(3.4) W =
c1L

3+B

∆y
,

provided log(1/∆`) � L. In what follows, the errors of truncation are disregarded and we
simply say, for example, that the inner sum in (3.1) can be replaced by∑

|m|≤W

ame(−mΘ)
∑

(α,q)=1

g (Nα/x) HL(α)λm(α)χ̂(α),

whereλ(α) = (α/|α|). Becauseλ andχ̂ are multiplicative this inner sum equals

(3.5)
∑

(α,q)=1

∗

g (Nα/x) HL(α)λm(α)χ̂(α)
∑
ε units

λm(ε)χ̂(ε).

where
∑∗

(α,q)=1 denotes a sum over unassociated integers. Yet

∑
ε units

λm(ε)χ̂(ε) =

ω if b|m andλm(ε)χ̂(ε) = 1 for all units,

0 otherwise,
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whereb = b(n) is the number of units satisfyingε ≡ 1 modn. Under these conditionsλmχ̂

is well-defined on the principal ideals coprime toq. The explicit method given in section 3 of
[19] to extendγ(α) = (α/|α|)ω from integers to ideals can be used here to extendλmχ̂ to ideals.
The principal ideals can be picked out by characters,ϕ, on the ideal class group. Thus (3.5)
can be replaced, in turn, withωh−1 ∑

ϕΨq(g,HL, x, λmχ̂ϕ) where

(3.6) Ψq(g,HL, x, λ
mχ̂ϕ) =

∑
(a,q)=1

g (Na/x) HL(a)λmχ̂ϕ(a),

the sum now being over ideals, hence the uppercaseΨ. Write χ = χ̂ϕ and letC(m, n) be the
set of all such products for whichλmχ̂(ε) = 1 for all units. Further, letC∗(m, n) be the subset
with χ̂ primitive modn. So we now have

(3.7)
∑
α

v (α) HL,β,q (α) �K
a0

φ(q)

∑
n|q
n,(1)

∑
|m|≤W
b(n)|m

∑
χ∈C∗(m,n)

∣∣∣Ψq(g,HL, x, λ
mχ)

∣∣∣ .
To deal with the condition (a, q) = 1 in (3.6) we will need to introduce the weight∏

p|q

(
1+

1
√

Np

)2

= ρ(q),

in the notation of [29]. Note thatρ(q) �ε Qε for all Nq ≤ Q. As in [29], multiply the
right hand side of (3.7) byρ(q)/ρ(q), sum overq, interchange with the sum overn and use∑

Nq≤Q ρ(q)φ
−1(q) � L. ThenBL(Q, z, y)� LmaxNk≤Q BL,k(Q, z, y) where

(3.8) BL,k(Q, z, y) =
1
ρ(k)

∑
1<Nq≤Q

y
φ(q)

∑
|m|≤W
b(q)|m

∑
χ∈C∗(m,q)

max
`,x
|Ψk(g,HL, x, λ

mχ)| ,

with the same ranges oǹandx as in (2.2).

4 Small Q

Theorem 6. For n ≥ 2 set

γn =
24n2 − 26n+ 12

5n(n− 1)
and βn =

(
1−

1
2n

)
.

For all A,C > 0 we have, with F= logC z,

(4.1) BL,k(F, z, y) �
y2z

logA+2 z
,

uniformly for k, provided we have∆y sufficiently small, L≤ z1−δW−4 for someδ > 0 and one
of (i) L ≤ zW−24/5L−c0,

(ii) zW−24/5 >Wε and L≤ zW−108/25L−c5,
(iii) z>WγnLcn and L≤ zW−24βn−1/5L−cn, for some2 ≤ n ≤ 5.
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Proof. Unfolding the convolution gives

Ψk(g,HL, x, λ
mχ) =

∑
Na<L
(a,k)=1

h(a)λmχ(a)Ψk(g,Λ, x/Na, λ
mχ)

=
∑
Na<L
(a,k)=1

h(a)λmχ(a)Ψ(g,Λ, x/Na, λmχ) +O

L2
∑
Na≤L

|h(a)|

(4.2)

whereΨ = Ψ(1). Because of (2.1) the error here is� LLc(κ). To BL,k(F, z, y) this contributes
� LFWyLc which is� y2zL−A−2 as long asL ≤ zW−2L−c.

For the weight functiong = g`,∆ occurring inΨ(g,Λ, x/Na, λmχ) we consider its Mellin
transform

(4.3) ĝ`,∆(s) =
∫ ∞

−∞

g`,∆(w)ws−1dw,

valid for Res> 1. We have the trivial bound ˆg`,∆(s) � ` and, similar to the derivation of (3.3),
we can show for−1 ≤ σ ≤ 2 that

(4.4) ĝ`,∆(σ + it) � |t|−100 for |t| ≥
c1

∆`
log2

(
1
∆`

)
and∆y sufficiently small.

Before replacingg by its Mellin transform we split the sum overa in (4.2). Let L0 =

zW−24/5L−c0 and setV0 = 1,V1 = min(L, L0) andVj+1 = 2Vj for all 1 ≤ j ≤ J with some
J� L. Then each subsum,Vj ≤ Na < Vj+1 of (4.2) can be replaced by

(4.5)
−1
2πi

∫ 2+iW

2−iW
ĝ(s)xshj,k(s, λ

mχ)
L′

L
(s, λmχ)ds

with W as in (3.4). Here

(4.6) hj,k(s, λ
mχ) =

∑
V j≤Na<V j+1

(a,k)=1

h(a)λmχ(a)
Nas

.

Using Cauchy-Schwarz and (2.1) we can prove, forj ≥ 1, that

(4.7) |hj,k(s, λ
mχ)| � V1−σ

j logκ/2 Vj

for all s. When j = 0 we have

(4.8) |h0,k(s, λ
mχ)| � V1−σ

1 logκ/2 V1,

but only for Res< 1. Also within (4.5) we have the dirichlet series

(4.9) L(s, λmχ) =
∑
a

λmχ(a)
Nas

,
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for Res > 1, where the sum is over all ideals ofK. For χ ∈ C∗(m, q) for which b(q)|m this
is a HeckeL-function of K with Groessencharacterλmχ. These functions have an analytic
continuation to the whole complex plane, with a pole ats = 1 whenm = 0 andχ = χ0, and
they satisfy a functional equation. Details can be found in Hecke, [9, 10], or [20], although
an explanation more specific to the present case is given in Section 3 of [2]. In fact, as in
[2], we actually truncate the integral in (4.5) at someW/2 < Ims = w < W for which L(σ +
iw, λmχ) with |m| ≤ W, χ ∈ C∗(m, q) andσ ≤ 2, keep well away from their zeros. The
function ĝ(s) decays so fast with Ims that when the line of integration in (4.5) is moved to
the left the contribution from the horizontal lines of integration is negligible. As in Section
4 of [2] the contribution toBL,k from the new vertical line of integration, Res = −1/2, is
� y2z−1/2L3/2W2FLc(κ). This is sufficiently small if L ≤ zW−4/3L−c. Thus from (4.5) the
main contribution will be seen to come from the zeros,ρm,χ = βm,χ + iγm,χ, of L(s, λmχ) with
|γm,χ| ≤W. The contribution of these zeros toBL,k(F, z, y) is bounded by

(4.10) � y2 max
0≤σ<1

zσ
∑

1<Nq≤F

∑
|m|≤W

b|m

∑
χ∈C∗(m,q)

∑
βmχ≥σ
|γmχ |≤W

|hj,k(%m,χ, λ
mχ)|.

Let N(σ, F,W) =
∑

F,W 1, being the four-fold summation of (4.10). In [2], estimates for

Nq(σ,W) =
∑
|m|≤W

b|m

∑
χ∈C∗(m,q)

∑
βmχ≥σ
|γmχ |≤W

1,

were given, with the dependency onq being left implicit. The same results from there go
through forN(σ, F,W) subject to the following two observations.

Firstly, from Theorem 2 of [3], for all Nq ≤ F, |m| ≤ W for which b|m, andχ ∈ C∗(m, q)
there are no zeros satisfyingβm,χ ≥ 1 − c(K)U−1 and |γm,χ| ≤ W, whereU = max(logQ,
log2/3 W log log1/3 W), apart from (possibly) at most one real zero for eachq. Yet Fogels, [7]
has a Siegel type result for such zeros, namely that their real parts are≤ 1 − c(ε)F−ε for all
ε > 0. It can thus be shown that the sum of the contributions to (4.10) of such zeros with
F = logC W is�A,C y2zL−A−C−1. Hence the range ofσ over which we maximise on the right
hand side of (4.10) may be reduced to1/2 ≤ σ ≤ 1− cU−1.

Secondly, we need to either make the dependency onq explicit in the results of [2] or
introduce a summation overq into the Mean and Large Value results used that paper. This
latter option is achieved in Section 7 and so we need use our Theorems 9, 11 and 12 in place of
Theorem 6.2, Lemma 7.3 and Theorem 6.3 of [2]. In this way we can prove, forF = logC W,
that N(σ, F,W) � (W2) f (σ)(1−σ) logc(C) W where f (σ) = 3/(2− σ) for 1/2 ≤ σ < 1 and
f (σ) = 3/(3σ − 1) + ε for 3/4 ≤ σ < 1 and allε > 0. This latter result shows that the
density hypothesis,f (σ) ≤ 2, holds to the left of 1, a result used in the proof of case (i).
For the quality of the result in case (i) we note that we have the tools necessary to prove an
analogue of a bound given as (1.7) of Huxley [15], namelyf (σ) = (5σ − 3)/(σ2 + σ − 1) for
3/4 ≤ σ ≤ 1. We can thus show the following which improves slightly the results of [2] in
that the exponent no longer containsε.
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Lemma 7. For all C > 0, W ≥ 1 and F= logC W we have

N(σ, F,W) �W2g(σ)(1−σ) logb(C) W,

where g(σ) ≤ 12/5 for 1/2 ≤ σ ≤ 1 and g(σ) ≤ 2 for σ ≥ 5/6+ ε.

For case (i) of Theorem 6, whenL ≤ L0, we have only thej = 0 case of (4.5). We bound
the correspondingj = 0 case of (4.10) simply as

(4.11) � y2Lc max
0≤σ<1−cU−1

zσL1−σN(σ, F,W).

For 0 ≤ σ ≤ 1/2 useN(σ, F,W) � W2 logC+1 W. For 1/2 ≤ σ ≤ 6/7, where 6/7 has
been simply chosen as larger than 5/6, use� W24(1−σ)/5 logb(C) W, in which case (4.11) is
� y2zL−A−1 subject toLW24/5/z < 1/Lc(A,C). Finally, for 6/7 ≤ σ ≤ 1 − cU−1 use�
W2(1−σ) logb(C) W. All that is important here is thatLW2/z≤ 1/zδ for someδ > 0.

For the remaining cases of Theorem 6 we need to consider 1≤ j ≤ J. An application of
Hölder’s inequality and an appropriate version of Theorem 9 gives∑

Q,W

|hj,k(%m,χ, λ
mχ)| � N(σ,Q,W)βn(W1/nV1/2−σ

j + V1−σ
j )Lcn,

for all n ≥ 1. This is sufficiently small within (4.10), when 0≤ σ ≤ 1 − cU−1, if we have
bothW1/n ≤ V1/2

j andVjW24βn/5/z ≤ 1/Lcn, that isVj ∈ In := [W2/n, zW−24βn/5L−cn]. One of
these intervals will overlap with the region dealt with earlier, namely [1, L0], if there existsn0

such thatW2/n0 < L0. In cases (ii) and (iii) we haveL0 > Wε andL0 > W1/50L−c and so such
ann0 can always be found, perhaps depending onε. Further, for 2≤ n ≤ n0 we find thatIn−1

overlapsIn if z > WγnLcn. We note thatγn ≤ 24/5 if, and only if,n ≥ 6. So if z > W24/5Lc6

then all the intervals up toI5 overlap and (4.1) holds forL ≤ zW−24β5/5L−c5, which is case
(ii). Finally, {γn}n≥2 is decreasing for 2≤ n ≤ 11 while γn > 24/5 for 2 ≤ n ≤ 5. Thus
if z > WγnLcn for some 2≤ n ≤ 5 then all intervals up toIn−1 overlap and (4.1) holds for
L ≤ zW−24βn−1/5L−cn−1, which is case (iii). �

5 Large Q

For Q larger than a fixed power ofL we letF = LC, with C to be chosen, and write

(5.1) BL,k(Q, z, y) ≤ BL,k(F, z, y) + y
M∑

i=0
P=2i F

L∑
j=0

P−1Vj,k(P, z, y)

where 2M−1F < Q ≤ 2MF and
(5.2)

Vj,k(P, z, y) =
1
ρ(k)

∑
P<Nq≤2P

Nq
φ(q)

∑
|m|≤W

∑
χ∈C∗(m,q)

max
x,`

∣∣∣∣∣∣∣∣
∑

V j≤Na<V j+1

h(a)λmχ(a)Ψk
(
g,Λ,

x
Na
, λmχ

)∣∣∣∣∣∣∣∣ .
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6 Reduction ofV j,k(P, z, y) using Heath-Brown’s identity

From (5.1) and Theorem 6 we see it suffices to show, subject to the conditions of Theorem 5,
that for allA > 0 there existsC > 0 such that

(6.1) max
F≤P≤Q

P−1Vj,k(P, z, y) � yzL−A−2,

uniformly in j andk. We now apply a smoothed form of Heath-Brown’s identity (see [8]) to
von-Mangoldt’s function inΨk (g,Λ, x/Na, λmχ). The necessity of smoothing is discussed in
Section 10.

Consider arithmetic functions on the ideals ofK. Examples of such functions are 1(a) = 1,
for all a; e(a) = 1 if a = OK, zero otherwise; von-Mangoldt’s function,Λ, and the M̈obius
function,µ, in K. As in the rational case we have Möbius inversion, namely 1∗ µ = e along
with Λ ∗ 1 = log, where log(a) = log Na.

For y ∈ � write η(y) = u(y,0,9/8,1/9), whereu is given in Lemma 3. For idealsa and
realsw > 0 defineηw(a) = η(Na/w). Soηw(a) = 1 for Na ≤ w andηw(a) = 0 for Na ≥ 5w/4.
Then our form of Heath-Brown’s identity inK is derived from the binomial expansion

(6.2) Λ ∗ (e− (1 ∗ ηXµ))
k = Λ −

k∑
q=1

bq(1
q−1 ∗ log∗(ηXµ)

q),

wherebq = (−1)q−1
(
k
q

)
, and which holds for allX > 0 andk ≥ 1. Here aq-th power represents

aq-fold convolution. We shall assumek ≥ 2.
The left hand side of (6.2) evaluated at an idealb is a sum over productsb0b1 . . . bk = b. If

Nb ≤ Xk then Nbi ≤ X for some 1≤ i ≤ k. For this ideal (1∗ηXµ)(bi) = (1∗µ)(bi) = e(bi), and so
the left hand side of (6.2) will be zero. ThusΛ(b) =

∑k
q=1 bq

(
(1q−1 ∗ log∗(ηXµ)q

)
(b), for Nb ≤

Xk. The only ideals counted inΨk (g,Λ, x/Na, λmχ) for x ≤ z, have Nb ≤ z(1+ `(1+ ∆))/Vj.
Since`,∆ ≤ 1/2 we certainly have Nb ≤ 2z/Vj = zV, say. So we chooseX = (zV)1/k. But
Nb ≤ zV also means that all divisors ofb have norm no greater thanzV. So, for Nb ≤ zV,

Λ(b) =
k∑

q=1

bq

(
ηq−1

zV
∗ ηzV log∗(ηXµ)

q
)
(b)

=

k∑
q=1

bq

(
ηq−1

zV
∗ η

k−q
1 ∗ ηzV log∗(ηXµ)

q ∗ (η1µ)
k−q

)
(b),

written as such so that, for each 1≤ q ≤ k, the summand has a fixed number of convolutions,
namely 2k. Continue, defining for each 1≤ j ≤ k vectors (pi,q)1≤i≤2k and (gi)1≤i≤2k where

pi,q =


zV if 1 ≤ i ≤ q− 1 or i = k,

1 if q ≤ i ≤ k− 1 ork+ q+ 1 ≤ i ≤ 2k,

X if k+ 1 ≤ i ≤ k+ q,
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and

gi =


1 if 1 ≤ i ≤ k− 1,

log if i = k,

µ if k+ 1 ≤ i ≤ 2k.

Then
ηq−1

zV
∗ η

k−q
1 ∗ ηzV log∗(ηXµ)

q ∗ (η1µ)
k−q =

2k
∗

i=1
ηpi,qgi ,

a 2k-fold convolution of the functionsηpi,qgi ,1 ≤ i ≤ 2k. Next defineξw = ηw − ηw/2, in which
case

ηw(a) =
∑

0≤m≤L(w)

ξw/2m(a),

whereL(w) = logw/ log 2. Then

2k
∗

i=1
ηpi,qgi =

2k
∗

i=1

∑
0≤mi≤L(pi,q)

ξpi,q/2mi gi =
∑

m

2k
∗

i=1
ξpi,q/2mi gi ,

for a set of integer 2k-tuplesm which are� L2k in number. Thus

Λ(b) =
k∑

q=1

bq

∑
m

2k
∗

i=1
ξpi,q/2mi gi(b)

for all Nb ≤ zV. If we substitute forΛ within (5.2), the inner sum can be written as a sum over
2k+ 1-tuples,� kL2k in number, of sums of the type

(6.3)
∑
c

g(Nc/x)λmχ(c)
2k+1
∗

i=1
ξNi gi(c).

Here N2k+1 = Vj, ξN2k+1 is the characteristic function of [Vj ,Vj+1] and g2k+1 = h. Define
ΠN =

∏2k+1
i=1 Ni whenN = (Ni)1≤i≤2k+1. Note thatg(Nc/x) ∗2k+1

i=1 ξNi gi(c) , 0 only if zL−A−2 �k

ΠN �k z. The collection of allN, with all possibleVj, for which (6.3) has at least one non-zero
summand will be labelled asN(k, z). Note that|N(k, z)| � L2k+1. As in Section 9 we now
replace the weight functiong(Nc/x) using (4.3), and truncate the resulting integral using (4.4).
Thus for allk ≥ 2, zL−B < x ≤ z, yL−B ≤ ` ≤ y and 0≤ Θ < 1 we can replace the inner sum
of (5.2) by

(6.4)
1

2πi

∑
N∈N(k,z)

cN

∫ 1/2+iW

1/2−iW
ĝ(s)xs

2k+1∏
r=1

fr,k(s, λ
mχ, N)ds

for some coefficientscN �k 1, whereW is given by (3.4) and

(6.5) fr,k(s, λ
mχ, N) =

∑
(a,k)=1

ξNr gr(a)λmχ(a)
Nas

.
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So f2k+1,k = hj.k as seen in (4.6). The introduction of the weight functionsξN will allow the
comparison of the Dirichlet polynomials for 1≤ r ≤ k with the HeckeL-functions of (4.9).
From (5.2), (6.4) andg(s) � ` we have, for anyk ≥ 2, that

(6.6) Vj,k(P, z, y) �k yz1/2L2k+1 max
N∈N(k,z)

1
ρ(k)

Uk(P,W, k, N).

HereUk(P,W, k, N) = DP,W
∏2k+1

r=1 | fr,k(1/2+ it, λmχ, N)|dt, whereDP,W is the operator

DP,W =
∑

P<Nq≤2P

Nq
φ(q)

∑
|m|≤W

∑
χ∈C∗(m,q)

∫ W

−W
.

To prove (6.1) it now suffices, because of (6.6), to chooseF such that, for everyQ, y, zallowed
by the conditions of Theorem 5, there existsk ≥ 2 for which

(6.7) max
F≤P≤Q

P−1L2k+1 max
N∈N(k,z)

Uk(P,W, k, N) �k z1/2L−A−2ρ(k).

7 Necessary results on Dirichlet polynomials

The large sieve

Let θ1, θ2 be an integral basis forK, so every integerα ∈ OK is representable asα = n1θ1+n2θ2
for rational integersn1 andn2.

Lemma 8. (Huxley [12]) For any set{c(α)}α∈OK of coefficients we have

∑
Nq≤Q

Nq
φ(q)

∑
χ̂ modq

∗

∣∣∣∣∣∣∣∑
α

′

c(α)χ̂(α)

∣∣∣∣∣∣∣
2

� (N1 + Q)(N2 + Q)
∑
α

′

|c(α)|2 ,

where
∑
α
′ is a sum overα = n1θ1 + n2θ2 from the rectangle Mi < ni ≤ Mi + Ni, i = 1 and2.

For sums over ideals the ideas within the proof of Theorem 6.2 of [2] give∑
Nq≤Q

Nq
φ(q)

∑
|m|≤W

b|m

∑
χ∈C∗(m,q)

∫ W

−W

∣∣∣∣∣∣∑
a

c(a)λmχ(a)
Nait

∣∣∣∣∣∣2dt

�W4

∫ ∞

0

∫ 1/2

−1/2

h
w2

∑
H

∑
Nq≤Q

Nq
φ(q)

∑
χ̂ modq

∗

∣∣∣∣∣∣∣∑
α∈aH

′′

c(α/aH)χ̂(α)

∣∣∣∣∣∣∣
2

dθ
dy
y
.

Here
∑

H runs over the ideal classesH and, for each such class,aH is an ideal chosen from
H−1. The inner sum,

∑′′

, is overα ∈ aH satisfyingyNaH < Nα < τyNaH, with τ = exp(1/W),
and|(argα)/2π − θ| < 1/8W. It is easy to see that if there are two integersα andα′ satisfying
these conditions then|α − α′| � y1/2/W. So we can apply Lemma 8 withN1 = N2 = cy1/2/W
to get
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Theorem 9. For all Q,W ≥ 1 we have

(7.1)
∑

Nq≤Q

Nq
φ(q)

∑
|m|≤W

b|m

∑
χ∈C∗(m,q)

∫ W

−W

∣∣∣∣∣∣∑
a

c(a)λmχ(a)
Nait

∣∣∣∣∣∣2dt �
∑
a

|c(a)|2(Q2W2 + Na),

provided the right hand side converges.

For eachq,m andχ in the left hand side of (7.1) we replace the integral by a sum over
well-spaced points. Using Lemma 1.4 of Montgomery [23], due to Gallagher, we may derive
the following from Theorem 9.

Theorem 10. LetΩ denote a set of quadruplesω = (q,m, χ,n), with Nq ≤ Q, |m| ≤W,b(q)|m,
χ ∈ C∗(m, q) and n∈ �,n ≤ 2W. Assume that to eachω ∈ Ω there is associated a real number
tω. Further, assume that ifω = (q,m, χ,n) andω′ = (q,m, χ,n′) are distinct then|tω − tω′ | ≥ 1,
that is, they are well-spaced by1. Then we have

∑
ω∈Ω

∣∣∣∣∣∣∑
a

c(a)λmχ(a)
Naitω

∣∣∣∣∣∣2dt � L
∑
a

|c(a)|2
(
Q2W2 + Na

)
,

provided the right hand side converges.

The large value estimate

The following result may be proved using a method identical to that in [2].

Theorem 11. LetΩ be a set of quadruples satisfying the conditions in Theorem 10. Suppose
there is a number V such that ∣∣∣∣∣∣ ∑

N0<Na≤N0+N

c(a)λmχ(a)
Naitω

∣∣∣∣∣∣ ≥ V,

for all ω ∈ Ω. Then we have

#Ω �
GN
V2

(
1+

Q2W2G2L2

V4

)
.

where G=
∑

N0<Na≤N0+N |c(a)|2.

The fourth power estimate

Using the method of Ramachandra [26] with Theorem 9 and the functional equation for
L(s, λmχ) we can show the following result.
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Theorem 12. For all Q,W ≥ 2 and |δ| � log−1(QW) we have∑
Nq≤Q

Nq
φ(q)

∑
|m|≤W

∑
χ∈C∗(m,q)

∫ W

−W
|L(1/2+ δ + it, λmχ)|4dt � Q2W2 logc(QW).

The constant c is independent of K.

In [5] Lemma 10, the method of Ramachandra was used to give second power moments
with both fixedm and fixedt along with explicit dependencies. A proof of the present result
can be based on (7.11) of that paper. This method has also been used by Johnson [17], along
with an approximate functional equation forL(s, λmχ), to give the fourth power moment for
fixed m with an explicit dependency onm. Previously, Huxley [13] used an approximate
functional equation to give a result for fixedm, without an explicit dependency. Maknys [22]
used an approximate functional equation to give a result for fixedq.

Using Theorem 10 in place of Theorem 9 we may deduce a discrete version of Theorem
12, namely

∑
ω∈Ω |L(1/2+ δ + itω, λmχ)|4 � Q2W2 logc(QW).

The inclusion ofδ means that, by the use off ′(s) = 1/2πi
∫

f (z)(z− s)−2dzwith the path
of integration a circle centre 1/2+ it, radius 1/ log(W+ |T |), we can deduce analogues of these
results forL′(s, λmχ).

For an application of Theorem 12 recall the definition offr,k(s, λmχ,N) from (6.5).

Lemma 13. Let k≥ 2, N ∈ N(k, z), and1 ≤ r ≤ k be given. Then

(7.2) DP,W| fr,k(1/2+ it, λmχ, N)|4dt � ρ2(k)P2W2Lc(r),

uniformly inNk � z.

Proof. From the definition in Section 6 we know that thatξw(a) , 0 only whenw/2 ≤ Na ≤ w.
Thus the Mellin transform,̂ξw(v) = η̂(v)wvNa−v(1−2−v), is well-defined for allv ∈ �. Assume
first that 1≤ r < k, whengr ≡ 1. Using arguments that previously led to (4.5) we have that
fr,k(s, λmχ, N) can be replaced by

(7.3)
1

2πi

∫ 2+iV

2−iV
η̂(v)Nv

r

(
1−

1
2v

)∏
p|k

(
1−
λmχ(p)
Nps+v

)
L(s+ v, λmχ)dv,

whereV = cL2 for some constantc. The value forV comes from the lower bound for|t| in
(4.4) with ` = 9/8 and∆ = 1/9. We move the integral back to Rev = 0. No pole is crossed
sinceχ̂ primitive modq with q , (1) means ˆχ is non-principal. Ḧolder’s inequality gives

DP,W| fr(1/2+ it, λmχ, N)|4dt � ρ2(k)LcDP,W

∫
|u|≤V
|L(1/2+ it + iu, λmχ)|4dudt.

Now we apply Theorem 12, takingW+V to be theW in that theorem. Note we haveW+V �
W, sinceW� L2.

Now assumer = k. In this case we get (7.3) but with the integrand differentiated with
respect tos. The additional factor that arises from the differentiation of the Euler product can
be bounded by� ρ(k) log Nk. �
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Using the discrete version of Theorem 12 we can deduce a version of (7.2) with
∑
Ω in

place ofDP,W.

8 Proof of Theorem 5

Estimates ofUk(P,W, k, N) for all N ∈ N(k, z)

For any non-empty setα ⊆ {1,2, . . . ,2k + 1} defineΠN(α) =
∏

i∈α Ni , and setΠN(∅) = 1.
Recall that we have earlier definedΠN =

∏2k+1
i=1 Ni . In the following results the exponents of

L, possibly different at each occurrence, will be functions ofk, as will the constants implied
within�.

Lemma 14. Let k≥ 2 andN ∈ N(k, z) be given. Then for any disjointα∪β = {1,2, . . . ,2k+1}
we have

Uk(P,W, k, N) � Lc
(
P2W2 + PWΠN(α)1/2 + PWΠN(β)1/2 + Π

1/2
N

)
uniformly ink.

Proof. We have, by Cauchy’s inequality,

Uk(P,W, k, N) ≤
(
DP,W

∏
r∈α

| fk,r(1/2+ it, λmχ, N)|2dt
)1/2(
DP,W

∏
r∈β

| fk,r(1/2+ it, λmχ, N)|2dt
)1/2
.

Theorem 9 can now be applied to both parts, to get

Uk(P,W, k, N) � Lc(P2W2 + ΠN(α))1/2(P2W2 + ΠN(β))1/2,

which gives the result sinceΠN(α)ΠN(β) = ΠN. �

Definition. Let k ≥ 2 andN ∈ N(k, z) be given. For 0≤ a < b ≤ k setSab = NaNb with the
conventionN0 = 1.

Lemma 15. We have, for all k≥ 2,N ∈ N(k, z) and0 ≤ a < b ≤ k,

Uk(P,W, k, N) � LcPW
(
PW+ Π1/2

N S−1/2
ab

)
ρ(k),

uniformly ink.

Proof. For 1≤ a < b ≤ k use Ḧolder’s inequality to get

(8.1) Uk(P,W, k, N) �

(
DP,W

∏
1≤r≤2k
r,a,b

| fk,r(1
2 + it, λmχ, N)|2dt

)1/2

×
(
DP,W| fk,a(1/2+ it, λmχ)|4dt

)1/4 (
DP,W| fk,b(1/2+ it, λmχ)|4dt

)1/4

Theorem 9 is used to bound the first term on the right hand side, while the other two terms
may be bounded using Lemma 13, giving the stated result. Ifa = 0 the proof still holds with
the convention thatf0 ≡ 1. �
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Further estimates ofUk(P,W, k, N)

Let k ≥ 2, N ∈ N(k, z) andα ⊆ {1, . . . ,2k+ 1} be given. Withβ = {1, . . . ,2k+ 1} \ α define

(8.2) fk,0(s, λ
mχ, N,β) =

∏
r∈β

fk,r(s, λ
mχ, N),

a Dirichlet polynomial of lengthN0 = Π(β). We have therefore

Uk(P,W, k, N) = DP,W| fk,0(1/2+ it, λmχ, N,β)|
∏
r∈α

| fk,r(1/2+ it, λmχ, N)|dt.

The integrand is clearly bounded throughout the range of integration, and for each (q,m, χ) we
may bound the integral by a sum over well-spaced points. That is, we can find a setΩ with
properties as seen in Theorem 10 such that

Uk(P,W, k, N) � L2

∑
ω∈Ω

| fk,0(1/2+ itω, λ
mχ, N,β)|

∏
r∈α

| fk,r(1/2+ itω, λ
mχ)|,

where theL2 = logL factor comes from bounding Nq/φ(q).
We partitionΩ according to the size of the Dirichlet polynomials. Letα0 = α ∪ {0}

and setp = |α0|. For eachr ∈ α0 the polynomial given either by (6.5) or (8.2) satisfies
| fk,r(1/2+ it, λmχ)| ≤ (cr Nr)1/2Lκr , for some constantcr and where

κr =

1, if either r = 0 andk ∈ β or r = k ∈ α,

0, otherwise.

For r ∈ α0 define the numbersσ(ω, r) by | fk,r(1/2+ itω, λmχ, N)| = (cr Nr)σ(ω,r)Lκr , soσ(ω, r) ≤
1/2. Define the intervals

J(0) = (−∞,0], J(u) =

(
u− 1
L
,

u
L

]
, for u = 1,2, . . . ,

[
L

2

]
+ 1

To each quadrupleω ∈ Ω there is a corresponding vectorn = (nr)r∈α0 ∈ �p, such thatσ(ω, r) ∈
J(nr) for all r ∈ α0. LetM(α) be the set of alln which have at least one associated quadruple;
note that|M(α)| � Lp. For eachn ∈ M(α) defineΩ(n) to be the set of those quadruples inΩ
which are associated withn. Thus, for eachα, we have the bound

(8.3) Uk(P,W, k, N) � Lp+1 max
n∈M(α)

Uk,n(P,W, k, N),

where

(8.4) Uk,n(P,W, k, N) =
∑
ω∈Ω(n)

| fk,0(1/2+ itω, λ
mχ, N,β)|

∏
r∈α

| fk,r(1/2+ itω, λ
mχ, N)|.

For eachn defineσ(n,α) = L−1 maxr∈α0 nr .
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Lemma 16. Let k ≥ 2, N ∈ N(k, z) andα ⊆ {1, . . . ,2k + 1} be given. Letn ∈ M(α), and
j = j(n) be any subscript such that nj = maxr∈α0 nr . Then for all integers g≥ 1 there exists
c = c(g, k) such that

(8.5) Uk,n(P,W, k, N) � LcΠ
σ(n,α)
N

(
P2W2Ng(1−6σ(n,α))

j + Ng(1−2σ(n,α))
j

)
uniformly ink.

Proof. We begin with the simple observationUk,n(P,W, k, N) � LΠσ(n,α)
N |Ω(n)|. Apply The-

orem 11 to the Dirichlet polynomialfk, j(1/2 + it, λmχ, N)g, which is bounded below byV =
Ngσ(n,α)

j . In the notation of Theorem 11 we haveN = Ng
j . �

Lemma 17. Let k ≥ 2, N ∈ N(k, z) andα ⊆ {1, . . . ,2k + 1} be given. Letn ∈ M(α), and
j = j(n) be any subscript such that nj = maxr∈α0 nr . Then if j∈ α ∩ {1, . . . , k} we have

Uk,n(P,W, k, N) � LcP2W2Π
σ(n,α)
N N−4σ(n,α)

j ρ2(k)

uniformly ink.

Proof. For allω ∈ Ω(n) we have| fk, j(1/2 + itω, λmχ, N)| ≥ cNσ(n,α)
j Lκ j for some constantc,

since j = j(n). Therefore we may write

Uk,n(P,W, k, N) � LΠσ(n,α)
N |Ω(n)| � L1−4k jΠ

σ(n,α)
N N−4σ(n,α)

j

∑
Ω(n) | fk, j(1/2+ itω, λmχ, N)|4.

The conditions onj ensure that the discrete version of Lemma 13 can be applied. Thus we
obtain

∑
Ω(n) | fk, j(1/2+ itω, λmχ, N)|4 � ρ2(k)P2W2Lc, and hence the stated result. �

Definition. For N ∈ N(k, z) let

R(N) = min
{
ΠN(α) : α ⊆ {1, . . . ,2k+ 1},ΠN(α) ≥ Π1/2

N

}
.

Further, letP(N) = {α ⊆ {1, . . . ,2k+ 1} : ΠN(α) = R(N)} .

Immediately we see from Lemma 14 applied to anyα ∈ P(N) that

(8.6) Uk(P,W, k, N) � Lc
(
P2W2 + PWR(N)1/2 + Π

1/2
N

)
.

Lemma 18. Let k ≥ 2, N ∈ N(k, z) andα ∈ P(N) be given. Then for any a∈ α we have
Na ≥ R(N)2/ΠN.

Proof. Let a ∈ α. For any setδ ⊆ {1,2, . . . ,2k+ 1} we have, by the definition ofR(N), either
ΠN(δ) ≥ R(N) or ΠN(δ) ≤ ΠN/R(N). Let δ = α\{a}. SinceΠN(α) = R(N) we haveΠN(δ) =
R(N)/Na, which is< R(N). Thus from the choice above we must haveΠN(δ) ≤ ΠN/R(N),
which leads to the stated result. �
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Corollary 19. Let k≥ 2, N ∈ N(k, z) andα ∈ P(N) be given. Then

(8.7) |α| ≤
(
2−

logΠN

logR(N)

)−1

.

In particular, if R(N) > Π3/5
N then|α| ≤ 2.

Proof. Lemma 18 immediately gives (8.7). IfR(N) > Π3/5
N then (8.7) gives|α| < 3. Yet |α| is

an integer. �

Lemma 20. Let k≥ 2, N ∈ N(k, z) andα ∈ P(N) be given. Then for alln ∈ M(α) and r ∈ α
we have

(8.8) Uk,n(P,W, k, N) � Lc
(
P2W2Nσ(n,α)

r + Π
1/2
N

)
.

Proof. Let r ∈ α andn ∈ M(k) be given. Then from (8.4) we have

Uk,n(P,W, k, N) � Nnr/L
r

∑
Ω(n)

| fk,0(1/2+ itω, λ
mχ, N,β)|

∏
j∈α\{r}

| fk, j(1/2+ itω, λ
mχ, N)|,

� Nnr/L
r

(∑
Ω(n)

| fk,0(1/2+ itω, λ
mχ, N,β)|2

)1/2(∑
Ω(n)

∏
j∈α\{r}

| fk, j(1/2+ itω, λ
mχ, N)|2

)1/2

.

Now fk,0 has lengthN0 = ΠN/R(N), and the product of the other factors has lengthR(N)/Nr

which, by Lemma 18, is≤ N0. We apply Theorem 9 twice, obtaining

Uk,n(P,W, k, N) � LcNnr/L
r

(
P2W2 + PW(ΠN/R(N))1/2 + (ΠN/Nr)1/2

)
.

Sincenr/L ≤ σ(n,α) ≤ 1/2 we may therefore boundUk,n(P,W, k, N) by

� Lc

(
P2W2Nσ(n,α)

r +
PWΠ1/2

N Nσ(n,α)
r

R(N)1/2
+ Π

1/2
N

)
.(8.9)

If R(N) > (PW)−2ΠN then (8.8) follows from (8.9). Otherwise Lemma 14 is sufficient to show
thatUk,n(P,W, k, N) � Lc(P2W2 + Π

1/2
N ). �

Completion of the proof of Theorem 5

Theorem 21. Let G> 0 be given.
(i) Assume k≥ 6 and N ∈ N(k, z). Then if WLG ≤ Π

1/5
N and LW2L2G < ΠN there exists a

constant c(k, κ) such that

(8.10) Uk(P,W, k, N) � Lc
(
P2W2 + PΠ1/2

N L
−G + Π

1/2
N

)
ρ(k),

uniformly ink.
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(ii) Assume k≥ 11 and N ∈ N(k, z). Then, ifΠ1/5
N ≤ WLG ≤ Π

9/40
N , LW8L8G ≤ Π2

N and
L < Π1/4

N there exists a constant c(k, κ) such that

(8.11) Uk(P,W, k, N) � Lc
(
P2W2Π

1/20
N + PΠ1/2

N L
−G + Π

1/2
N

)
ρ(k)

for ρ(k) ≤ Π1/20
N .

Proof. AssumeN satisfies the conditions of either case and for which there existsα ∈ P(N)
with |α| ≤ 2. We will show that (8.10) holds for suchN.

In both cases we haveLW2L2G < ΠN, in which case Lemma 14 applied withα = {2k+ 1}
gives (8.10) subject to the additional constraintN2k+1 ≥W2L2G.

AssumeN2k+1 <W2L2G. If R(N) or any other sub-product lies in

(8.12)

[
W2L2G,

ΠN

W2L2G

]
then Lemma 14 again gives (8.10).

So we may assume thatR(N) > ΠN/W2L2G. Take a setα ∈ P(N) with |α| ≤ 2. Again, by
minimality, if a ∈ α then

Na ≥
R(N)2

ΠN
≥
ΠN

W4L4G
≥

{
Π

1/5
N > (2z)1/k for k ≥ 6 in case (i),
Π

1/10
N > (2z)1/k for k ≥ 11 in case (ii).

(8.13)

Thusα ⊆ {1, ...k,2k+ 1} for k appropriate to cases (i) and (ii).
If |α| = 1 thenLW2L2G < ΠN implies the centre inequality in the chainR(N) ≥ ΠN/W2L2G

> L ≥ N2k+1. HenceR(N) , N2k+1 and soR(N) = Na for some 1≤ a ≤ k and we can apply
Lemma 15 to get

(8.14) Uk(P,W, k,N) � LcPW
(
PW+WLG

)
ρ(k).

This bound is again dominated by that in (8.10).
Assume|α| = 2. If 2k + 1 < α thenα ⊆ {1, ..., k} and we can again apply Lemma 15 with

Sab = R(N) to get (8.14).
If 2k + 1 ∈ α thenR(N) = N2k+1Ni for some 1≤ i ≤ k. Relabelling if necessary assume

thatR(N) = N2k+1N1.

If there exists 2≤ a ≤ k such thatNa ≥ N2k+1 then apply Lemma 15 withSab = NaN1 ≥

R(N).
Otherwise, assume that for all 2≤ a ≤ k we haveNa < N2k+1, in which caseNaN1 <

N2k+1N1 = R(N). By the minimality ofR(N) we must haveNaN1 < W2L2G. Then, for
2 ≤ a ≤ k we have

Na <
W2L2G

N1
=

W2L2GN2k+1

R(N)
<

W4L4GN2k+1

ΠN

≤

{
W6L6G/ΠN ≤ ΠN/W4L4G in case (i), usingN2k+1 ≤W2L2G,
W4L4GL/ΠN ≤ ΠN/W4L4G in case (ii).
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As seen in (8.13) we also have, in both cases and for appropriatek,

(8.15) Na ≤ (2z)1/k ≤
ΠN

W4L4G

for all k + 1 ≤ a ≤ 2k. Hence the bound in (8.15) holds for all 2≤ a ≤ 2k. Starting with
N1N2 ≤W2L2G we find that

N1N2N3 ≤ (W2L2G)
ΠN

W4L4G
≤
ΠN

W2L2G
.(8.16)

So eitherN1N2N3 lies in the interval (8.12) orN1N2N3 ≤ W2L2G. In the latter case repeat
the process by looking atN1N2N3N4, et cetera. Since the product

∏2k
i=1 Ni = ΠN/N2k+1 ≥

ΠN/W2L2G, lies to the right of the interval (8.12), some sub-product must lie in the interval.
To this we can apply Lemma 14 to complete the proof that (8.10) holds forN for which there
existsα ∈ P(N) with |α| ≤ 2.

This ends the proof of case (i) sinceR(N) > ΠN/W2L2G along withWLG ≤ Π
1/5
N imply

R(N) > Π3/5
N , and thus|α| ≤ 2 for all α ∈ P(N), by Corollary 19.

Finally, consider thoseN satisfying case (ii) and for which allα ∈ P(N) satisfy |α| ≥ 3.
From Corollary 19 we deduce thatR(N) ≤ Π3/5

N . If R(N) ≤ Π11/20
N use (8.6) along with the

observation that
P2W2 + PWΠ11/40

N + Π
1/2
N � P2W2Π

1/20
N + Π

1/2
N .

Thus we may assume

(8.17) Π
11/20
N < R(N) ≤ Π3/5

N .

Recalling (8.3) we see that it suffices to prove

(8.18) Uk,n(P,W, k, N) � Lc(k)
(
P2W2Π

1/20
N + Π

1/2
N

)
ρ(k),

for all n ∈ M(α), subject to (8.17) and|α| ≥ 3.
We assume to begin with thatn andα satisfyσ(n,α) ≥ 1/4. We have available Lemma

16 but since we cannot choose the value ofj(n) we shall consider each possible value in turn.
First, assume thatj(n) = 0, whenN0 = ΠN/R(N). We takeg = 1 in Lemma 16, which

with the lower bound in (8.17) andσ ≤ 1/2 gives

(8.19) Uk,n(P,W, k, N) � Lc(k)
(
P2W2R(N)6σ(n,α)−1Π

1−5σ(n,α)
N + Π

1/2
N

)
.

The first term on the right in (8.19) is no more thanP2W2Π
1/20
N whenσ(n,α) ≥ 1/4, because

of the upper bound onR(N) in (8.17). So (8.18) follows.
Second, assume thatj(n) ∈ α in Lemma 16. IfN j(n) > Π

1/4
N then j(n) , 2k + 1 and

so Lemma 17 suffices to give a bound of� LcP2W2ρ2(k) � LcP2W2Π
1/20
N ρ(k). If N j(n) ≤

Π
1/(20σ(n,α))
N then Lemma 20 withr = j(n) suffices to give (8.18). Therefore we may assume
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Π
1/(20σ(n,α))
N ≤ N j(n) ≤ Π

1/4
N . We deal with this range in two ways. Firstly, we may choose an

integerg ≥ 2 such thatΠ1/3
N ≤ Ng

j(n) ≤ Π
1/2
N . All such g satisfyg/20σ(n,α) ≤ 1/2 and so

g ≤ 5. Thus (8.5) gives

(8.20) Uk,n(P,W, k, N) � Lc(k)
(
P2W2Π

1/3−σ(n,α)
N + Π

1/2
N

)
.

Secondly, applying Lemma 16 withg = 2 and usingN j(n) ≥ Π
1/(20σ(n,α))
N , gives

(8.21) Uk,n(P,W, k, N) � Lc(k)
(
P2W2Π

σ(n,α)+1/10σ(n,α)−3/5
N + Π

1/2
N

)
.

The bound (8.20) gives (8.18) for 17/60 ≤ σ(n,α) ≤ 1/2, while (8.21) gives (8.18) for
1/4 ≤ σ(n,α) < 17/60.

Assume now thatn andα satisfyσ(n,α) ≤ 1/4. We note that, since|α| ≥ 3, there exists at
least onea ∈ α such thatNa ≤ R(N)1/3, which is≤ Π1/5

N by (8.17). We apply Lemma 20 with
r = a and observeNσ(n,α)

a � Π
1/20
N to deduce (8.18).

Hence, for alln ∈ M(α) we have (8.18). �

Proof of Theorem 4.

We might just note here that case (a) of Theorem 4 follows from Theorem 21(i) and Theorem
6(iii) with n = 2 while case (b) usesn = 3. Case (c) follows from Theorem 21(ii) along with
Theorem 6(ii), while case (d) uses part (i) of Theorem 6. �

9 Proof of Theorem 5; small values of̀ and x

We first estimate the number of integersµ ≡ ν modq with µ ∈ S(x,Θ, `).

Lemma 22. For all ν ∈ OK with (ν, q) = 1 we have

(9.1)
∑

µ≡ν modq
µ∈S(x,Θ,`)

1 =
2π
|d|1/2

4`2x
Nq
+O

(
`x1/2

Nq1/2
+ 1

)

where d is the discriminant of K.

Proof. The algebraic integers inq form a latticeL ⊆ �. Take a�-basis{α1, β} with |α1|

minimum over all non-zero elements of the lattice. Next choosen ∈ � to minimise Re ¯α1(β +
nα1). With α2 = β + nα1 we get a basis{α1, α2} in which the angle betweenα1 andα2 lies
betweenπ/3 andπ/2. (See the proof of Lemma 4 in [3] for more details). In particular,

(9.2) A ≤ |α1||α2| ≤ 2A/31/2,

whereA is the area of a fundamental region of the lattice, in this case 2−1
√

dNq. Sinceαi ∈ q

we have|αi | ≥ Nq1/2, i = 1,2. Combine these observations with (9.2) to get

(9.3) Nq1/2 ≤ |αi | ≤ (d/3)1/2Nq1/2,
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for i = 1,2. We now get the asymptotic result stated by estimating the number of translates of a
fundamental region of the lattice that either lie totally within, or have a non-empty intersection
with T(x,Θ, `) =

{
z :

∣∣∣|z|2 − x
∣∣∣ < `x,−` ≤ 〈

(argz)/(2π) − Θ
〉
≤ `

}
. Yet because of (9.3), the

relevant translates of a fundamental region of the lattice subtend an angle� Nq1/2/x1/2 at the
origin. Thus ∑

µ≡ν modq
µ∈S(x,Θ,`)

1 ≶
|T(x,Θ, ` ± cNq1/2/x1/2)|

2−1d1/2Nq

for somec > 0. From|T(x,Θ, `)| = 4π`2x we get the stated result. �

If α ∈ S(x,Θ, `(1−∆)) thenvx,Θ,`,∆(α) = 1, while if vx,Θ,`,∆(α) , 0 thenα ∈ S(x,Θ, `(1+∆)).
These observations along with Lemma 22 give

∑
α≡β modq vx,Θ,`,∆(α) � `2xNq−1 + 1. Thus∣∣∣∣∣∣∑

α

vx,Θ,`,∆(α)Λβ,q(α)

∣∣∣∣∣∣ ≤
( ∑
α≡β modq

vx,Θ,`,∆(α) +
1
φ(q)

∑
α

vx,Θ,`,∆(α)

)
L

� `2xφ(q)−1L +L.(9.4)

If we sum (9.4) over all Nq ≤ Q, the contribution is� `2xL2+QL, which is sufficiently small
if `2x ≤ y2zL−A−2. Note that̀ 2x > y2zL−A−2 along withx ≤ z and` ≤ y imply ` ≥ yL−A/2−1

andx > zL−A−2. Let B(Q, z, y) denote the expression on the left hand side of (2.3). We have,
by the above,B(Q, z, y) � y2zL−A + B∗(Q, z, y) where

(9.5) B∗(Q, z, y) =
∑

Nq≤Q

max
(β,q)=1

max
zL−A−2≤x≤z

0≤Θ<1

max
yL−A/2≤`≤y

∣∣∣∣∣∣∑
α

vx,Θ,`,∆(α)Λβ,q(α)

∣∣∣∣∣∣.
An application of Theorem 4 completes the proof of Theorem 5. �

10 Stripping weights and the necessity of weights

Derivation of (1.2) in Theorem 1

For this section only let 1x,Θ,` be the characteristic function of integersα ∈ S(x,Θ, `). Then,
by an observation in Section 9,∣∣∣1x,Θ,` − vx,Θ,`,∆

∣∣∣ ≤ 1x,Θ,`(1+∆) − 1x,Θ,`(1−∆) = 1∗x,Θ,`,∆,

say. Thus∣∣∣∣∣∣∣ ∑
α∈S(x,Θ,`)

Λβ,q(α) −
∑
α

vx,Θ,`,∆(α)Λβ,q(α)

∣∣∣∣∣∣∣ ≤ ∑
α≡β modq

1∗(α)Λ(α) +
1
φ(q)

∑
α

1∗(α)Λ(α)

�

(
`2∆x
φ(q)

+
`x1/2

φ(q)1/2
+ 1

)
L,(10.1)

by Lemma 22. Taking∆ = L−A−2 and summing (10.1) over Nq ≤ Q gives a contribution
� `2xL−A, assumingQ ≤ `2xL−2A−2. Hence (1.2) follows from Theorem 5. �
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Necessity of weights

To deal with the condition−` <
〈
(argα)/2π − Θ

〉
< ` we have to use a weight function and it

may as well have the best possible properties. We could examine the condition
∣∣∣|α|2 − x

∣∣∣ < x`
without introducing weights when we would use Perron’s Theorem to get an expression like
(4.5) but with truncation at someT far larger thanW. Thus we would have to count zeros with
|m| ≤ W, |γmχ| ≤ T. As explained in Section 4 this is done using Mean Value results. The
version of Theorem 9 with an integral over [−T,T] has a factorW2 + T2 in place ofW2 in the
right hand side of (7.1). This is already seen in Theorem 6.2 of [2] and arises from counting
lattice points in rectangular regions. It transpires that since the dependency is asquareof T,
we require a weighted integrand in (4.5) decaying faster than the1

|t|dt arising from Perron’s
Theorem. Thus we have to put a weight function on the norms whose Mellin transform decays
sufficiently fast. It simplifies matters to derive such a weight from the same function as used
to give the weight on the arguments.

Similarly, if we used Perron’s Theorem back in the proof of Lemma 13 to relate
fr,k(s, λmχ,N) to L(s, λmχ) for 1 ≤ r ≤ k, the length of integration in (7.3) would have been
longer thanW. For instance, in [29] p.323, the integration is up toT0 = z100. The method
of [26] used to prove Theorem 12 uses the functional equation for our HeckeL-functions
and this is of the formL(s, λmχ) = G(s, λmχ)L(1 − s, λ

m
χ). Here the gamma factors satisfy

G(σ + it, λmχ) � (m2 + t2)1/2−σ. Again, because the dependency is asquareof t, to deal with
the rangeW < |t| ≤ T0 in any mean value ofL4 would require a weighted integrand decaying
faster than the1

|t|dt arising from Perron’s Theorem. Thus we see the necessity of introducing
some weight function, such asξw, into the fr,k. Hence the reason for taking the time in Section
6 to insert the weight functionηw =

∑
i ξw/2i into Heath-Brown’s identity forΛ.

11 A Bombieri-Vinogradov Theorem for homogeneously ex-
panding domains in�(i)

Proof of Theorem 2

We shall use|...| to denote either the area, length or cardinality of a set, and it should be
obvious from the context which is meant. So, for example, we have|Rw,v| = |v|2|R0,1| and
|∂Rw,v| = |v||∂R0,1|. Further, from Theorem 2 on p.128 of [21] we have, for allw ∈ �,

|�[i] ∩ Rw,v| = |v|
2|R0,1| +O(|v|) as |v| → ∞.

First observe that for allz ∈ �∫ ∞

0

∫ 1

0
vr,Θ,`,∆(z)

dr
r

dΘ =
∫ ∞

0
g`,∆

(
|z|2

r

)
dr
r

∫ 1/2

−1/2
f`,∆

(argz
2π
− Θ

)
dΘ

=

∫ ∞

0
g`,∆(w)

dw
w

∫ 1/2

−1/2
f`,∆(Θ)dΘ = 4`2(1+O(∆)),
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having used the periodicity off . Importantly the double integral is independent ofz. Label it
asc`. Assume thatv,w ∈ � are given. With̀ and∆ to be chosen we have∑

α∈Rw,v

Λβ,q(α) =
1
c`

∑
α∈Rw,v

Λβ,q(α)
∫ ∞

0

∫ 1

0
vr,Θ,`,∆(α)

dr
r

dΘ

=
1
c`

"
J0

∑
α∈Rw,v

vr,Θ,`,∆(α)Λβ,q(α)
dr
r

dΘ,(11.1)

whereJ0 = {(r,Θ) : (∃α ∈ �(i)) α ∈ Rw,v ∧ vr,Θ,`,∆(α) , 0}.

Firstly, α ∈ Rw,v ⊆ D (w, |v|) means that|α − w| < |ν| and so|α| > |w| − |ν| ≥ |w| /2 as well
as|α| < 3 |w| /2 .

Secondly,vr,Θ,`,∆(α) , 0 implies both
∣∣∣|α|2 − r

∣∣∣ < r`′ and
∣∣∣argα − 2πΘ

∣∣∣ < 2π`′ where
`′ = ` (1+ ∆) . The first inequality along with our bounds onα give r � |w|2. We can also
justify the steps in the following,∣∣∣r1/2e2πΘi − α

∣∣∣ = ∣∣∣r1/2e2πΘi − |α|e2πΘi + |α|e2πΘi − α
∣∣∣

≤
∣∣∣r1/2 − |α|

∣∣∣ + |α| ∣∣∣e2πΘi − ei argα
∣∣∣ ≤ c1 |w| `.

Next, define

J1 = {(r,Θ) : (∀α ∈ � [i]) vr,Θ,`,∆(α) , 0⇒ α ∈ Rw,v}.

ThenJ1 ⊆ J0 and, for (r,Θ) ∈ J0 \ J1, we can findα, β ∈ � [i] for which α ∈ Rw,v, vr,Θ,`,∆(α) ,
0, vr,Θ,`,∆(β) , 0 butβ < Rw,v. This means that the region of� on whichvr,Θ,`,∆ is non-zero for
such(r,Θ) , cuts the boundary ofRw,v. Also, r1/2e2πΘi is within a distancec1 |w| ` of bothα and
β and so of some point on the boundary. If we define

Ew,v =
{
(r,Θ) : ∃z ∈ ∂Rw,v,

∣∣∣r1/2e2πΘi − z
∣∣∣ ≤ c1 |w| `

}
,

we have shown thatJ0 \ J1 ⊆ Ew,v. Recall thatR has a boundary that is Lipschitz parametriz-
able. As seen in Chapter VI,§2 of [21] this means that∂Rw,v intersects≤ c2 |v| translates of the
fundamental region of a lattice such as� [i]. If |v| / |w| ` is sufficiently large we can cover the
boundary by a union of� |v| / |w| ` discs of radiusc3 |w| `. Here,c3 can be chosen sufficiently
large so that the union of the discs contains all points within a distancec1 |w| ` of the boundary.
Hence

∣∣∣Ew,v

∣∣∣ � |v| |w| `.
We replace the regionJ0 in (11.1) by J1 when the conditionα ∈ Rw,v can be removed from

the inner sum. We then go further by replacingJ1 by Jw,v =
{
(r,Θ) : r1/2e2πΘi ∈ Rw,v

}
, a region

over which it is easier to integrate. But we first note that if (r,Θ) ∈ J1\Jw,v thenr1/2e2πΘi < Rw,v

but is withinc1 |w| ` of someα ∈ � [i] ∩ Rw,v while if (r,Θ) ∈ Jw,v \ J1 thenr1/2e2πΘi ∈ Rw,v

and is withinc1 |w| ` of someα ∈ � [i] with α < Rw,v. In both cases (r,Θ) ∈ Ew,v and so
J1 4 Jw,v ⊆ Ew,v.
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Thus

(11.2)
∑
α∈Rw,v

Λβ,q(α) =
1
c`

"
Jw,v

∑
α

vr,Θ,`,∆(α)Λβ,q(α)
dr
r

dΘ + Eβ,q

where

(11.3) Eβ,q �
1
c`

"
Ew,v

∑
α∈Rw,v

|vr,Θ,`,∆(α)Λβ,q(α)|
dr
r

dΘ

For the error we need

(11.4)
"
Ew,v

dr
r

dΘ �
1

|w|2

"
Ew,v

drdΘ �
|v|
|w|
`.

Note thatr here is the square of the usual radial variable in polar coordinates. Thus

Eβ,q � L

(
|w|2`2

Nq
+ 1

)
1
c`

"
Ew,v

dr
r

dΘ � L

(
|v||w|`

Nq
+
|v|
|w|`

)
.

We now see that it is appropriate to set` = |v||w|−1L−A−2, when

Eβ,q � L

(
|v|2

NqLA+2
+LA+2

)
.

We can now introduce the maximums overv andw along with the summation over Nq ≤ Q
to get a contribution to (1.3) ofO(h2XL−A + QLA+3).

For the main term we need"
Jw,v

dr
r

dΘ =
4|v|2

π

"
s+it∈R

dsdt
|w+ v(s+ it)|2

�
|v|2

|w|2
,

since|v| ≤ |w|/2.
The result (11.2) can be used to give asymptotic results but, since we require only upper

bounds, it suffices to choose∆ = 1/2. An upper bound for the first term from (11.2) is

� max
(r,Θ)∈Jw,v

∣∣∣∣∣∣∣∑
α

vr,Θ,`,1/2(α)Λβ,q(α)

∣∣∣∣∣∣∣ 1
c`

"
Jw,v

dr
r

dΘ

� max
(r,Θ)∈Jw,v

∣∣∣∣∣∣∣∑
α

vr,Θ,`,1/2(α)Λβ,q(α)

∣∣∣∣∣∣∣L2A+4

by (11.4) and the choice of̀above. Next, (r,Θ) ∈ Jw,v, along with |w|2 ≤ X and |v| ≤ h|w|
imply the existence of a constantc2 > 1 such thatr < c2X. So

max
XL−C(A)≤|w|2≤X

max
|v|<h|w|

max
(r,Θ)∈Jw,v

|. . .| ≤ max
r<c2X
0≤Θ<1

max
`<hL−A−2

|. . .|.
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We can now feed in Theorem 5 to get a contribution to (1.3) of� h2XL−A. �

Finally, note that Lemma 7 can be used to give an asymptotic result for
∑
α vx,Θ,`,∆(α)Λ(α)

and, for Nq ≤ logC x, an upper bound for
∑
α vx,Θ,`,∆(α)Λβ,q(α). We leave it to the reader to

check that (11.2) can be used with∆ sufficiently small to strip out the weightsv from these two
results, replacing it with the conditionα ∈ Rw,v. The two results so found can be combined as
(1.4).
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