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The Hooley-Huxley Contour Method for Problems
in Number Fields II:

Factorization and Divisibility

M D Coleman

1. Introduction

Let L be a Galois extension of the number field K. Set n = nK =

degK/Q, nL = degL/Q and nL/K = degL/K. Let I = IL/K denote the

group of fractional ideals of K whose prime decomposition contains no prime

ideals that ramify in L and let P = {(α) ∈ I : α ∈ K∗, α � 0}. Following

Hecke [9] let (λ1, λ2, ..., λn−1) be a basis for the torsion-free characters on

P that satisfy λi(ε) = 1, 1 ≤ i ≤ n − 1, for all units ε � 0 in OK , the ring

of integers of K. Fixing an extension of each λi to a character on I then

λi(a), 1 ≤ i ≤ n − 1 are defined for all ideals a of K that do not ramify in

L. So for such ideals we can define ψ(a) = (ψi(a)) ∈ Rn−1/Zn−1 = Tn−1 by

λj(a) = e2πiψj(a). Then the small region of K referred to above is

S (x, ψ0, `) = {a ∈ I : x(1− `) ≤ Na ≤ x(1 + `),

|ψj(a)− ψ0|T ≤ `, 1 ≤ j ≤ n− 1
}

for 0 < ` < 1
2 , and ψ0 ∈ Tn−1, with the notation that, for any α ∈ R we set

|α|T = β where β is the unique real satisfying −1
2 < β ≤ 1

2 , β ≡ α(mod 1).

In [1] and Theorem 2 of [4] we showed that we can count the number

of prime ideals in S (x, ψ0, `), when L = K, as long as ` > x−5/12nK+ε.

The method of proof is by standard methods of contour integration and

Dirichlet series. If we were only interested in enforcing the one condition

x(1 − `) ≤ Na ≤ x(1 + `), then the Dirichlet series considered would be

the Dedekind zeta function in K or, if there are congruent conditions on

the prime ideals, the Hecke-Landau L-functions with characters of finite
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order. See, for example, Sokolovskii [25] for such results. To deal with

the restrictions on the ψj(a) it is necessary to use Fourier series which

leads to terms
∏n−1
j=1 e

2πimjψj(a) =
∏n−1
j=1 λ

mj

j (a), denoted by λ
−→m(a), −→m =

(m1,m2, ...,mn−1) ∈ Nn−1
0 where N0 = N ∪ {0}. These are examples of

groessencharaktere, characters of infinite order. So now we need to consider

Hecke L-functions with groessencharaktere. These go back to Hecke [9] but

see also Kubilius [14], [15] or Fogels [8] for examples of uses of such Dirichlet

series.

In this paper we consider θ, a complex-valued multiplicative function of

ideals of I such that, if the Frobenius classes in G = Gal(L/K) of different

prime ideals p and q of I are equal, that is [(L/K)/p] = [(L/K)/q], then

θ(pn) = θ(qn) for all n ≥ 1. Following [21] we will say that θ is Frobenius

with respect to G. Similarly let Θ be a Frobenius multiplicative function

with respect to G but with values in some finite multiplicative monoid Γ =

{γ1, γ2, ..., γt}, say. Then, for each 1 ≤ i ≤ t, we can define

ωi(a) = #{pn||a,Θ(pn) = γi} and Ωi(a) =
∑
pn‖a

Θ(pn)=γi

n.

We will consider vector-valued functions f(a) = (fi(a))1≤i≤t where, for

each 1 ≤ i ≤ t, fi(a) is either ωi(a), Ωi(a) or Ωi(a) − ωi(a). For z =

(z1, ..., zt) ∈ Ct define

zf(a) =
t∏
i=1

fi(a) 6=0

z
fi(a)
i .

In the first result of this paper we evaluate
∑

a∈S(x,ψ0,`)
θ(a)zf(a). The

Huxley-Hooley method reduces this sum to an integral of a Dirichlet series,

see equations (6) and (7) below. This integral is of a type seen in proofs of

Selberg-Delange type results, as seen in [26], Chapter II.5 or [29]. As a corol-

lary of this result we are able to count the number of ideals a ∈ S (x, ψ0, `)

that are the relative norms of ideals from some given number field extension

of K. The original problem in [22] of counting squares and sums of two
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squares, which spurred on the development of the Hooley-Huxley method,

is one of counting rational integers that are the norms of ideals in Q(i). The

main motivation of this paper is, though, the counting of irreducible integers

α ∈ K satisfying (α) ∈ S(x, ψ, `). This is Theorem 7 below.

1.1 First Result Given a conjugacy class, C in G, we know that Θ(p),

and thus f(p), is constant for all p with [(L/K)/p] = C and so we can

write zC for the value of zf(p) for any such p. We can now define α(z) =∑
C |C|θ(C)zC/|G| with the obvious meaning for θ(C). We now have all the

notation necessary to state our first result

THEOREM 1 Let A > 0 be given and define Ai, 1 ≤ i ≤ t by Ai = A if

fi = ωi and Ai = q
1/4
0 , where q0 is the smallest norm of the prime ideals of

K, if fi = Ωi or Ωi − ωi. Assume that |zi| < Ai for all 1 ≤ i ≤ t.

Let p ∈ I. Assume that if Θ(pn) = γi and if fi = ωi then θ(pn) � cn

for some c < q
1/2
0 while if fi = Ωi or Ωi − ωi then θ(pn) � cn for some

c < q
1/4
0 .

Let M = sup |α(z)|, where the supremum is over allowable z. Let ε > 0

be given and assume that ` satisfies

1
2 > ` >

 x−5(1−ε)/12nK if L/K abelian

x−3(1−ε)/2(nL+3nK) otherwise.
(1)

Then for all ψ0 ∈ TnK−1 we have

∑
a∈S(x,ψ0,`)
a integral

θ(a)zf(a) =
x(2`)nK

(log x)1−α(z)

J∑
j=0

cj(z)
(log x)j

(2)

+x`nKEJ(z) +O(x`nK exp(−R(x))),

for some coefficients cj(z), with R(x) = κ1(log x)1/3(log log x)−1/3. Here

EJ(z) = 0 if α(z) is an integer while otherwise

EJ(z) �M
1

(log x)1−Reα(z)

{(
c1J + 1
log x

)J+1

+ `(c0 log x)M
}

(3)
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subject to J +M + 1 ≤ c0 log x. Here, κ1 and c1 are constants that depend

on M as well as K and L while c0 depends only on L and K.

From the proof we see that if J �M then the last term in (3) does not

occur. If J = J(x) = κ2(log x)1/3(log log x)−4/3 and ` ≤ exp(−R(x)) then

EJ � x`nK exp(−R(x)) (with the convention that κ1 need not be the same

at each occurrence). Note that M �k A.

PROOF The sum on the left hand side of (2) is a particular example of

the quantity A (x, ψ0, `) defined on p.251 of [5]. This quantity is seen, in

equation (21) of [5], to be related to the Dirichlet series

F
(
s,−→m, z

)
=

∑
a∈I

a integral

θ(a)zf(a)λ
−→m(a)

Nas
.

In examining for what s this series converges we consider the Euler prod-

uct
∏

p∈I
(
1 + Up

(
s,−→m, z

))
, where

Up

(
s,−→m, z

)
=
∑
n≥1

θ(pn)zf(pn)λ
−→m(pn)

Npns
.

The analytic properties of Euler products are dictated by the n = 1

terms in Up

(
s,−→m, z

)
. Given a prime p ∈ I, we can construct a characteristic

function for the conjugacy class that contains p by using characters onG. For

each irreducible character φ on G, let φK(pn) = φ ([(L/K)/pn]) for primes

unramified in L. For each conjugacy class C choose an element g ∈ C, let

H = 〈g〉 be the cyclic group generated by g, E the fixed field of H and let χ

denote irreducible characters of H. Then it is known, see for example p.422

of [16], that for p ∈ I

θ(p)zf(p)λ
−→m(p)

Nps
=
∑
C

zCθ(C)
|C|
|G|

∑
φ

φ(g)φK(p)
λ
−→m(p)
Nps

.

Also, from p. 430 of [16] we have∑
φ

φ(g)φ =
∑
χ

χ(g)χ∗,
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where χ∗ is the character on G induced from χ on H. Thus

θ(p)zf(p)λ
−→m(p)

Nps
=
∑
C

zCθ(C)
|C|
|G|

∑
χ

χ(g)
χ∗K(p)λ

−→m(p)
Nps

.

Now, for p ∈ I, define

Vp

(
s,−→m, z

)
=
∑
C

zCθ(C)
|C|
|G|

∑
χ

χ(g)
∑
r≥1

χ∗K(pr)λ
−→m(pr)

rNprs
.

Thus the r = 1 term for Vp

(
s,−→m, z

)
equals the n = 1 term for Up

(
s,−→m, z

)
.

This is important when we apply a result due to Delange [6] rewritten in [5]

as

LEMMA 1 Assume that {Up(s, z)}p and {Vp(s, z)}p are sequences of complex

valued functions defined on C× CN . Assume that on some domain D ⊆

C× CN there exist, for all p, positive constants Up and Vp satisfying

|Up(s, z)| ≤ Up, |Up(s, z)− Vp(s, z)| ≤ Vp

along with ∑
p

U2
p <∞ and

∑
p

Vp <∞.

Then the infinite product∏
p

(1 + Up(s, z)) exp(−Vp(s, z))

is absolutely and uniformly convergent on D and bounded on D.

By the conditions of the theorem we have, whatever the choice of f , that∣∣θ(pn)zf(pn)
∣∣ � cn with some c < q

1/2
0 where q0 is the smallest norm of the

prime ideals of K. Hence we can show that, as in section 2 of [5], given

σ1 >
1
2 then, for Re s ≥ σ1, we have∣∣Up

(
s,−→m, z

)∣∣ ≤ c2
Npσ1

+ c3

(
c

Npσ1

)2

,

with constants c2 = c2(A, θ), c3 = c3(A, θ, c, σ1). It is then easy to see that

both conditions of the lemma hold and that we can conclude that

F0

(
s,−→m, z

)
:=
∏
p∈I

(
1 + Up

(
s,−→m, z

))
exp

(
−Vp

(
s,−→m, z

))
5



converges absolutely and uniformly for Re s ≥ σ1, all −→m and all z satisfying

the conditions of Theorem 1. Now

∏
p∈I

exp
(
Vp

(
s,−→m, z

))
= exp

∑
C

zCθ(C)
|C|
|G|

∑
χ

χ(g)
∑
p∈I

∑
r≥1

χ∗K(pr)λ
−→m(pr)

rNKprs

 .

From the study of the contribution to L-series of induced characters, as

described in Chapter XII, Section 3, of [18], we see that the inner series over

r equals ∑
q|p

∑
n≥1

χE(qn)λ
−→m(NE/Kqn)

nNEqns

where the outer sum is over prime ideals q of E lying over p, and where χE

is now considered to be a character on the narrow ideal classes mod f of E

for some conductor f. Hence the inner double sum differs by only a finite

number of primes from logL
(
s, χEλ

−→m
E/K

)
where L

(
s, χEλ

−→m
E/K

)
is defined

by ∑
(a,f)=1

χE(a)λ
−→m(NE/Ka)
NEas

,

for Re s > 1. This finite number of primes can be absorbed into F0

(
s,−→m, z

)
.

Hence

F
(
s,−→m, z

)
= F1

(
s,−→m, z

)∏
C

∏
χ

L
(
s, χEλ

−→m
E/K

)α(C,χ,z)
, (4)

where F1

(
s,−→m, z

)
satisfies the same properties as F0(s,−→m, z) and α(C,χ, z) =

|C|θ(C)χ(g)zC/|G|. The L
(
s, χEλ

−→m
E/K

)
are L-functions in E with groessen-

charaktere from K.

The Hooley-Huxley method of [5] firstly deals with the weighted sum

∑
a

θ(a)zf(a)θx,ψ(a) ≈ 1
2πi

∑
||−→m||<W

a−→me
−2πi−→m.ψ0

c+iW∫
c−iW

ĝ(s)F
(
s,−→m, z

)
ds, (5)

where ||−→m|| = max1≤i≤t |mi|. The weight θx,ψ is a product of continuous

functions approximating the characteristic functions of either the interval

[x(1 − `), x(1 + `)] for Na or intervals (−`, `) for each of the ψi(a). The
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approximations differ from the characteristic functions on intervals of length

� x∆ or � ∆, respectively. The ĝ(s) and a−→m arise in (5) as either the

Mellin transforms or Fourier coefficients of the approximations, and satisfy

a−→m � a−→
0

= (2` + O(∆))n−1 for all −→m and ĝ(σ + it) � `xσ for all t. The

truncation W can be taken as (log3 x)/∆ and the notation ≈ in (5) means

that the two sides differ by an arbitrary small function of x.

The lines of integration in (5) are moved to the left of Re s = 1, though

when −→m =
−→
0 we have to retain a loop about s = 1. The final position

of the lines depend on the position of the zeros of the L-functions in (4)

and on the growth of these functions. Their growth on vertical lines is

measured in terms of V
(−→m, t

)nE where nE = degE/Q, and V
(−→m, t

)
={

1 + t2 +
∑
m2
i

}1/2 while in [5] growth of the L-functions that occurred

there was measured in terms of V
(−→m, t

)nK , which has a smaller exponent.

Yet, the arguments can be followed through Lemma 14 and equations (32)

and (34) of [5] to see that the change in exponent can only alter the constant,

κ1, in our definition of R(x). We have the same quality of zero-free region

for the collection of L-functions in F
(
s,−→m, z

)
as we had in [5], the only

difference being the dependency of a constant on the fields E that arise and

this only effects the implicit constant in our final result (2).

We now apply zero-density results, that is, bounds for

NE/K(σ,W ) =
∑

||−→m||<W

∑
χ

∑
|γ−→mχ|<W
β−→mχ≥σ

1

where ρ−→mχ = β−→mχ + iγ−→mχ satisfies L
(
ρ−→mχ, χEλ

−→m
E/K

)
= 0. From Theorem

5 of [4] we have that, for any ε > 0,

NE/K(σ,W ) �

 W (12nK/5+ε)(1−σ)(logW )c4 if E/K is abelian,

W (2(nE+3nK)/3)(1−σ)(logW )c5 otherwise,

uniformly for 1/2 ≤ σ ≤ 1, where c4 depends on ε. There are stronger

results in [4] for when nE ≤ 5nK , but to get any advantage from these we
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need to have nE ≤ 5nK for all E ⊆ L, in which case nL ≤ 5nK . But then

L/K must necessarily be abelian, given it is Galois, as must be then every

E/K, and we can use the first of the bounds for NE/K(σ,W ) on each E,

giving a result depending only on K. So the additional results in [4] do not

improve the bounds in (1).

Given a zero density bound of the form WB(1−σ) logcW , the methods of

[5] can be used to estimate the contribution of the new lines of integration,

as long as ` > x−(1−ε)/B. The weights θx,ψ can then be “stripped” from

(5) and we can prove the following version of Theorem 1 of [5]: Under the

conditions of Theorem 1 we have

∑
a∈S(x,ψ0,`)
a integral

θ(a)zf(a) − I(x, `) � x`nK exp(−R(x)) (6)

where

I(x, `) =
(2`)nK−1

2πi

x(1+`)∫
x(1−`)

∫
C0

ys−1F
(
s,
−→
0 , z

)
dsdy. (7)

Here C0 = {s ∈ C : |s− 1| = c0, s 6= 1− c0} is traversed in the anti-clockwise

direction, and c0 is chosen so that F (s,
−→
0 , z) has no singularities on the

boundary or in the interior of the circle of radius 3c0 with centre 1 except

for s = 1. The evaluation of the integral over C0 is a standard calculation

in proofs of Selberg-Delange type formula; see, for example Chapter II.5 of

[26] and, in particular, pages 189 and 190 of that book. From (4) we have,

for |s− 1| ≤ 3c0, that

F
(
s,
−→
0 , z

)
=
(

1
s− 1

)α(z)

H(s, z),

where α(z) =
∑

C α(C, 1, z) and H(s, z) is analytic in |s−1| ≤ 3c0 for those

z of Theorem 1. If α(z) is a non-positive integer, then there is no pole

in the integrand in (5) and so no main term in (2). If α(z) is a positive

integer, then we can move the line of integration over the pole and we get a
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contribution, the number of terms of which is independent of x. Otherwise

we expand H(s, z) about s = 1 as

H(s, z) =
∞∑
j=0

hj(z)(s− 1)j

=
J∑
j=0

hj(z)(s− 1)j +O

((
|s− 1|

2c0

)J+1
)
, (8)

valid for s ∈ C0, all z of Theorem 1 and all J ≥ 1. The error here arises

from the bound hj(z) � (2c0)−j for all j ≥ 1, valid for all z of Theorem 1.

The integrals over C0 of the J + 1 terms in the sum are truncated Hankel

integrals. As in the derivation of equation (24) on p.190 of [26] we can

deduce that

1
2πi

∫
C0

ys−1F
(
s,
−→
0 , z

)
ds

=
1

(log y)1−α(z)

 J∑
j=0

hj(z)
Γ(α(z)− j)(log y)j

+O

((
c1J + 1
log y

)J+1
) .(9)

There is no condition on J in this result. The error here, the first in EJ ,

also dominates the contribution from the error in (8). For the integral over

y in (7) we use

x(1+`)∫
x(1−`)

dy

(log y)γ
− 2`x

(log x)γ
� |γ|x`2

(log x)Re γ+1
.
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Using this on the terms in the sum in (9) gives an error

� x`2
J∑
j=0

|j + 1− α(z)|
(2c0)j |Γ(α(z)− j)|(log x)j+2−Reα(z)

� M
x`2

(log x)1−Reα(z)

(
1 +

1
|Γ(α(z)− 2M)|

×
J∑

j=2M

|j + 1− α(z)||j − α(z)|...|2M + 1− α(z)|
(2c0 log x)j+1


� M

x`2

(log x)1−Reα(z)

J∑
j=0

(j +M + 1)!
M !(2c0 log x)j+1

� M
x`2(2c0 log x)M

(log x)1−Reα(z)

J∑
j=0

(
J +M + 1
2c0 log x

)j+M+1

which leads to the second term in EJ when J +M + 1 < c0 log x. �

The leading coefficient, c0(z), of (2) equals h0(z)/Γ(α(z)) = H(1, z)/Γ(α(z)).

In applications we will often write c0(z) = α(z)U(z). Importantly, if α(z) =

0 then U(z) 6= 0 though c(z) = 0.

Note that

H(s, z) = (s− 1)α(z)F
(
s,
−→
0 , z

)
=
(

ρK
ζK(s)

)α(z)

F
(
s,
−→
0 , z

)
h(s)α(z),

where ρK is the residue of the Dedekind zeta-function of K ζK(s) at s = 1,

and h(s) is a function analytic at s = 1 with h(1) = 1. Hence

H(1, z) = ρ
α(z)
K

∏
p/∈I

(
1− 1

Np

)α(z)∏
p∈I

1 +
∑
n≥1

θ(pn)zf(pn)

Npn

(1− 1
Np

)α(z)

.

NOTES (i) If ` = 1/2, the bound (3) on the error x`nKEJ(x) dominates the

main terms of (2). We should expect this since the coefficients cj(z) con-

structed in the proof are not what appear when ` = 1/2. The proof when

` = 1/2 differs from above in that we require an expansion for s−1H(s, z)

about s = 1 in place of (8). This leads to a result of type (2) with cj(z) re-

placed by dj(z) defined by d0(z) = c0(z) and dj(z)−cj(z) = (j−α(z))dj−1(z)

for all j ≥ 1.
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(ii) If fi = Ωi−ωi for all 1 ≤ i ≤ t, then zC = 1 for all conjugacy classes.

If, further, θ ≡ 1, then α(z) =
∑

C |C|/|G| = 1 for all z. In this case there is

only the j = 0 term in the sum on the right hand side of (2). With further

work we can extract terms of lower order. By the methods of the above

proof we can show that, in the present case,

F
(
s,−→m, z

)
= F2

(
s,−→m, z

)
L
(
s, λ

−→m
)∏

C

∏
χ

L
(
2s, χEλ

2−→m
E/K

)β(C,χ,z)
, (10)

where β(C,χ, z) = |C|(z∗C−1)χ(g)/|G|. Here z∗C =
∏t
i=1 z

(Ωi−ωi)(p
2)

i , for any

p :
[
L/K

p

]
∈ C, and so z∗C = zj where j is given by Θ(p2) = γj for such p.

The factor F2(s,−→m, z) converges absolutely and uniformly for Re s ≥ σ2 for

any σ2 > 1/3, and is bounded in any such half plane for all −→m and for all z

satisfying the conditions of Theorem 1.

If we had factorized zf(a) = (1∗gz)(a), then the Dirichlet series for gz(a)

would have the factorization (10) but without the L
(
s, λ

−→m
)

term. The

ideas of Theorem 1 would then give a local result for gz(a), with main term

(2`)nKx1/2c(z)/ (log x)β(z)−2 where β(z) =
∑

C |C|z∗C/|G|, subject to either

` > x−5(1−ε)/24nK or ` > x−3(1−ε)/4(nL+3nK). But it would then be difficult

to recover a similar result for zf(a). The Dirichlet-Hyperbola method as

used by Delange [7] and Wu [28] in similar problems for rational integers

fails because of the large errors encountered when counting the number of

ideals with norms in given intervals.

Instead we consider (10) directly and apply the methods of Wolke [27].

So now the lines of integration in (5) are moved back to Re s = 1
2 −

c6L
−2/3L

−1/3
2 = 1

2−η, say, where L = logW and L2 = logL. Apart from the

value of c6, this is the edge of the zero-free region for the L
(
2s, χEλ

2−→m
E/K

)
factors in (10), when |t| ≤W and ||−→m|| < W (see [2]). Because of a possible

singularity we have to keep a loop, B, around s = 1/2 when −→m =
−→
0 . If we

try to move the vertical line of integration further to the left with the inten-

tion of using the ideas of the Hooley-Huxley method it becomes difficult to
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estimate the L
(
s, λ

−→m
)

factor in (10). Because of the weight function ĝ(s)

in (5), the contribution from the horizontal lines of integration in the new

contour is arbitrarily small. On the new vertical line of integration we use

first use the bounds

L
(
2s, χEλ

2−→m
E/K

)β(C,χ,z)
� LA,

for some A > 0, which hold if c6 is sufficiently small. As in [27] this follows

from a Richert-type bound

L
(
s, χEλ

−→m
E/K

)
�W c7(1−σ)3/2

L2/3,

for Re s > 1− c8, |t| ≤W and ||−→m|| ≤W (see [2]), and an application of the

Borel-Caratheodory Theorem to logL
(
s, χEλ

−→m
E/K

)
.

For the factor L
(
s, λ

−→m
)

in (10) we use the functional equation

L
(
s, λ

−→m
)

= A1−2sG
(
s, λ

−→m
)
L
(
1− s, λ

−→m
)
.

Here A = |dK |π−nK 2−r2 and G is a quotient of gamma functions satisfying

G
(
s, λ

−→m
)
� Wn( 1

2
−σ) for the present range of |t| ≤ W and ||−→m|| ≤ W .

After switching L
(

1
2 − η + it, λ

−→m
)

to L
(

1
2 + η − it, λ

−→m
)
, we apply a fourth

power moment result. (Such a result on the line Re s = 1/2 + η, as opposed

to Re s = 1/2, can be given by a method of Ramachandra’s. See the proof

of Lemma 10 of [3], for similar results.) Thus the contribution from the new

vertical line of integration in (5) will be

� a−→
0
`x1/2−ηWnKηWnKLC � x1/2

(
`

∆

)nK
(
WnK

x

)η
LD

� x1/2

(
`

∆

)nK
(

1
∆nKx

)η
LE . (11)

When s is near 1/2 we can write

F
(
s,
−→
0 , z

)
=
(

1
s− 1/2

)β(z)−1

H0(s, z),

12



with H0(s, z) analytic in some small disc around s = 1/2, of radius 3c8, say,

and all z in Theorem 1. Then the integral around B can be evaluated in a

manner similar to (9) above. The leading term of the resulting sum is

a−→
0
H0(1/2, z)

∫
g(y)

y1/2 log2−β(z) y
dy

=
(2`)nKx1/2H0(1/2, z)

log2−β(z) x

(
1 +O(`) +O

(
∆
`

))
. (12)

Only if ∆nK > x−η/(1+η) can (12) dominate (11). Then we can recover

an asymptotic result for the weighted sum (5) which includes explicitly the

contributions from the poles of (10) at s = 1/2. Unfortunately, if we strip

the weights from (5), then we introduce an error of O(x`nK−1∆) (assuming

||z|| ≤ 1).To ensure that this error is smaller than (12), we have to take ∆

so small that (11) dominates everything.

Instead, we accept that the poles of (10) at s = 1/2 will contribute to

the error in our final result. We choose ∆ by equating (11) with x`nK−1∆,

to get

∆ = `1/(n+1+nη)x−(1+2η)/2(n+1+nη).

It is quickly checked that for such ∆, the contribution from (11) domi-

nates (12). We also require ∆ ≤ `, which certainly holds for ` ≥ x−1/2nKx−η/4nK ,

say. Thus we obtain

THEOREM 2 Let fi = Ωi − ωi for all 1 ≤ i ≤ t. For ||z|| ≤ 1 and

x−1/2nK exp(−R(x)) < ` ≤ 1/2 we have∑
a∈S(x,ψ,`)

zf(a) = x(2`)nKH(1, z) +O
(
x

1− 1
2(n+1) `n−1+ 1

n+1 exp(−R(x))
)
.

�

If ` = 1/2 and z = 1, the error is weaker than we might expect, namely

O(x1−1/nK ), but, nonetheless, the main term dominates for ` > x−1/2nK exp

(−R(x)), which is an improvement on Theorem 1.

2 Applications In the first two examples we set z = 1 in Theorem 1

13



2.1 Norms of ideals Let F be any number field extension of K. For the

integral ideals a of K define

θ1(a) =

 1, if a is the relative norm of a fractional ideal of F ,

0, otherwise,

and

θ2(a) =

 1, if a is the relative norm of an integral ideal of F ,

0, otherwise.

It is easily checked that these functions are multiplicative (see, for ex-

ample, Lemma 1.1 of [20]).

Recall that in our definition of S(x, ψ, `) we restricted to ideals that did

not ramify in L/K. For such primes, it is easy to check that θ1(p) = 1 if,

and only if, pOF =
∏g
i=1 Pi in F , where the Pi satisfy NF/KPi = phi with

hi, for i = 1, 2, ..., g, collectively co-prime, while θ2(p) = 1 if, and only if,

some hi = 1 (see for example Lemma 1.2 of [20]). These conditions on hi

can be controlled by Proposition 2.8 of [11].

Let L/K be the Galois closure of F/K and let H ≤ G = Gal(L/K) be

the subgroup that fixes F elementwise. Suppose σ ∈ [(L/K)/p] has cycles of

length h1, ..., hs when acting upon the cosets of H in G, then p decomposes

in F as p =
∏s
i=1 Pi with NL/KPi = phi .

Of course, the cycle structure of σ depends only on the conjugacy class

containing it; hence θ1 and θ2 are Frobenius functions with respect to L/K.

Thus we obtain asymptotic expansions of the form (2) for both the number

of integral ideals in K, unramified in F , that are the relative norms of

either fractional or integral ideals from F . In both cases, without further

knowledge of particular examples of F and K we can say little other than

the results hold for ` > x−3(1−ε)/2(nL+3nK), where nL = degL/Q, unless the

extension is abelian when we have ` > x−5(1−ε)/12nK . The result for θ1 is

then a localized form of the analogue in L/K of Theorem IIA of [20]. The

result for θ2 was promised in [4].

14



2.2 Modular Forms The examples above are special cases of the following

situation considered by Serre in [24]. Let g be a multiplicative function

defined on the ideals of K such that there exists a Galois extension L of K

such that

{p : p unramified in L/K and g(p) = 0} =

{
p :
[
L/K

p

]
∈
⋃
r∈R

Cr

}
,

for some union of conjugacy classes in Gal(L/K). Define

ĝ(p) =

 1, if g(p) 6= 0

0, if g(p) = 0,

which is then a multiplicative Frobenius function. Thus we can apply Theo-

rem 1 with z = 1 and θ = ĝ to obtain results on #{a ∈ S(x, ψ, `), g(a) 6= 0}.

The main term will be of the form c(2`)nx/(log x)β for some constant c,

where β =
∑

r∈R |Cr|/|G| is thus a measure of the density of prime ideals p

for which g(p) = 0.

For a particular application, we examine Ramanujan’s τ -function defined

formally by
∑

n≥1 τ(n)qn = q
∏
m≥1(1 − qm)24. If we write restrict to q =

e2πiz, with Im z > 0, then f(z) =
∑

n≥1 τ(n)qn is a modular form of weight

12. Let m be a rational prime. As in [24], it is known that there exists a

field extension Km of Q and an irreducible two-dimensional complex linear

representation ρ : Gal(Km/Q) → GL2(Z/mZ) such that, given a prime

p unramified in Km, Trρ([(Km/Q)/p]) ≡ τ(p) modm. This shows that,

outside the integers that ramify in Km, the arithmetic function τ modm is

a multiplicative Frobenius function. Further, if m > 691 the map ρ is a

bijection and so degKm = (m2 − 1)(m2 −m). Thus we obtain

COROLLARY 1 For a prime m > 691 and

1 >
log h
log x

> 1− 3
2((m2 − 1)(m2 −m) + 3)

it follows that

]{x < n < x+ h : τ(n) 6≡ 0(modm)}

15



has an asymptotic expansion in the manner of (2) with main term

c0h

Γ(1− β)(log x)β
,

for some constant c0 independent of m and where β = m/(m2 − 1).

PROOF We need only check the exponent of the logarithm which, because of

our bijection, we can do by counting the number of elements of GL2(Z/mZ)

with trace 0. There are m2(m− 1) such elements so β = m2(m− 1)/(m2 −

1)(m2 −m) = m/(m2 − 1) as required. �

2.3 Counting prime divisors Define N∞ = N0 ∪ {∞}, where the symbol

∞ is simply a notational device so that, if k ∈ Nt
∞, then we can write

f(a) = k to mean fi(a) = ki if ki 6= ∞, and there is no condition on fi(a) if

ki = ∞. Then, for each k ∈ Nt
∞ define

υk(x, ψ, `) =
∑

a ∈S(x,ψ,`)
a integral
f(a)=k

θ(a),

where θ satisfies the conditions in Theorem 1. LetH = H(k) = {i : ki 6= ∞}.

If H = ∅ then υk(x, ψ, `) is simply the t = 1, z = 1 special case of Theorem 1.

So we assume that H is non-empty. For each i ∈ H, we enforce the condition

fi(a) = ki by the standard method of integrating the variable zi in (2) along

a circle about the origin. For instance, start with the J = 0 case of (2). This

contains the term α(z) =
∑

C |C|θ(C)zC/|G|, where zC =
∏
i:fi(p) 6=0 z

fi(p)
i for

any prime ideal p with
[
L/K

p

]
= C. But, for any such p, we have Θ(p) = γj

for some 1 ≤ j ≤ t. So fi(p) = 0 for all i 6= j and fj(p) = 1 if fj = ωj

or Ωj , zero otherwise. Hence zC = zj if fj = ωj or Ωj , while zC = 1 if

fj = Ωj −ωj . Let {Cij} comprise all the conjugacy classes containing prime

ideals p with Θ(p) = γj , and set δj =
∑

i |Cij |θ(Cij)/|G|, a weighted density

of such primes. Then

α(z) =
∑

j:fj 6=Ωj−ωj

δjzj +
∑

j:fj=Ωj−ωj

δj .

16



If i /∈ H, then we are not enforcing a condition on fi(a) and so we

put zi = 1 in our instance of Theorem 1. We will use the notation that,

given any t-tuple z, then z0 is the t-tuple given by z0i = 1 i /∈ H and

z0i = zi if i ∈ H. Our instance of Theorem 1 now contains the term

α(z0) = α+
∑

j∈H:fj 6=Ωj−ωj
δjzj , where

α =
∑
j /∈H

fj 6=Ωj−ωj

δj +
∑

j:fj=Ωj−ωj

δj .

For simplicity define δ
′
j = δj if fj 6= Ωj − ωj , and zero otherwise. Now

multiply both sides of the J = 0 case of (2) by
∏
i∈H z

−(ki+1)
i and integrate

over |zi| = ri for each i ∈ H, with ri < Ai to be chosen. Then the integral

of the main term contains the factor∫
...

∫
|zi|=ri

c0(z0)
log1−α(z0) x

∏
i∈H

dzi

zki+1
i

=
1

log1−α x

∫
...

∫
|zi|=ri

c0(z0) exp

∑
j∈H

δ′jXzj

∏
i∈H

dzi

zki+1
i

=
1

log1−α x

∫
...

∫
|zi|=ri

c0(z0)
∏
i∈H

exp(δ′jXzj)

zki+1
i

dzj =
P (X)

log1−α x
, (13)

where X = log log x. To describe this polynomial P (y) further we require

extra notation.

• Given any v = (v1, ..., vt) ∈ Nt
∞, we write ṽ = (vi)i∈H ∈ Nm

0 where

m = #H. Also, we will write ṽ and ||ṽ||σ, interchangeably, for∑
i∈H vi.

• Let ã = (δ
′
i)i∈H, which is not derived from a t-tuple, but we use a tilde

to show that it is indexed over H.

• Let b = b(k) ∈ Nt
0 be defined by bi = 0 if i ∈ H and 1 if i /∈ H. Then

α(b) = α.

17



• Write ã(z̃) =
∑

j∈H δ
′
jzj .

• Finally, given k̃ = (ki)i∈H ∈ Nm
0 , we write c

k̃
= k̃!/

∏
i∈H ki!, the

multinomial coefficient.

Then

P (y) =
∑
ñ

0≤ni≤ki,i∈H,δi>0

cñck̃−ñ
∂ñc0(b)

ñ!(k̃ − ñ)!

∏
j∈H

(δ′jy)
kj−nj ,

where ∂ñc0(z) denotes the partial derivative of c0(z) at each zi, i ∈ H, of

order ni. We can see that degP ≤
∑
{ki : i ∈ H, fi 6= Ωi − ωi, δi 6= 0} ≤ k̃.

For simplicity we will assume that, if 0 < ki < ∞, then fi 6= Ωi − ωi and

δi 6= 0. In this case,
∑
{ki : i ∈ H, fi 6= Ωi − ωi, δi 6= 0} = k̃. The first few

terms of P (y) are

P (y) =
c
k̃
ãk̃

k̃!
c0(b)yk̃ +

c
k̃
ãk̃

k̃!

∑
j∈H
kj>0

kj
δj
∂xjc0(b)yk̃−1 + ...

=
c
k̃
ãk̃

k̃!
αU(b)yk̃ +

c
k̃
ãk̃

k̃!

(
k̃U(b) + α

d

dt
U(v(t))

∣∣∣∣
t=0

)
yk̃−1 + ...

where v(t)i = 1 if i /∈ H, tki/δ′i if i ∈ H and ki > 0, and zero otherwise.

Note that the second term dominates the first if k̃ ≥ αy. Since k satisfies the

above assumption then ãk̃ =
∏
i∈H δ

′ki
i is well-defined and non-zero (under

the convention that 00 = 1). This is because, if δ′i = 0 for some i ∈ H,

which can only happen if either fi = Ωi − ωi or δi = 0, then ki = 0 by our

assumption. Hence degP = k̃ if α 6= 0 and degP = k̃ − 1 if α = 0.

With the choice of ri = ki/(|δi|X) for each i ∈ H, the error from the

J = 0 case of (2) contributes

� x`nK

log2−α x

∏
i∈H

1

rki
i

∫ 2π

0
exp(δ′iXri cos θ)dθ � x`nK

log2−α x

∏
i∈H

(|δ′i|X)ki

ki!
,

having used the n = 0 case of∫ 2π

0

∣∣∣eiθ − 1
∣∣∣n exp(y cos θ)dθ �n e

yy−
n+1

2 (14)
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(See [26] p. 204 for a proof.) Hence we have

THEOREM 3 Let k ∈ Nt
∞ be such that if 0 < ki < ∞ then fi 6= Ωi − ωi

and δi 6= 0. Then subject to the conditions on ` in Theorem 1,

vk(x, ψ, `) =
x(2`)nK

log1−α x
P (log log x) +O

(
x`nK

log2−α x

∏
i∈H

(|δi| log log x)ki

ki!

)

valid for ki ≤ Ai|δi| log log x for each i ∈ H. �

If we assume θ ≥ 0, then an alternative choice of the ri gives

THEOREM 4 Let k ∈ Nt
∞ be such that if 0 < ki <∞ then fi 6= Ωi−ωi and

δi 6= 0 and assume θ ≥ 0. Then, subject to the conditions on ` in Theorem

1,

vk(x, ψ, `) =
x(2`)nK

log1−α x

{
c
k̃
ãk̃

k̃!
α(log log x)k̃ +

c
k̃
ãk̃

(k̃ − 1)!
(log log x)k̃−1

}

×

(
U(r) +O

(
k̃

(log log x)2

))
(15)

where r is defined by

ri =

 1, if ki = ∞,

Bki/(δiX), if ki <∞,

and B =
(
α log log x+ k̃ − 1

)
/
(
α log log x+ k̃

)
.

PROOF In the integrand of (13) we write c0(z0) = α(z0)U(z0) and expand

U(z0) = U(r) +
∑
i∈H

(zi − ri)∂xiU(r) (16)

+
∑
i,j∈H

(zi − ri)(zj − rj)
∫ 1

0
(1− s)∂2

xi,xj
U(r + s(z0 − r))ds.

We introduce the notation

Ij(k + 1) =
1
2π

∫
|zi|=ri

(log x)δjzj

z
kj+1
j

dzj =
(δjX)kj

kj !
.
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The contribution of the first term from (16) to the integrals in (13) is

U(r)(log x)α
∫
...

∫
|zi|=ri,i∈H

(α+
∑
i∈H

δizi)
∏
j∈H

logδjzj x
dzj

z
kj+1
j

= U(r)(log x)α

α∏
j∈H

Ij(kj + 1) +
∑
i∈H

δi
∏
j∈H
j 6=i

Ij(kj + 1)Ii(ki)


= U(r)(log x)α

∏
j∈H

Ij(kj + 1)

(
α+

∑
i∈H

ki
X

)
since δiXIi(k) = kIi(k+1). Thus we get the main term in (15). Below we will

refer to the Main term as M.T . The introduction of a factor zi − ri, arising

from the first sum on the right hand side of (16) will give a contribution to

the integral of (log x)α∂xiU(r) times

α


∏
j∈H
j 6=i

Ij(kj + 1)Ii(ki)− ri
∏
j∈H

Ij(kj + 1)


+
∑
n6=i

δn


∏
j∈H
j 6=i,n

Ij(kj + 1)Ii(ki)In(kn)− ri
∏
j∈H
j 6=n

Ij(kj + 1)In(kn)


+δi


∏
j∈H
j 6=i

Ij(kj + 1)Ii(ki − 1)− ri
∏
j∈H
j 6=i

Ij(kj + 1)Ii(ki)

 ,

with the convention that Ii(k) = 0 if k ≤ 0. With the choice of ri given in

the theorem this contribution is seen to be zero.

For the final term in (16) we use ∂2
xi,xj

U(r + s(z0 − r)) � 1. If we first

forget the factors |zi− ri||zj − rj | in the double sum in (16), then each term

contributes

� x(2`)nK

log1−α x

α∏
j∈H

Jj(kj + 1) +
∑

δi
∏
j∈H
j 6=i

Jj(kj + 1)Ji(ki)

 (17)

� M.T.× exp((B − 1)k̃)

Bk̃+t/2
�t M.T. (18)
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Here we have written

Jj(k + 1) =
1
rkj

∫ 2π

0
exp(δjXri cos θ)dθ � exp(δjrjX)

rkj
√
δjrjX

,

by (14). With the factor |zi− ri||zj− rj | we immediately get a saving of rirj

over the Main Term, along with the fact that either two of the integrals (in

both terms of (17)) contain |eiθ−1| or one contains |eiθ−1|2. From (14) with

either n = 1 or n = 2 we get an additional saving of � 1/
√
δiriX

√
δjrjX.

Hence, for every term in the double sum in (16), we get a saving over the

main Term of

rirj√
δiriX

√
δjrjX

�
√
rirj

X
�

B
√
kikj

X
� k̃

X
.

Finally, the choice of r in the present result does not essentially change

the estimate, given in the proof of Theorem 3, of the contribution from the

error in Theorem 1. �

In Theorem 6 below we will prove a result for vk(x, ψ, `) valid for a longer

range of k̃ than Theorem 3. First we show that Theorem 3 is sufficient to

prove an Erdos-Kac type theorem.

THEOREM 5 Let H be a subset of {1, ..., t} such that, if i ∈ H, then

δi > 0. For i ∈ H, let fi = ωi or Ωi. Then, for any λi ∈ R, i ∈ H and for `

satisfying the conditions of Theorem 1,

1
#S(x, ψ, `)

#
{

a ∈ S(x, ψ, `) : fi(a) ≤ δi log log x+ λi
√
δi log log x

}
→
∏
i∈H

Φ(λi)

as x→∞ where

Φ(λ) =
1√
2π

∫ λ

−∞
e−t

2/2dt.

PROOF We apply Theorem 3 with θ ≡ 1, noting that δ′j = δj for all j ∈ H

and 1−α =
∑

j∈H δj because of the assumption on H. Hence, with Ui(λ) =
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δiX + λ
√
δiX, we get

1
x(2`)nK

∑
ki≤Ui(λi)

vk(x, ψ, `) =
∑
ñ,m̃

0≤ni+mi≤Ui(λi)

cñ∂
ñc0(b)
ñ!

∏
j∈H

e−δjX
(δjX)mj

mj !

(19)

+O

 1
log x

∏
j∈H

E(δjX,λj)

 ,

where the conditions on the summations are presumed to hold for all i ∈ H,

and

E(y, λ) :=
∑

m≤y+λ√y
e−y

ym

m!
.

We know that
∑

ñ cñ∂
ñc0(b)/ñ! converges, absolutely, to c0(1). In fact,

∂ñc0(b) � 1 for all ñ. Also

E(y, λ) = Φ(λ) +O

(
1
√
y

)
as y →∞. So, in particular, the limit as x→∞ of the last term in (19) is

zero. To calculate the limit of the first sum on the right hand side of (19)

we replace the sum over ñ, m̃ : 0 ≤ ni + mi ≤ Ui(λi), i ∈ H by one over

ñ, m̃ : 0 ≤ ni,mi ≤ Ui(λi), i ∈ H. The error introduced, that is, the sum

over ñ, m̃ : 0 ≤ ni+mi > Ui(λi), i ∈ H, is split into two. Let ε > 0 be given

and set Y = ε
√
X. Take any i ∈ H and relabel as 1. The first sum will be

over ñ for which n1 < Y and the other over ñ for which n1 ≥ Y . In first

sum m1 > U1(λ1)− n1 > U1

(
λ1 − ε√

δ1

)
. Thus we can bound this sum by

∑
ñ

0≤ni≤Ui(λi)

cñ
∣∣∂ñc0(b)

∣∣
ñ!

∏
j∈H
j 6=1

E(δjX,λj)
∑

m1<U1(λ1)

m1>U1

(
λ1− ε√

δ1

)
e−δ1X

(δ1X)m1

m1!

�
(

Φ(λ1)− Φ
(
λ1 −

ε√
δ1

))
+

1√
X
� ε
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for x sufficiently large. The second sum is bounded by

�

 ∑
ε
√
X≤n1≤U1(λ1)

1
n!

∏
i∈H
i6=1

 ∑
ni≤Ui(λi)

1
ni!

∏
j∈H

E(δjX,λj)

� ε

for sufficiently large x. Hence the limit of the first sum on the right hand

side of (19) equals

lim
x→∞

∑
ñ

0≤ni≤Ui(λi)

cñ∂
ñc0(b)
ñ!

∏
j∈H

E(δjX,λj) = c0(1)
∏
j∈H

Φ(λj).

Finally, from (2) we see that

lim
x→∞

#S(x, ψ, l)
x(2`)nK

= c0(1).

Hence the result follows. �

3 Further results for υk(x, ψ, `) The following result is a generalization

of Theorem 5 of [5], and the proof consists of indicating changes that need

to be made in that earlier proof.

THEOREM 6 Assume that |θ| ≤ 1 and that |α(z)| < 1 for all z for which

|zj | < 1 when j ∈ H, and |zj | ≤ 1 when j /∈ H. Then, subject to the

conditions on ` in Theorem 1,

υk(x, ψ, `) =
x(2`)nK

(log x)1−α
∑

0≤j≤J

Pj,k(log log x)
(log x)j

(20)

+x`nKEk,J(x) +O (x`nK exp(−R(x)))

for some polynomials Pj,k satisfying

Pj,k(log log x) �α
Γ(j + 2)
(2c0)j

log x

uniformly in k, and where

Ek,J(x) � 1
(log x)1−Reα

(
(log log x)k̃

(2c0 log x)J+1

(
k̃!
J

+ J !

)

+
J + 1
(2c0)J

x−c0(log 1/c0)k̃ + ` log log2 x

)
,
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subject to J + 2 ≤ c0 log x.

If J = J(x) = κ2(log x)1/3(log log x)−4/3, k ≤ CJ(x) and ` ≤ exp(−R(x))

then x`nKEJ � x`nK exp(−R(x)).

PROOF In the proof of Theorem 1 a truncated asymptotic expansion was

given for
1

2πi

∫
C0
ys−1F

(
s,
−→
0 , z

)
ds.

An alternative method to that in the proof of Theorem 1 is to replace C0 by

the truncated Hankel contour Cδ running from 1− c0 to 1−δ with argument

−π, then around 1 on a circular arc radius δ and finally from 1− δ to 1− c0

with argument π. By the assumptions in the Theorem, |α(z)| < 1, and,

in particular, Reα(z) < 1, so that the contribution from the circular arc

tends to zero as δ → 0. The integration over y in (7) then gives, for the ` of

Theorem 1, a generalization of Theorem 3 of [5], namely

∑
a∈S(x,ψ,`)
a integral

θ(a)zf(a) = x(2`)nK

c0∫
0

x−rk(`, r)F ∗(1− r, z)r−α(z)dr

+O (x`nK exp(−R(x))) (21)

where k(`, r) = (2`)−1
{
(1 + `)1−r − (1− `)1−r

}
and F ∗(s, z) = (πs)−1H(s, z)

sin (πα (z)) .

Put zi = 1 in (21) for each i /∈ H, multiply both sides by
∏
i∈H z

−(ki+1)
i ,

perform m integrations over |zi| = 1− εi and let each εi → 0 to obtain

νk(x, ψ, `) = x(2`)nK

c0∫
0

x−rk(`, r)W
k̃
(r)r−αdr +O (x`nK exp(−R(x))) .

(22)

HereW
k̃
(r) is the coefficient of z̃k̃ in Taylor’s development of F ∗(1−r, z0)r−α̃(z̃)

about z̃ = 0̃. Since F ∗(1 − s, z) is analytic for |s| < 3c0 and max |zi| ≤ 1,

we can write

F ∗(1− s, z0) =
∞∑
j=0

∑
ũ∈Nm

0

βj,ũz̃
ũsj .
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Just as we saw for the hj(z) in the proof of Theorem 1, we have βj,ũ �

(2c0)−j for all j ≥ 1, uniformly in ũ. We also have

r−α̃(z̃) =
∞∑
p=0

ã(z̃)p

p!
(− log r)p

=
∞∑
p=0

1
p!

 ∑
||p̃||σ=p

cp̃ã
p̃z̃p̃

 (− log r)p

by the multinomial theorem. Thus

W
k̃
(r) =

∞∑
j=0

rj
∑

0≤p≤k̃

1
p!

 ∑
ũ+p̃=k̃
||p̃||σ=p

cp̃ã
p̃βj,ũ

 (− log r)p.

Let β
j,k̃,p

denote the inner sum. With the assumptions on θ, we have that

|ai| ≤ di for each i, where di is the density of p : Θ(p) = γi. Write d =

(di)1≤i≤t, then

β
j,k̃,p

� 1
(2c0)j

∑
ũ+p̃=k̃
||p̃||σ=p

cp̃d̃
p̃ =

1
(2c0)j

∑
||p̃||σ=p

cp̃d̃
p̃

=
1

(2c0)j

(∑
i∈H

di

)p
≤ 1

(2c0)j
.

So, on writing

W
k̃
(r) =

∞∑
j=0

rj
∑

0≤p≤k̃

β
j,k̃,p

p!
(− log r)p, (23)

we see that W
k̃
(r) is of exactly the same form as in [29], p.11, with the same

information concerning the coefficients β
j,k̃,p

.

We truncate the series over j in (23) at some J ≥ 1. The contribution of

the resulting error to the integral (22) can be read from equation (13) in [5].

The truncated sum is inserted into (22) and the summation and integration

interchanged. The integral is now extended from c0 to ∞. The error in

doing this can be read from equation (16) in [5]. (The inclusion of r−α in

(22) only effect the errors by reducing J by at most 1 in equation (13) of

[5].) Thus we get the first two terms in Ek,J .
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For the integrals over r, from 0 to ∞, of each term 0 ≤ j ≤ J in the sum

of (23) we first replace k(`, r) by 1. We then get a term

Mj(x) :=
∑

0≤p≤k̃

p∑
m=0

ap,m,j
(log log x)m

(log x)j+1−α

where

ap,m,j =
β
j,k̃,p

(−1)p−mΓ(p−m)(j − α+ 1)

m!(p−m)!
.

We incorporate the factor k(`, r) into the integration by calculating

1
2`
{(1 + `)Mj(x(1 + `))− (1− `)Mj(x(1− `))} . (24)

For each term in Mj(x) we have, by a mean value result, that

1
2`

{
(1 + `)(log log(x(1 + `)))m

(log(x(1 + `)))j+1−α − (1− `)(log log(x(1− `)))m

(log(x(1− `)))j+1−α

}
=

Xm

logj+1−α x
+
mXm−1 − (j − α+ 1)Xm

logj+2−α x

+O
(

(j2 +m2)`
Xm

logj+2−Reα x

)
, (25)

where X = log log x. The contribution of this error to (24) is

� `

(2c0)j logj+2−Reα x

k̃∑
m=0

(j2 +m2)Xm

m!

k̃−m∑
n=0

|Γ(n)(j − α+ 1)|
n!

(26)

We estimate |Γ(n)(j−α+1)| by using Cauchy’s integral on a circle about

j − α+ 1 of radius (1− |α|)/2. In such an integral the integrand contains

Γ(j − α+ 1 + w) = (j − α+ w)...(1− α+ w)Γ(1− α+ w)

� α(j + 1)j...2 = Γ(j + 2),

for all |w| = (1 − |α|)/2, using |α| < 1. Thus |Γ(n)(j − α + 1)| �α ((1 −

|α|)/2)nΓ(j + 2) and, in particular, the sum over n in (26) satisfies

k̃−m∑
n=0

|Γ(n)(j − α+ 1)|
n!

�α Γ(j + 2). (27)
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Hence (26) is

� α
` Γ(j + 2)

(2c0)j logj+2−Reα x

k̃∑
m=0

(j2 +m2)Xm

m!

� α
` Γ(j + 2)

(2c0)j logj+2−Reα x

(
j2 exp(X) + (X +X2 exp(X)

)
)

� α
` Γ(j + 2)(j2 +X2)
(2c0)j logj+1−Reα x

.

Summing over j and assuming that J + 2 ≤ c0 log x gives the third term in

Ek,J , namely ` (log log x)2 .

The main terms in (25) lead to a contribution in (24) of

1
log x1−α

∑
0≤p≤k̃

p∑
m=0

ap,m,j

(
Xm

logj x
+m

Xm−1

logj+1 x
− (j − α+ 1)

Xm

logj+1 x

)
,

say. When we sum over j we find that the polynomial coefficient of (log x)−j−1−α,

that is Pj,k(X), is given by

∑
0≤p≤k̃

p∑
m=0

bp,m,jX
m =

k̃∑
m=0

 ∑
m≤p≤k̃

bp,m,j

Xm

where

bp,m,0 = ap,m,0 for all p ≥ 0, 0 ≤ m ≤ p,

bp,m,j = ap,m,j + (m+ 1)ap,m+1,j−1

− (j − α)ap,m,j−1 for all j ≥ 1, p ≥ 0, 0 ≤ m ≤ p− 1,

bppj = ap,p,j − (j − α)ap,p,j−1 for all j ≥ 1, p ≥ 0.
(28)

Using (27) we find that

Pj,k(X) � 1
(2c0)

j

k̃∑
m=0

Xm

m!

k̃−m∑
n=0

|Γ(n)(j − α+ 1)|
n!

+
k̃−m−1∑
n=0

|Γ(n)(j − α)|
n!

+(j + 1)
k̃−m∑
n=0

|Γ(n)(j − α)|
n!


� α

Γ(j + 2)
(2c0)j

exp(X),
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uniformly in k. �

NOTE (iii) The assumption on α(z) in Theorem 6 can only fail if θ ≡ 1

and
∑

j∈H,fj 6=Ωj−ωj
|Cj | = 0. In particular, it will fail if θ ≡ 1 and fi =

Ωi − ωi for all 1 ≤ i ≤ t. In this case we can use Theorem 2 to quickly

deduce a local form of a Rényi-type result. In Theorem 8, we will give the

details of such a result in the special case K = Q(i).

(iv) A non-localized result that is, basically, a result on υk(x, 0, 1/2) is

given in [23], but see also Theorem 9.4 of [19]. An asymptotic form of the

error term for this non-localized result is given in [12].

(v) If K = Q, L = Q(i),Γ = {1} and

f(pr) =

 1 if either p = 2, p ≡ 1(mod 4) or 2|r and p ≡ 3(mod 4),

0 otherwise

then we deduce the full asymptotic version of Corollary 6 of [5]. This is a

result on the integers in small intervals that are the sum of two squares and

have a given number of prime factors. In this way we can see that a factor

1/(k − 1)! is missing from the main term in Corollary 6 of [5].

(vi) Just as the coefficients cj(z), j ≥ 1 in (2) are not what we expect

when ` is close to 1/2, the polynomials Pj,k(y), j ≥ 1, in (20) are not what

would be expected for such `. In fact, if we take θ ≡ 1, define νk(x) = #{a ∈

I : Na ≤ x, f(a) = k} and δk(x, ψ, `) = x−1νk(x) − x−1(2`)−nKνk(x, ψ, `)

then it can be shown, subject to the conditions on ` in Theorem 1, that δk

has an expansion of the form (20) but with the sum starting at j = 1 as

opposed to j = 0. Further, by a method of Kátai [13], it can be shown that,

for such `, we have∑
k∈Nt

0

δ2k(x, ψ, `) � (log x)−4+2α
∏

fj 6=Ωj−ωj

δj 6=0

(2δj log log x)−1/2.

The proof is not given here. This result could have been used to deduce

Theorem 4 from a similar result for νk(x). Such a result, but only with
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t = 1, is given in Theorem 3 of [29].

3.1 Irreducible integers Let Γ = CK , the ideal class group of K, and

define the totally multiplicative function Θ(p) = Ci if p ∈ Ci. Then by class

field theory Θ is Frobenius multiplicative relative to H(K)/K, where H(K)

is the Hilbert Class field of K. Also,

Ωi(a) =
∑
pr||a
p∈Ci

r,

a counting function seen in [23], but see also [12], or Theorem 9.5 of [19].

From any of these references we see that we can count the irreducible integers

α ∈ K satisfying (α) ∈ S(x, ψ, `) by summing υk(x, ψ, `) over k for which

Ck11 Ck22 ...Ckh
h equals E,the principal class, and Ce11 C

e2
2 ...C

eh
h , for 0 ≤ ei ≤ ki

equals E if, and only if, either all ei = 0 or ei = ki for all i. Such a collection

of k is finite and so we can sum (20), with θ ≡ 1, noting that H(K)/K is,

like the ideal class group, abelian. Thus we deduce the result that was the

initial motivation for this paper.

THEOREM 7 With x−5(1−ε)/12nK < ` < exp(−R(x)),∑
(α)∈S(x,ψ,`)
α irreducible

1 =
x(2`)nK

log x

∑
0≤j≤J(x)

Qj(log log x)
(log x)j

+O (x`nK exp(−R(x))) ,

where J(x) = κ2(log x)1/3(log log x)−4/3. The polynomials Qj(X) are of de-

gree at most D − 1, where D = D(H(K)) is the Davenport constant of the

class group H(K). �

4 Results in Q(i) In Q(i) the regions S(x, ψ, `) are easy to visualise as

sectors of annuli. These regions can be combined together to give regions

such as

D(z, r) = {w ∈ C : |w − z| < r},

the open disc with centre z and radius r. For instance, Corollary 11(iii) of

[5] states that, for fixed k ∈ N and |z| ≥ r(z) ≥ |z|7/12+ε, we have

#{α ∈ D(z, r) : ω(α) = k} = 4r2(z)
(log log(|z|2))k−1

(k − 1)! log(|z|2)
(1 + o(1)) . (29)
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(There is an error in [5] in that 4 is replaced by an erroneous π and we have

|z| in the earlier paper in place of |z|2.) Using Theorem 6, it is possible to

given an expansion of the form (20) in place of (29). Here we will indicate

what other results we can give in Q(i).

THEOREM 8 Throughout z ∈ C satisfies |z| ≥ 10.

(i) For k ≥ 1, and |z|1/2 exp (−R (|z|)) < r(z) < |z|,

#{α ∈ D(z, r(z)) : Ω(α)− ω(α) = k} = 4dkr2(z)

+O(r8/5(z)|z|1/5 exp(−R(|z|)),

where
∞∑
k=0

dkz
k = ρQ(i)ζ

−1
Q(i)(2)

∏
π

(
1− z/(1 +Nπ)

1− z/Nπ

)
.

(ii) For |z| > r(z) > |z|7/12+ε,

1
#D(z, r)

#
{
α ∈ D(z, r(z)) : ω(α) ≤ log log

(
|z|2
)

+ λ
√

log log (|z|2)
}

→ Φ(λ)

as |z| → ∞.

(iii) Given integers e ≥ 2, f ≥ 1 set k̂ = (e, f). Then for all |z| exp(−R(|z|))

> r(z) > |z|7/12+ε,

# {α ∈ D(z, r(z)) : ω(α) = e,Ω(α) = e+ f}

=
4r2(z)

log (|z|2)
∑

0≤j≤J

P
j,k̂

(log log
(
|z|2
)
)

(log (|z|2))j
(30)

+r2(z)E
k̂,J

(|z|) +O
(
r2(z) exp(−R(|z|))

)
subject to J < 2c0 log |z|. The main term is

2r2(z)
(e− 2)!

P (f)
(log log |z|)e−2

log |z|
,

where P (f) =
∑′

π(Nπ)−(f+1), the sum being over unassociated primes of

Q(i).
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PROOF Define

D0(z, r(z)) =
{

(y, ψ) :
∣∣∣y1/2e2πiψ/4 − z

∣∣∣ < r(z)
}
.

Then Proposition 10 of [5] gives, for any 0 ≤ ` ≤ 1/2,

∑
α∈D(z,r)
C(α)

1 =
1

(2`)2
(1 +O(`))

∫ ∫
D0(z,r(z))

 ∑
(α)∈S(y,ψ,`)

C(α)

1

 dy

y
dψ

+O(r(z)|z|`), (31)

where C(α) represents conditions on α. If C (α) represents Ω(α)−ω(α) = k,

then we can feed in the result from Theorem 2 to get

1
(2`)2

(1 +O(`))
∫ ∫

D0(z,r(z))

{
(2`)2dky +O(y5/6`4/3 exp(−R(y))

} dy
y
dψ

+O(r(z)|z|`),

for any ` = `(z) > |z|−1/2 exp (−R (|z|)). With the observation that∫ ∫
D0(z,r(z))

dydψ =
4
π

∫ ∫
s2+t2<r2(z)

dsdt = 4r2(z) (32)

and the choice `(z) = r3/5(z)|z|−4/5 we get the result stated in (i).

For (ii), the condition C(α) : ω(α) ≤ log log
(
|z|2
)

+ λ
√

log log (|z|2)

depends on z. We also choose ` = `(z) = |z|−5/12+ε/2, a function of z.

Nonetheless, the proof of Theorem 5 will give an estimate for the integrand

of (31) for all (y, ψ) ∈ D0(z, r(z)). The result of Theorem 5 shows that the

main term of (31) is asymptotically

c0(1)
∫ ∫

Φ(λ)

D0(z,r(z))

dydψ = πr2Φ(λ) ∼ #D(z, r)Φ(λ)

as |z| → ∞, using the fact that c0(1) = ρQ(i) = π/2. For the error term of

(31), we require that r(z)|z|`/r2(z) → 0 as |z| → ∞. With our choice of `,

this is satisfied by |z| > r(z) > |z|7/12+ε.
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(iii) We need to estimate

# {(α) ∈ S(y, ψ, `) : ω(α) = e,Ω(α) = e+ f} . (33)

This can be done in general enforcing conditions simultaneously on ωi and

Ωi for each 1 ≤ i ≤ t. Use the notation that v̂ will denote a vector with 2t

co-ordinates while v will consist of the first t co-ordinates of v̂. We replace

f by f̂ defined as f̂i = Ωi or ωi when 1 ≤ i ≤ t, while f̂i = Ωi−t − ωi−t for

t+ 1 ≤ i ≤ 2t. (In fact it would suffice if f̂i = ωi when 1 ≤ i ≤ t.)

Following the proof of Theorem 1, we find that ẑf̂(p) = zf(p), so that

the n = 1 term of Up

(
s,−→m, ẑ

)
is the same as that of Up

(
s,−→m, z

)
. This

means that the integrand of (7) contains F
(
s,
−→
0 , ẑ

)
= (s− 1)−α(z)H(s, ẑ),

where α(z) =
∑t

i=1 δizi and H(s, ẑ) is analytic when the coordinates of ẑ

satisfy the conditions of Theorem 1 and |s− 1| ≤ 3c0. Then, in the proof of

Theorem 6, the integrand of (21) will now contain F ∗(1− r, ẑ)r−α(z), where

F ∗(s, ẑ) = (πs)−1 H(s, ẑ) sin(πα(z)). The details of the derivation of a result

for v
k̂
(x, ψ, `), similar to (20), are the same as before and valid for the same

range of `.

Returning to the particular case of (33) in Q(i), we note that we are

enforcing a condition on every component of k̂. In the notation of section

2.3, we have H = {1, ..., 2t}, and so α = 0. As in part (ii), though we choose

` = |z|−5(1−ε)/12, a function of z, we can give a result for (33), valid for all

(y, ψ) ∈ D0(z, r(z)). Inserting such a result into (31), we attempt to write

the expansion for (33) in terms of |z|2 instead of y. For notational simplicity

set u = |z|2, when we find that |y−u| � |z|r(z). Then, for each term in the

expansion, we use the mean value result in∣∣∣∣(log2 y)k

(log y)j
− (log2 u)k

(log u)j

∣∣∣∣� (m+ j)
r(z) log logm u
|z| logj+1 u

.

We can deal with this upper bound as we did the error in (25), summing over

0 ≤ m ≤ p, 0 ≤ p ≤ e and 1 ≤ j ≤ J + 1. Then, as long as J + 2 < c0 log u,

we get a contribution to the integral in (31) � (r(z) log log u) /(|z| log u).
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This estimate, along with all other terms in our expansion, can be taken out

of the integral in (31) on which we then use (32). It is then easily seen how

all the terms in (30) arise. In addition we also have the errors

� r3(z) log log |z|
|z| log |z|

+
`r2(z)
log |z|

+ r(z)|z|`,

where the second one comes from the O(`) factor in (31). We see these terms

are sufficiently small subject to the conditions on r(z). For the main term,

the coefficients of P0,(e,f) are constructed from the β0,û, defined by

∑
û

β0,ûẑ
û = F ∗(1, ẑ) =

sin(πz1)
π

ρz1Q(i)

∏
π

1 +
∑
n≥1

z1z
n−1
2

Nπn

 .

We immediately see that if β0,û 6= 0 for some u = (u1, u2) with u2 6= 0, then

u1 ≥ 2. Further, β0,(2,f) =
∑′

π(Nπ)−(f+1). Working through the proof of

Theorem 6, we obtain the main term quoted. �

Note (vii) In general the degree of the polynomial in the main term

for v
k̂
(x, ψ, `) is ≤

∑t
1 ki − (s + 1), where s is the number of non-zero

k̂i, t+ 1 ≤ i ≤ 2t.

Part (ii) of Theorem 8 generalises the result for short intervals of Q due

to Kátai, [13]. Part (iii) generalises the non-localized version in Q due to

Delange, [6].

Acknowledgments

This paper was partly written while the author enjoyed the hospitality

and excellent working conditions of the Centre de recherches Mathématiques
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