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MODEL THEORY OF COMODULES

SEPTIMIU CRIVEI, MIKE PREST, AND GEERT REYNDERS

The purpose of this paper is to establish some basic points in the model theory
of comodules over a coalgebra. It is not even immediately apparent that there is
a model theory of comodules since these are not structures in the usual sense of
model theory. Let us give the definitions right away so that the reader can see what
we mean.

Fix a field k. A k-coalgebra C is a k-vector space equipped with a k-linear
map ∆ : C −→ C ⊗C, called the comultiplication (by ⊗ we always mean tensor
product over k), and a k-linear map ε : C −→ k, called the counit, such that
∆ ⊗ 1C = 1C ⊗ ∆ (coassociativity) and (1C ⊗ ε)∆ = 1C = (ε ⊗ 1C)∆, where we
identify C with both k ⊗ C and C ⊗ k. These definitions are literally the duals of
those for a k-algebra: express the axioms for C ′ to be a k-algebra in terms of the
multiplication map µ : C ′ ⊗ C ′ −→ C ′ and the “unit” (embedding of k into C ′),
δ : k −→ C ′ in the form that certain diagrams commute and then just turn round
all the arrows. See [4] or more recent references such as [7] for more.

A (right) comodule over the coalgebra C is a k-vector space M equipped with a
k-linear map ρ : M −→ M⊗C which satisfies 1M⊗∆ = ρ⊗1C and (1M⊗ε)ρ = 1M ,
where we identify M and M ⊗ k (and, of course, M ⊗ (C ⊗C) with (M ⊗C)⊗C).
Again, the way to understand this definition is to write the axioms for being a
unital module M ′ over an algebra C ′ in terms of the structure map M ′⊗C ′ −→ M
in a diagrammatic way and then reverse all arrows.

The structure on a C-comodule is, therefore, the structure of a k-vector space
(which is no problem) together with a morphism from M to M ⊗ C. Recall that
what we do with the structure map M⊗C ′ −→ M ′ of a module M ′ is to build each
function − ⊗ c : M ′ −→ M ′, for c ∈ C ′, into the language. It is not so clear how
to proceed in the case of comodules. That is, does there exist a language in which
one may axiomatise the concept of a C-comodule, where C is a fixed k-coalgebra?

It is not difficult to give plausible reasons as to why this question should have a
negative answer. But plausibility is not enough, as we shall see.

A key fact that we use is the equivalence of the category of C-comodules with
a subcategory of the category of C∗-modules, where C∗ is the dual algebra of C.
As a vector space, C∗ is the dual, Homk(C, k), of k and it is easy to verify that the
k-coalgebra structure of C induces, in a natural way, the structure of a k-algebra
on C∗ (if f, g ∈ C∗, c ∈ C with ∆c =

∑
i c′i ⊗ c′′i , set (fg)c =

∑
i f(c′i)g(c′′i )).

Let M , with structure map ρ : M −→ M ⊗ C, be a C-comodule. Then M
may be given a left C∗-module structure by defining fm = (1M ⊗ f)ρ(m) (and
using the identification of M ⊗ k with M via m⊗ 1 7→ m). This extends to give a
functor from the category, Comod-C, of right C-comodules to the category C∗-Mod
of left C∗-modules. A C∗-module M is said to be rational (the term comes via
representations of algebraic groups) if for every m ∈ M there are m1, ...,mn ∈
M and c1, ..., cn ∈ C such that for every f ∈ C∗ we have fm =

∑n
i=1 f(ci)mi

(equivalently for every m ∈ M we have that C∗/{f ∈ C∗ : fm = 0} is finite-
dimensional). We denote by C∗-Rat the full subcategory of C∗-Mod whose objects
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are the rational C∗-modules. Then the theorem is the following (see either of the
references above).

Theorem 0.1. Let C be a k-coalgebra. If M is a C-comodule then, with the
induced structure, M is a rational C∗-module. This extends to a functor which is
an equivalence between Comod-C and C∗-Rat.

If C is finite-dimensional as a k-vector space then every left C∗- module is rational
and in this case we have an equivalence between Comod-C and C∗-Mod. Does this
mean that, in this case, the concept of a C-comodule is axiomatisable? If we take
the view that an object derives its mathematical structure from the category to
which it “naturally” belongs then we conclude that C-comodules are C∗-modules
and that, in the case where C is finite-dimensional, the concept of C-comodule is
axiomatisable.

So the natural question is then whether, in the general case, the rational C∗-
modules form an elementary subclass of the class of all C∗-modules. Even if we do
not take such a strongly category-theoretic view then, noting that the C-comodule
structure is determined by the C∗-module structure and vice-versa, we are led to
the same question.

This question was answered in the thesis of the third author.

Theorem 0.2. [5] There is a coalgebra C such that the category of rational C∗-
modules does not form an elementary subclass of the category of C∗-modules.

Proof. Let C be a vector space over a field k, with basis {ci}i∈ω. Define ∆ : C −→
C ⊗ C by ∆ck =

∑k
i=0 ci ⊗ ck−i (k ∈ ω) and define ε : C −→ k by ε(ck) = δ0k

(Kronecker delta). With these maps, C is a coalgebra.
For i ∈ ω define xi to be the dual map corresponding to ci, so xi(cj) = δij . Note

that x2
i = xi and xixj = 0 if i 6= j. The typical element of the dual algebra C∗ is a

formal sum,
∑

i∈ω λixi (λi ∈ k).
Each (two-dimensional) module Mi = C∗/〈xj : j 6= i〉 is clearly rational and

so the direct sum,
⊕

i Mi, of these also is rational. For any modules Mi,
⊕

Mi is
elementarily equivalent to

∏
Mi. But the element a ∈

∏
Mi which has the image of

1 ∈ C∗ at each coordinate has zero annihilator in C∗: in particular, C∗/annC∗(a)
is infinite-dimensional and hence

∏
i Mi is not rational. �

We remark that one can see easily that the class of rational C∗-modules is ax-
iomatisable within the class of C∗-modules in an infinitary language Lκ,∞ for suit-
ably large κ.

That, however, is not the end of the story, for the category C∗-Rat is locally
finitely presented. This is noted in [2, 5.5], is shown directly in [5] and can be
found in [7] in a more general context (see also [3] for related results). This means
that every rational module is a direct limit of finitely presented rational modules,
where an object A of a category A is said to be finitely presented if the functor
(A,−), that is HomA(A,−), commutes with directed colimits (meaning that if we
have a morphism from A to B = lim−→Bλ, where the Bλ form a directed system, then
this morphism factors through the canonical map Bλ −→ B for some λ). It is not
difficult to see that this is equivalent to the usual definition in terms of generators
and relations whenever the latter makes sense. One also requires, for A to be locally
finitely presented, that there be just a set of isomorphism types of finitely presented
objects in A.

It is well-known, see [1], that any locally finitely presented category A is ele-
mentary: there is a first-order, finitary language such that every object of A is
a structure for this language and such that A is an axiomatisable class in this
language.
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Theorem 0.3. [5] For any coalgebra C over a field k the class of C-comodules is
an elementary class in a suitable first order, finitary, language.

Proof. The category of C-comodules is equivalent to the category of rational C∗-
modules, which is elementary. Therefore (for general or particular reasons, see
above) the class of C-comodules is elementary. �

The language of a locally finitely presented abelian category A is multisorted:
it has a sort for each finitely presented object of A (rather one for each object in
a small or even skeletal version of the category, Afp, of finitely presented objects
of A). It has a function symbol from sort B to sort A for each morphism from
A to B. If M is an object of A then the elements of M of sort A are simply the
elements of the morphism set (A,M). The action of the function corresponding to
a morphism is simply composition with that morphism (note the resulting reversal
of arrows). Here we are dealing with additive categories so we add a symbol for 0
and a symbol for addition in each sort. Indeed, since everything is a k-vector space
we should also add a function symbol for each scalar multiplication in each sort.

We have reached a conclusion which was to us (in this case meaning the second
and third authors) not at all expected: although not axiomatisable in an obvious
way, the concept of comodule is an elementary one.

The rest of this paper, which is mainly work of the first and second authors, is
devoted to pulling this conclusion back to the original category (of C-comodules).
For although we have axiomatisability, we do not have axiomatisability in a “nat-
ural” (from the comodule theory point of view) sense. To prove something about
the model theory of comodules we would first move to the equivalent category of
rational modules, work in the multi-sorted language there, and then pull back our
results to the original category. So we believe that there is some value in describing
the basic concepts of the model theory of Comod-C in comodule terms. We will
describe (systems of) equations and hence pp formulas, pure embeddings and pure-
injective comodules. Since Comod-C is a locally finitely presented abelian category
we do have pp-elimination of quantifiers and all the usual machinery of the model
theory of modules. The concepts that we have mentioned are, therefore, the basic
ones and, with them, one can go on to build the rest of the theory (in particular the
Ziegler spectrum) in the usual way. We do not do this, being content with laying
the foundations, since we do not have any particular applications to comodules in
mind. What we have done, we hope, is to clear the path for anyone who does see
some interesting goals in this direction.

The first question is what should be an equation, or system of equations, with
parameters from a given comodule? Because we are not dealing with structures in
the usual equational sense, we start with an algebraic view of (solvability of) systems
of equations. Let M be a comodule. By a system of equations with parameters
from M we mean an embedding, i : K −→ P , of comodules, together with a
morphism of comodules f : K −→ M . We say that this system is solvable in M
if there is a morphism g : P −→ M such that gi = f (and we call such a morphism
a solution of the system). In categories of equationally defined structures this
is equivalent to the usual notion: if we have a system of equations of the form
sλ(x̄, ā) = tλ(x̄, ā) where the sλ and tλ are terms and x̄, ā are possibly infinite
sequences of variables, respectively parameters from M (only finitely many of which
appear in each equation), then we take P to be the free structure on variables x̄, ȳ,
with ȳ matching ā, subject to the relations sλ(x̄, ȳ) = tλ(x̄, ȳ), take K to be the
substructure generated by the variables ȳ and let f be the morphism which takes
yi to ai.

The first question to be resolved is: given comodules P and M and a partial
map h from the set P to the set M when does this map extend to a morphism of
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comodules from the subcomodule of P generated by the domain of h to M? We
simplify by assuming that the domain of h generates P . A subcomodule, P ′, of a
comodule is a vector subspace which satisfies the condition ρP (P ′) ⊆ P ′⊗C where
ρP : P −→ P ⊗ C is the comodule structure map. So to say that a subset, X,
generates P is to say that ρP (P ) ⊆ X ⊗ C (the right-hand side consists of sums
of tensors xi ⊗ ci).

Note that if the elements pi (i ∈ I) generate P as a comodule then they must
generate P as a vector space. For if y ∈ P then we have ρP y =

∑
i pi ⊗ ci for some

pi ∈ P and ci ∈ C. But then, identifying P ⊗ k with P, and hence identifying the
map 1P ⊗ε : P ⊗C −→ P ⊗k which takes p⊗c to p⊗ε(c) with the map from P ⊗C
to P which takes p⊗ c to pε(c), we have y = (1P ⊗ ε)ρP (y) = (1P ⊗ ε)(

∑
pi⊗ ci) =∑

pi.ε(ci) is a k-linear combination of the pi, as required.

Lemma 0.4. Let P be a comodule, with generating set pi (i ∈ I) and let bi (i ∈ I) be
elements of a comodule M. Then the map pi 7→ bi extends to a comodule morphism
from P to M iff
(i)

∑
piαi = 0 implies

∑
biαi = 0 for all αi ∈ k (that is, the map extends to a map

of vector spaces) and
(ii) if ρP (pi) =

∑
pj ⊗ eij (eij ∈ C) then ρM (bi) =

∑
bj ⊗ eij.

Proof. Suppose that we have conditions (i) and (ii). Define g : P −→ M by sending
y =

∑
piαi to

∑
biαi. We must check that this is well-defined and a comodule map.

First, it is well-defined. If y =
∑

piαi =
∑

piβi then
∑

pi(αi − bi) = 0 so, by
assumption (i),

∑
bi(αi − βi) = 0, as required.

That the map is k-linear is direct from the k-linearity of ε.
To see that it is a comodule map, let y ∈ P. We must show that ρMg(y) =

(g ⊗ 1C)ρP (y) Suppose that ρP (y) =
∑

pi ⊗ ci, so y =
∑

piαi where αi = ε(ci).
Then ρMg(y) = ρM (

∑
biαi) =

∑
ρM (bi)αi =

∑
i

∑
j bj ⊗ eijαi by (ii). Also (g ⊗

1C)ρP (y) = (g⊗ 1C)
∑

i ρP (pi)αi = (g⊗ 1C)
∑

i

∑
j pj ⊗ eijαi =

∑
i

∑
j bj ⊗ eijαi,

which equals ρMg(y), as required.
For the converse, if we have a comodule morphism then certainly we have (i)

since such a morphism is k-linear and condition (ii) is direct from the fact that this
morphism commutes with comultiplication. �

Now we suppose that we have an embedding i : K −→ P of comodules and a
morphism f : K −→ M of comodules and we look for “equations” with parameters
from M, a solution to which provides a factorisation of f through i. Suppose that pi

(i ∈ I) is a generating set for P. In order to describe P we must describe the k-linear
relations between these as well as those which hold in P ⊗ C. That is, we must
describe a generating set of relations of the form

∑
i ρP (pi)αi +

∑
i pi⊗ci = 0 (note

that
∑

piβi = 0 is equivalent to
∑

pi⊗βi = 0). By a generating set of relations we
mean generating in the sense of vector spaces. (Though, since for any C-comodule
N , also N⊗C is canonically a C-comodule, we could take “generating” in the sense
of C-comodules. However, as noted earlier, if a set is generating in this sense then
it is in fact generating in the sense of vector spaces.)

Proposition 0.5. Suppose P is a C-comodule (where C is a k-coalgebra) with
generating set pi (i ∈ I) and with generating set of relations

∑
i ρP (pi)αiλ+

∑
i pi⊗

ciλ = 0 (λ ∈ Λ) where the αiλ are from k and the ciλ from C. Suppose also that
i : K −→ P is a subcomodule, with generating set kl (l ∈ L). Say ρP (kl) =∑

i pi ⊗ dli ∈ P ⊗ C (l ∈ L). Let f : K −→ M be a morphism of comodules. Then
there is a comodule morphism g : P −→ M such that gi = f iff the following system
of equations is solvable in M .∑

i vi ⊗ dli = ρM (fkl) (l ∈ L)∑
i ρ(vi)αiλ +

∑
i vi ⊗ ciλ = 0 (λ ∈ Λ)
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Proof. If there is an extension g : P −→ M of f then it is quickly checked that gpi

(for vi) (i ∈ I) is a solution of the system of equations.
If, conversely, mi (i ∈ I) is a solution of this system of equations in M then

we claim that the map from P to M defined by sending pi to mi and extending
by k-linearity is a well-defined morphism of comodules. It is enough to check the
conditions of 0.4.

First, if
∑

piαi = 0 then (
∑

piαi) ⊗ 1 = 0, that is,
∑

pi ⊗ αi = 0. So
∑

vi ⊗
αi = 0 is a linear combination of the second set of relations listed and, therefore,∑

mi ⊗ αi = 0 holds, that is,
∑

miαi ⊗ 1 = 0, that is,
∑

miαi = 0, as required.
Second, if ρP (pi) =

∑
j pj⊗eij then ρ(vi)−

∑
j vj⊗eij = 0 is a linear combination

of the second set of equations listed and so ρM (mi)−
∑

mj ⊗ eij = 0, as required.
Finally, to check that g does extend f , we have f(kl) = (1M⊗εM )ρM (fkl) = (1⊗

ε)
∑

mi ⊗ dli =
∑

miε(dli). From ρP (kl) =
∑

pi ⊗ dli we also have kl =
∑

piε(dli)
and hence g(kl) =

∑
miε(dli) = f(kl), as required. �

Our conclusion is that, in the context of C-comodules, an equation is an expres-
sion of the form

∑
i ρM (vi)αi +

∑
i vi ⊗ ci = 0 where the αi ∈ k and the ci ∈ C. As

usual we go on to define a positive primitive formula to be an existentially quanti-
fied conjunction of equations. Then we define an embedding M −→ N to be pure
if every positive primitive formula with parameters from M and a solution in N
already has a solution in M and we define a comodule M to be pure-injective if
every pure embedding M −→ N is split (by a comodule morphism). That these
coincide with the algebraic / categorical definitions of purity and pure-injectivity is
easily checked: 0.5 is the key which links the above definition of purity via positive
primitive formulas with those of, for example, [1, p.85] and [6, p.284/5].
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